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Abstract—A source submits status updates to a network for
delivery to a destination monitor. Updates follow a route through
a series of network nodes. Each node is a last-come-first-served
queue supporting preemption in service. We characterize the
average age of information at the input and output of each node
in the route induced by the updates passing through. For Poisson
arrivals to a line network of preemptive memoryless servers, we
show that average age accumulates through successive network
nodes.

I. INTRODUCTION

The need for timely knowledge of the system state in
remote monitoring applications has led to the development and
analysis of status update age metrics. When randomly arriving
updates are queued in a service facility, early work [1], [2]
showed that it is generally in the self-interest of a source to
limit its offered load. In particular, the updating must balance
between too infrequent updates and overly frequent updates
that induce queueing delays.

This observation has prompted the study of age in lossy sys-
tems that discard updates to avoid building queues. These in-
clude the last-come-first served (LCFS) queue with preemption
either in waiting or service [1], [3], [4] and packet management
mechanisms that restrict the the number of queued packets [5]
or discard waiting packets as they become stale [6]. However,
these contributions consider only single hop communication
systems.

Recently, there have been effort to examine age in mul-
tihop network settings [7]–[9]. In particular, this work is
closely related to the Last-Generated-First-Served (LGFS)
multihop networks studied in [7], [8]. When update transmis-
sion times over network links are exponentially distributed,
sample path arguments were used to show that a preemptive
Last-Generated, First-Served (LGFS) policy results in smaller
age processes at all nodes of the network than any other causal
policy. However, these structural results do not facilitate the
explicit calculation of age.

In this work, we consider preemptive LCFS servers, a
special case of the LGFS discipline, in the multihop line net-
work shown in Figure 1. For Poisson arrivals and memoryless
preemptive servers, we use a stochastic hybrid systems (SHS)
model of the age processes in the network to derive a simple
expression for the average age at each node.

This work was supported by NSF award CNS-1422988 and will be
presented at the 2018 IEEE Infocom Age of Information workshop.

This work was motivated by a simple question regarding
the line network with n = 2 nodes and service rates µ1 and
µ2. The network traffic depends qualitatively on these service
rates µ1 and µ2. For example if µ1 � λ ≤ µ2, packet dropping
will occur primarily at node 1 but traffic will pass quickly, and
with relatively little dropping, through node 2, On the other
hand, with µ1 � λ ≥ µ2 there will be substantial dropping at
node 2, but little dropping at node 1. From the perspective
of average age at the monitor, is it better for dropping to
occur earlier (µ1 < µ2) or later (µ1 > µ2) in the network? A
reasonable hypothesis is that µ1 < µ2 wastes the resources of
the faster downstream server. In fact, we will see in Theorem 2
that average age at the monitor is insensitive to the ordering
of the servers.

In this work, the network model is described in Section II.
This is followed in Section III with a summary of results on
stochastic hybrid systems (SHS) for age analysis from [10] that
will be the basis for our age analysis. In Section IV, we apply
SHS to the 2-node tandem queue. We use a 4-state model that
describes the occupancy of each server in the network. While
this analysis may be instructive, it is shown in Section V
that the preemptive service facilitates an analysis using a
“fake updates” technique from [10] that reduces the discrete
state space to just one state. Some simulation experiments are
provided in Section VI and conclusions appear in Section VII.

II. SYSTEM MODEL

We model the updating process as a source that submits
update packets as a rate λ Poisson process to a network.
As depicted in Figure 1, updates follow a route through n
nodes in a network to a monitor. At node i, an update has
an exponential (µi) service time, independent of the arrival
process and service times at other nodes. However, we forgo
queueing in this network; each node is a ·/M/1/1 preemptive
server. Upon arrival at a server, an update immediately goes
into service and any update currently in service is preempted
and discarded.

This is a useful model when the time an update spends in
the head-of-line position in the network interface is dominated
by waiting for transmission. For example, in a congested
wireless network, the service time would be dominated by the
MAC access delay and the transmission time of the packet
is negligible. In this case, it would be feasible and desirable
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Fig. 1. The n-node line network model. Node i is a rate µi ·/M/1/1 preemptive
server.

for the head-of-line update packet, i.e. the nominal update in
service, to be preempted by a more recent arrival.

