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Abstract—Compressive sampling has shown great potential for
making wideband spectrum sensing possible at sub-Nyquist sam-
pling rates. As a result, there have recently been research efforts
that aimed to develop techniques that leverage compressive sam-
pling to enable compressed wideband spectrum sensing. These
techniques consider homogeneous wideband spectrum, where all
bands are assumed to have similar PU traffic characteristics.
In practice, however, wideband spectrum is not homogeneous, in
that different spectrum bands could have different PU occupancy
patterns. In fact, the nature of spectrum assignment, in which
applications of similar types are often assigned bands within
the same block, dictates that wideband spectrum is indeed
heterogeneous, as different application types exhibit different
behaviors. In this paper, we consider heterogeneous wideband
spectrum, where we exploit this inherent, block-like structure
of wideband spectrum to design efficient compressive spectrum
sensing techniques that are well suited for heterogeneous wide-
band spectrum. We propose a weighted ℓ1−minimization sensing
information recovery algorithm that achieves more stable recov-
ery than that achieved by existing approaches while accounting
for the variations of spectrum occupancy across both the time and
frequency dimensions. Through intensive numerical simulations,
we show that our approach achieves better performance when
compared to the state-of-the-art approaches.

Index Terms—Wideband spectrum sensing; compressive sam-
pling; Heterogeneous wideband spectrum occupancy.

I. INTRODUCTION

Spectrum sensing is a key component of cognitive radio

networks (CRNs), essential for enabling dynamic and oppor-

tunistic spectrum access [1, 2]. It essentially allows secondary

users (SU s) to know whether and when a licensed band is

available prior to using it so as to avoid harming primary

users (PU s). Due to its vital role, over the last decade or

so, a tremendous amount of research has focused on develop-

ing techniques and approaches that enable efficient spectrum

sensing [3, 4]. Most of the focus has, however, been on single-

band spectrum sensing, and the focus on wideband spectrum

sensing is more recent and has received lesser attention [5].

The key advantage of wideband spectrum sensing over

its single-band counterpart is that it allows SU s to locate

spectrum opportunities in wider ranges of frequencies by

performing spectrum sensing across multiple bands at the

same time. Being able to perform wideband spectrum sensing

is becoming a crucial requirement of next-generation CRNs,

especially with the emergence of IoT and 5G technologies [6–

8]. This wideband spectrum sensing requirement is becoming

even more stringent with FCC’s recent new rules for opening

up millimeter wave band use for wireless broadband devices

in frequencies above 24 GHz [9].

The challenge, however, with wideband spectrum sensing

is that it requires high sampling rates, which can incur signif-

icant sensing overhead in terms of energy, computation, and

communication. Motivated by the sparsity nature of spectrum

occupancy [10] and in an effort to address the overhead caused

by these high sampling rates, researchers have focused on

exploiting compressive sampling to make wideband spectrum

sensing possible at sub-Nyquist sampling rates [11].

These research efforts have focused mainly on homoge-

neous wideband spectrum, meaning that the entire wideband

spectrum is considered as one single block with multiple

bands, and the sparsity level is estimated across all bands and

considered to be the same for the entire wideband spectrum.

However, in wideband spectrum assignment, applications of

similar types (TV, satellite, cellular, etc.) are often assigned

bands within the same band block, suggesting that wideband

spectrum is heterogeneous, in the sense that band occupancy

patterns are not the same across the different blocks of bands,

since different application/user types within each block can

exhibit different traffic behaviors. Therefore, sparsity levels

may vary significantly from one block to another; this trend

has also been confirmed by recent measurement studies [10].

In this paper, we exploit this inherent, block-like structure of

wideband spectrum to design efficient compressive spectrum

sensing techniques that are well suited for heterogeneous

wideband spectrum access in noisy wireless environments. To

the best of our knowledge, this is the first work that exploits

this spectrum occupancy heterogeneity inherent to wideband

spectrum to develop efficient compressive sensing techniques.

Specifically, we propose a wideband sensing information re-

covery algorithm that is more stable and robust than existing

approaches. The proposed technique accounts for spectrum

occupancy variations across both time and frequency.

