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∗Telecom ParisTech, France, †Brown University, US, ‡Orange Labs, France, §On leave from Telecom ParisTech, France

Email: marceau.coupechoux@telecom-paristech.fr, jerome darbon@brown.edu, jeanmarc.kelif@orange.com, marc.sigelle@gmail.com

Abstract—In this paper, we consider the problem of optimizing
the trajectory of an Unmanned Aerial Vehicle (UAV) Base Station
(BS). We consider a map characterized by a traffic intensity
of users to be served. The UAV BS must travel from a given
initial location at an initial time to a final position within a
given duration and serves the traffic on its way. The problem
consists in finding the optimal trajectory that minimizes a
certain cost depending on the velocity and on the amount of
served traffic. We formulate the problem using the framework
of Lagrangian mechanics. When the traffic intensity is quadratic
(single-phase), we derive closed-form formulas for the optimal
trajectory. When the traffic intensity is bi-phase, we provide
necessary conditions of optimality and propose an Alternating
Optimization Algorithm that returns a trajectory satisfying these
conditions. The Algorithm is initialized with a Model Predictive
Control (MPC) online algorithm. Numerical results show how we
improve the trajectory with respect to the MPC solution.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAV) are expected to play an

increasing role in future wireless networks1 [1]. UAVs may

be deployed in an ad hoc manner when the traditional cellular

infrastructure is missing. They can serve as relays to reach

distant users outside the coverage of wireless networks. They

also may be used to disseminate data to ground stations or

collect information from sensors. In this paper, we address

one of the envisioned use cases for UAV-aided wireless com-

munications, which relates to cellular network offloading in

highly crowded areas [1]. More specifically, we focus on the

path planning problem or trajectory optimization problem that

consists in finding an optimal path for a UAV Base Station

(BS) that minimizes a certain cost depending on the velocity

and on the amount of served traffic. Our approach is based on

the Lagrangian mechanics framework.

A. Related Work

UAV trajectory optimization for networks has been tackled

maybe for the first time in [2]. The model consists in a UAV

flying over a sensor network from which it has to collect some

data. The problem consists in optimizing the trajectory length

of the UAV under the constraint that it collects the required

amount of data from every sensor. Authors use a reinforcement

learning approach where improved trajectories are sequentially

learned over several tour iterations. This model is different

from ours as it allows the UAV to learn the optimal trajectory

1J. Darbon is supported by NSF DMS-1820821.

Fig. 1: A UAV Base Station travels from z0 at t0 to zT at T

and serves a user traffic characterized by its intensity.

from previous experience. The problem of optimally deploying

UAV BSs to serve traffic demand has been addressed in

the literature by considering static UAVs BSs or relays, see

e.g. [3], [4]. The goal is to optimally position the UAV so

as to maximize the data rate with ground stations or the

number of served users. In a very recent work [5], a data

rate-energy trade-off is studied. In these works the notion of

trajectory is either ignored or restricted to be circular or linear.

In robotics and autonomous systems, trajectory optimization

is known as path planning [6]. In this aim, there are classical

methods like Cell Decomposition, Potential Field Method or

Probabilistic Road Map and there are heuristic approaches,

e.g. bio-inspired algorithms. Authors of [7] have capitalized

on this literature and proposed a path planning algorithm for

drone BSs based on A* algorithm. The main goal of these

papers is to reach a destination while avoiding obstacles,

and in [7] the speed cannot be controlled. In our work, we

intend to minimize a certain cost function along the trajectory

by controlling the velocity of the UAV. This goal is studied

in optimal control theory [8] and is applied for example in

aircraft trajectory planning [9]. Most numerical methods in

control theory can be classified in direct and indirect methods.