Starting at time t = 0, the source submits status updates
at successive times U1, U2 . . . such that update i submitted at
time Ui is delivered at time Ui + Ti. The Ti are dependent
random variables. Moreover, because of preemption, the line
network is lossy and Ti = ∞ for those updates that are
discarded. At time t, the most recent received update is
time-stamped U(t) = max{Ui|Ui + Ti ≤ t} and thus the
status update age, which we refer to as simply the age, is
∆(t) = t − U(t). The system performance is given by the
average status update age ∆ = limt→∞ E[∆(t)].

For the n-node network in Figure 1, we denote the average
age at the monitor by ∆(λ, µ1, · · · , µn). In the case of n = 1
node, we have a simple M/M/1/1 preemptive queue. This has
also been called the Last-Come First-Served with preemption
in service (LCFS-S) queue [10]. Using a graphical approach,
it was shown [3] that the time average of ∆(t) approaches

∆(λ, µ1) =
1

λ
+

1

µ1
. (1)

In this prior work, an end-to-end network is modeled as a
single service facility. The key analytical steps involve the the
system time T and the interarrival time Y of delivered packets
and the challenge is the computation of the correlation E[TY ].
However, when the network has n ≥ 2 nodes, the graphical
method fails because the queueing of updates in the network
is non-trivial for several reasons:
• The line network is lossy as updates are discarded when

they are preempted. Even the calculation of the effective
arrival rate of updates at the monitor is challenging.

• The departure process at each node, even node 1, is not
memoryless.

• The arrivals at node 2 and subsequent nodes are not
fresh; instead they are aged by their passage through prior
nodes. The age of a packet arriving at node i may be
correlated with its service times at preceding nodes. That
is, the interarrival time of an update may be correlated
with its age.

• Updates that reach the monitor may be subject to a
survivor bias as each was lucky enough in its service
times to avoid being preempted.

III. STOCHASTIC HYBRID SYSTEMS FOR AOI

Because of the complexity of the lossy queueing process in
the line network, we take a different non-graphical approach to
average age analysis. Following [10], we model the system as
a stochastic hybrid system (SHS) with hybrid state (q(t),x(t)).
In the SHS model, q(t) ∈ Q is discrete and typically describes

the Markov state of the queueing system while the row vector
x(t) ∈ Rn+1 is continuous and captures the evolution of a
collection of age-related processes.

In general, SHS is a powerful modeling framework with
many variations [11], [12]. In this work, we use a simplified
form of SHS for AoI analysis introduced in [10] in which x(t)
is a piecewise linear process. In the interest of completeness,
we now summarize the basics of this simplified SHS; further
details can be found in [10] and references therein.

In the graphical representation of the Markov chain q(t),
each state q ∈ Q is a node and each transition l ∈ L is
a directed edge (ql, q

′
l) with transition rate λ(l)δql,q(t). Note

that the Kronecker delta function δql,q ensures that transition
l occurs only in state ql. For each state q, we define

L′q = {l ∈ L : q′l = q}, Lq = {l ∈ L : ql = q} (2)

as the respective sets of incoming and outgoing transitions.
For each transition l, there is transition reset mapping that can
induce a discontinuous jumps in the continuous state x(t).
For AoI analysis, we employ a linear mapping of the form
x′ = xAl. That is, transition l causes the system to jump
to discrete state q′l and resets the continuous state from x to
x′ = xAl. Moreover, in each discrete state q(t) = q, the
continuous state evolves according to ẋ(t) = bq .

In using a piecewise linear SHS for AoI, the elements of
bq will be binary. We will see that the ones in bq correspond
to certain relevant components of x(t) that grow at unit rate
in state q while the zeros mark components of x(t) that are
irrelevant in state q to the age process and need not be tracked.
For tracking of the age process, the transition reset maps
are binary: Al ∈ {0, 1}(n+1)×(n+1). The linear mappings Al

will depend on the specific network system and the indexing
scheme for updates in the system.

