
ar
X

iv
:1

70
4.

01
98

4v
1

 [
cs

.I
T

]
 6

 A
pr

 2
01

7

A Delay-Aware Caching Algorithm for Wireless
D2D Caching Networks

Yi Li, M. Cenk Gursoy and Senem Velipasalar
Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, NY 13244

Email: yli33@syr.edu, mcgursoy@syr.edu, svelipas@syr.edu

Abstract— Recently, wireless caching techniques have been
studied to satisfy lower delay requirements and offload traffic
from peak periods. By storing parts of the popular files at the
mobile users, users can locate some of their requested files in
their own caches or the caches at their neighbors. In the latter
case, when a user receives files from its neighbors, device-to-
device (D2D) communication is enabled. D2D communication
underlaid with cellular networks is also a new paradigm for the
upcoming 5G wireless systems. By allowing a pair of adjacent
D2D users to communicate directly, D2D communication can
achieve higher throughput, better energy efficiency and lower
traffic delay. In this work, we propose a very efficient caching
algorithm for D2D-enabled cellular networks to minimize the
average transmission delay. Instead of searching over all possible
solutions, our algorithm finds out the best <file,user> pairs,
which provide the best delay improvement in each loop to form
a caching policy with very low transmission delay and high
throughput. This algorithm is also extended to address a more
general scenario, in which the distributions of fading coefficients
and values of system parameters potentially change over time.
Via numerical results, the superiority of the proposed algorithm
is verified by comparing it with a naive algorithm, in which all
users simply cache their favorite files.

I. INTRODUCTION

Recently, many studies have been conducted to analyze
caching strategies in wireless networks in order to satisfy
the throughput, energy efficiency and latency requirements
in next-generation 5G wireless systems. By storing parts
of the popular files at the base station and users’ devices,
network traffic load can be managed/balanced effectively, and
traffic delay can be greatly reduced. It has been pointed out
that 60% of the content is cacheable in the network traffic
[1], which can be transmitted and stored close to the users
before receiving the requests. A brief overview of wireless
caching was provided in [2], which introduced the key notions,
challenges, and research topics in this area. In order to improve
the performance effectively, the system needs to estimate and
track the popularity of those cacheable contents, and predict
the popularity variations, helping to guarantee that the most
popular contents are cached and the outdated contents are
removed. In [3], popularity matrix estimation algorithms were
studied for wireless networks with proactive caching.

Multiple caching strategies have been investigated in the
literature, which improve the performance in different ways.
When contents are cached at the base stations, the energy
consumption, traffic load and delay of the backhaul can
be reduced [4], and the base stations in different cells can
cooperate to improve the spectral efficiency gain [5]. When
contents are cached at the users’ devices, the base station can
combine different files together and multicast to multiple users,
and the users can decode their desired files using their cached

This work was supported in part by National Science Foundation grants
CCF-1618615, ECCS-1443994, CNS-1302559, and CNS-1206291.

files. A content distribution algorithm for this approach was
given in [6], and the analysis of the coded multicasting gain
was provided in [7].

D2D communication underlaid with cellular networks is
another technology that has attracted much interest recently. In
D2D communication, users can communicate directly without
going through the base station. The advantages of D2D com-
munications were studied in [8], and it was shown that D2D
communication could greatly enhance the spectral efficiency
and lower the latency. A comprehensive overview was pro-
vided in [9], where different modeling assumptions and key
considerations in D2D communications were detailed. In a
D2D cellular network, users can choose to work in different
modes. In cellular mode, users communicate through the base
station just as cellular users; while in D2D mode, users com-
municate directly. Mode selection is a critical consideration in
D2D communications, and many studies have been conducted
in this area. For example, in [10], mode selection problem was
studied for a system with one D2D pair and one cellular user,
and in [11], a joint mode selection and resource allocation
algorithm was proposed. Recently in [12], mode selection and
optimal resource allocation in D2D networks were studied
under statistical queueing constraints.

