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Stochastic Non-preemptive Co-flow Scheduling with

Time-Indexed Relaxation
Ruijiu Mao, Vaneet Aggarwal, and Mung Chiang

Abstract—Co-flows model a modern scheduling setting that
is commonly found in a variety of applications in distributed
and cloud computing. A stochastic co-flow task contains a set
of parallel flows with randomly distributed sizes. Further, many
applications require non-preemptive scheduling of co-flow tasks.
This paper gives an approximation algorithm for stochastic non-
preemptive co-flow scheduling. The proposed approach uses a
time-indexed linear relaxation, and uses its solution to come up
with a feasible schedule. This algorithm is shown to achieve a
competitive ratio of (2 logm+1)(1+

√

m∆)(1+m∆)(3 + ∆)/2
for zero-release times, and (2 logm+1)(1+

√

m∆)(1+m∆)(2+
∆) for general release times, where ∆ represents the upper bound

of squared coefficient of variation of processing times, and m is
the number of servers.

Index Terms—Co-flow scheduling, stochastic flow size, non-
preemptive scheduling, time-indexed relaxation, input-queued
switch.

I. INTRODUCTION

Computation frameworks such as MapReduce [2], Hadoop

[3], Spark [4], and Google Dataflow [5] are growing at

an unprecedented speed. These frameworks enable users to

offload computation to the cloud. In order for cloud service

provider to maintain efficient services, they need to schedule

the different jobs so as to minimize the completion time of

the jobs. One of the key challenges in cloud computing is

the data transmission across machines [6], which typically

happens during the shuffle phase in the MapReduce based

computations. In this paper, we will provide algorithms to

reduce this communication time for different flows required

in each of computational jobs.

Scheduling for shuffle phase is studied in the literature as

co-flow scheduling [7]. In this framework, a flow consists of

data transfer between two servers. A co-flow task consists of

multiple flows. A co-flow task is complete when all these flows

are complete. Co-flow scheduling problem aims to schedule

multiple co-flow tasks so that the weighted completion time

of the co-flow tasks is minimized. In most realistic big data

computing jobs, the size of the flows to be transfered is not de-

terministic. The authors of [8] provide an overview of various

scheduling problems with random parameters. For instance,

processing times can be regarded as independent random

variables drawn from given probability distributions. Further,

many scenarios do not allow for stopping a transfer once

started [9] and thus non-preemptive scheduling strategies are

important. The key reasons for practicality of non-preemption
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include additional signaling overhead, flow switching latency,

packet drops, and limitations on hardware. Thus, this paper

considers non-preemptive stochastic scheduling of multiple co-

flow tasks.

Aiming to reduce weighted completion time of tasks, this

paper proposes a co-flow scheduling algorithm to order each

constituent flow of each co-flow task with a random data size

on each link. The non-preemptive constraint implies that each

flow occupies whole capacity of its source and sink machines,

namely one unit per time slot, until the completion of the flow.

Stochastic non-preemptive co-flow model provides flexibility

and efficiency based on parallelism: constituent flows from

several co-flows might be processed at same time. The problem

even with deterministic flow sizes is NP-hard. The authors of

[10] considered a non-preemptive co-flow problem, where the

different links were assigned bandwidth and thus the links

were independent. In the standard co-flow problem [11], [12],

[13] that is also considered in this paper, there are flow

constraints at the source and the sink ends.

We note that the problem of scheduling preemptive co-flows

with deterministic flow time has been considered in [11], [12],

[13], where O(1)-approximation algorithms are provided for

minimizing the weighted completion time. However, there are

no corresponding results for scheduling non-preemptive co-

flows. This is the first paper, to the best of our knowledge, that

provides approximation guarantees for the non-preemptive co-

flow scheduling problem. Let ∆ represents the upper bound

of squared coefficient of variation of processing times and

m is the number of servers.Then, the algorithm proposed in

this paper is an (2 logm+1)(1+
√
m∆)(1+m∆)(3 + ∆)/2

approximation algorithm for zero release time, and (2 logm+
1)(1 +

√
m∆)(1 +m∆)(2 +∆) approximation algorithm for

general release times.

The proposed algorithm uses a time-slotted model, where

the processing times are integer multiple of the length of

the time slot. A linear programming (LP) based relaxation

algorithm is formulated, that has variable of probability dis-

tribution of start of co-flow on each link, thus providing

the average completion time of each co-flow. Since this is

only a relaxation, the schedule may not be feasible. Based

on weighted shortest expected processing time algorithm

(WSEPT), an optimal rule for single-machine scheduling with

stochastic processing time [14], we generate tentative start

time for every constituent flow suggested by the LP solution,

and group the flows by their tentative start time. Further, a

grouping of coflows (originally used for input-queued switches

[15]) is used which provides groups of co-flows which could

be scheduled simultaneously since they have no conflicts.

http://arxiv.org/abs/1802.03700v2
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Scheduling these groups in order gives the proposed algorithm.

The main contributions of the paper can be summarized as

follows.

1) This paper is the first paper, to the best of our knowl-

edge, that gives approximation guarantees for stochastic

non-preemptive co-flow scheduling. The results have

been provided both with zero release times, and general

release times.

2) As a special case of stochastic, ∆ = 0 gives the results

for deterministic non-preemptive co-flow scheduling.

These are also the first approximation results, to the best

of our knowledge, for this case, where the approximation

guarantees are 3/2(2 logm+1) approximation algorithm

for zero release times, and 2(2 logm+1) approximation

algorithm for general release times.

The rest of this paper is organized as follows. Section II

introduces the related work of co-flow scheduling and input-

queued switches. Section III presents the formulation of the

problem. In Section IV, the proposed algorithm is provided.

Section V proves the approximation bounds of the proposed

algorithm. Section VI extends the algorithm and the results

to general release times. Finally, Section VII concludes the

paper.

II. RELATED WORK

In this section, we will describe the related work for this

paper in three categories of co-flow scheduling, input-queued

switch, and stochastic scheduling on parallel machines.

A. Co-flow Scheduling

The concept of co-flow was first proposed in 2012 by

Chowdhury [7]. Further, the authors of [16] proposed an ef-

ficient implementation of co-flow scheduling. However, these

works did not provide approximation guarantees for the pro-

posed algorithm.

Polynomial-time approximation algorithms have been pro-

posed for deterministic preemptive co-flow scheduling in [11],

[12], [13]. The authors of [11] use a relaxed linear program

followed by a Birkhoff-von-Neumann (BV) decomposition

to schedule flows. In contrast, this paper considers non-

preemptive scheduling, and has stochastic task sizes.

Non-preemptive deterministic co-flow scheduling has also

been studied in [10]. However, the authors assumed fixed

bandwidth links between every pair of servers. In contrast,

this paper considers bandwidth constraints at source and sink

which is typical for co-flow scheduling literature.