Indirect methods provide analytical solutions from the calculus

of variations and use first order necessary conditions for

a trajectory to be optimal. In direct methods, the problem

is transformed in a non linear programming problem using

discretized time, locations and controls. Direct methods are

http://arxiv.org/abs/1812.08759v1


heavily applied in a series of very recent publications in

the field of UAV-aided communications. In [10] for example,

a UAV relay assists the communication between a source

and a destination. As the resulting problem is non-convex,

it is first approximated and then solved by successive con-

vex optimization. In [11], the objective is to maximize the

energy efficiency of a UAV-to-ground station communication

by taking into account the propulsion energy consumption

and by optimizing the trajectory. Again, sequential convex

optimization is applied to an approximated problem. In the

same vein, [12] considers multiple-UAV BSs used to serve

fixed users. The quality of the solution to the nonlinear

program may heavily depend on the initial guess. Authors

thus propose an heuristic based on circular trajectories to

initialize their algorithm. With direct methods, because of the

discretization, the differential equations and the constraints of

the systems are satisfied only at discrete points. This can lead

to less accurate solutions than indirect methods and the quality

of the solution depends on the quantization step [13]. Although

every iteration of the sequential convex optimization technique

has a polynomial time complexity, practical resolution time

may dramatically increase with the quantization grid and the

dimension of the problem. We thus propose in this paper an

indirect approach based on Lagrangian mechanics that has the

advantage to provide closed-form expressions for the optimal

trajectories when the potential is quadratic (we say single-

phase). When the potential is quadratic by region (or multi-

phase) the optimization process consists in finding the right

crossing time and location on the interface of the regions. This

question is an active field of research in control theory, see

e.g. [14]. As explained in [15], [16], a trajectory optimization

problem can be decomposed in different phases or arcs. Phases

are sequential in time, i.e., they partition the time domain.

Differential equations describing the system dynamics cannot

change during a phase. This point of view allows us to consider

the multi-phase problem.

B. Contributions

Our contributions are the following:

• Problem Formulation: To the best of our knowledge, this

is the first time that the UAV BS trajectory problem is

formulated using the formalism of Lagrangian mechanics.

This approach provides closed-form equations when the

potential is quadratic and thus very low complexity

solutions compared to existing solutions in the literature.

• Closed-form expression of the optimal trajectory with

single phase traffic intensity: When the traffic intensity

map is made of a single hot spot or traffic hole, has a

quadratic form (single phase), and is time-independent,

closed form expressions for the optimal trajectory are

derived. It consists in a part of hyperbole for a hot spot

and corresponds to a repulsor in mechanics. For a traffic

hole, the trajectory is on an ellipse and corresponds to

the case of an attractor in mechanics.

• Characterization of the optimal solution in multi-phase

traffic intensity: When the traffic map has several hot

spots or traffic holes (multi-phase) whose regions are sep-

arated by interfaces and is time-independent, we derive

necessary conditions to be fulfilled by the position and the

instant at which the optimal trajectory crosses an interface

(see Theorem 2).

• An online algorithm for multi-phase time-varying traffic

intensity: When the traffic map is multi-phase and is time-

varying, we propose an online algorithm based on MPC.

• An Alternating Optimization Algorithm for bi-phase time-

independent traffic intensity: When the traffic intensity

is made of two hot spots separated by an interface (bi-

phase) and is time-independent, we propose an Alternat-

ing Optimization Algorithm that finds a stationary point

for the cost function. This algorithm has a complexity

O(1) at every iteration, whereas iterations of the sequen-

tial convex optimization technique have polynomial time

complexity (see Algorithm 1).

The paper is structured as follows. In Section II we give

the system model and its interpretation in terms of Lagrangian

mechanics. In Section III, we formulate the problem and give

preliminary results. Section IV is devoted to the character-

ization of the optimal trajectories. Section V presents our

algorithms and Section VI concludes the paper.

Notations: Let f : R
n × R

m → R defined by f(x, y)
where x = (x1, . . . , xn) ∈ R

n and y = (y1, . . . , ym) ∈
R

m. Let a ∈ R
n and b ∈ R

m. We denote by ∂f
∂xi

(a, b)
the partial derivative of f with respect to the variable

xi at (a, b) ∈ R
n × R

m. We also introduce the nota-

tions ∇xf(a, b) = ( ∂f
∂x1

(a, b), . . . , ∂f
∂xn

(a, b)) ∈ R
n and

∇yf(a, b) = ( ∂f
∂y1

(a, b), . . . , ∂f
∂ym

(a, b)) ∈ R
m.