The transition rates λ(l) correspond to the transition rates
associated with the continuous-time Markov chain for the
discrete state q(t); but there are some differences. Unlike
an ordinary continuous-time Markov chain, the SHS may
include self-transitions in which the discrete state is unchanged
because a reset occurs in the continuous state. Furthermore,
for a given pair of states i, j ∈ Q, there may be multiple
transitions l and l′ in which the discrete state jumps from i to
j but the transition maps Al and Al′ are different.

It will be sufficient for average age analysis to define for
all q̂ ∈ Q = {0, 1, . . . ,m},

πq̂(t) = E
[
δq̂,q(t)

]
, (3a)

vq̂j(t) = E
[
xj(t)δq̂,q(t)

]
, j ∈ {0, . . . , n}, (3b)

and the vector functions
vq̂(t) = [vq̂0(t), . . . , vq̂n(t)] = E

[
x(t)δq̂,q(t)

]
. (3c)

We note that πq̂(t) denotes the discrete Markov state prob-
abilities, i.e.,

πq̂(t) = E
[
δq̂,q(t)

]
= P[q(t) = q̂]. (4)

Similarly, vq̂(t) measures correlation between the age process
x(t) and the occupancy of the discrete state q(t).



A fundamental assumption for age analysis is that the
Markov chain q(t) is ergodic; otherwise, time-average age
analysis makes little sense. Under this assumption, the state
probability vector π(t) = [π0(t) · · · πm(t)] always converges
to the unique stationary vector π̄ = [π̄0 · · · π̄m] satisfying

π̄q̄
∑
l∈Lq̄

λ(l) =
∑
l∈L′

q̄

λ(l)π̄ql , q̄ ∈ Q, (5a)

∑
q̄∈Q

π̄q̄ = 1. (5b)

When π(t) = π̄, it is shown in [10] that v(t) =
[v0(t) · · · vm(t)] obeys the system of first order differential
equations such that for all q̄ ∈ Q,

v̇q̄(t) = bq̄π̄q̄ +
∑
l∈L′

q̄

λ(l)vql(t)Al − vq̄(t)
∑
l∈Lq̄

λ(l). (6)

Depending on the reset maps Al, the differential equation (6)
may or may not be stable. However, when (6) is stable, v̇(t)→
0 and each vq̄(t) = E

[
x(t)δq̄,q(t)

]
converges to a limit v̄q̄ as

t→∞. In this case, it follows that

E[x] ≡ lim
t→∞

E[x(t)]

= lim
t→∞

∑
q̄∈Q

E
[
x(t)δq̄,q(t)

]
=
∑
q̄∈Q

v̄q̄. (7)

Following the convention in [10] that x0(t) = ∆(t) is the age
at the monitor, the average age of the process of interest is then
∆ = E[x0] =

∑
q̄∈Q v̄q̄0. The following theorem provides a

simple way to calculate the average age in an ergodic queueing
system.

Theorem 1: [10, Theorem 4] If the discrete-state Markov
chain q(t) is ergodic with stationary distribution π̄ and we can
find a non-negative solution v̄ = [v̄0 · · · v̄m] such that

v̄q̄

∑
l∈Lq̄

λ(l) = bq̄π̄q̄ +
∑
l∈L′

q̄

λ(l)v̄qlAl, q̄ ∈ Q, (8a)

then the differential equation (6) is stable and the average age
of the AoI SHS is given by

∆ =
∑
q̄∈Q

v̄q̄0. (8b)

IV. AGE IN THE TANDEM QUEUE WITH PREEMPTION

We now use Theorem 1 to evaluate the age ∆(λ, µ1, µ2)
at the monitor in the line network of Figure 1 with n = 2
intermediate nodes. This example will demonstrate how to use
Theorem 1 in a straightforward way to evaluate average age
in a network.

In the 2-node network, the set of discrete states is Q =
{00, 10, 01, 11} such that for q1q2 ∈ Q, qi = 1 indicates that
node i is serving an update packet. It will also be convenient to
refer to the states Q = {0, 1, 2, 3} such that q = q1 +2q2 ∈ Q.