B. Input-queued switch

To decrease the frequency of matching computation for

crossbar configuration in high-speed core routers, frame-based

scheduling has being widely studied [17], [18]. One of the

essential steps of frame-based scheduling is the computation

of a list of input/output pair. The pairing step is similar to co-

flow scheduling in the sense of grouping constituent flows to

be processed in the same time slot. The listing step is similar to

co-flow scheduling in the sense of sequencing the groups flows

at each time slot. The authors of [15] introduced Greedy Low

Jitter Decomposition (GLJD) Algorithm to solve list pairing

scheduling problem. The GLJD algorithm can be seen in non-

preemptive scheduling as an algorithm that has a similar goal

as the BV decomposition for preemptive scheduling in [11].

C. Stochastic scheduling on parallel machines

For scheduling of jobs, the size of tasks is unknown

apriori. Thus, introducing randomness in the task sizes is

a natural abstraction. In 1966, the authors of [14] proved

that WSEPT rule (weighted shortest expected processing time

first) is optimal for minimizing weighted completion time of

jobs on a single server. Based on WSEPT rule, the authors

of [19] studied the stochastic variant of unrelated parallel

machine scheduling. This approach uses a time-indexed linear

programming relaxation for stochastic machine scheduling,

whose ideas have been used in this paper to formulate a time-

indexed linear relaxation for stochastic co-flow scheduling.

III. PROBLEM FORMULATION

In this section, we will describe the problem of Stochas-

tic Non-preemptive Co-flow scheduling. Consider set of m
servers given as M = {1, 2, · · · ,m}. A flow represents a

data communication between a server i ∈ M and a server

j ∈ M. Each co-flow task is composed of multiple flows. Let

there be N co-flow tasks, where co-flow task k is indexed by

a set Tk. This set Tk is composed of a set of flows represented

by a set of (i, j, k), where i, j ∈ M, and k ∈ {1, · · · , N}. For

each such flow, the size of the flow is characterized by Si,j,k,

which is the random variable indicating the size of flow (or

data transfer) from i to j. More, formally, a co-flow task is

defined as follows.

Definition 1. k-th co-flow task is defined as a set of flows, or

Tk ⊆ {(i, j, k) : i, j ∈ M, k ∈ {1, · · · , N}}. Further, Si,j,k

is the random variable indicating the size of flow (or data

transfer) from i to j.

We note that the size of flows can be discretized to positive

integers, while only loosing a factor 1 + ǫ in the objective

function value for any ǫ > 0, where the number of discrete

levels are O(1/ǫ) following similar proof as in [19, Lemma

1]. Thus, we will assume that the random variable Si,j,k only

takes non-negative integer values.

We next define the notion of co-flow scheduling. Co-

flow scheduling problem is to schedule the different flows

on each link (i, j), where the different flows are given as

∪N
k=1{(i, j, k) : Pr(Si,j,k = 0) < 1}. Non-preemptive

scheduling implies that once a task (i, j, k) ∈ Tk is started, it

will be processed till completion. By stochastic, we mean that

the Si,j,k is the random variable, whose cumulative distribution

function is known. We assume that the probability that Si,j,k

is at least t be pi,j,k,t, or pi,j,k,t = Pr(Si,j,k ≥ t).
We assume a time-slotted model. We partition time into time

slots (t ∈ {0, 1, · · · }). For example, t = 0 is the first time slot

with unit time length. Further, we assume that each source

port can only send one unit of data per time slot and every

sink port can only receive one unit of data per time slot.
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Let wk, k ∈ {1, · · · , N} be the weights of the different co-

flows. Let the expected completion time of a co-flow (i, j, k) ∈
Tk be Ci,j,k. Further, the expected completion time of a co-

flow task Tk is given as max(i,j,k)∈Tk
Ci,j,k . Based on these,

the Stochastic Non-Preemptive Co-flow scheduling is defined

as follows.

Definition 2. Stochastic Non-Preemptive Co-flow scheduling

wishes to find the order of scheduling non-preemptive co-flows

on each link with stochastic processing times, so as to minimize
∑N

k=1 wkCk.
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3
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Source Ports
Sink Ports

1, 2

3
2, 3

1

1

3

2

3

Fig. 1. An example to demonstrate the co-flows on each link. The number
on the links represents the task numbers that has a flow on that link.

As an example, consider m = 5 servers as depicted in

Figure 1. We wish to schedule three co-flows given as follows.

T1 = {(1, 1, 1), (2, 4, 1), (4, 3, 1)},
T2 = {(1, 1, 2), (2, 2, 2), (5, 5, 2)},
T3 = {(2, 1, 3), (2, 2, 3), (3, 4, 3), (5, 1, 3)}.

All flows have stochastic sizes Si,j,k, but we know their

distributions. By capacity constraints, flows (1, 1, 1), (1, 1, 2),
(2, 1, 3), and (5, 1, 3) can not be processed simultaneously

since they share the same sink port. Similarly, (2, 1, 3),
(2, 2, 2), (2, 2, 3), (2, 4, 1) can not be processed simultane-

ously since they share the same source port.

IV. PROPOSED ALGORITHM

The proposed algorithm uses a linear programming (LP)

relaxation of the co-flow scheduling problem. Since the solu-

tion of the relaxed problem may not in general be feasible,

an algorithm using the solution of the relaxed problem that

gives a feasible schedule will be provided. Guarantees that the

proposed algorithm is approximately optimal will be derived

in Section V.

We first derive a LP relaxation of the stochastic non-

preemptive co-flow scheduling problem. Let yi,j,k,t be the

indicator that the flow (i, j, k) will be started processing

at time slot t. In the relaxation, we will relax the integer

constraint so that yi,j,k,t represents the probability that flow

(i, j, k) will be started processing at time slot t. Further, let

the optimization problem variable Ck represent the expected

completion time of k-th co-flow. Then, the LP relaxed problem

to minimize the weighted expected completion time of the co-

flows can be formulated as follows.

min

N
∑

k=1

wkCk (1)

s.t.