In the literature, several studies have been performed to
combine content caching with device-to-device (D2D) wireless
networks. In such cases a user can receive from its neighbors
if these have cached the requested content. An overview on
wireless D2D caching networks was provided in [13], in
which the key results for different D2D caching strategies
were presented. To design caching policies for the wireless
D2D network, the authors of [14] proposed a caching policy
that maximizes the probability that requests can be served via
D2D communications. For a similar system setting, a caching
policy that maximizes the average number of active D2D
links was obtained in [15]. Most of these works were based
on stochastic geometry models, in which nodes/users were
distributed randomly. However, these types of models mainly
focus on the path loss, and do not fully address the effects
of channel fading. Without the characterization of the channel
fading, an accurate analysis on the throughput and delay is
not viable. Moreover, many works only tackle a simple case in
which users have identical popularity vectors. In this paper, we
design a caching algorithm that minimizes the average delay of
the network, and our main contributions are listed as follows:

1) We provide a characterization of the average delay in
both cellular and D2D modes.

2) Our algorithm minimizes the average delay of the
system, which is a significant objective in real-time
applications.

3) We propose a very efficient and robust algorithm to solve
the delay minimization problem.

http://arxiv.org/abs/1704.01984v1

Fig. 1. System model of a D2D cellular network with caches

4) Our algorithm is applicable in settings with very general
popularity models, with no assumptions on how file
popularity varies among different users.

5) We further extend our algorithm to a more general
setting, in which the system parameters and the distri-
butions of channel fading change over time.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model and Channel Allocation

As shown in Figure 1, we consider a cellular network with
one base station (BS), in which a library with M files (F1,
F2, · · · , FM) is stored, and we assume that the size of each
file is fixed to F bits 2. There are N users (U1, U2, · · · ,
UN) in the network who seek to get the content files from the
library. Each user is equipped with a cache of size µF bits,
and therefore can store µ content files. The caching state is
described by an N ×M matrix Φ, whose (i, j)-th component
has a value of φi,j = 1 if file Fj is cached at user Ui, and
φi,j = 0 when the user Ui does not have file Fj in its cache.

In general, users request files with different probabilities,
which are characterized by an N × M popularity matrix
P, in which the entry on the ith row and j th column, Pi,j ,
represents the probability of user Ui requesting file Fj . Each
row of the popularity matrix corresponds to a popularity vector
of a user. Although the popularity matrix may change over
time in practice, we can assume that the popularity stays
constant within a certain period, and our caching algorithm
needs to be repeated when the popularity matrix is updated.
In the literature, Zipf distribution is generally considered as a
good statistical model for the popularity. The probability mass
function (pmf) of this distribution is given by

Pi,j =
f−β
i,j∑M

k=1 k
−β

, (1)

2In the literature, it is noted that the base station may only store a portion
of the library contents, and needs to acquire the remaining files from the
content server [2]. Since we focus on the wireless transmission delay, we do
not explicitly address the link between the base station and content server.
Also, the content files may not have the same size in practice, but we can
further divide them into sub-files with equal size.

where fi,j is the popularity index that user Ui gives to file Fj ,
and β ≥ 0 is the Zipf exponent. Each user enumerates the files
with popularity index from 1 to M , where the most popular file
gets index 1, and the least popular file gets index M . As the
Zipf exponent β increases, the difference in the popularity of
different files increases, while all files have the same popularity
when β → 0. Although we use Zipf distribution for our
numerical results in Section V, our proposed algorithm works
for any type of popularity model. At each user, the generated
requests are buffered in a queue before getting served, and it is
assumed that these request queues are not empty at any time.

In a D2D-enabled wireless network, users can choose to
transmit in cellular mode or D2D mode. In the cellular
mode, users request and receive information from the base
station, while in the D2D mode, a user requests and receives
information from another user through a D2D direct link. In
our model, the users first check their local cache when a file is
requested. If the user does not have the corresponding file in
its own cache, it sends a request to the base station. We assume
that the base station has knowledge of all fading distributions
(i.e., only has statistical information regarding the channels)
and the cached files at each user. After receiving the request,
the base station identifies the source node from which the file
request can be served and allocates channel resources to the
corresponding user. Therefore, the result of mode selection
is determined by the result of source selection. If the source
node is another user, then the requested file is sent over the
direct D2D link and hence the communication is in D2D
mode, otherwise the receiving user works in cellular mode
and receives files from the base station. In source selection,
among all the nodes (including the base station) who have the
requested file, the node with the lowest average transmission
delay to the receiver is selected as the transmitter.