II. SYSTEM MODEL AND INTERPRETATION

A. System Model

We consider a network area characterized by a traffic density

at position z and time t. We intend to control the trajectory

and the velocity of a UAV base station, which is located in

z0 , z(t0) at t0 and shall reach a destination zT , z(T )
at T with the aim of minimizing a cost determined by the

velocity and the traffic, defined hereafter by (1). At (t, z), we

assume that the UAV BS is able to cover an area, from which

it can serve users (see Figure 1). The velocity of the UAV BS

induces an energy cost. In this model, we control the velocity

vector a of the UAV BS. The general form of the cost function

is as follows

L(t, z, a) =
K

2
||a||2 − u(t, z) (1)

where the first term is a cost related to the velocity of the

vehicle (K is a positive constant), and ‖ · ‖ denotes the usual

Euclidean norm. The higher is the speed, the higher is the

energy cost. The second term is a user traffic intensity, i.e.,

the amount of traffic served by the UAV BS at (t, z). Note

that a non-zero energy at null speed can be incorporated in

the model by adding a constant. Without loss of generality,

we assume that this constant is null.



III. LAGRANGIAN MECHANICS FORMULATION

A. Problem Formulation

Let S(t0, z0, T, zT ) be the minimal total cost along any

trajectory between z0 at t0 and zT at T (also called the action

in mechanics or value function in control theory). Let us define

Ω(t0, T ) as the space of absolutely continuous functions from

[t0;T ] to R
2. Our problem can now be formulated as follows

S(t0, z0, T, zT ) = min
a∈Ω(t0,T )

∫ T

t0

L(s, z(s), a(s))ds+J(z(T ))(2)

where dz
dt
(t) = a(t), z(t0) = z0, and J is the terminal

cost defined by J(z) = 0 if z = zT and J(z) = +∞
otherwise. For simplicity reasons, we assume the existence and

uniqueness of the optimal control a∗(t) in (2) and denote the

associated optimal trajectory z∗(t). In a traffic map symmetric

with respect to z0 and zT , the reader can convince himself that

the uniqueness is not guaranteed.

B. Preliminary Results From Lagrangian Mechanics

We provide in this section important results from the

Lagrangian mechanics for the convenience of the reader.

Definition 1 (Impulsion). The impulsion function is defined

as

p(t, z, a) := ∇aL(t, z, a) (3)

In the Newtonian classical framework that is used here (see

(1)), the impulsion is the product of the particle mass by its

velocity (hence the standard term ”impulsion”).

Definition 2. The Hamiltonian function is defined as

H(t, z, p) := max
a∈R2

p · a− L(t, z, a). (4)

Lemma 1 (Euler-Lagrange Equations). Along the optimal

trajectory z∗(t) that starts from z0 at t0 and ends at zT at T ,

we have

d

dt
∇aL(t, z

∗(t), a∗(t)) = ∇zL(t, z
∗(t), a∗(t)) (5)

or equivalently

dp

dt
(t, z∗(t), a∗(t)) = ∇zL(t, z

∗(t), a∗(t)) (6)

Proof. See Appendix A.

The Euler-Lagrange equation is the first-order necessary

condition for optimality and holds for every point on the

optimal trajectory.

Lemma 2. If the Lagrangian L(t, z, a) is time-independent

and α-homogeneous in z and a for α > 0, i.e., L(λz, λa) =
|λ|αL(z, a) for all λ ∈ R, S given by (2) reads

S(t0, z0, T, zT ) =
1

α
[z · p]Tt0 + J(zT ). (7)

Proof. See Appendix B.

Lemma 3 (Hamilton-Jacobi). Along the optimal trajectory, we

have for t ∈ (t0;T )

∂S

∂t0
(t, z∗(t), T, zT ) = H(t, z∗(t),−p∗(t)) (8)

∂S

∂T
(t0, z0, t, z

∗(t)) = −H(t, z∗(t), p∗(t)) (9)

where

p∗(t) = ∇aL(t, z
∗(t), a∗(t)) = ∇zS(t,z

∗(t), T, zT ) (10)

Proof. See Appendix C.