∞
∑

t=0

yi,j,k,t = 1 (2)

∀i, j ∈ M, ∀k ∈ {1, · · · , N};
∑

j∈M

N
∑

k=1

s
∑

t=0

yi,j,k,tpi,j,k,s−t ≤ 1 (3)

∀i ∈ M, s ∈ {0, 1, · · · };
∑

i∈M

N
∑

k=1

s
∑

t=0

yi,j,k,tpi,j,k,s−t ≤ 1 (4)

∀j ∈ M, s ∈ {0, 1, · · · };

Ck ≥
∞
∑

t=0

yi,j,k,t(t+ E[Si,j,k]) (5)

∀i, j ∈ M, k ∈ {1, · · · , N};
yi,j,k,t ≥ 0 (6)

∀i, j ∈ M, ∀k ∈ {1, · · · , N}, t ∈ {0, 1, · · · }.
Constraint (2) says that every constituent flow (i, j, k) will

be assigned some time. Constraints (3) and (4) are matching

constraints, where on an average, at most one unit of data

leaves the source or enters the sink. Constraint (5) says

the expected completion time of a co-flow task is at least

the maximum among all of its constituent flows’ expected

completion time. Constraint (6) says the probability that every

constituent flow (i, j, k) starts at time t (t ∈ {0, 1, · · · }) is

non-negative.

We denote the optimal value of Ck from the LP relax-

ation problem as CLP
k , the optimal yi,j,k,t as yLP

i,j,k,t, and

the expected completion time of flow (i, j, k) as CLP
i,j,k =

∑∞
t=0 y

LP
i,j,k,t(t+ E[Si,j,k])

We first note that even though t is being summed till ∞, it

only needs to be summed till the sum of maximum flow sizes

on each link. In theorem 1, we will show that the infinite

time-indexed LP relaxation can be approximated by a finite

time-indexed relaxation. Further, we see that the constraints

are necessary for the co-flow scheduling problem. Thus, the

weighted expected completion time as the optimal objective of

the LP relaxation is less than or equal to the optimal expected

weighted completion time of the co-flows. In other words,

N
∑

k=1

wkC
LP
k ≤

N
∑

k=1

wkC
∗
k , (7)
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where {C∗
1 , · · · , C∗

N} are the expected completion times of

the optimal co-flow scheduling.

We give a definition of pseudo-permutation matrix, which

is used in the following algorithm.

Definition 3. A pseudo-permutation matrix is a square binary

matrix that has at most one entry of 1 in each row and each

column and 0s elsewhere.

We will now describe the proposed algorithm, Non-

Preemptive Stochastic Co-flow Scheduling (NPSCS), which

is summarized in Algorithm 1

For non-preemptive scheduling, the problem reduces to de-

ciding the start time of all the constituent flows. The proposed

scheduling algorithm, NPSCS, summarized in algorithm 1,

consists of 4 steps.

In Step 1 (line 3), we solve the relaxed LP problem (1)-

(6) and get the optimal probability yLP
i,j,k,t for each constituent

flow (i, j, k) starting at each time slot t. Although we can

solve the LP and get optimal solution
∑

k∈{1,··· ,N} wkC
LP
k ,

the solution is not in general a feasible schedule. However,
∑N

k=1 wkC
LP
k is a lower bound for the optimal scheduling,

and yLP
i,j,k,t can provide insights on scheduling the start time

of flow (i, j, k).
In Step 2 (lines 4-12) and Step 3 (lines 13-37), we show

how to turn the time-indexed LP relaxation to a feasible

schedule. In Step 2, we generate t with probability mass

function yLP
i,j,k,t and r ∈ {0, 1, · · · } with probability mass

function pi,j,k,r/E[Si,j,k]. We define the tentative start time

t(i, j, k) for each flow (i, j, k) by summing up t and r.

In Step 3 (line 13-27), we group all the flows with same

tentative start time s as J (s). We build a matrix D(s) ∈
Rm×m with only non-negative elements. The intersection of

sets {(i, j, k)|k ∈ {1, · · · , N} and J (s) is the set of flows

with tentative start time s and transfer data from server i
to server j. We sum the expectation size of flows in the

intersection set up and set
(

D(s)
)

i,j
to be the value of this

sum. We want to process all flows within J (s) simultaneously,

but the capacity constraints of each server do not allow flows

with same source server or same sink server to be processed

on one time slot. Only flows having no interference on source

or sink servers can be processed at the same time slot. As

a result, we use Greedy Low Jitter Decomposition algorithm

(GLJD) given in algorithm 2 to get a set of pseudo-permutation

matrices {X(s)1, · · · ,X(s)ls}, where ls is the number of

resulting pseudo-permutation matrices. For any X(s)l where

l ∈ {1, · · · , ls}, we denote all flows in J (s) from server i to

server j for which
(

X(s)l
)

i,j
is 1 as I(s)l.

GLJD has originally been proposed in [15] to enable traffic

scheduling with low-jitter guarantees. GLJD returns a set

of pseudo-permutation matrices, whose structures provides

feasible co-flow scheduling satisfying capacity constraints. For

s ∈ {0, 1, · · · }, GLJD algorithm (algorithm 2) first sort the

expectation size of all flows from J (s) in non-increasing order

to create a list L. We record the source server and sink server

locations of the n-th largest expected size as ρ(n) and κn. We

greedily pick elements from the top to the bottom of the list

L as long as the elements do not share same source server

or sink server with the help of ρ(·) and κ(·). Once we finish

Algorithm 1 Non-Preemptive Stochastic Co-flow Scheduling

(NPSCS)

1: Input: pi,j,k,t, E[Si,j,k], (i, j ∈ M, k ∈ {1, · · · , N}).
2: Output: A list of perfect matching co-flows to be sched-

uled in turn, Γ.

3: Solve LP problem (1)-(6), and obtain yLP
i,j,k,t for all (i, j ∈

M, k ∈ {1, · · · , N}).
4: for i ∈ {1, · · · ,m} do

5: for j ∈ {1, · · · ,m} do

6: for k ∈ {1, · · · , N} do

7: Choose t ∈ {0, 1, · · · } such that the probability

mass function of t is Pr(t = a) = yLP
i,j,k,a.

8: Choose r ∈ {0, 1, · · · , } such that the prob-

ability mass function of r is Pr(r = b) =
pi,j,k,b/E[Si,j,k].

9: Compute t(i, j, k) = t + r as the tentative start

time of flow (i, j, k).
10: end for

11: end for

12: end for

13: for s ∈ {0, 1, · · · } do

14: Create a matrix D(s) ∈ Rm×m. Denote D(s)i,j as the

(i, j) entry of D(s). Initialize each entry of D(s) as

zero.