The continuous state is x(t) = [x0(t), x1(t), x2(t)] such
that x0(t) is the age at the monitor, and, when there is an
update in service at node i, xi(t) is the age of that update.
When node i is idle, xi(t) is irrelevant and we set xi(t) = 0.

0
(00)

2
(01)

1
(10)

3
(11)

1

2

3

4

5

6

7

8

Fig. 2. The SHS Markov chain for the line network with n = 2 nodes. The
transition rates and transition/reset maps for links l = 1, . . . , 8 are shown in
Table I.

l ql → q′l λ(l) xAl Al v̄qlAl

1 0→ 1 λ [x0 0 0 ]
[

1 0 0
0 0 0
0 0 0

]
[v̄00 0 0 ]

2 1→ 1 λ [x0 0 0 ]
[

1 0 0
0 0 0
0 0 0

]
[v̄10 0 0 ]

3 1→ 2 µ1 [x0 0 x1]
[

1 0 0
0 0 1
0 0 0

]
[v̄10 0 v̄11]

4 2→ 0 µ2 [x2 0 0 ]
[

0 0 0
0 0 0
1 0 0

]
[v̄22 0 0 ]

5 2→ 3 λ [x0 0 x2]
[

1 0 0
0 0 0
0 0 1

]
[v̄20 0 v̄22]

6 3→ 1 µ2 [x2 x1 0 ]
[

0 0 0
0 1 0
1 0 0

]
[v̄32 v̄31 0 ]

7 3→ 2 µ1 [x0 0 x1]
[

1 0 0
0 0 1
0 0 0

]
[v̄30 0 v̄31]

8 3→ 3 λ [x0 0 x2]
[

1 0 0
0 0 0
0 0 1

]
[v̄30 0 v̄32]

TABLE I
TABLE OF TRANSITIONS FOR THE MARKOV CHAIN IN FIGURE 2.

In particular, in any state q in which node i is idle, we hold
xi(t) = 0 while in that state. Otherwise, if node i is serving
an update in a state q, then xi(t) increases at unit rate in that
state. It follows that in state q we set

bq =


[1 0 0] q = 0,

[1 1 0] q = 1,

[1 0 1] q = 2,

[1 1 1] q = 3.

(9)

It follows from (9) that in each q, the age at the monitor, x0(t),
grows at unit rate. On the other hand, in states q ∈ {1, 3}, node
1 is serving an update whose age x1(t) is growing at unit rate.
Similarly, in states q ∈ 2, 3, node 2 is serving an update whose
age x2(t) is growing at unit rate.

The Markov chain for the occupancy of the network is
shown in Figure 2. The edges are labeled l ∈ {1, 2, . . . , 8}. For
each transition l, Table I lists the state transition pair ql → q′l,
the transition rate λ(l), the transition mapping x′ = xAl, the
matrix Al and, to facilitate using Theorem 1, vqlAl.

We now describe the transitions l. We note that the age x0(t)
at the monitor changes only in those transitions in which an
update completes service at node 2 and is delivered to the
monitor. Corresponding to Table I, the transitions are:

1) In an idle network, a fresh update arrives at node 1.



The age x′0 = x0 at the monitor is unchanged, x′1 = 0
because the arrival is fresh, and x′2 = 0 because x2 is
irrelevant in state 1.

2) In state 1, a fresh update arrives and preempts the update
in service at node 1. The age x′0 = x0 at the monitor
is unchanged, x′1 = 0 because the arrival is fresh, and
x′2 = 0 because x2 is irrelevant in state 1.

3) In state 1, the update at node 1 completes service and
moves to node 2. The age x′0 = x0 at the monitor is
unchanged, x′1 = 0 because x1 becomes irrelevant in
state 2 and x′2 = x1 because the update now at node 2
is the update that was previously at node 1.

4) In state 2, the update at node 2 completes service and is
delivered to the monitor. The system moves to state 0.
The age at the monitor becomes x′0 = x2. In addition,
x′1 = x′2 = 0 since x1 and x2 are irrelevant in state 0.

5) The arrival of a fresh update at node 1 induces the 2→ 3
state transition. The age x′0 = x0 is unchanged. At node
1, x′1 = 0 because the update is fresh. At node 2, the
age x′2 = x2 is unchanged.