We exploit this fine-grained sparsity structure to propose,

which to the best of our knowledge, the first spectrum sensing

information recovery scheme for heterogeneous wideband

spectrum sensing with noisy measurements.
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A. Our Key Contributions

In this paper, we make the following contributions:

• We propose a weighted ℓ1−minimization algorithm that

exploits the block-like, sparsity structure of the heteroge-

neous wideband spectrum to provide an efficient recov-

ery of spectrum occupancy information in noisy CRN

environments. We design the weights of the algorithm

in a way that spectrum blocks that are more likely

to be occupied are favored during the search, thereby

increasing the recovery performance.

• We prove that our proposed recovery algorithm out-

performs existing approaches in terms of stability and

robustness.

• We derive lower bounds on the probability of spectrum

occupation, and use them to determine the sparsity levels

that lead to further reduction in the sensing overhead.

It is important to mention that our proposed weighted com-

pressive sampling framework, including the derived theoretical

results, is not restricted to wideband spectrum sensing appli-

cations. It can be applied to any other application where the

signal to be recovered possesses block-like sparsity structure.

We are hoping that this work can be found useful for finding

efficient solution methodologies to problems (with similar

characteristics) in other disciplines and domains.

B. Roadmap

The remainder of the paper is structured as follows. In

Section II, we present our system model and the PU bands’

occupancy model. Next, our proposed approach along with its

performance analysis are presented in Section III. The numer-

ical evaluations are then presented in Section IV. Finally, our

conclusions are given in Section V.

II. WIDEBAND SPECTRUM SENSING MODEL

In this section, we begin by presenting the studied het-

erogeneous wideband spectrum model. Then, we present the

spectrum sensing preliminaries and setup.

A. Wideband Occupancy Model

We consider a heterogeneous wideband spectrum ac-

cess system containing n frequency bands as illustrated by

Fig. 1(a). We assume that wideband spectrum accommodates

multiple different types of user applications, where applica-

tions of the same type are allocated frequency bands within

the same block. Therefore, we consider that wideband spec-

trum has a block-like occupation structure, where each block

(accommodating applications of similar type) has different

occupancy behavioral characteristics. The wideband spectrum

can then be grouped into g disjoint contiguous blocks, Gi, i =
1, ..., g, with Gi

⋂Gj = ∅ for i 6= j. Each block, Gi, is a

set of ni contiguous bands. Like previous works [12], the

state of each band i, Hi, is modelled as Hi ∼ Bernoulli(pi)
with parameter pi ∈ [0, 1] (pi is the probability that band i is

occupied by a PU ). The average number of occupied bands

within a block j is then k̄j =
∑

i∈Gj
pi.
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Fig. 1. n frequency bands occupied by heterogeneous applications with
different occupancy rates. The grey bands are occupied by primary users
while the white bands are vacant. (a) is the statistical allocation while (b) is
a realization of allocation in a given region at a given time slot.

Recall that one of the things that distinguishes this work

from others is the fact that we consider a heterogeneous

wideband spectrum; formally, this means that the average

number k̄j of the occupied bands in block j can vary signif-

icantly from one block to another. The average occupancies,

however, of the different bands within a given block are close

to one another; i.e., pi ≈ pj for all i, j ∈ Gj . Our proposed

framework exploits such a block-like occupancy structure

stemming from the wideband spectrum heterogeneity to design

efficient compressive wideband spectrum sensing techniques.

B. Secondary System Model

We consider a SU performing the sensing of the entire

wideband spectrum as illustrated by Fig. 2. The time-domain

signal r(t) received by the SU can be expressed as

r(t) = h(t) ∗ s(t) +w(t),

where h(t) is the channel impulse between the primary

transmitters and the SU, s(t) is the PUs’ signal, and w(t)
is an additive white Gaussian noise with mean 0 and variance

σ2. Ideally, we should take samples with at least twice

the maximum frequency, fmax, of the signal in order to

recover the signal. Let the sensing window be [0,mT0] with

T0 = 1/(2fmax). Assuming a normalized number of wideband

Nyquist samples per band, then the vector of the taken samples

is r(t) = [r(0), ..., r((m0 − 1)T0)]
T where r(i) = r(t)|t=iT0

and m0 = n. Note that a reasonable assumption that we make

is that the sensing window length is assumed to be sufficiently

small when compared to the time it takes a band state to

change. That is, each band’s occupancy is assumed to remain

constant during each sensing time window.