In this work, we consider an OFDMA system with Nc

orthogonal channels, and the bandwidth of each channel is
B. We assume that the background noise samples follow inde-
pendent and identically distributed (i.i.d.) circularly-symmetric
complex Gaussian distribution with zero mean and variance
σ2 at all receivers in all frequency bands, and the fading
coefficients of the same transmission link are i.i.d. in different
frequency bands. The fading coefficients are assumed to stay
constant within one time block of duration T0, and change
across different time blocks. We summarize the resource
allocation assumptions for the discussions in Sections II and
III as follows:

1) Each channel can be used for the transmission of one
requested file at most, and the transmission of a file
cannot occupy multiple channels.

2) D2D transmitters are not allowed to transmit to mul-
tiple receivers simultaneously. In other words, the file
requests whose best source node is a user who is already
transmitting cannot be assigned a channel resource by
the base station.

3) The probability of a channel being allocated to a request
generated by user i is p̂i.

4) After a request is served, the corresponding transmitter
keeps silent in the remaining time block, and the base
station allocates the channel resource to other requests
at the beginning of the following time block.

5) If the ith user is selected as a D2D transmitter, its
maximum transmission power is Pi.

6) The base station can serve multiple requests simul-

taneously using different channels, and its maximum
transmission power is Pb for each request.

The first four assumptions describe a class of simple
scheduling algorithms, in which only point to point trans-
mission without spectrum reusing is considered. At the be-
ginning of each time block, base station assigns available
channels to the requests, and each transmission link gets one
channel at most, and uses the assigned channel exclusively.
The transmitter transmits until the request is served and then
releases the channel resource. The behavior of the scheduling
algorithm is described by a set of probabilities p̂i defined
in the third assumption. Although our delay characterizations
in Sections II-B and II-C are only valid for this type of
scheduling algorithms, we further extend our results for more
complicated scheduling algorithms in Section IV. In that case,
only the last two assumptions are required, which describe
the maximum power constraints. With a more complicated
scheduling algorithm, we can only estimate the average delay
of each request at each user through simulation or learning
methods. A detailed discussion is provided in Section IV.

In this work, only the distributions of the fading coefficients
are required at the base station, which mainly depend on
the environment and the location of each user. A centralized
computation scheme is used, and the base station sends the
results of caching and scheduling algorithms to the users
through additional control channels. Since the base station
knows the distributions of all fading coefficients and the
cached files at each user, the average delay between each user
pair and the best source node for each request can be obtained
at the beginning and stored in tables at the base station. A
detailed discussion on delay calculation and the determination
of the best source node is provided in the next subsection.

B. Transmission Delay

In this work, we use the transmission delay, which is defined
as the number of time blocks used to transmit a content file,
as the performance metric. From the above discussion, the
instantaneous channel capacity a transmission link in the kth

time block is

C[k] = B log
2

(

1 +
Pt

Bσ2
zk

)

bits/s (2)

where Pt is the transmission power, and zi is the magnitude
square of the corresponding fading coefficient in the kth

time block. In order to maximize the transmission rate, all
transmitters transmit at the maximum power level. Therefore,

Pt =

{

Pb if the transmitter is the base station

Pi if the transmitter is the ith user
, (3)

and the duration to send a file is

T = min

{

t : F ≤

t
∑

k=1

T0C[k]

}

(4)

where F is the size of each file, T0 is the duration of
each block, and C[k] is the instantaneous channel capacity in
the kth time block. When the fading distribution is available,
the average transmission delay of the link Ui − Uj , which
is denoted by E{Ti,j}, can be obtained through numerical
methods or Monte-Carlo simulations. These average delay
values can be stored in an N × N symmetric matrix Tavg,

whose component on the ith row and j th column is given by
E{Ti,j} when i 6= j, and the diagonal element Ti,i is the
average delay between Ui and the base station. According to

our channel assumptions, the average delays of a transmission
link are the same in every channel. Therefore, we only need
to analyze the performance in a single channel.

