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Abstract—We study timely status updates of a real-time system
in an adversarial setting. The system samples a physical process,
and sends the samples from the source (e.g., a sensor) to the
destination (e.g, a control center) through a channel. For real-
time monitoring/control tasks, it is crucial for the system to
update the status of the physical process “timely”. We measure
the timeliness of status updates by the time elapsed since the latest
update at the destination was generated at the source, and define
the time elapsed as age of information, or age in short. To sabotage
the system, an attacker aims to maximize the age by jamming the
channel and hence causing delay in status updates. The system
aims to minimize the age by judiciously choosing when to sample
and send the updates. We model the ongoing repeated interaction
between the attacker and the system as a dynamic game. In each
stage game, the attacker chooses the jamming time according
to the jamming time distribution, and the system responds by
delaying the sampling according to the sampling policy. We prove
that there exists a unique stationary equilibrium in the game, and
provide a complete analytical characterization of the equilibrium.
Our results shed lights on how the attacker sabotages the system
and how the system should defend against the attacker.

I. INTRODUCTION

The success of many existing and emerging engineering
systems hinges upon the timely status updates of the under-
lying physical processes. Such systems range from real-time
monitoring systems, such as sensor networks monitoring air
pollution [1] and Internet-of-Things (IoT) [2], to networked
control systems, such as autonomous vehicles [3] and power
grids [4]. Timely status updates ensure that the system always
has fresh information about the physical process, and that it
can monitor and control the process effectively.

The age of information, or age in short, is becoming the
prevailing metric to measure the timeliness of status updates
[5]–[20]. At any time instant, the age of information is
defined as the amount of time elapsed since the most recently
received update was generated. A large age indicates that the
information about the physical process is outdated, since the
most recently received update was generated long time ago.
Therefore, the goal is to minimize the age of information.
However, minimizing age of information requires careful
decisions on when to sample the process and send the samples.
Suppose that we have just updated the status. On the one hand,
we do not want to update the status immediately, because the
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new update would be almost the same as the old update, and
hence carry little fresh information. On the other hand, we do
not want to wait for a long time before updating the status,
because the previous update would become outdated before
the next update. In summary, we need to make sure that both
the information sent and that received are fresh, in order to
minimize the age of information [8], [16].

While there have been a growing body of works that address
the problem of minimizing the age of information in various
scenarios [5]–[10], [13], [15], [16], few works have studied
this problem in an adversarial setting [17]. Since timely status
updates are of particular importance to real-time monitoring
and control systems, the attackers of these systems may
specifically target their capability of timely updating the status
[21], [22]. Therefore, it is crucial to understand how would an
attacker sabotage a real-time monitoring/control system, how
should the system defend against the attack, and to what extent
the attacker can degrade the timeliness of status update. In this
paper, we try to answer these questions in a stylized model.

We formulate a dynamic game to model the repeated inter-
action between a real-time monitoring/control system and its
attacker. The system takes samples from a physical process
to monitor and sends the samples to a destination through
a wireless channel. An attacker jams the channel so that
the system cannot send new updates in timely fashion. The
attacker aims to find a jamming time distribution to maximize
the age of information. After the jamming is over, the system
chooses when to sample and send the next update. The
system aims to find a sampling policy to minimize the age
of information. We summarize the main contributions of this
paper as follows.
• We prove that there exists a unique stationary equilibrium

in the game, and that the system cannot further reduce
the age at the stationary equilibrium by using more
complicated equilibrium strategies.

• We provide a complete analytical characterization of the
equilibrium, which sheds lights on how the system should
defend against the attacker. Specifically, the equilibrium
sampling policy tries to make the time differences be-
tween subsequent update deliveries as equal as possible.

• We also provide insights on how the attacker should
abotage the system. Specifically, the attacker will choose
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a jamming time distribution with as high variance as
possible.