From now, we assume that the Lagrangian is time-

independent, i.e., L(t, z, a) = L(z, a), and is an even function

in a, i.e., L(z,−a) = L(z, a). A direct consequence is that

H is time-independent and is an even function in p, i.e., we

write H(t, z, p) = H(z, p) and H(z,−p) = H(z, p).

IV. OPTIMAL TRAJECTORY

In this section, we characterize the optimal trajectory when

the traffic intensity is a quadratic form and also when it is made

of two regions of quadratic form separated by an interface2.

We call these two cases single-phase and multiple-phase

intensities respectively. Both cases satisfy our assumptions on

the Lagrangian with α = 2.

A. Single-Phase Optimal Trajectory

Assume that the traffic intensity is of the form u(z) =
1
2u0||z||

2. When u0 > 0, this function models a traffic hole in

z = 0. When u0 < 0, it models a traffic hot spot at z = 0. We

disregard the case u0 = 0 because it corresponds to a constant

traffic intensity that is not of interest in this paper. Thus the

cost function has the following form

L(z, a) =
1

2
K||a||2 −

1

2
u0||z||

2 (11)

Note that

p(z, a) = ∇aL(z, a) = Ka (12)

1) Trajectory Equation: In the single phase case, we have

a closed form expression of the trajectory.

Theorem 1. If u0 < 0, the cost function is given by (13), the

optimal trajectory is

z∗(t) =
zT sinh(ω(t− t0)) + z0 sinh(ω(T − t))

sinh(ω(T − t0))
(14)

and the control is given by

a∗(t) = ω
zT cosh(ω(t− T ))− z0 cosh(ω(T − t))

sinh(ω(T − t0))
(15)

where ω2 = −u0

K
.

If u0 > 0, the cost function is given by (16), the optimal

trajectory is

z∗(t) =
zT sin(ω(t− t0)) + z0 sin(ω(T − t))

sin(ω(T − t0))
(17)

2We leave for further work the way to approximate a realistic traffic
intensity map by a set of regions with intensities of quadratic form.



S(t0, z0, T, zT ) =
Kω

2 sinhω(T − t0)

(

(|z0|
2 + |zT |

2) coshω(T − t0)− 2z0 · zT
)

+ J(zT ) (13)

S(t0, z0, T, zT ) =
Kω

2 sinω(T − t0)

(

(|z0|
2 + |zT |

2) cosω(T − t0)− 2z0 · zT
)

+ J(zT ) (16)

and the control is given by

a∗(t) = ω
zT cos(ω(t− t0))− z0 cos(ω(T − t))

sin(ω(T − t0))
(18)

where ω2 = u0

K
.

Proof. See Appendix D.

Corollary 1. If the user traffic intensity is of the form u(t, z) =
1
2u0||z||

2 + u0z · e+ u1 with u1 ∈ R and e ∈ R
2, then define

z̃ = z + e, z̃0 = z0 + e, z̃T = zT + e and trajectories given

in Theorem 1 are valid by replacing z, z0, zT by z̃, z̃0, z̃T ,

respectively. The cost function becomes: S(t0, z0, T, zT ) =
1
α
[z · p]Tt0 + J(zT )− u1(T − t0).

Corollary 2. If the user traffic intensity is of the form u(t, z) =
∑

i ui||z − zi||
2 with

∑

i ui 6= 0, then u(t, z) = (
∑

i ui)||z −

zb||
2+

∑

i ui||zi−zb||
2 with zb =

∑
i
uizi∑
i
ui

. Define z̃ = z+zb,

z̃0 = z0 + zb, z̃T = zT + zb, ũ0 =
∑

i ui and trajectories

given in Theorem 1 are valid by replacing z, z0, zT , u0 by z̃,

z̃0, z̃T , ũ0 respectively.

The system is thus equivalent to the one assumed in Theo-

rem 1 by changing the origin of the locations to the barycentre

zb of the zi.