The best source node of the request, which is generated by
user Ui requesting file Fj , is the node which has file Fj and the
smallest average transmission delay to Ui, and this minimum
average delay is denoted by Di,j

3. The best source of each
possible request can be stored in an N ×M table S, in which
each row corresponds to a user who generates the request, and
each column corresponds to a file being requested. Also, these
Di,j values can be collected in an N ×M matrix D.

Using the above results, the average transmission delay of
the requests generated by user Ui can be obtained as

Di =

M
∑

j=1

Pi,jDi,j , (5)

where Pi,j is the (i, j)-th component of the popularity matrix
P.

C. Problem Formulation

In the previous subsection, we have determined and ex-
pressed the average delay. In this subsection, we formulate
and discuss our caching problem. In this work, our goal is to
minimize the weighted sum of the average delays of the users,
which is expressed as

η =
N
∑

i=1

ωiDi =
N
∑

i=1

ωi

M
∑

j=1

Pi,jDi,j (6)

where ωi ∈ [0, 1] is the weight for user Ui. We assume that
the values of the weights are predetermined. In practice, ω
values can be determined according to the priorities of users,
so that users with higher priority have higher weights.

Our caching problem is formulated as

P1: Minimize Φ η (7)

Subject to

M
∑

j=1

φi,j = µ (8)

φi,j ∈ {0, 1} (9)

where Φ is the caching result indicator matrix. The constraint
in (8) arises due to the maximum cache size. It is obvious that
the optimal caching policy must use all caching space.

In a special case, if we choose ωi = p̂i, where p̂i is the
probability that a channel is allocated to user Ui, then η
expresses the average delay of the system. In this situation,
the throughput of the system can be expressed as

R = Nc

F

η
. (10)

Therefore, in this special case, minimizing η is equivalent to
maximizing the throughput of the system.

III. CACHING ALGORITHM

In this section, we propose our caching algorithm that
solves problem P1. Note that the objective in problem P1
is not convex, and the solution space is a discrete set with
size (M !

(M−µ)!µ!)
N . Therefore, the globally optimal solution

can only be obtained via exhaustive search. In this work,
we propose an efficient algorithm to determine a caching
policy with delay performance close to the optimal solution.

3If Ui has cached Fj , then the best source node is Ui itself, and Di,j = 0.

TABLE I
ALGORITHM 1

Find the delay improvement for a <file,user> pair

Input : user index i, file index j, caching indicator φi,j , weight
vector ω = (ω1, · · · , ωN), popularity matrix P, source table S, delay
matrices Tavg and D.

Output : delay improvement gi,j , updated source table Ŝ, updated

optimal delay matrix D̂.

Initialization : Ŝ = S and D̂ = D

If φi,j = 1
gi,j = 0, end process.

Else

gi,j = ωiPi,jDi,j and update Ŝi,j ← Ui, D̂i,j = 0.
End

For k = 1 : N
If Dk,j > Ti,k and i 6= k

gi,j = gi,j + ωkPk,j(Dk,j − Ti,k)

update D̂k,j = Ti,k and Ŝk,j ← Ui

End

End

At the end of this section, we show that our algorithm has the
potential to be extended to more complicated scenarios.

A. Caching Algorithm

Our algorithm is a greedy algorithm, which searches over
a subset of the solution space with smaller size. At the
beginning, we assume that all caches are empty, and every
user has to operate in cellular mode, in which they only
receive files from the base station. Then, in each step, we
find the best <file,user> pair, which provides the maximum
delay improvement (or equivalently reduction in delay) if the
selected file is stored in the cache of the corresponding user.
This process needs to be repeated Nµ times, in order to fill
all cache space, and the final caching policy is obtained.

In Table I, we describe Algorithm 1 in detail, which cal-
culates the delay improvement and determines the updated S

and D matrices accordingly when we cache file Fj at user Ui.
First, we check if Fj has already been cached at Ui. If so, we
end the process, and return the delay improvement gi,j = 0;
if not, we set gi,j = ωiPi,jDi,j because that is the reduction
in η at user Ui if it adds Fj to its cache. Then, we need to
sum up all reductions at each user. At user Uk, if Dk,j > Ti,k,
then D2D link Ui−Uk has the lowest average delay for Uk to
receive Fj and the reduction at Uk is ωkPk,j(Dk,j − Ti,k); if
not, then caching Fj at Ui does not help to improve the delay
performance at Uk.