6) The update at node 2 completes service and is delivered
to the monitor. The system moves to state 1. The age
at the monitor becomes x′0 = x2. In addition, x′1 = x1

is unchanged because the update at node 1 remains in
place and x′2 = 0 since x2 are irrelevant in state 1.

7) The update at node 1 completes service and moves to
node 2, preempting the update that had been in service
at node 2. The age x′0 = x0 is unchanged, x′1 = 0
because x1 becomes irrelevant in state 2, and x′2 = x1

because the update now at node 2 is the update that was
previously at node 1.

8) A fresh update arrives at node 1, preempting the update
that had been in service at node 1. The age x′0 = x0 is
unchanged, x′1 = 0 because the new update at node 1 is
fresh, and x′2 = x2 is unchanged because the update at
node 2 stays in place.

To use Theorem 1 to find the average age, we first find the
stationary probabilities π̄. It is straightforward to verify that

π̄0 =
µ1µ2

(µ1 + λ)(µ2 + λ)
, π̄2 =

λ

µ2
π̄0, (10a)

π̄1 =
λ

µ1

(
µ1 + µ2 + λ

µ1 + µ2

)
π̄0, π̄3 =

λ2

µ2(µ1 + µ2)
π̄0. (10b)

Second, we need to find a non-negative v̄ satisfying (8a).
Defining αi = λ+ µi for i = 1, 2, and α3 = λ+ µ1 + µ2, it
follows from (8a) and Table I that

v̄0λ = π̄0b0 + µ2[v̄22 0 0], (11a)

v̄1α1 = π̄1b1 + λ[v̄00 0 0]

+ λ[v̄10 0 0] + µ2[v̄32 v̄31 0], (11b)

v̄2α2 = π̄2b2 + µ1[v̄10 0 v̄11] + µ1[v̄30 0 v̄31], (11c)

v̄3α3 = π̄3b3 + λ[v̄20 0 v̄22] + λ[v̄30 0 v̄32]. (11d)

Since each v̄q has three components, there are twelve equa-
tions in (11). However, because x1 and x2 are irrelevant in

state q = 0, it follows from (11a) that v̄01 = v̄02 = 0.
Similarly, because x2 is irrelevant in state q = 1, and x1 is
irrelevant in state q = 2, it follows from (11b) and (11c) that
v̄12 = v̄21 = 0. Thus we are left with the eight equations

v̄00λ = π̄0 + µ2v̄22, (12a)
v̄10µ1 = π̄1 + λv̄00 + µ2v̄32, (12b)

v̄11(λ+ µ1) = π̄1 + µ2v̄31, (12c)
v̄20(λ+ µ2) = π̄2 + µ1v̄10 + µ1v̄30, (12d)
v̄22(λ+ µ2) = π̄2 + µ1v̄11 + µ1v̄31, (12e)
v̄30(µ1 + µ2) = π̄3 + λv̄20, (12f)

v̄31(λ+ µ1 + µ2) = π̄3, (12g)
v̄32(µ1 + µ2) = π̄3 + λv̄22. (12h)

With some algebra, it follows from (12) that

∆(λ, µ1, µ2) = v̄00 + v̄10 + v̄20 + v̄30

=

(
1

λ
+

1

µ1
+

1

µ2

) 3∑
q=0

π̄q

=
1

λ
+

1

µ1
+

1

µ2
. (13)

When we have 2 preemptive servers, (13) verifies that the
average age at the monitor is indeed insensitive to the ordering
of the servers. Moreover, in comparing (1) and (13), one can
see the simple pattern that the ith node contributes 1/µi to
the age at the monitor. To verify this observation for an n-
node network, however, the SHS method we employed for
n = 2 nodes tracks the state of each node in the network and
thus requires the solution of (n+ 1)2n equations. In the next
section, we show how to extend this simple pattern to n nodes
using an SHS that generates only n+ 1 equations.