2) Traffic Hot Spot, Traffic Hole: We assume that there is

a hot spot or a traffic hole located in zh and that the traffic

intensity is of the form u(t, z) = 1
2u0||z − zh||

2 + u1 =
1
2u0||z||

2−u0z ·zh+
1
2u0||zh||

2+u1. We can apply Corollary 1

with e = −zh. Figure 2 shows optimal trajectories when zh
is a hot spot, i.e., for u0 < 0, and different values of K .

The starting point is z0 and the destination is zT . When K

increases, the velocity cost increases and the trajectories tend

to the straight line between z0 and zT , which minimizes the

speed. When K is small, the UAV can go fast to zh, reduces

its speed in the vicinity of the hot spot and then goes fast to

the destination. Figure 3 shows optimal trajectories when zh is

a traffic hole, i.e., for u0 > 0. In Figure 3a, T is smaller than

the period of the ellipse, i.e., 2π
ω

> T . When K decreases,

the UAV can spend more time in the areas of higher traffic

intensity. In Figure 3b, T is larger than the period. In this case,

the trajectory follows one period of the ellipse whose equation

is given by (17) plus a part of the same ellipse from z0 to zT .

B. Multi-Phase Trajectory Characterization

We now consider a traffic intensity (or potential) consisting

in two quadratic functions separated by an interface I of equal

potentials delimiting two regions 1 and 2. The interface is
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Fig. 2: Traffic hot spot (u0 < 0). Circles are iso-traffic levels.

defined by an equation f(z) = C, where C is a constant

and f is a differentiable function. We assume that the optimal

trajectory crosses only once the interface at position ξ at τ .

Theorem 2. The location and time (ξ, τ) of interface crossing

are characterized by the following equations

H1(ξ(τ), p
∗(τ−))−H2(ξ(τ), p

∗(τ+)) = 0 (19)

p∗(τ−)− p∗(τ+)− µ ∇zf(ξ) = 0 (20)

f(ξ) = C (21)

for some Lagrange multiplier µ ∈ R, where we recall that

p∗ is defined with respect to the optimal trajectory between

(t0, z0) and (T, zT ), and where p∗(τ−) = lims→τ,s<τ p
∗(s)

and p∗(τ+) = lims→τ,s>τ p
∗(s).

Proof. See Appendix E.

Equation (19) expresses the fact the energy is conserved

when crossing the interface. One can show that actually the

energy is conserved along the whole trajectory. Equation (20)

is related to the conservation of the tangential component of

the impulsion at the interface. Equation (21) is the interface

equation at ξ. One can show that under the assumption of equal

potential on the interface, the kinetic energy, the impulsion,

and the velocity vector are conserved across the interface.

V. ALGORITHMS

A. An Online Algorithm: MPC

In this section, we first present an online algorithm based

on MPC [17] (we omit the pseudo-code for space reasons). In
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Fig. 3: Traffic hole (u0 > 0).

a traffic intensity landscape made of multiple phases, the idea

is to assume at every t that the current phase won’t change

from t to T . Using this assumption, we compute the optimal

trajectory as in the single phase case and take the next decision

based on this trajectory. This algorithm has the advantage of

being online, of low complexity and can be used in multiphase

time-dependent traffic maps. We have however no guarantee

of optimality.

B. An Alternating Optimization Algorithm

We now study a time-independent bi-phase scenario, in

which a trajectory from z0 to zT crosses the interface at time

τ and location ξ. We present an Alternating Optimization

Algorithm (Algorithm 1) that provides a stationary trajec-

tory in the sense of Theorem 2. The algorithm consists in

alternatively optimizing τ (steps 9-17) and ξ (steps 18-26)

by using the results of Theorem 2. For every fixed τ and

ξ, the current trajectory is the concatenation of the optimal

trajectory between (t0, z0) and (τ, ξ) and the optimal trajectory

between (τ, ξ) and (T, zT ) (step 27). Every iteration of the

algorithm only requires the evaluation of two Hamiltonians or

the computation of a point B, see (23), and its projection on

the interface. Therefore the complexity of an iteration is O(1).
In simulations, MPC is used to produce an initial trajectory.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

z
h2

z
0

z
T

z
h1 ( , )

Fig. 4: MPC trajectory and Alternating Optimization Algo-

rithm trajectory with two hot spots.