Based on Algorithm 1, Algorithm 2 described in Table II
helps to find the optimal <file,user> pair to be added to the
updated caching result, which leads to the maximum delay

reduction. In Algorithm 2, ĩ and j̃ record the optimal user
index and file index, respectively. g∗ tracks the maximum
delay improvement, and S

∗ and D
∗ record the new source

table and minimum delay matrix, respectively, after caching
Fj̃ at Uĩ. We search over all NM possible <file,user>
combinations, find their delay improvements and update g∗,

ĩ, j̃, S∗ and D
∗ accordingly. At user Ui, we check if there

is empty space in its cache. If its cache is full, we directly
jump to the next user Ui+1. For each <file,user> pair, we
run Algorithm 1 to calculate the corresponding delay improve-
ment, and compare it with g∗. If a <file,user> pair exceeds the

TABLE II
ALGORITHM 2

Find the optimal <file,user> pair to be added in the updated caching
result, leading to maximum delay improvement

Input : weight vector ω = (ω1, · · · , ωN), popularity matrix P,
caching indicator matrix Φ, source table S, delay matrices Tavg and
D.
Output : new source table S, new optimal delay matrix D, and new
caching indicator matrix Φ.

Initialization : set optimal delay improvement g∗ = 0, and set the
corresponding S

∗ = S, D∗ = D.

For i = 1 : N

If
∑M

j=1
φi,j < µ

For j = 1 : M
run Algorithm 1 for < Ui,Fj >, to obtain

the gain gi,j and the corresponding Ŝ and D̂.
IF gi,j > g∗

update g∗ = gi,j , S∗ = Ŝ, D∗ = D̂,

ĩ = i, and j̃ = j.
End

End

End

End

update φ
ĩ,j̃

= 1, S = S
∗ and D = D

∗.

TABLE III
ALGORITHM 3

Caching Algorithm

Input : weight vector ω = (ω1, · · · , ωN), popularity matrix P, and
delay matrix Tavg.
Output : caching indicator matrix Φ, source table S.

Initialization : for all requests, Si,j ← BS, Di,j = Ti,i. Set all
φi,j = 0.
For loop = 1 : Nµ

run Algorithm 2 to cache a file and update the result.
End

maximum delay improvement up to that point, we perform the
update accordingly. Every time we run Algorithm 2, we cache
one more file at a user. Therefore, we need to run Algorithm
2 Nµ times to obtain the final caching result, and this process
is described in Algorithm 3 in Table III.

For our proposed caching algorithm, we initially have all
caches empty, and all users work in cellular mode, in which
they only receive files from the base station at first. We assume
that the system has calculated the average delay between every
two nodes, and stored the delay matrix Tavg at the base station.
Then, base station runs Algorithm 2 Nµ times, and in each
time we cache one more file and update the caching indicator
Φ, source table S, and minimum delay matrix D accordingly.
Finally, the base station sends the caching files to the users
when the traffic load is low.

B. Complexity Analysis

In the lth iteration, Algorithm 2 searches over NM−(l−1)
possible <file,user> pairs, where the term l−1 corresponds to
the l− 1 <file,user> pairs that have been selected in previous
iterations. Therefore, the size of the search space of our

algorithm is
∑l=Nµ

l=1 NM−(l−1) = N2Mµ− 1
2N

2µ2+ 1
2Nµ,

which is much smaller than the size of the entire solution space
(M !
(M−µ)! µ!)

N .

In order to test the performance of our algorithm, we
compare our algorithm with the brute-force exhaustive search
algorithm. We apply both algorithms to a system, in which
there are 5 users, 10 files in the library and each user can
cache 2 files. These two algorithms obtain the same caching
result, however the time consumption of the exhaustive search
algorithm is 1.28 × 105 seconds, while our algorithm only
takes only 2.7× 10−3 seconds.