II. RELATED WORKS

Most works on age of information do not consider an
attacker attacking the system [5]–[10], [13], [15], [16]. The
most related work is [17], where the authors study age of
information in an adversarial setting. There are two major
differences between our work and [17]. First, our work studies
the interaction of the user and the attacker at the MAC layer,
while their work [17] studies the interaction in the physical
layer. This difference results in different models of actions
and more importantly, different models of interaction (e.g.,
different payoff functions). Second, our work models the
interaction as a dynamic game, while their work [17] uses a
static game model. Therefore, we study the ongoing interaction
between the user and the attacker, where the user needs to
develop a defense policy that specifies a sequence of sampling
actions over time. In contrast, their work studies the one-shot
interaction, where the user needs to determine a scalar action.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider a real-time monitoring system in the presence
of an attacker (see Fig. 1 for an illustration). The real-time
monitoring system could be a stand-alone system by itself
(e.g., sensor networks [1] and Internet-of-Things [2]), or a
component of a real-time control system (e.g., autonomous
vehicles [3] and power grids [4]). The monitoring system
consists of a sensor that collects information about some
physical process, and a transmitter that sends information to
a receiver. The (monitoring) system aims to timely update
the information collected, which is crucial for any real-time
monitoring or control system. The system achieves timely
update of information by judiciously choosing when to sample
the physical process and when to transmit the samples. The
attacker aims to sabotage the timely status updates of the
system, through jamming the wireless channel between the
transmitter and the receiver.

Next, we describe the system model in details.1 Since the
system updates a small amount of information (e.g., a sensor
reading, a control signal) at each time, the duration of each
transmission is negligible and assumed to be zero [7], [13],
[15]. Therefore, although the attacker can monitor the channel
and detect a transmission, it is difficult for the attacker to target
the transmission (e.g., through colliding with the transmitted
packet). Instead, after detecting the transmission of a sample,
the attacker can occupy the channel for some amount of time
in order to delay the delivery of the next sample. Specifically,
to delay the transmission of the n-th sample, the attacker jams
the channel for a random duration of An. This formulation

1There are quite a few different modeling choices, such as whether the
system employs carrier sensing, which channel the attacker attacks (data or
feedback channel), and so on. In this paper, we focus on a model that makes
the most sense to us. We leave the comprehensive study of different modeling
choices to future works.
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Fig. 1. Illustration of the system model.

includes the case when the attacker jams the channel for a
deterministic amount of time (by making the distribution a
Dirac delta function). We make the following assumption.2

Assumption 1: The attacker’s jamming time for each trans-
mission is identically and independently distributed (i.i.d.)
with probability density function (pdf) fA.

We impose the following constraints on the maximum and
average jamming time: For all n = 1, 2, . . ., it holds almost
surely that

0 ≤ An ≤ Amax, EfA{An} ≤ Aavg. (1)

The maximum jamming time Amax is set up to reduce the
chance that the system can locate the attacker. The attacker
would like to limit the jamming time to be no longer than
Amax to remain elusive. The constraint on the average jamming
time comes from the energy constraint of the attacker. Since
the attacker’s action is the jamming time distribution fA, we
translates the constraints in (1) into constraints on fA as
follows∫ Amax

0

afA(a)da ≤ Aavg,

∫ Amax

0

fA(a)da = 1. (2)

The system employs carrier sensing to monitor the channel.
Once the channel is idle (i.e., after the attacker stops occupying
the channel), the system decides when to sample the physical
process and when to transmit the sample. One may wonder
why the system does not sample and transmit immediately
after the channel is idle? While the system should transmit
the sample immediately after sampling (for timely update of
information), it may not be optimal to sample immediately
after the channel becomes idle. We refer interested readers to
[16, Sec. I] for an example illustrating why the system may
want to delay the sampling. We write Dn as the delay of the
n-th sample after the channel is idle. Denoting the sampling
time of the n-th sample as Sn, we have

Sn = Sn−1 +An +Dn, for all n = 1, 2, . . . , (3)

where we define S0 = 0.
We use the age of information to evaluate the timely update

of information [5], [6]. At any time t, the age of information
is the time since the last status update of the physical process

2In general, the attacker could choose arbitrarily complex (e.g., time-
varying, non-Markovian) distributions of jamming time. We would like to
consider more general distributions in future works.
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Fig. 2. Illustration of the system dynamics and evolution of the age of
information. Sn is the sampling time of the n-th sample. The transmission of
the sample is assumed to be instant. An is the attacker’s jamming time for
the n-th sample, and Dn is the system’s delay of the n-th sample after the
channel is idle.

(i.e., since the last sample). We denote the age of information
at time t by ∆(t), which can be calculated as

∆(t) = t− Sn, for t ∈ [Sn, Sn+1). (4)

The evolution of the age is shown in Fig. 2.