1) Procedure for seeking an optimal τ given a fixed ξ: We

use the result of Theorem 2. As shown in its proof [18], the

gradient of S with respect to τ is given by H2(ξ, p
∗(τ+)) −

H1(ξ, p
∗(τ−)). We can thus compute the Hamiltonians in

every region by differentiating the cost function (13) with

respect to the final time in region 1 (see (9)) and with respect

to the initial time in region 2 (see (8)). We then update τ by

using a simple gradient descent scheme in step 11.

0 20 40 60 80 100
-29.5

-29

-28

Fig. 5: Cost function along the iterations of the Alternating

Optimization Algorithm trajectory.

2) Procedure for seeking an optimal ξ given a fixed τ :

From Hamilton-Jacobi, the gradient of the total cost function

with respect to ξ is p∗(τ−)−p∗(τ+) (see proof of Theorem 2

in [18]). Since in the Newtonian framework the impulsion is

proportional to the control variable a (see (12)) and since in

a quadratic model the velocity vector is, at any time a linear

combination of centered initial and final positions (15), this

gradient appears to be an affine function of ξ which reads

∇zT S1(t0, z0, τ, ξ) +∇z0S2(τ, ξ, T, zT ) = Kh (ξ −B)

Scalar Hessian h and position B, where the spatial gradient

cancels i.e., p∗(τ−) = p∗(τ+) at fixed τ are given by:

h = ω1 coth(ω1(τ − t0)) + ω2 coth(ω2(T − τ)) (22)

B =
1

h

[

ω1 zh1 coth(ω1(τ − t0)) + ω2 zh2 coth(ω2(T − τ))

+
ω1 (z0 − zh1)

sinh(ω1(τ − t0))
+

ω2 (zT − zh2)

sinh(ω2(T − τ))

]

(23)



The equation involving the Lagrange multiplier (20) new reads

K h (ξ −B)− µ ∇ξf(ξ) = 0 (24)

and shows that the optimal location ξ∗ is the orthogonal pro-

jection of B on the interface I. This projection is performed

in steps 19-20 of the algorithm.

Figure 4 shows the MPC trajectory and the trajectory

obtained from Algorithm 1 after 60 iterations in a bi-phase

landscape. The traffic intensity is shown in three dimensions

in Figure 1: It is a bi-phase landscape made of two hot-spots,

where the peak of traffic in zh2 is higher than in zh1. The

Alternating Optimization Algorithm has gradually moved the

interface crossing time and location in order to spend more

time in the second hot-spot and to go closer to zh2. Figure 5

shows how the cost function has decreased along the iterations

and thus how our algorithm has improved over the MPC

solution. From iterations 1 to 45, τ has been gradually updated;

at iteration 46, ξ is updated once; ξ is again updated once at

iteration 59.

VI. CONCLUSION

In this paper, we have proposed a Lagrangian approach

to solve the UAV base station optimal trajectory problem.

When the traffic intensity exhibits a single phase, closed-

form expressions for the trajectory and speed are given. When

the traffic intensity exhibits multiple phases, we characterize

the crossing time and location at the interface. In a first

approach, we propose an online algorithm based on MPC

for multi-phase and time-dependent traffic intensity, which

allows to take into account the impact of each phase. We

then propose an offline Alternating Optimization Algorithm

for bi-phase time-independent traffic intensities that provides

a stationary trajectory with respect to the crossing time and

location on the interface and fulfills the necessary conditions

of optimality. Numerical results show that we improve the

trajectory obtained with MPC.

APPENDIX

A. Proof of Lemma 1

Around the optimal trajectory, the first order variation of S

is null.