IV. EXTENSIONS AND FUTURE WORK

In this section, we consider a more general case, in
which the delay matrices Tavg and D, weight vector ω =
(ω1, · · · , ωN), popularity matrix P and transmission powers
Pi change over time. For simplicity, we assume that all these
parameters stay constant within one update cycle, and we use
κ as the index of cycles. The duration of the κth cycle, denoted
by τκ, depends on how fast the parameters vary. Then, we can
formulate our caching problem in the κth cycle as

P2: Minimize Φκ

N
∑

i=1

ωκ
i

M
∑

j=1

P κ
i,jD

κ
i,j (11)

Subject to

M
∑

j=1

φκ
i,j = µ (12)

M
∑

j=1

∣

∣φκ
i,j − φκ−1

i,j

∣

∣ ≤ 2ξκi (13)

φκ
i,j ∈ {0, 1}. (14)

If we define the weight of user i as ωκ
i = E{NPKκ

i /NPKκ},
where NPKκ

i and NPKκ represent the number of received
packets in the κth cycle at user i and at all users, respectively,
then the objective function in the optimization problem P2
represents the expected packet delay in the κth cycle. The
transmission power P κ

i is determined according to the battery
budget of user i. Due to the changes in transmission powers
and the distributions of channel fading, the delay matrices
Tavg

κ and D
κ also vary over time. Compared with P1, P2

includes an additional constraint given by (13). In (13), ξκi
is the upper bound of the number of cache files that will
be replaced in the current update cycle. Due to requirements
regarding energy efficiency and current traffic load, each user
may be able to update only a few cache contents.

The solution of P2 is described below:

1) At the beginning of the κth cycle, the system estimates
the delay matrix Tavg

κ−1, weight vector ω
κ−1, and

popularity matrix P
κ−1 according to the samples ob-

tained in the previous cycle. The base station receives
the transmission powers P κ

i from the users, determine
the cycle period τκ and the upper bound ξκi , and then
predicts Tavg

κ, ωκ and P
κ.

2) Algorithm 2 is repeated Nµ times to determine the
caching result in the κth cycle.

3) At the end of each iteration in the second step, it is
checked if the constraint in (13) is satisfied with equality
at any one of the users. If this constraint is satisfied
with equality at a user, then no more cache updating is
allowed for this user, meaning that this user can only
choose from the files that are already stored in its cache
in the remaining iterations.

After this process, the base station sends the cache contents
to each user, and conduct regular transmission after updating
the cache files at each user.

As we have mentioned in Section II, this improved algo-
rithm does not require the first 4 resource allocation assump-
tions described in Section II-A, and works for any resource
allocation algorithm, since the delay matrices Tavg and D need
to be evaluated via estimation or learning methods. Also, we
note that this method requires estimation algorithms in the first
step. Due to the page limitations, we leave a detailed study of
this problem as our future work.

V. NUMERICAL RESULTS

In this section, we investigate the performance of our
proposed algorithm via numerical results. Since the estimation
and resource allocation components required for the extended
algorithm in Section IV are beyond the scope of this paper,
we only consider Algorithm 3 and its corresponding system
model in this section. In the numerical results, the location
of each user is randomly generated within a circular cell with
the base station placed at the center. Each point in the figures
is obtained by taking average over 500 randomly generated
systems. The popularity matrix is generated according to the
Zipf distribution. When the users have identical popularity,
they give the same popularity index to a file, which leads to
identical rows in the popularity matrix P . When the users have
independent popularity, each user gives popularity indices to
the files independently. In other words, identical popularity
indicates that all users have the same preference, while inde-
pendent popularity indicates that each user has an independent
preference. The number of files in the library is M = 100, and
the size of each file is 11.3 bits. We assume Rayleigh fading
with path loss E{z} = d−4, where d represents the distance
between the transmitter and the receiver. The transmission
powers are set as Pb = 23dB and Pu = 20dB, and we choose
the weights as ωi = p̂i so that η represents the average system
delay.