15: Create a set J (s) = { }
16: for i ∈ {1, · · · ,m} do

17: for j ∈ {1, · · · ,m} do

18: for k ∈ {1, · · · , N} do

19: if t(i, j, k) == s then

20: D(s)i,j = D(s)i,j + E[Si,j,k]
21: J (s) = J (s)

⋃

(i, j, k)
22: end if

23: end for

24: end for

25: end for

26: Input matrix D(s) to algorithm 2 to obtain a set

of pseudo-permutation matrices {X(s)1, · · · ,X(s)ls},

where ls is the number of resulting pseudo-permutation

matrices from algorithm 2

27: for l ∈ {1, · · · , ls} do

28: I(s)l = { }
29: for i ∈ {1, · · · ,m} do

30: for j ∈ {1, · · · ,m} do

31: if X(s)li,j == 1 then

32: I(s)l =
(

⋃N

k=1(i, j, k)
)

⋂J (s)

33: end if

34: end for

35: end for

36: end for

37: end for

38: Γ = [ ]
39: for s ∈ {0, 1, · · · } do

40: for l ∈ {1, · · · , ls} do

41: Γ = [Γ, I(s)l]
42: end for

43: end for
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searching the list, we create a pseudo-permutation matrix X l
s

(l is the number of times we search the list from the beginning)

with entry (i, j) equal to one if and only if at least one element

picked from L has ρ(·) = i and κ(·) = j (∀i, j ∈ {1, · · · ,m}).

Next, we delete the corresponding elements from list L and

start constructing for the next pseudo-permutation matrix until

the list L becomes empty.

In Step 4 (lines 38-43, algorithm 1), the NPSCS algorithm

schedules flows in the order of Γ, which is a concatenation of

I(s)l, for all s ∈ {0, 1, · · · }, and l ∈ {1, · · · , ls} as can be

seen in algorithm 1.

Algorithm 2 Greedy Low Jitter decomposition (GLJD):

1: Input: A matrix D(s) ∈ Rm×m with only non-negative

elements

2: Output: A set of pseudo-permutation matrices

{X(s)1, · · · ,X(s)ls}, where ls is the number of

resulting matrices in the set

3: Create a list L of all non-zero entries in D(s) by non-

increasing order of their values

4: aL = |L| (|L| is the number of elements in list L)

5: Set M = {(i, j)|for all D(s)i,j > 0, i ∈ {1, · · · ,m}, j ∈
{1, · · · ,m}}

6: for n ∈ {1, · · · , aL} do

7: for (i, j) ∈ M do

8: if L(n) == D(s)i,j then

9: set ρ(n) = i and κ(n) = j
10: Remove (i, j) from M
11: end if

12: end for

13: n = n+ 1
14: end for

15: Initialize l = 1
16: while L 6= ∅ do

17: Set X(s)l = 0
m×m

18: Set a = 1
19: Set C[k] = 0 ∀k ∈ {1, · · · ,m}
20: while a ≤ aL do

21: while C[ρ(a)] == 0 and C[κ(a)] == 0 do

22:
(

X(s)l
)

ρ(a),κ(a)
= 1

23: C[ρ(a)] = C[κ(a)] = 1
24: Eliminate entry a from list L
25: end while

26: a = a+ 1
27: end while

28: l = l + 1
29: end while

For a single s, we now provide an example to explain step

3 (line 13-27) and step 4 (line 38-43). Suppose we have 4
servers and 3 co-flows. Further, suppose that the flows given

in Table IV have s as their tentative start time. The flows in

Table IV form the matrix D(s), which is given as

D(s) =









0.38 0 0.22 0.40
0.11 0.24 0.60 0.05
0 0.53 0.14 0.33

0.51 0.23 0.04 0.22









,

(i, j, k) E[Si,j,k] (i, j, k) E[Si,j,k] (i, j, k) E[Si,j,k]
(1, 1, 1) 0.38 (2, 2, 2) 0.24 (1, 3, 2) 0.22
(2, 1, 3) 0.11 (3, 2, 1) 0.19 (2, 3, 1) 0.20
(4, 1, 1) 0.20 (3, 2, 2) 0.31 (2, 3, 2) 0.20
(4, 1, 3) 0.31 (3, 2, 3) 0.03 (2, 3, 3) 0.20
(1, 4, 1) 0.40 (4, 2, 2) 0.23 (3, 3, 3) 0.14
(2, 4, 1) 0.05 (4, 4, 1) 0.22 (4, 3, 3) 0.04
(3, 4, 2) 0.33 - - - -

TABLE I
THE FLOWS WITH TENTATIVE START TIME s IN THE EXAMPLE

and J (s) is given as

J (s) = {(1, 1, 1), (2, 1, 3), (4, 1, 1), (4, 1, 3), (2, 2, 2),
(3, 2, 1), (3, 2, 2), (3, 2, 3), (4, 2, 2), (1, 3, 2),

(2, 3, 1), (2, 3, 2), (2, 3, 3), (3, 3, 3), (4, 3, 3),

(1, 4, 1), (2, 4, 1), (3, 4, 2), (4, 4, 1)}.
From Algorithm 2, we have the set of psedo-permutation

matrices:

X(s)1 =









0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









,X(s)2 =









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









,

X(s)3 =









0 0 1 0
1 0 0 0
0 0 0 0
0 1 0 0









,X(s)4 =









0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1









,

X(s)5 =









0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0









.

Thus, algorithm 2 gives ls = 5. For l = 1,

we take all the flows in J (s) having in the form of

(1, 4, ·), (2, 3, ·), (3, 2, ·), (4, 1, ·) to I(s)1. Therefore,

I(s)1 = {(1, 4, 1), (2, 3, 1), (2, 3, 2), (2, 3, 3), (3, 2, 1),
(3, 2, 2), (3, 2, 3), (4, 1, 1), (4, 1, 3)}.

For l = 2, we take all the flows in J (s) having in the form

of (1, 1, ·), (2, 2, ·), (3, 4, ·), (4, 3, ·) to I(s)2. Therefore,

I(s)2 = {(1, 1, 1), (2, 2, 2), (3, 4, 2), (4, 3, 3)}.
For l = 3, we take all the flows in J (s) having in the form

of (1, 3, ·), (2, 1, ·), (4, 2, ·) to I(s)3. Therefore,

I(s)3 = {(1, 3, 2), (2, 1, 3), (4, 2, 2)}.
For l = 4, we take all the flows in J (s) having in the form

of (3, 3, ·), (4, 4, ·) to I(s)4. Therefore,

I(s)4 = {(3, 4, 2), (4, 4, 1)}.
For l = 5, we take all the flows in J (s) having in the form

of (2, 4, ·) to I(s)5. Therefore,

I(s)5 = {(2, 4, 1)}.
We add I(s)1, I(s)2, I(s)3, I(s)4, I(s)5 to Γ in order.

When all flows with tentative start time less than s are

scheduled, we start processing the flows in I(s)1 on different
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servers simultaneously. By processing, we mean that these

flows are enqueued in the corresponding links thus forming

a schedule for this task. We start to process flows in I(s)i+1

after all the flows in I(s)i are scheduled. Also, we process

flows in I(s+ 1)1 after all flows in I(s)ls are scheduled.