B. Game Formulation

Now we formulate the dynamic game between the system
and the attacker. The dynamic game consists of an infinite
number of stage games. The n-th stage game takes place
between the transmission of the (n − 1)−th and the n-th
samples (i.e., between Sn−1 and Sn). In each stage game
n, the attacker takes action by choosing the jamming time
An, and the system reacts by choosing delay Dn for the n-th
sample. In other words, each stage game is a Stackelberg game
with the attacker taking action first. Since we have restricted
to i.i.d. jamming time distribution, the attacker’s action is
simply choosing the jamming time distribution fA. We allow
the attacker to predict how the system reacts to its action,
based on which the attacker will seek its optimal jamming
time distribution.

The system’s sampling policy dictates how to choose the
delay Dn for each sample. We focuses on causal policies
that determine each delay Dn based on information available,
which is the historical and current jamming time A1, . . . , An
and the historical delay D1, . . . , Dn−1. We write the set
of histories at the beginning of the n-th stage game as
Hn , [0, Amax]n × [0,∞)n−1, and the set of all histories as
H = ∪∞n=1Hn. Then a causal sampling policy is defined as

π : H → Θ ([0,∞)) , (5)

where Θ ([0,∞)) is the set of all possible probability
distributions with support within [0,∞). In other words,

π(A1, . . . , An, D1, . . . , Dn−1) is the probability distribution
of the delay Dn. We write the set of all causal policies as Π.

The payoff of interest to both the system and the attacker
is the average age of information, defined as

∆(fA, π) = lim sup
T→∞

1

T
EfA

[∫ T

0

∆π(t)dt

]
, (6)

which depends on the attacker’s jamming time distribution fA
and the system’s sampling policy π.

The system aims to minimize the average age ∆(fA, π). Its
optimization problem to solve is

min
π∈Π

∆(fA, π). (7)

The attacker aims to maximize the average age ∆(fA, π),
in anticipation of the system’s reaction to its jamming time
distribution. Given any jamming time distribution fA, the
system reacts by employing a sampling policy that solves
(7). We write BR(fA) as the system’s reaction to fA (i.e.,
a solution to (7)). The function BR(fA) is also called best
response in game theoretic term. Note that under the same
jamming time distribution fA, the best response BR(fA)
of the system may not be unique. However, since all best
responses result in the same average age, we only need to
consider an arbitrary best response.

The attacker’s optimization problem can then be written as

max
fA

∆ [fA,BR(fA)] (8)

s.t. fA satisfies (2).

Note that we use the best response BR(fA), instead of an
arbitrary policy π, in the objective function of the attacker.
This reflects the fact that the attacker can anticipate the
system’s best response when taking actions. In other words,
each stage game is a Stackelberg game with the attacker being
the leader [23]. Therefore, the attacker has strategic advantage,
because it can predict how the system reacts to its action, and
choose its optimal action based on this prediction. By giving
the attacker strategic advantage, we can evaluate how well the
system can defend in the worst case.

Now we can define the equilibrium of the dynamic game.
Definition 1 (Equilibrium): Aa equilibrium is a duple of two

functions (f∗A, π
∗) such that

• the system’s sampling policy π∗ minimizes the average
age under the jamming time distribution f∗A, namely π∗

is a solution to (7).
• the attacker’s jamming time distribution f∗A maximizes

the average age in anticipation of the system’s best
response, namely f∗A is a solution to (8).

The definition of equilibrium ensures that neither the system
nor the attacker could deviate from the equilibrium and get
more favorable outcomes.

IV. MAIN RESULT

We give a complete characterization of equilibria in this
section. Note that both optimization problems of the system



and the attacker in (7) and (8) are complicated functional
optimization problems. We first argue that we can simplify the
problem by restricting our attention to stationary deterministic
sampling policies. We then define the corresponding stationary
equilibrium, prove that the stationary equilibrium is unique,
and provide analytical expressions of the equilibrium jamming
time distribution and the equilibrium sampling policy.

A. Restriction to Stationary Deterministic Sampling Policies

We consider stationary deterministic sampling policies, a
special class of causal policies defined as follows.

Definition 2 (Stationary Deterministic Policy): A causal
policy is said to be stationary deterministic, if there exists
a deterministic function u : [0, Amax] → [0,∞), such that for
all (A1, . . . , An, D1, . . . , Dn−1) ∈ Hn, we have

Un = u(An). (9)

A stationary deterministic policy chooses the delay Dn as
a fixed, deterministic function of the jamming time An,
independent of the historical jamming time A1, . . . , An−1 and
historical delay D1, . . . , Dn−1.

Although the system could choose any causal policy π ∈ Π,
the following lemma suggests that given any jamming distribu-
tion fA, there exists a unique stationary deterministic sampling
policy that is optimal among all causal policies.