In the numerical results, we compare the performance of
our proposed algorithm with a naive algorithm, in which each
user just caches the most popular µ files. This naive algorithm
is efficient when the base station does not have the knowledge
of the channel fading statistics and the cached files at each
user. In this circumstance, the users just cache files according
to their own preference. In the case of naive algorithm with
identical popularity, every user caches the same files, and they
get the files they do not have via cellular downlink from
the base station. Therefore, the gap between the two curves
using naive algorithm in Figs. 2-4 (which will be discussed
in detail next) demonstrates the benefit of enabling D2D
communications. By allowing D2D transmission, the users far
away from the base station can get files from their neighbors,
which helps to significantly reduce the delay.

In Fig. 2, we set N = 25, µ = 30 and plot the average
delay η as a function of the Zipf exponent β. As β increases,
the popularity difference increases. When β = 0, the users
request all files with equal probability; when β → +∞, each
user only requests its most favorite file. Therefore, we only
need to concentrate on the delay performance of fewer popular
files as β increases, and it becomes easier to achieve better
delay performance with limited caching space. That is the
reason for having monotonically decreasing curves in Fig. 2.
Another observation is that our algorithm is more robust to
the popularity setting. Compared to the curves using the naive
algorithm, identical popularity model only slightly raises the
delay of our algorithm. If a node can get a popular file from its

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

β

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

A
ve

ra
ge

 d
el

ay
 η

Proposed algorithm with independent popularity
Naive algorithm with independent popularity
Proposed algorithm with identical popularity
Naive algorithm with identical popularity

Fig. 2. Average delay η vs. Zipf exponent β

0 10 20 30 40 50 60 70 80

Cache size µ

0

0.5

1

1.5

2

2.5

A
ve

ra
ge

 d
el

ay
 η

Proposed algorithm with independent popularity
Naive algorithm with independent popularity
Proposed algorithm with identical popularity
Naive algorithm with identical popularity

Fig. 3. Average delay η vs. cache size µ

0 5 10 15 20 25 30

N

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

A
ve

ra
ge

 d
el

ay
 η

Proposed algorithm with independent popularity
Naive algorithm with independent popularity
Proposed algorithm with identical popularity
Naive algorithm with identical popularity

Fig. 4. Average delay η vs. the number of users N

near neighbor, then caching some less popular files might give
better delay improvement. Therefore, our algorithm can enable
D2D transmission even in an identical popularity model, which
guarantees the robustness.

In Fig. 3, we select β = 0.1, N = 25 and plot the average
delay as a function of the caching size µ. When µ is small,
the delay difference between different algorithms and different
popularity settings is small. In such a situation, both algorithms
cache the most popular files. As µ increases, the difference in
performance increases. As we have mentioned in Algorithm
2, our algorithm searches for the optimal <file,user> pair
that provides the maximum delay improvement, and this
mechanism guarantees a very sharp decrease at the beginning.
After exceeding a threshold, further increasing the caching
size reduces the performance difference, because the system
gets enough caching size to cache most of the popular files.
Overall, Fig. 3 shows that our algorithm can achieve better
delay performance with limited caching size.

In Fig. 4, we select β = 0.1, µ = 30 and plot the
average delay as a function of the number of users N . For
the curve using the naive algorithm with identical popularity
model, having more users does not affect the average delay
because each user works in cellular mode and receives the files
from the base station. For other curves, increased number of
users enables more chances for D2D communication, and as
a result the average delay decreases. Compared with the naive
algorithm, our algorithm can achieve better performance when
the number of users is large.

VI. CONCLUSION

In this paper, we have proposed a caching algorithm for
D2D cellular networks, which minimizes the weighted aver-
age delay. First, we have characterized the popularity model
and average transmission delay of a request. Then, we have
formulated the delay minimization problem and developed
our algorithm which can solve the weighted average delay
minimization problem efficiently. We have also extended our
algorithm for a more general scenario, in which the distribu-
tions of fading coefficients and system parameters change over
time. Finally, we have further investigated the performance
of our algorithm by comparing it with a naive algorithm
which simply caches the most popular files at each user. By
applying both algorithms to two different popularity models,
we have shown that our algorithm is more robust to variations
in the popularity models, and can achieve better performance,
because the proposed algorithm can more effectively take
advantage of D2D communications. Also, the influence of

the popularity parameter, caching size and number of users
is studied via numerical results.