δS =

∫ T

t0

δL(t, z, a)dt (25)

=

∫ T

t0

[∇zL(t, z, a) · δz(t) +∇aL(t, z, a) · δa(t)] dt

We now note that δa = δ dz
dt

= d(δz)
dt

. Integrating by part the

second term in the integral of δS, we have

∫ T

t0

∇aL(t, z, a) ·
d(δz)

dt
dt (26)

= [δz(t) · ∇aL(t, z, a)]
T
t0
−

∫ T

t0

δz(t) ·
d

dt
∇aL(t, z, a)dt

Algorithm 1 Alternating Optimization Algorithm

1: Input: t0, T , z0, zT , zh1, zh2, u01, u02, ω1, ω2, u11,

u12, an initial trajectory z(t), the initial crossing time and

position (τ, ξ) ∈ [τ ;T ] × I, δτ > 0, ǫτ > 0, ǫξ > 0,

ǫS > 0.

2: Output: (τ, ξ) ∈ [τ ;T ] × I such that the conditions of

Theorem 2

3: τ ′ ← τ ; ξ′ ← ξ

4: timenotfound← 1; positionnotfound← 0
5: {z(t)}t0≤t≤T ← an initial feasible trajectory, e.g. from

MPC

6: Compute S along {z(t)}t0≤t≤T

7: do

8: S′ ← S

9: if timenotfound then

10: Compute H1 and H2 at (τ, ξ) according to (8-9)

11: τ ← τ + sign(H1 −H2)δτ
12: if |τ ′ − τ | < ǫτ then

13: timenotfound← 0
14: positionnotfound← 1
15: end if

16: τ ′ ← τ

17: end if

18: if positionnotfound then

19: Compute B according to (23)

20: ξ ← projI(B), see (24)

21: if ||ξ′ − ξ|| < ǫξ then

22: timenotfound← 1
23: positionnotfound← 0
24: end if

25: ξ′ ← ξ

26: end if

27: {z(t)}t0≤t≤T ← OPTTRAJ(zh1, u01, u11, ω1, z0, t0,

ξ, τ)∪OPTTRAJ(zh2, u02, u12, ω2, ξ, τ, zT , T ) (OPTTRAJ

provides optimal trajectory using (14),(17))

28: Compute S for {z(t)}t0≤t≤T according to (13)

29: while |S′ − S| > ǫS

Note that [δz ∂L
∂a

]Tt0 = 0 because z0 and zT are fixed. Equating

δS to zero gives now

0 =

∫ T

t0

[

∇zL(t, z, a)−
d

dt
∇aL(t, z, a)

]

· δz(t)dt. (27)

As this should be true for every δz, L, z0 and zT , we obtain

the first result.

Assume that we have the optimal a(t), the condition for

z(T ) to be the optimal final position is

δS = [δz(t) · ∇aL(t, z, a)]
T
t0
+∇J(z(T )) · δz(T )

= ∇aL(z(T ), T, a(T )) · δz(T ) +∇J(z(T )) · δz(T )

= 0 (28)

Note that z0 is fixed and so δz in z0 is null. We thus obtain

the second result of the lemma.



B. Proof of Lemma 2

As L(z, a) is an homogeneous function of z and a, we have:

L(λz, λa) = |λ|αL(z, a) for all λ (in our case with α = 2).

Deriving this expression with respect to λ, setting λ = 1, and

noting that a = ż we obtain

z ·
∂L(z, ż)

∂z
+ ż ·

∂L(z, ż)

∂z
= αL(z, ż). (29)

Using (6) and (29), we have: z · dp
dt
+ ż ·p = αL or equivalently

d(p·z)
dt

= αL. We can now integrate the cost function (2) along

the optimal trajectory as follows

S(t0, z0, T, zT ) =
1

α

∫ T

t0

d(p · z)

dt
(t)dt+ J(zT )

=
1

α
(p(T ) · zT − p(t0) · z0) + J(zT )

C. Proof of Lemma 3

We assume that an optimal trajectory exists and we apply

the principle of optimality on the optimal trajectory between

(t, z∗(t)) and (t+h, z∗(t)+ah), where h > 0. For simplicity,

we omit variables T and zT .