V. APPROXIMATION GUARANTEE FOR NPSCS

In this section, we will show that the proposed algorithm,

NPSCS, is an approximation algorithm with bounded worst

case approximation factor. First, we will show that even though

the LP problem has unbounded time slots, we can upper bound

the number of time slots to be a pseudo-polynomial in the input

size. This will be followed by the approximation guarantee of

the proposed algorithm.

A. Approximation by truncating the number of time slots

Recall that the LP formulation (1)-(6) contains infinitely

many variables and constraints since t is summed till ∞.

Inspired by Lemma 4 and Theorem 5 from [19], we show

a pseudo-polynomial upper bound on the largest time index

for t in co-flow case.

Theorem 1. Suppose

F1 , mN max
k∈{1,··· ,N}

∑

i∈M

∑

j∈M

N
∑

k=1

E[Si,j,k],

F2 , 2mN max
i,j∈M,k∈{1,··· ,N}

E[Si,j,k].

Let F , 2F1+F2. Then, there is a set of optimal solutions of

LP relaxation (1)-(6): {yLP∗
i,j,k,t|i, j ∈ M, k ∈ {1, · · · , N}, t ∈

{0, 1, · · · }} such that yLP∗
i,j,k,t = 0 for i, j ∈ M, k ∈

{1, · · · , N}, t > F .

Proof. This result is akin to Lemma 4 in [19], which we prove

here for completeness. For any i ∈ M, we have the following:

∑

j∈M

N
∑

k=1

∑

t≥2F1

yi,j,k,t

=
∑

j∈M

N
∑

k=1

Pr(time to start (i, j, k) ≥ 2F1)

≤
∑

j∈M

∑N
k=1 E[time to start (i, j, k)]

2F1

≤ F1

2F1

=
1

2
. (8)

The first equality follows from the definition of yi,j,k,t. Recall

that yi,j,k,t is the probability of starting flow (i, j, k) at time

t,
∑

t≥2F1
yi,j,k,t is the probability of starting flow (i, j, k) no

early than 2F1. The second inequality follows from Markov’s

inequality. The expected start time of an arbitrary flow start-

ing at server is upper bounded by
(

maxk∈{1,··· ,N} rk +
∑

i∈M

∑

j∈M

∑N

k=1 E[Si,j,k]
)

. Since there are at most mN

flows transferring data from server i. Therefore, the summation

of expected start time of all flows from i is bounded by F1,

leading to the third inequality.

Similarly, for any j ∈ M, we have the following:

∑

i∈M

N
∑

k=1

∑

t≥2F1

yi,j,k,t

≤
∑

i∈M

N
∑

k=1

Pr(time to start (i, j, k) ≥ 2F1)

≤
∑

i∈M

∑N
k=1 E[time to start (i, j, k)]

2F1

≤1

2
.

Recall that pi,j,k,r is the probability that the Si,j,k is greater

or equal to r. Based on the definition of F2 and Markov’s

inequality, for any r ≥ F2, we have the following:

pi,j,k,r = Pr[Si,j,k ≥ r]

≤ Pr[Si,j,k ≥ 2mN · E[Si,j,k]]

≤ 1

2mN
. (9)

Now we define a set of new LP solution {yLP∗
i,j,k,r|i, j ∈

M, k ∈ {1, · · · , N}}:

yLP∗
i,j,k,r ,



















yLP
i,j,k,r r < F,
∑

r′≥F

yLP
i,j,k,r′ r = F,

0 r > F.

The new set of solutions will not get worse objective

function (1) since the change will not make the original CLP
k

larger based on (5). Now we prove that the new set of solutions

is feasible, satisfying constraints (2)-(6). Satisfying of (2) and

(6) can be seen in a straightforward fashion and are thus

omitted.

For (3), if s < F , yLP∗
i,j,k,t equals yLP

i,j,k,t for all t ∈ {0, · · · , s}
by definition, (3) remains the same:

∑

j∈M

N
∑

k=1

s
∑

t=0

yLP∗
i,j,k,tpi,j,k,s−t ≤ 1.

If s ≥ F ,

∑

j∈M

N
∑

k=1

s
∑

t=0

yLP∗
i,j,k,tpi,j,k,s−t

=
∑

j∈M

N
∑

k=1

2F1−1
∑

t=0

yLP
i,j,k,tpi,j,k,s−t

+
∑

j∈M

N
∑

k=1

s
∑

t=2F1

yLP∗
i,j,k,tpi,j,k,s−t

≤ 1

2mN

∑

j∈M

N
∑

k=1

2F1−1
∑

t=0

yLP
i,j,k,t +

∑

j∈M

N
∑

k=1

∑

t≥2F1

yLP
i,j,k,t

≤ 1

2
+

1

2
= 1.
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The first inequality follows from (9), pi,j,k,t ≤ 1, and the

definition of yLP∗
i,j,k,t. The second inequality follows from (8),

and yi,j,k,t ≤ 1.

Similarly, for (4), if s < F , yLP∗
i,j,k,t equals yLP

i,j,k,t for all

t ∈ {0, · · · , s} by definition, (3) remains the same:

∑

i∈M

N
∑

k=1

s
∑

t=0

yLP∗
i,j,k,tpi,j,k,s−t ≤ 1.

If s ≥ F ,

∑

i∈M

N
∑

k=1

s
∑

t=0

yLP∗
i,j,k,tpi,j,k,s−t

=
∑

i∈M

N
∑

k=1

2F1−1
∑

t=0

yLP
i,j,k,tpi,j,k,s−t

+
∑

i∈M

N
∑

k=1

s
∑

t=2F1

yLP∗
i,j,k,tpi,j,k,s−t

≤ 1

2mN

∑

i∈M

N
∑

k=1

2F1−1
∑

t=0

yLP
i,j,k,t +

∑

i∈M

N
∑

k=1

∑

t≥2F1

yLP
i,j,k,t

≤ 1

2
+

1

2
= 1.

The first inequality follows from (9), pi,j,k,t ≤ 1, and the

definition of yLP∗
i,j,k,t. The second inequality follows from (8),

and yi,j,k,t ≤ 1.

Thus, we have constructed a set of optimal solutions of LP

relaxation (1)-(6): {yLP∗
i,j,k,t}, satisfying yLP∗

i,j,k,t = 0 for i, j ∈
M, k ∈ {1, · · · , N}, t > F .

Based on this result, we have reduced the problem with

infinite number of variables to a truncated time-indexed LP of

pseudo-polynomial size.

We note that the intervals of geometrically increasing

lengths can be chosen, as in [20, Chapter 2.13]. In this

discretization, the first interval I0 = [0, 1], and the other

intervals are Il = [(1+ ǫ)l−1, (1+ ǫ)l] for l ≥ 1. This can lead

to solving an approximation of time-indexed LP, albeit at an

expense of losing a factor 1 + ǫ in the objective function.