V. THE n NODE LINE NETWORK: FAKE UPDATES

A unusual feature of the LCFS-S server at each node is that
tracking the idle/busy state of a node is not actually essential
because an arrival goes immediately into service whether or
not an update is in service. When node i is busy, xi(t) encodes
the age of the update in service. If that update completes
service at time t′, it enters service at node i+1 and x′i+1 = xi,
whether or not it preempts any update that may have been in
service at node i + 1. To avoid tracking the idle/busy state
at node i, when an update departs node i, we create a fake
update at node i, with the same timestamp (and age xi(t)) as
the update that just departed. If a new update from node i− 1
arrives at node i, it preempts the fake update and the fake
update causes no delay to an arriving real update. If the fake
update does depart node i, it will go into service at node i+1,
but it will have the same age as the update it will preempt at
node i+ 1.

In [10], fake updates are introduced in an SHS derivation
of the average age of an LCFS-S queue in which the SHS has
a single discrete state. In this section, we show how to extend
the fake updates approach to prove the following theorem.



Theorem 2: With Poisson arrivals of rate λ to an n-node
line network of LCFS-S servers with service rates µ1, . . . , µn,
the average age at the monitor is

∆(λ, µ1, . . . , µn) =
1

λ
+

n∑
i=1

1

µi
.

Proof: Using fake updates, the Markov chain has the
singleton state space Q = {0} with the trivial stationary
distribution π̄0 = 1. As shown in Figure 3, there is a 0 → 0
transition for each link l. The transitions l ∈ {0, 1, . . . , n} are
shown in Table II. In the table, we omit the ql → q′l entry
since it is 0→ 0 for each l. Note that

• Transition l = 0 marks the arrival of a fresh update at
node 1. In the continuous state x, we set x′1 = 0 but all
other components of x are unchanged.

• In a transition l ∈ {1, . . . , n− 1} an update departs node
l and arrives at node l+ 1. At node l+ 1, x′l+1 = xl. At
node l, x′l = xl because a fake update begins service.

• In transition n, an update departs node n and is delivered
to the monitor. The age at the monitor is reset to x′0 = xn.

Each continuous-state age component xi(t), whether repre-
senting a real or fake update, ages at unit rate and thus
b0 = [1 1 · · · 1]. In the following, our notation will be
simplified by defining µ0 = λ. Applying Theorem 1 to the
transitions given in Table II, we obtain

v̄0

n∑
i=0

µi = b0 + µ0[v̄00 0 v̄02 v̄03 · · · v̄0n]

+ µ1[v̄00 v̄01 v̄01 v̄03 · · · v̄0n]

+ µ2[v̄00 v̄01 v̄02 v̄02 · · · v̄0n]

...

+ µn[v̄0n v̄01 v̄02 v̄03 · · · v̄0n]. (14)

It then follows from (14) that

v̄01

n∑
i=0

µi = 1 + v̄01

n∑
i=1

µi, (15)

implying v̄01 = 1/λ. In addition, for k = 2, 3, . . . , n,

v̄0k

n∑
i=0

µi = 1 + v̄0k

k−2∑
i=0

µi + µk−1v̄0,k−1 + v̄0k

n∑
i=k

µi. (16)

It follows from (16) that v̄0k = 1/µk−1 + v̄0,k−1, implying

v̄0k =
1

λ
+

k−1∑
i=1

1

µi
, k = 1, . . . , n. (17)

Finally, for component v̄00 of v0, (14) implies

v̄00

n∑
i=0

µi = 1 + v̄00

n−1∑
i=0

µi + v̄0nµn. (18)

This implies v̄00 = 1/µn + v̄0n. The claim then follows from
(17) and Theorem 1.

0

0

2n− 1

1

3

n

. . . · · ·

Fig. 3. The SHS Markov chain for the line network with n nodes. The
transition rates and transition/reset maps for links l = 0, . . . , n are shown in
Table II.

l λ(l) xAl v̄qlAl

0 λ [x0 0 x2 x3 · · · xn] [v̄00 0 v̄02 v̄03 · · · v̄0n]
1 µ1 [x0 x1 x1 x3 · · · xn] [v̄00 v̄01 v̄01 v̄03 · · · v̄0n]
2 µ2 [x0 x1 x2 x2 · · · xn] [v̄00 v̄01 v̄02 v̄02 · · · v̄0n]

...
...