To reveal which bands are occupied, we perform a discrete

Fourier transform of the received signal r(t); i.e.,

rf = hfsf +wf = x+wf ,

where hf , sf , and wf are the Fourier transforms of h(t),
s(t), and w(t), respectively. The vector x contains a faded

version of the PUs’ signals operating in the different bands.

Given the occupancy of the bands by their PU s (as illustrated

in Fig. 1(b)) and in the absence of fading and interference, the
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Fig. 2. A SU performing spectrum sensing over a wideband spectrum. The
received signals are coming from the primary users with different levels of
energy.

vector x can be considered sparse, where sparsity is formally

defined as follows.

Definition 1. A vector x ∈ R
n is said k-sparse if it has

(or after performing a basis change) at most k non-zero

elements [13]. That is, supp(x) = ‖x‖ℓ0 = |{i : xi 6=
0}| ≤ k. The set of k−sparse vectors in R

n are denoted by

Σk = {x ∈ R
n : ‖x‖ℓ0 ≤ k}.

But since, in practice, there will likely be interference

coming from other nearby cells and users, the vector x could

rather be nearly sparse than sparse, where nearly sparsity is

formally defined next.

Definition 2. A vector x ∈ R
n is said nearly sparse (called

also compressible [13]) if most of its components obey a fast

power low decay. The k−sparsity index of x is then defined

as σk(x, ‖.‖ℓp) = min
z∈Σk

‖x− z‖ℓp .

Since the wideband spectrum is large, the number of re-

quired samples can be huge, making the sensing operation pro-

hibitively costly and the needed hardware capabilities beyond

possible. To overcome this issue, researchers have focused on

using compressive sampling theory as a way to reduce the

number of measurements, given that the wideband spectrum

signal to be recovered possesses the sparsity or nearly sparsity

property needed to apply such a theory. After performing the

compressive sampling, the resulted signal can be written as

y = ΨF−1(x+wf )

= Ax+ η,

where y ∈ R
m is the measurement vector, F−1 is the

inverse discrete Fourier transform, and Ψ is the sensing matrix

assumed to have a full rank, i.e. rank(Ψ) = m. The sensing

noise η is equal to ΨF−1wf .

Different from the classical application of compressive

sampling for wideband spectrum sensing, in this paper we

propose to take advantage of the block-like structure of the

occupancy of the wideband spectrum, and design an efficient

compressive spectrum sensing algorithm well suited for het-

erogeneous wideband CRNs. Exploiting the variability of the

average band occupancies across the various blocks has the

potential for improving the recovery of the wideband spectrum

sensing signals, and therefore, the ability of acquiring accurate

PU detection and spectrum availability information efficiently.

In the next section, the proposed wideband spectrum sensing

recovery approach will be presented along with its perfor-

mance analysis.

III. THE PROPOSED WIDEBAND SPECTRUM SENSING

INFORMATION RECOVERY

The sensing matrix and recovery algorithm are the main

challenging components in compressive sampling design.

While the former consists of minimizing the number of mea-

surements, the latter consists of ensuring a stable and robust

recovery. In this work, we exploit the block-like occupancy

structure information of the wideband spectrum to propose a

new recovery algorithm that outperforms existing approaches

by 1) requiring lesser numbers of measurements (better sens-

ing matrix) and 2) reducing recovery error (more stable and

robust recovery). In this section, we start by providing some

background on signal recovery using classical compressive

sampling. Then, we present our proposed approach, and ana-

lyze its performance by bounding its achievable mean square

errors and its required number of measurements.

A. Background

In order to acquire spectrum availability/occupancy infor-

mation, an SU needs first to recover the frequency-domain

version of the received signal. Exploiting the fact that the

signal is sparse, an ideal recovery can be performed by

minimizing the ℓ0−norm of the signal. This happens to be NP-

hard [14]. It turns out that minimizing the ℓ1−norm recovers

the sparsest solution with a bounded error that depends on

the noise variance and the solution structure [15]. This can be

formulated as

P1 : minimize
x

‖x‖ℓ1
subject to ‖Ax− y‖ℓ2 ≤ ǫ

Here, ǫ is a user-defined parameter chosen such that ‖η‖ℓ2 ≤
ǫ. This formulation is known also as Least Absolute Shrinkage

and Selection Operator (LASSO) [15].