S(t, z∗(t)) = min
a

[hL(z∗(t), a) + S(t+ h, z∗(t) + ah)]

= min
a

[hL(z, a) +

S(t, z∗(t)) + ha · ∇zS(t, z
∗(t)) +

h
∂S

∂t0
(t, z∗(t))]

∂S

∂t0
(t, z∗(t)) = −min

a
[a · ∇zS(t, z

∗(t)) + L(z∗(t), a)]

= max
a

[−a · ∇zS(t, z
∗(t)) − L(z∗(t), a)]

= H(t, z∗(t),−∇zS(t, z
∗(t)))

By using the same approach between t− h and t, we deduce

in the same way equation (9) when the final time T is varying.

D. Proof of Theorem 1

From (5) and (11), we obtain the following ordinary dif-

ferential equation of second degree: z̈ = −u0

K
z. If u0

K
> 0,

we define ω2 = u0

K
and we look for an optimal trajectory of

the form: z(t) = A cos(ωt) + B sin(ωt). If u0

K
< 0, we look

for an optimal trajectory of the form: z(t) = A cosh(ωt) +
B sinh(ωt) with ω2 = −u0

K
. Let us denote z0 = z(t0) and

a0 = a(t0) the initial conditions for z and ż.

Take the case u0

K
< 0. Using the derivative of z(t) and

identifying terms, we obtain: z(t) = z0 coshω(t − t0) +
a0

ω
sinhω(t−t0). At t = T , we have also: zT = z0 coshω(T−

t0) +
a0

ω
sinhω(T − t0), from which we deduce

a(t0) =
ω(zT − z0 coshω(T − t0))

sinhω(T − t0))
(30)

a(T ) =
ω(−z0 + zT coshω(T − t0))

sinhω(T − t0))
(31)

when u0 < 0. In a similar way, we have:

a(t0) =
ω(zT − z0 cosω(T − t0))

sinω(T − t0)
(32)

a(T ) =
ω(−z0 + zT cosω(T − t0))

sinω(T − t0)
(33)

when u0 > 0. Injecting a(t0) = a0 in the equation of the

trajectory provides the result.

For the computation of S, we now use the result of Lemma 2

as our cost function is 2-homogeneous. From equation (7),

we see that only initial and final conditions are required to

compute the cost function. Recall now that p = Ka. Injecting

the equations of a(t0) and a(T ) in (7), we obtain the result

for the cost function.

E. Proof of Theorem 2

We assume that the location and time (ξ, τ) of interface

crossing is known and unique. The optimal trajectory between

(z0, t0) and (zT , T ) can be decomposed in two sub-trajectories

that are themselves optimal between (z0, t0) and (ξ, τ) on the

one hand and between (ξ, τ) and (zT , T ) on the other hand,

by the principle of optimality. In region 1, the optimal cost up

to τ is

S1(t0, z0, τ, ξ) =

∫ τ

t0

L(z∗(s), a∗(s))ds (34)

Using Hamilton-Jacobi, we obtain

∂S1

∂T
(t0, z0, τ, ξ) = −H1(ξ, p

∗(τ−)). (35)

In the same way, the optimal cost in region 2 is

S2(τ, ξ, T, zT ) =

∫ T

τ

L(z∗(s), a∗(s))ds (36)

Using again Hamilton-Jacobi, we obtain

∂S2

∂t0
(τ, ξ, T, zT ) = H2(ξ, p

∗(τ+)) (37)

The total cost along the optimal trajectory is the sum of the

cost over the two regions

S(t0, z0, T, zT ) = S1(t0, z0, τ, ξ) + S2(τ, ξ, T, zT ) (38)

A necessary condition for the optimality of τ is thus

∂S1

∂T
(t0, z0, τ, ξ) +

∂S2

∂t0
(τ, ξ, T, zT ) = 0, (39)

i.e.,

H1(ξ, p
∗(τ−)) = H2(ξ, p

∗(τ+)) (40)

A necessary condition for the optimality of ξ in (38) under

the constraint f(ξ) = C is characterized by

µ∇zf(ξ) = ∇zT S1(t0, z0, τ, ξ) +∇z0S2(τ, ξ, T, zT )

= p∗(τ−)− p∗(τ+)

where µ is a Lagrange multiplier associated to the constraint

and where the second line comes from equation (10) of

Hamilton-Jacobi. Thus we obtain precisely equation (20).
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