Lemma 1: Given any jamming time distribution fA, there
exists a unique stationary deterministic sampling policy that
is optimal among all causal policies.

Proof: For a given jamming distribution fA, the age
minimization problem of the system is equivalent to the one
in [16]. Therefore, we can use [16, Theorem 4]. The results
in Lemma 1 directly come from [16, Theorem 4].

Lemma 1 allows us to restrict to stationary deterministic
sampling policies. According to (9), a stationary deterministic
policy is completely specified by the deterministic function u.
Hence, we will refer to a stationary deterministic policy as u.

Since we restrict to stationary deterministic sampling poli-
cies, we focus on stationary equilibrium defined as follows.

Definition 3 (Stationary Equilibrium): A stationary equilib-
rium is an equilibrium (f∗A, π

∗) where the sampling policy π∗

is stationary deterministic.
We also write a stationary equilibrium as (f∗A, u

∗).

B. Characterization of Equilibria

Now we give a complete characterization of stationary
equilibrium.

Theorem 1: There is a unique stationary equilibrium, where
the attacker’s equilibrium jamming time distribution is

f∗A(a) =

(
1− Aavg

Amax

)
· δ(a) +

Aavg

Amax · δ(a−A
max), (10)

where δ(·) is the Dirac delta function, and the system’s
equilibrium sampling policy is Dn = u∗(An), where the
function u∗ is given by

u∗(a) = (β∗ − a)+, for all a ∈ [0, Amax], (11)

where (·)+ , max {·, 0}, and β∗ is a constant given by

β∗ ,

√
Aavg

√
Amax +

√
Aavg

·Amax. (12)

Proof: See Section V.
Our result provides analytical characterization of the equi-

librium, and hence shed lights on the equilibrium behavior of
the system and the attacker. First, the system’s policy can be
viewed as a “water-filling” policy with β as the water level.
The purpose of water-filling is to make the intervals between
receipts of consecutive samples (i.e., Sn − Sn1

) as equal as
possible. When the attacker’s jamming time An = a is short,
the system chooses a larger delay Dn = u(a), so that the new
transmission carries “fresh” information. More specifically, if
the jamming time is zero, and if the system chooses zero delay,
the new transmission contains exactly the same information as
the previous transmission, and hence the new transmission is
“wasted”. On the contrary, the system chooses a smaller delay
if the attacker’s jamming time is long, and does not delay the
transmission at all if the jamming time is above the threshold
β. This ensures that the received information is not outdated
by a large delay in the transmission. With such a water-filling
policy, the system strikes the balance between sending fresh
enough information (by not letting the delay too small) and
receiving fresh enough information (by not letting the delay
too large).

Since the system wishes to keep the time between receipts of
consecutive samples equal, the attacker tries to make it difficult
for the system to achieve this. The worst jamming distribution
for the attacker is a fixed deterministic jamming time, against
which the system can easily make sure that the updates are
received periodically. Therefore, the best jamming distribution
for the attacker should have high variance, where the realized
jamming time is either the largest (Amax) or zero. This is
exactly the equilibrium jamming time distribution specified
in our theorem.

V. PROOF OF MAIN RESULT

In this section, we prove our main results in Theorem 1. We
first derive the best response sampling policy BR(fA), and
then solve for the equilibrium jamming time distribution f∗A.
Based on these results, we can obtain the equilibrium sampling
policy u∗ = BR(f∗A).

A. Best Response Sampling Policy

First, we derive the best response sampling policy BR(fA)
under any jamming time distribution fA.

Lemma 2: For any jamming time distribution fA that
satisfies (2), the best response sampling policy is BR(fA) = u,
where

u(a) = (β − a)+, (13)

with β satisfying

β =
EfA

{
[A+ u(A)]

2
}

2 · EfA [A+ u(A)]
. (14)



Proof: We have proved in Lemma 1 that the best response
sampling policy is characterized by [16, Theorem 4]. The
results directly follow from [16, Theorem 4].

B. Equilibrium Jamming Time Distribution

Next, we derive the equilibrium jamming time distribution
f∗A. We first simplify the attacker’s optimization problem (8)
by the following lemma.

Lemma 3: The attacker’s optimization problem (8) is equiv-
alent to

max
fA

∫ Amax

0
[max{β, a}]2 fA(a)da∫ Amax

0
max{β, a}fA(a)da

(15)

s.t. β =
1

2
·
∫ Amax

0
[max{β, a}]2 fA(a)da∫ Amax

0
max{β, a}fA(a)da

fA satisfies (2).