Although LASSO is shown to achieve good performance

when applied for wideband spectrum sensing recovery, it does

not capture, nor exploit the block-like occupancy structure

information that is inherent to the heterogeneous wideband

spectrum, where the occupancy is homogeneous within each

block but heterogeneous across the different blocks of the

spectrum. As we will show later, it is the exploitation of

this block-like spectrum occupancy structure that is behind

the performance gain achieved by our proposed compressive

spectrum sensing recovery algorithm.

B. The Proposed Recovery Algorithm

Again, in this work, we consider a heterogeneous wideband

spectrum that contains g contiguous blocks, Gi, i = 1, ..., g.

Let k̄i be the average sparsity level of block Gi (average

across all bands belonging to the block), and k̄ be the average



sparsity level across all blocks. We assume that the blocks have

sufficient different average sparsity levels (otherwise, blocks

with similar sparsity levels are merged into one block with a

sparsity level corresponding to their average). These averages

are often available via measurement studies, can easily be

estimated, or can even be provided by spectrum operators [16].

Intuitively, our key idea consists of incorporating and ex-

ploiting the sparsity level variability across the different blocks

of the spectrum sensing signal to perform intelligent solution

search. We essentially encourage more search of the non-zero

elements of the signal x in the blocks that have higher average

sparsity levels while discouraging this search in the blocks

with low average sparsity levels. Such variability in the block

sparsity levels can be incorporated in the formulation through

carefully designed weights. More specifically, we propose the

following weighted ℓ1−minimization recovery scheme

P
ω
1 : minimize

x

g
∑

l=1

ωl‖xl‖ℓ1

subject to ‖Ax− y‖ℓ2 ≤ ǫ.

where x = [xT
1 , ...,x

T
g ]

T , xT
l is a nl × 1 vector, and ωl is the

weight assigned to block l for l ∈ {1, ..., g}.

The question that arises here is how to design and select

these weights. Generally speaking, given that the average

sparsity level differs from one block to another, blocks with

higher average sparsity levels are supposed to contain more

occupied bands than those blocks with lower averages. This

means that if we consider two blocks with two different

average sparsity levels, say k̄1 and k̄2, such that k̄1 < k̄2, then

to encourage the search for more occupied bands in the second

block, the weight ω2 assigned to the second block should

be smaller than the weight ω1 assigned to the first block.

Following this intuition, we set the weights to be inversely

proportional to the average sparsity levels. More specifically,

ωi =
1/k̄i

∑g
j=1 1/k̄j

∀ i ∈ {1, ..., g} (1)

Remark 1. Some insights into the proposed scheme

Consider a two-block spectrum with k̄1 > k̄2. For this special

case, the recovery algorithm can then be re-written as

P
ω,2
1 : minimize

x
‖x‖ℓ1 + (

ω2

ω1
− 1)‖x2‖ℓ1

subject to ‖Ax− y‖ℓ2 ≤ ǫ.

Since we are minimizing the ℓ1−norm of x and the ℓ1−norm

of x2, this can be interpreted as ensuring that the vector x is

sparse while ensuring that the portion x2 of x is also sparse.

This means that all solutions that are sparse as a whole but

somehow dense in their second portion are eliminated.

In the remaining of this section, we derive and evaluate the

performance achievable by the proposed recovery algorithm

by showing that it 1) incurs errors smaller than those incurred

by existing techniques and 2) reduces the sensing overhead by

requiring smaller numbers of required measurements.

C. Mean Square Error Analysis

The following theorem shows that our weighted recovery

algorithm incurs, on the average, lesser errors than what

ℓ1−minimization [15] incurs.

Theorem 1. Letting x♯ be the optimal solution for Pω
1 , x†

the optimal solution for P1 and y = Ax0 + η, we have

E[‖x♯ − x0‖ℓ2 ] ≤ E[‖x† − x0‖ℓ2 ].

Note that throughout this paper, we omit the proofs for all

the theorems and lemmas for page limitations. The theorem

says that the expected solution to the proposed Pω
1 is at least

as good as the expected solution to P1. As done by design,

it is also expected that the more heterogeneous the wideband

spectrum is, the higher the error gap between our proposed

algorithm and LASSO is. This is because the searched solution

has the adequate structure captured via the assigned weights.

We now state the following result, which follows directly

from Theorem 1.

Proposition 2. Our proposed algorithm, Pω
1 , achieves stable

and robust recovery1.