B. Approximation Result

In this section, we will prove that NPSCS is an approxima-

tion algorithm with a competitive ratio of (2 logm + 1)(1 +√
m∆)(1 +m∆)(3 + ∆)/2, where ∆ is the upper bound of

CV[Si,j,k]
2 for all i, j ∈ M, k ∈ {1, · · · , N}. More formally,

we have the following result.

Theorem 2. We aim to optimize the weighted completion time

of N co-flows on m servers. The completion time of the k-th

coflow tasks under scheduling algorithm NPSCS is at most

CLP
k (2 logm+ 1)(1 +

√
m∆)(1 +m∆)(3 + ∆)/2, where ∆

is the upper bound of CV[Si,j,k]
2 for all i, j ∈ M, k ∈

{1, · · · , N}. CV[Si,j,k]
2 , (E[S2

i,j,k] − E[Si,j,k]
2)/E[Si,j,k]

2

is the squared coefficient of variation of Si,j,k.

Before the proof of Theorem 2, we give a definition of

efficient size for co-flow. We will later prove that each co-flow

grouped by tentative start time has expected efficient size less

or equal to one.

Definition 4 (Efficient Size). Every stochastic co-flow can be

represented as a matrix D ∈ Rm×m with its entry Dij =
∑n

k=1 E[Si,j,k] representing the expected size of its constituent

flow from server i to server j. The efficient size of a stochastic

co-flow is the maximum of the maximum column-sum and the

maximum row-sum of its representative matrix. Namely, the

efficient size of D is:

max
{

max
i

∑

j

∑

k

E[Si,j,k],max
j

∑

i

∑

k

E[Si,j,k]
}

.

From Definition 4, we note that every J (s) has represen-

tative matrix D(s).
To prove Theorem 2, we use four lemmas. The first lemma

proves that for all flows having the same tentative start time

s, the stochastic co-flows grouped by same tentative start

time J (s) has expected efficient size less or equal to 1. If

we assume the expected time to process a stochastic co-flow

with efficient size less or equal to 1 by Algorithm 2 has

upper bound H , namely the processing time for an arbitrary

J (s) is bounded by H , then the summation of expected time

scheduled before any flow with tentative start time s has upper

bound (s+ 1/2)H .

Lemma 1. Assume the expected time to process a stochastic

co-flow with expected efficient size less or equal to 1 by

Algorithm 2 has upper bound H . If we schedule all of the N
co-flows by policy NPSCS, the total expected processing time

before flow (i, j, k) is at most (t(i, j, k) + 1/2)H . Namely,

the expected start time of flow (i, j, k) is less or equal to

(t(i, j, k) + 1/2)H , where t(i, j, k) is the tentative start time

of flow (i, j, k) in Algorithm 1. In other words, the start time

of set {I(s)1, · · · , I(s)ls} is less or equal to (s+ 1/2)H .

Proof. From the scheduling policy,

Pr[t(i, j, k) = s] =
s

∑

t=0

yi,j,k,t
pi,j,k,s−t

E[Si,j,k]
. (10)

From the above equation and constraints (3)-(4), we have

max
i

∑

j

∑

k′ 6=k

E[Si,j,k′ ]Pr[t(i, j, k′) = s′]

= max
i

∑

j

∑

k′ 6=k

s′
∑

t′=0

yi,j,k′,t′pi,j,k′,s′−t′ ≤ 1;

and

max
j

∑

i

∑

k′ 6=k

E[Ti,j,k′ ]Pr[t(i, j, k′) = s′]

= max
j

∑

i

∑

k′ 6=k

s′
∑

t′=0

yi,j,k′,t′pi,j,k′,s′−t′ ≤ 1.

Since we combine the set of flows with same tentative start

time s as a stochastic co-flow J (s), which has expected

efficient size less or equal to 1, the expected processing time

of each J (s) is upper bounded by H by assumption in this

lemma. In the proposed algorithm, the flows with less tentative
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start time are scheduled earlier. Therefore, the summation

of expected time scheduled before co-flow (i, j, k) (suppose

t(i, j, k) = s) is at most

H
∑

(i′,j′,k′) 6=(i,j,k)

E[Si′,j′,k′ ]
(

s−1
∑

s′=0

Pr[t(i′, j′, k′) = s′]

+
1

2
Pr[t(i′, j′, k′) = s]

)

≤ (s+
1

2
)H.

This proves the required result.

lemma 1 shows that the expected start time of any flow

(i, j, k) is at most (t(i, j, k)+ 1/2)H . corollary 1, given next,

gives an upper bound of expected completion time of flow

(i, j, k).

Corollary 1. Assume the expected time to process a stochas-

tic co-flow with expected efficient size less or equal to 1
by algorithm 2 has upper bound H . For any i, j ∈ M,

k ∈ {1, · · · , N}, and s ∈ {0, 1, · · · }, given t(i, j, k) = s,

the conditional upper bound of expected completion time of

flow (i, j, k), E[Ci,j,k|t(i, j, k) = s] is at most (s+ 1/2)H +
E[Si,j,k].

Proof. The result follows directly from Lemma 1 since the

expected completion time can be obtained by adding the

expected start time and the transfer time.

Proposition 1 (Lemma 2, [19]). For every i, j ∈ M, k ∈
{1, · · · , N} and r ∈ {0, 1, · · · }, we have

∑

r∈Z≥0

(r +
1

2
)
pi,j,k,r
E[Si,j,k]

=
1 + CV[Si,j,k]

2

2
E[Si,j,k],

where CV[Si,j,k]
2 is Si,j,k’s squared coefficient of variation.

The following few results will be needed to prove lemma 2

which gives an upper bound for H given in lemma 1.

The next proposition is from Theorem 6 in [15], giving us

a guarantee for GLJD decomposition

Proposition 2 (Theorem 6, [15]). For any s ∈ {0, 1, · · · }, if a

co-flow J (s) to be processed on m servers has an efficient size

less or equal to 1, GLJD provides a decomposition J (s) =
⊔ls
l=1X

l such that
∑

l∈{1,··· ,ls}
max(i,j,k)∈Xl E[Si,j,k] ≤

(2 logm+ 1).

The next corollary, Corollary 2, follows directly from the

Proposition 2.

Corollary 2. Suppose the number of servers |M| = m ≥ 2.

For any s ∈ {0, 1, · · · }, J (s) = ⊔ls
l=1X(s)l, we have

∑ls
l=1 max(i,j,k)∈X(s)l E[Si,j,k] ≤ (2 logm+ 1).

Recall that in Step 3 of algorithm 1, we sum up all flows

between same servers with same tentative start time, and re-

gard the summed flow as a single flow. The following lemma 2

shows that the coefficient of variations of the resulting flow

will be bounded by the one of the original flows.