Proof: See Subsection A of Appendix.
We verify that the equilibrium jamming time distribution

f∗A in Theorem 1 is a feasible solution to (15).
Lemma 4: The equilibrium jamming time distribution f∗A in

Theorem 1 is a feasible solution to (15). Moreover, under f∗A,
the unique β that satisfies the first constraint of (15) is the β∗

defined in Theorem 1.
Proof: See Subsection B of Appendix.

We need two properties of the objective function of (15)
to prove that the feasible solution f∗A is indeed the unique
optimal solution. We write the objective of (15) as a function
of β and fA as follows:

g(β, fA) ,

∫ Amax

0
[max{β, a}]2 fA(a)da∫ Amax

0
max{β, a}fA(a)da

. (16)

Note that the argument β does not need to satisfy the first
constraint in (15).

The first useful property of the function g(β, fA) is that
when the jamming time distribution is equal to the equilibrium
distribution (i.e., when fA = f∗A), the largest β that satisfies
β = 1

2g(β, f∗A) is β∗.
Lemma 5: The largest β that satisfies β = 1

2g(β, f∗A) is β∗.
In addition, we have β > 1

2g(β, f∗A) for any β > β∗.
Proof: See Subsection C of Appendix.

The second useful property of the function g(β, fA) is that
for any β, the equilibrium distribution f∗A maximizes g(β, fA)
among all distributions that satisfy (2).

Lemma 6: Given any β, the equilibrium distribution f∗A is
a solution to the following problem:

max
fA

∫ Amax

0
[max{β, a}]2 fA(a)da∫ Amax

0
max{β, a}fA(a)da

(17)

s.t. fA satisfies (2).

Proof: See Subsection D of Appendix.
Base on Lemma 5 and Lemma 6, we can prove that f∗A is the

unique optimal solution to (15) by contradiction. Suppose that
there is a better solution f̃A such that g(β̃, f̃A) > g(β∗, f∗A).
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Fig. 3. Age of information under the equilibrium and zero-wait sampling
policies when the mixture jamming distribution changes from the deterministic
jamming time to the equilibrium jamming time distribution.

Since f̃A is feasible, we have β̃ = 1
2g(β̃, f̃A), which implies

β̃ > 1
2g(β∗, f∗A) = β. Base on Lemma 6, we have

g(β̃, f̃A) ≤ g(β̃, f∗A). (18)

Base on Lemma 5 and the fact that β̃ > β, we have

g(β̃, f∗A) < 2β̃. (19)

Therefore, we have g(β̃, f̃A) < 2β̃, which violates the first
constraint of (15). This contradiction implies that f∗A is the
unique optimal solution to (15).

C. Equilibrium Sampling Policy

It was proved in Lemma 4 that given equilibrium jamming
time distribution f∗A, the β∗ specified in Theorem 1 is the
unique β in the best response to f∗A. This concludes the proof.

VI. SIMULATION RESULTS

We have argued that the equilibrium jamming time distri-
bution has a large variance and maximizes the age, while a
deterministic jamming time is worst in maximizing the age.
Now we consider a jamming time distribution that is the
mixture of the two distribution:

fαA = α · f∗A + (1− α) · fDA ,

where α ∈ [0, 1] is the weight of the equilibrium jamming
time distribution and fDA is a deterministic jamming time with

fDA (a) = δ (a−Aavg) .

We choose the deterministic jamming time to be Aavg so that
the mixture distribution has a constant mean value.

Under the mixture distribution, we compute the age under
the equilibrium sampling policy defined in (2), and that under
the zero-wait sampling policy (i.e., samples immediately after
the jamming). Fig. 3 shows the ages versus the weight α.

First, we can see that the equilibrium jamming distribution
f∗A is indeed better for the attacker, since the ages in both
cases increase as the mixture distribution becomes closer to
the equilibrium jamming distribution. Second, we can see that
the equilibrium sampling policy achieves smaller ages than the
zero-wait policy.



VII. CONCLUSION

We studied a dynamic game between a real-time system and
an attacker. The system samples a physical process and sends
the samples through a wireless channel, in order to perform
some monitoring and control tasks. The attacker jams the chan-
nel to delay the status updates. We used the age of information
as the performance metric to measure the timeliness of the
status updates. We proved that there exists a unique stationary
equilibrium in this game, and characterized the equilibrium
analytically. Our results indicate that the attacker chooses a
jamming time distribution with high variance, while the system
chooses a sampling policy that results in low variance in the
time between the receipts of two consecutive updates.