REFERENCES

[1] Cisco, “Cisco visual networking index: Global mobile data traffic
forecast update 2014–2019 white paper,” URL: http://www. cisco.
com/c/en/us/solutions/collateral/service-provider/visual-networking-
index-vni/white paper c11-520862. pdf, 2015.

[2] G. Paschos, E. Bastug, I. Land, G. Caire, and M. Debbah, “Wireless
caching: Technical misconceptions and business barriers,” IEEE Com-
mun. Mag., vol. 54, pp. 16–22, August 2016.

[3] E. Bastug, M. Bennis, and M. Debbah, “Living on the edge: The role
of proactive caching in 5G wireless networks,” IEEE Commun. Mag.,
vol. 52, no. 8, pp. 82–89, 2014.

[4] Z. Zhao, M. Peng, Z. Ding, W. Wang, and H. V. Poor, “Cluster content
caching: An energy-efficient approach to improve quality of service in
cloud radio access networks,” IEEE J. Select. Areas Commun., vol. 34,
pp. 1207–1221, May 2016.

[5] W. Han, A. Liu, and V. K. N. Lau, “Phy-caching in 5G wireless
networks: Design and analysis,” IEEE Commun. Mag., vol. 54, pp. 30–
36, August 2016.

[6] M. Ji, A. M. Tulino, J. Llorca, and G. Caire, “On the average perfor-
mance of caching and coded multicasting with random demands,” in In-
ternational Symposium on Wireless Communications Systems (ISWCS),
pp. 922–926, IEEE, 2014.

[7] M. A. Maddah-Ali and U. Niesen, “Coding for caching: Fundamental
limits and practical challenges,” IEEE Commun. Mag., vol. 54, pp. 23–
29, August 2016.

[8] B. Kaufman and B. Aazhang, “Cellular networks with an overlaid device
to device network,” in Asilomar Conference on Signals, Systems and
Computers, pp. 1537–1541, Oct 2008.

[9] A. Asadi, Q. Wang, and V. Mancuso, “A survey on device-to-device
communication in cellular networks,” IEEE Communications Surveys
Tutorials, vol. 16, pp. 1801–1819, Fourthquarter 2014.

[10] K. Doppler, C.-H. Yu, C. Ribeiro, and P. Janis, “Mode selection
for device-to-device communication underlaying an LTE-advanced net-
work,” in IEEE Wireless Communications and Networking Conference
(WCNC), pp. 1–6, April 2010.

[11] G. Yu, L. Xu, D. Feng, R. Yin, G. Li, and Y. Jiang, “Joint mode
selection and resource allocation for device-to-device communications,”
IEEE Trans. Commun., vol. 62, pp. 3814–3824, Nov 2014.

[12] Y. Li, M. C. Gursoy, and S. Velipasalar, “Device-to-device communi-
cation in cellular networks under statistical queueing constraints,” in
2016 IEEE International Conference on Communications (ICC), pp. 1–
6, IEEE, 2016.

[13] M. Ji, G. Caire, and A. F. Molisch, “Wireless device-to-device caching
networks: Basic principles and system performance,” IEEE J. Select.
Areas Commun., vol. 34, pp. 176–189, Jan 2016.

[14] H. J. Kang, K. Y. Park, K. Cho, and C. G. Kang, “Mobile caching
policies for device-to-device (D2D) content delivery networking,” in
IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), pp. 299–304, April 2014.

[15] N. Golrezaei, A. G. Dimakis, and A. F. Molisch, “Wireless device-to-
device communications with distributed caching,” in IEEE International
Symposium on Information Theory Proceedings (ISIT), pp. 2781–2785,
IEEE, 2012.

	I Introduction
	II System Model and Problem Formulation
	II-A System Model and Channel Allocation
	II-B Transmission Delay
	II-C Problem Formulation

	III Caching Algorithm
	III-A Caching Algorithm
	III-B Complexity Analysis

	IV Extensions and Future Work
	V Numerical Results
	VI Conclusion
	References