Lemma 2. Suppose T1, T2, · · · , Tk are k independent random

variables with expectation E[Ti] (i ∈ {1, · · · , k}), and vari-

ances V ar(Ti) (i ∈ {1, · · · , k}). Suppose the upper bound of

their coefficient of variation is ∆, then the random variable

T1 + T2 + · · ·+ Tk has coefficient of variation that is upper

bounded by ∆.

Proof. We have

E[T1 + T2 + · · ·+ Tk] =

k
∑

i=1

E[Ti],

and

V ar(T1 + T2 + · · ·+ Tk) =

k
∑

i=1

V ar(Ti),

since T1, T2, · · · , Tk are independent.

Recall that the coefficient of variation of a ran-

dom variable T is V ar(S)/T[S]. Note that ∆ =
maxi∈{1,··· ,k}

√

V ar(Ti)/E[Ti]. Therefore,

√

V ar(T1 + T2 + · · ·+ Tk)

E[T1 + T2 + · · ·+ Tk]

=

√

V ar(T1) + · · ·+ V ar(Tk)

E[T1] + · · ·+ E[Tk]

≤ ∆
√

E[T1]2 + · · ·+ E[Tk]2

E[T1] + · · ·+ E[Tk]
≤ ∆.

The first equality follows from the independence between

T1, · · · , Tk, the first inequality follows from Jensen’s inequal-

ity.

Corollary 2 provides a upper bound of
∑ls

l=1 max(i,j,k)∈X(s)l E[Si,j,k]. However, we are more

interested in
∑ls

l=1 E[max(i,j,Si,j,D(s))∈X(s)l Si,j,D(s)] which

is the expected total processing time of all co-flows X(s)l

(l ∈ {1, · · · , ls}) from J (s). The following proposition 3

connects the two expressions.

Proposition 3 ([21]). If T1, T2, · · · , Tm are m random vari-

ables with finite means and finite variances, then

E[max
i

Ti] ≤ max
i

E[Ti] +
√
mmax

i

√

V ar(Ti),

In the following Lemma, we give a upper bound for H in

lemma 1.

Lemma 3. For every s ∈ {0, 1, · · · }, the expected total

processing time of J (s) has upper bound (2 logm + 1)(1 +√
m∆), where ∆ is the upper bound of squared coefficient

of variation of all processing times, and m is the number

of servers. Namely, the upper bound on the expected time to

process a stochastic co-flow with expected efficient size less

or equal to 1 is given as

H = (2 logm+ 1)(1 +
√
m∆).

Proof. The set of stochastic flows J (s) for any s ∈
{0, 1, · · · }, is a stochastic co-flow with efficient size less or

equal to one:

max
(i,j,k)∈σ(s)

{

max
i

∑

j

E[Si,j,k],max
j

∑

i

E[Si,j,k]
}

≤ 1.
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We use their representative matrice D(s) (∀s ∈
{0, 1, · · · }) for GLJD algorithm. Suppose we get ls co-

flows X(s)1, · · · ,X(s)ls with perfect matchings between the

servers. From corollary 2,

ls
∑

l=1

max
(i,j,k)∈X(s)l

E[Si,j,k] ≤ 2 logm+ 1. (11)

However, the ultimate processing time for co-flow J (s) is

E[max(i,j,k)∈X(s)l Si,j,k]. From Proposition 3, the expected

total processing time for all co-flows {X(s)1, · · · ,X(s)ls} is

ls
∑

l=1

E[ max
(i,j,k)∈Xl

Si,j,k] ≤
ls
∑

l=1

max
(i,j,k)∈Xl

E[Si,j,k](
(

1 +
√
m∆).

(12)

Combining the inequalities (11)-(12), the expected process-

ing time of stochastic co-flow J (s) is at most

ls
∑

l=1

E[ max
(i,j,k)∈X(s)l

Si,j,k]

≤
ls
∑

l=1

max
(i,j,k)∈X(s)l

E[Si,j,k](
(

1 +
√
m∆)

≤ (2 logm+ 1)(1 +
√
m∆),

which proves the result as in the statement of the Lemma.

Having the required results, we will now prove theorem 2.

Proof. Recall that yi,j,k,t is the probability of starting flow

(i, j, k) at time slot t. The expected completion time of flow

(i, j, k): E[Ci,j,k] is
∑

t∈Z≥0
yi,j,k,t(t+ E[Si,j,k]).

E[Ci,j,k]
(a)
=

∑

s∈Z≥0

E[Ci,j,k|t(i, j, k) = s]Pr[t(i, j, k) = s]

(b)

≤
∑

s∈Z≥0

(

H(s+
1

2
) + E[Si,j,k]

)

Pr[t(i, j, k) = s]

(c)

≤
∑

s∈Z≥0

(

H(s+
1

2
) + E[Si,j,k]

)

s
∑

t=0

yi,j.k.t
pi,j,k,s−t

E[Si,j,k]

(d)

≤
∑

r∈Z≥0

∑

t∈Z≥0

(

H(t+ r +
1

2
) + E[Si,j,k]

)

yi,j,k,t
pi,j,k,r
E[Si,j,k]

(e)

≤ H
∑

r∈Z≥0

∑

t∈Z≥0

(

t+ r +
1

2
+ E[Si,j,k]

)

yi,j,k,t
pi,j,k,r
E[Si,j,k]

(f)

≤ H
∑

t∈Z≥0

yi,j,k,t

(

t+ E[Si,j,k] +
∑

r∈Z≥0

(r +
1

2
)
pi,j,k,r
E[Si,j,k]

)

(g)
= H

∑

t∈Z≥0

yi,j,k,t

(

t+ E[Si,j,k] +
1 + CV[Si,j,k]

2

2
E[Si,j,k]

)

(h)
= H

∑

t∈Z≥0

yi,j,k,t

(

t+
3+ CV[Si,j,k]

2

2
E[Si,j,k]

)

(i)

≤ H
∑

t∈Z≥0

yi,j,k,t
3 + CV[Si,j,k]

2

2

(

t+ E[Si,j,k]
)

(j)

≤ H
∑

t∈Z≥0

yi,j,k,t
3 + ∆

2

(

t+ E[Si,j,k]
)

(k)

≤ H
3 + ∆

2
CLP

i,j,k

(l)

≤ (2 logm+ 1)(1 +
√
m∆)

3 +∆

2
CLP

i,j,k,

where ∆ is the upper bound of CV[Si,j,k]
2 for all i, j ∈ M,

k ∈ {1, · · · , N}. The above steps hold because of the

following. (a) is uncondtioning expectation

E[X ] =
∑

y

E[X |Y = y]Pr[Y = y],

(b) follows from Corollary 1, (c) follows from (10), (d) sets

r = s− t, (e) extracts H outside since H ≥ 1, (f) exchanges

the summation order of s and t, (g) follows from proposition 1,

(h) combines the two terms with E[Si,j,k] together, (i) extracts
3+CV[Si,j,k]

2

2 ≥ 1 out, (j) follows from the notation that ∆ is

the upper bound of all squared coefficient of variation of all

variables Si,j,k ∀i, j ∈ M, k ∈ {1, · · · , N}, (k) follows from

(5), and (l) follows from Lemma 3.