...
n µn [xn x1 x2 x3 · · · xn] [v̄0n v̄01 v̄02 v̄03 · · · v̄0n]

TABLE II
TABLE OF TRANSITIONS FOR THE MARKOV CHAIN IN FIGURE 3.

VI. NUMERICAL EXPERIMENTS

Because Theorem 2 provides such a simple characterization
of the average age in the preemptive line network, here we
examine age sample paths in order to get a better sense of how
age fluctuates across a sequence of preemptive servers. Our
focus is a line network with n = 3 nodes. In these experiments,
let ∆i(t) denote the instantaneous age at the output of node i
at time t.

We start with Figure 4 which depicts representative sample
paths of ∆i(t) for i = 1, 2, 3. These sample paths are the result
of 50 updates of a rate 1 Poisson process arriving at node
1 of a three-node network with service rates [µ1 µ2 µ3] =
[1 0.5 0.25]. These sample paths demonstrate that while the
average age grows predictably, preemption thins the update
arrival process at successive nodes. Because of this thinning,
higher average age at successive nodes is a consequence of
age growing in between less-frequent updates. We also see
some evidence of survivor bias; occasionally some updates
pass quickly through the network enabling the age at the
monitor to be reset to a relatively low value.

In Figure 5, we examine the reverse ordering of the servers;
[µ1 µ2 µ3] = [0.25 0.5 1] so that downstream servers become
progressively faster. In sample paths for this system, most
updates are dropped at the first node and the age processes at
nodes 2 and 3 mimic the age at node 1, but with some small
additional lag. In this sample path, there is no evidence of
survivor bias. However, it is apparent that in both Figures 4
and 5 there is a general trend that thinning of the updates
induces larger age fluctuations at nodes further down the line.

To see the convergence of the average age, we now examine
the running average age

∆̃i(t) =
1

t

∫ t

0

∆i(τ) dτ (19)
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Fig. 4. Fifty arrivals to the three node line network with arrival rate λ = 1
and service rates µ1 = 1, µ2 = 0.5 and µ3 = 0.25.
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Fig. 5. Fifty arrivals to the three node line network with arrival rate λ = 1
and service rates µ1 = 0.25, µ2 = 0.5 and µ3 = 1.

at each node i. In Figure 6, we plot 10 sample paths of ∆̃i(t)
for each node i. In each sample path, 200 updates arrive at
node 1 as a rate λ = 1 Poisson process. The nodes have service
rates µ1 = 1, µ2 = 0.5 and µ3 = 0.25. For each sample path,
we plot ∆̃i(t) through the delivery time of the final received
update at the monitor. From Theorem 2, we expect to see

lim
t→∞

∆̃i(t) =
1

λ
+

i∑
k=1

1

µk
=


2, i = 1,

4 i = 2,

8 i = 3.

(20)

In Figure 6, we see that the bundles of running average sample
paths clustered around ages 2, 4 and 8 are consistent with this
conclusion. Moreover, the increasing variation and apparently
slower convergence of the running average age in successive
servers are also consistent the larger fluctuations in age at
successive servers in the sample paths of Figures 4 and 5.

VII. CONCLUSIONS

In this work, we use the SHS approach to analyze age in an
n-node line network of exponential servers. From the two node
example in Section IV, it should be apparent that SHS can be
employed to analyze a variety of other queues and simple
networks described by finite continuous-time Markov chains.
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Fig. 6. Sample paths of the running sample average ∆̃i(t), i = 1, 2, 3, with
arrival rate λ = 1 and service rates µ1 = 1, µ2 = 0.5 and µ3 = 0.25. The
bundles of sample paths converging to ages 2, 4, and 8 support Theorem 2.

Moreover, when each server in the network is a memoryless
preemptive server, the method of fake updates can greatly
simplify the age computation. We caution however that fake
updates appear to be useful only when servers support pre-
emption in service. For example, when preemptions occur in
waiting, the discrete state must track whether a server is busy;
i.e. it must distinguish between real updates and fake updates.
In such cases, the system state will grow exponentially with
the number of network nodes.
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