The proposition gives a bound on the incurred error by

means of two quantities. The first quantity is an error of the

order of the noise variance while the second is of the order of

the sparsity index of x.

Remark 2. Effect of time-variability

We want to iterate that our proposed algorithm is guaranteed

to outperform existing approaches on the average, and not

on a per-sensing step basis. This is because although the

performance improvement achieved by our technique stems

from the fact that blocks with higher average sparsity levels

are given lower weights—which is true on the average, it is not

unlikely that, at some sensing step, the actual sparsity level of

a block with a higher average could be smaller than that of a

block with a lower average. When this happens, our algorithm

won’t be guaranteed to achieve the best performance during

that specific sensing step. The good news is that first what

matters is the average over longer periods of sensing time,

and second, depending on the gap between the block sparsity

averages, this scenario happens with very low probability.

To illustrate, let us assume that the wideband spectrum con-

tains two blocks with average sparsity k̄1 =
∑

j∈G1
pj ≈ n1p1

and k̄2 =
∑

j∈G2
pj ≈ n2p2 with k̄2 < k̄1, where again

|G1| = n1 and |G2| = n2. Here, the occupancy probabilities of

all bands in each of these two blocks are assumed to be close to

one another. Our approach encourages to find more occupied

bands in the first block than in the second block. However,

since band occupancy is time varying, then at some given

1As defined in [15], for y = Ax + w such that ‖w‖ℓ2 ≤ ǫ, a recovery
algorithm, ∆, and a sensing matrix, A, are said to achieve a stable and robust
recovery if there exist C0 and C1 such that

‖∆y − x‖ℓ2 ≤ C0ǫ+ C1

σk(x, ‖.‖ℓp )√
k

.



time we may have a lesser number of non-zero components

in first block than in the second. This unlikely event, in this

scenario, happens with probability

min(n1,n2)
∑

k=1

k−1
∑

l=0

(

n1

l

)

ql1(1 − q1)
n1−l

(

n2

k

)

qk2 (1 − q2)
n2−k

For a sufficiently different average sparsity levels (e.g. having

k̄1 > 2k̄2), this probability is very low (less than 0.02).

Having investigated the design of the recovery algorithm,

now we turn our attention to the design of the sensing matrix.

The number of measurements, m, that need to be taken

determines the size of the sensing matrix and hence the sens-

ing overhead of the recovery approach. Existing approaches

determine the required number of measurements by setting the

sparsity level to the average number of occupied bands (e.g.,

m ≥ k̄ log(n/k̄)). However, in wideband spectrum sensing,

the number of occupied bands changes over time, and can

easily exceed the average number. Every time this happens, it

leads to an inaccurate signal recovery (it yields a solution with

high error). To address this issue, in our proposed framework,

we do not base the selection of the number of measurements

on the average sparsity. Instead, the sparsity level is chosen

in such a way that the likelihood that the number of occupied

bands exceeds that number is small. The analysis needed to

help us determine such a sparsity level is provided in the next

section.

D. PU Traffic Characterization

Based on the model of occupancy of the wideband provided

in the system model, the following lemma gives the probability

mass distribution of the number of occupied bands.

Lemma 1. The number of occupied bands across the entire

wideband has the following probability mass function

Pr(X = k) =
∑

Λ∈Sk

[

∏

i∈Λ

pi

][

∏

j∈Λc

(1− pj)
]

where Sk = {Λ : Λ ⊆ {1, ..., n}, |Λ| = k}, and Λc is the

complementary set of Λ.

Given this distribution, the average number of occupied

bands across the entire wideband spectrum is p̄ =
∑n

i=1 pi. As

just mentioned earlier, setting the sparsity level to be fixed to

the average ⌊p̄⌋ will lead to inaccurate signal recovery, since

the likelihood that the number of occupied bands exceeds this

sparsity level is not negligible. In the following theorem, we

provide a lower bound on the probability that the number of

occupied bands is below an arbitrary sparsity level.

Theorem 3. The probability that the number of occupied

bands is below a sparsity level k0 is low bounded by

Pr(X ≤ k0) =

k0
∑

k=0

∑

Λ∈Sk

[

∏

i∈Λ

pi

][

∏

j∈Λc

(1− pj)
]

≥ 1− ek0−
∑n

i
pi

(k0/
∑n

i pi)
k0

(2)
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Fig. 3. The Lower bound of Pr(X < k0) as a function of the sparsity level
k0.