Since E[Ck] = E[maxi,j∈[m] C(i,j,k)], note that {(i, j) :
i, j ∈ {1, · · · ,m}} contains m2 elements, applying Propo-

sition 3, we have

E[Ck] ≤ CLP
k (2 logm+ 1)(1 +

√
m∆)(1 +m∆)(3 + ∆)/2.

This proves the result as in the statement of Theorem 2.

Remark 1. We note that when the flow sizes are deterministic,

the result in the statement of Theorem 2 can be used with

∆ = 0.
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VI. RESULTS FOR GENERAL RELEASE TIMES

So far, we assumed that the co-flow tasks were released at

time zero. If flow (i, j, k) has release time ri,j,k , it has zero

possibility to be processed before ri,j,k . We can simply add a

set of constraints to LP problem (1)-(6):

yi,j,k,t = 0 ∀i, j ∈ M, k ∈ {1, · · · , N}, t < ri,j,k.

We propose the same LP based algorithm, NPSCS, for this

general case with the above additional constraint in the linear

program. With this modification, the following result gives the

approximation result for general release times.

Theorem 3. With release times constraints, the completion

time of the k-th coflow tasks under scheduling algorithm

NPSCS is at most CLP
k (2 logm+1)(1+

√
m∆)(1+m∆)(2+

∆), where ∆ is the upper bound of CV[Si,j,k]
2 for all

i, j ∈ M, k ∈ {1, · · · , N}. CV[Si,j,k]
2 , (E[S2

i,j,k] −
E[Si,j,k]

2)/E[Si,j,k]
2 is the squared coefficient of variation of

Si,j,k.

Proof. If a flow (i, j, k) has release time more than s, then

yi,j,k,t = 0 for all t ≤ s. The tentative time generated cannot

be less or equal to s. In other word, a flow with tentative

start time s has release time less or equal to s. The expected

completion time of a flow with tentative start time s is less

than the summation of its release time (less than s) and the

expected total processing time of flows before ((s + 1/2)H)

by Lemma 1.

Since H ≥ 1, we have

E[Ci,j,k|t(i, j, k) = s]

≤ s+ (s+
1

2
)H + E[Si,j,k]

= (2s+
1

2
)H + E[Si,j,k], (13)

Further, we have

E[C(i,j,k)]

(a)
=

∑

s∈Z≥0

E[C(i,j,k)|t(i, j, k) = s]Pr[t(i, j, k) = s]

(b)

≤
∑

s∈Z≥0

(

H(2s+
1

2
) + E[Si,j,k]

)

Pr[t(i, j, k) = s]

(c)

≤
∑

s∈Z≥0

(

H(2s+
1

2
) + E[Si,j,k]

)

s
∑

t=0

yi,j,k,t
pi,j,k,s−t

E[Si,j,k]

(d)

≤
∑

r∈Z≥0

∑

t∈Z≥0

(

H(2t+ 2r +
1

2
) + E[Si,j,k]

)

yi,j,k,t
pi,j,k,r
E[Si,j,k]

(e)

≤ H
∑

r∈Z≥0

∑

t∈Z≥0

(

2t+ 2r +
1

2
+ E[Si,j,k]

)

yi,j,k,t
pi,j,k,r
E[Si,j,k]

(f)

≤ H
∑

t∈Z≥0

yi,j,k,t

(

2t+ E[Si,j,k] +
∑

r∈Z≥0

(2r +
1

2
)
pi,j,k,r
E[Si,j,k]

)

(g)

≤ H
∑

t∈Z≥0

yi,j,k,t

(

2t+ E[Si,j,k] + 2
∑

r∈Z≥0

(r +
1

2
)
pi,j,k,r
E[Si,j,k]

)

(h)
= H

∑

t∈Z≥0

yi,j,k,t

(

2t+ E[Si,j,k] +
(

1 + CV[Si,j,k]
2
)

E[Si,j,k]
)

(i)
= H

∑

t∈Z≥0

yi,j,k,t

(

2t+
(

2 + CV[Si,j,k]
2
)

E[Si,j,k]
)

(j)
= H

∑

t∈Z≥0

yi,j,k,t
(

2 + CV[Si,j,k]
2
)

(

t+ E[Si,j,k]
)

(k)

≤ H
∑

t∈Z≥0

yi,j,k,t
(

2 + ∆
)(

t+ E[Si,j,k]
)

(l)

≤ H(2 + ∆)CLP
(i,j,k)

(m)

≤ (2 logm+ 1)(1 +
√
m∆)(2 + ∆)CLP

(i,j,k),

where ∆ is the upper bound of ∆ij for all i, j ∈ [m], m is

the number of servers. The steps above can be explained as

follows. (a) is uncondtioning expectation

E[X ] =
∑

y

E[X |Y = y]Pr[Y = y],

(b) follows from (13), (c) follows from (10), (d) sets r = s−t,
(e) extracts H out since H ≥ 1, (f) exchanges the summation

order of s and t, (g) extract 2 out, (h) follows from Proposition

1, (i) combines the two terms having E[Si,j,k], (j) follows

from the notation that ∆ is the upper bound of all squared

coefficient of all variables Si,j,k ∀i, j ∈ M, k ∈ {1, · · · , N},

(k) follows from (5), and (l) follows from Lemma 3.

Since E[Ck] = E[maxi,j∈[m] C(i,j,k)], applying Proposition

3, we have

E[Ck] ≤ CLP
k (2 logm+ 1)(1 +

√
m∆)(1 +m∆)(2 + ∆).

This proves the result as in the statement of the Theorem.
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We also note that Theorem 1 can also be easily extended

with general release times, by changing

F1 , mN
(

max
k∈{1,··· ,N},i∈M,j∈M

ri,j,k+
∑

i∈M

∑

j∈M

N
∑

k=1

E[Si,j,k]
)

.

(14)

Thus, the number of time slots can be truncated, yielding a

polynomial time algorithm.

Remark 2. We note that when the flow sizes are deterministic,

the result in the statement of Theorem 3 can be used with

∆ = 0.

VII. CONCLUSIONS

This paper studies stochastic non-preemptive co-flow

scheduling, and gives an approximation algorithm. The re-

sults are provided for both zero and general release times.

The results can also be specialized to deterministic co-flow

scheduling.
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