APPENDIX

A. Proof of Lemma 3

We first calculate the average age ∆(fA, u) defined in (6).
Since the jamming time distribution is i.i.d., and since the
sampling policy is stationary deterministic, the average age
∆(fA, u) over the infinite time horizon is equal to the average
age of each stage game. Therefore, we have

∆(fA, u) =
EfA

[
(a+ u(a))

2
]

EfA [a+ u(a)]
. (20)

We can further simplify (20) when u = BR(fA) (i.e., when
u is best response), by observing that

a+ (β − a)+ = max{β, a}. (21)

Hence, we have

∆ [fA,BR(fA)] =

∫ Amax

0
[max{β, a}]2 fA(a)da∫ Amax

0
max{β, a}fA(a)da

. (22)

At this point, the attacker’s optimization problem (8) can be
rewritten as

max
fA

∫ Amax

0
[max{β, a}]2 fA(a)da∫ Amax

0
max{β, a}fA(a)da

(23)

s.t. β =
1

2
·
∫ Amax

0
[max{β, a}]2 fA(a)da∫ Amax

0
max{β, a}fA(a)da

fA satisfies (2).

Note that we need the first constraint to ensure that the system
is choosing the best response sampling policy.

B. Proof of Lemnma 4

Since we have

supp(f∗A) = {0, Amax} ⊂ [0, Amax], (24)

and∫ Amax

0

af∗A(a)da =

(
1− Aavg

Amax

)
· 0 +

Aavg

Amax ·A
max = Aavg,

we know that f∗A satisfies the second constraint of (15).

Now it remains to show that there exists a unique β = β∗

that satisfies

β =
1

2
·
∫ Amax

0
[max{β, a}]2 f∗A(a)da∫ Amax

0
max{β, a}f∗A(a)da

. (25)

Suppose that β = 0. Then (25) reduces to

0 =
1

2

(Amax)2 · (Aavg/Amax)

(Amax) · (Aavg/Amax)
=
Amax

2
, (26)

which is impossible. Suppose that β ≥ Amax. Then (25)
reduces to

Amax =
1

2

(Amax)2(1−Aavg/Amax) + (Amax)2(Aavg/Amax)

(Amax)(1−Aavg/Amax) + (Amax)(Aavg/Amax)

=
Amax

2
, (27)

which is impossible. Therefore, we must have β ∈ (0, Amax).
Then (25) reduces to

β =
1

2

β2(1−Aavg/Amax) + (Amax)2(Aavg/Amax)

β(1−Aavg/Amax) + (Amax)(Aavg/Amax)

⇔
(

1− Aavg

Amax

)
β2 + 2Aavgβ −AavgAmax = 0. (28)

It is not difficult to verify that the only positive solution to the
above equation is

β =

√
Aavg

√
Amax +

√
Aavg

·Amax. (29)

Hence, under f∗A, the unique β that satisfies the first constraint
of (15) is the β∗ defined in Theorem 1.

C. Proof of Lemma 5
In Lemma 4, we have shown that under the equilibrium

distribution f∗A, β∗ satisfies the first constraint of (15), namely
β∗ = 1

2g(β∗, f∗A). Now we show that β > 1
2g(β, f∗A) for any

β > β∗.
The derivative of β − 1

2g(β, f∗A) with respect to β is

∂
[
β − 1

2g(β, f∗A)
]

∂β
(30)

= 1− 1

2
·

(
1− Aavg

Amax

)
β2 + 2Aavgβ −AavgAmax(

1− Aavg

Amax

)
β2 + 2Aavgβ + (Aavg)2/

(
1− Aavg

Amax

)
> 1− 1

2
=

1

2
> 0.

Since β∗ − 1
2g(β∗, f∗A) = 0, and since

∂[β− 1
2 g(β,f

∗
A)]

∂β > 0,
we have β > 1

2g(β, f∗A) for any β > β∗.

D. Proof of Lemma 6
The objective function is a ratio of the weighted sum

of [max{β, a}]2 to the weighted sum of max{β, a}, where
the weight is determined by fA. Since [max{β,a}]2

max{β,a} is non-
decreasing in a, we should assign the largest possible weight
when a = Amax. However, the distribution needs to satisfy the
average jamming time condition. The equilibrium distribution
f∗A has the largest f∗A(Amax) among all the distributions that
satisfy (2).
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