Since the sparsity level is a time-varying process, this

theorem gives a probabilistic bound on how to choose a

sparsity level such that the level will be exceeded only with a

certain probability. Now depending on the allowed fraction,

α, of instances in which the actual number of occupied

bands exceeds the sparsity level, Theorem 3 can be used

to determine the sparsity level, k0, that can be used to

determine the required number of measurements, m, such that

m = O(k0 log(n/k0)). For example, if α is set to 5%, then

it means that only about 5% of the time the actual number

of occupied bands exceeds the number m. As expected, there

is a clear tradeoff between α and m. Smaller values of α
requires higher values of m, and vice-versa. In our numerical

evaluations given in the next section, α is set to 4%.

IV. NUMERICAL EVALUATION

In this section, we evaluate our proposed wideband spec-

trum sensing approach and we compare its performance to

the state-of-the-art approaches. Consider a primary system

operating over a wideband consisting of n = 256 bands.

We assume that the wideband contains g = 4 blocks with

equal sizes. The average probabilities of occupancy in each

block are as follows: k̄1 = 0.1 × 64, k̄2 = 0.01 × 64,

k̄3 = 0.1× 64, k̄4 = 0.01× 64. To model the signals coming

from the active users, we generate them in the frequency

domain with random magnitudes (which captures the effect

of the different channel SNRs that every operating PU has

with the SU). At the SU side, the sensing matrix Ψ is

generated according to a Bernoulli distribution with zero mean

and 1/m variance. We opted for a sub-Gaussian distribution

since it guarantees the RIP with high probability [13]. Here,

the number of measurements is generated first according to

m = O(k0 log(n/k0)).
We fix k0 to 25 which according to Theorem 3 is satisfied

with a probability that exceeds 0.96 (Fig. 3). Now assuming

an RIP constant δ2ki
≤ 1/2 and replacing k0 and the RIP

constant with their values in Theorem 3 yields that the number

of measurements should be at least 29. We use CVX for the

solving of the optimization problem [17].

A first performance that we look at is the mean square error

‖x♯ − x0‖ℓ2 as a function of the sensing SNR defined as

SNR =
‖Ax‖2

ℓ2

‖η‖2

ℓ2

, where ‖Ax‖2ℓ2 = (Ax)TAx and ‖η‖2ℓ2 =

ηTη. In Fig. 4, we compare our proposed technique to the
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Fig. 5. Probability of detection as a function of the probability of false
alarm with a reduced number of measurements (m = 27 and sensing SNR=
16.5 dB).

existing approaches. Compared to LASSO [15], CoSaMP [18],

and (OMP) [19], our proposed approach achieves a lesser

error when fixing the number of measurement m to 35.

This is because we account for the average sparsity levels

in each block, thereby favoring the search on the first and

third block rather than the two others. Also, observe that as

the sensing SNR gets better, not only does the error of the

proposed technique decrease, but also the error gap between

our technique and that of the other ones increases. This is

because the noise effect becomes limited. Furthermore, OMP

has the worst performance as it requires higher number of

measurements to perform well.

After recovering the signal and in order to decide on the

availability of the different bands, we compare the energy

of the recovered signal in every band with a threshold [20],

λ =
E(‖η‖2

ℓ2
)

m

(

1 +
Q−1(Pf )√

n/2

)

where Pf is a user-defined

threshold for the false alarm probability. It is defined as the

probability that a vacant band is detected as occupied, and

is expressed as 1∑
n
i=1

(1−Hi)

∑n
i=1 Pr(|xi|2 ≥ λ|Hi = 0).

Q−1 is the inverse of the Q−function. In Fig. 5, we plot this

detection probability as a function of the false probability for

a fixed average sensing SNR, where the detection probability

is computed as 1∑
n
i=1

Hi

∑n
i=1 Pr(|xi|2 ≥ λ|Hi = 1).

V. CONCLUSION

In this work, we proposed an efficient wideband spectrum

sensing technique based on compressive sampling. We pro-

posed a weight recovery approach that accounts for the block-

like structure inherent to the heterogeneous nature of wideband

spectrum allocation. We showed that the proposed approach

outperforms existing approaches by achieving lower mean

square errors and enabling higher detection probability when

compared to the-state-of-the-art approaches.
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