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Abstract—In autonomous mobile ad hoc networks (MANET) packets for other nodes cannot be directly assumed. On the
where each user is its own authority, fully cooperative behaviors, contrary, in order to save limited resources, such as battery
such as unconditionally forwarding packets for each other or, power, nodes may tend to be “selfish”. We refer to such

honestly revealing its private information, cannot be directly .
assumed. The pricing mechanism is one way to provide incentives networks as autonomous (or self-organized) MANETS.

for the users to act cooperatively by rewarding some payment Before MANETs can be successfully deployed in a self-
for cooperative behaviors. In this paper, we model the pricing organized way, the issue afooperation stimulationmust

and routing as multi-stage dynamic games. By taking into pe resolved first. In the literature, two types of schemes
consideration that the packet-forwarding will incur a cost to have been proposed to stimulate cooperation among selfish

the relay user and the successful transmission brings benefits to des: tation-based sch d tb d sch
the sender/receiver, we propose a dynamic pricing framework nodes: reputation-based schemes and payment-based schemes.

to maximize the sender/receiver's payoff by considering the IN reputation schemes, such as [4]-[7], [10]-{12], a node
dynamic nature of MANETSs, meanwhile, keeping the forwarding determines whether it should forward packets for other nodes
incentives of the relay nodes by providing the optimal payments or request other nodes to forward packets for it based on their
based on the auction rules. The contributions of this paper are 45t hehaviors. In such schemes, by keeping monitoring packet
multi-folds: Firstly, by modeling the pricing and routing as a forwarding activities, the misbehaving nodes may be detected
dynamic game, the sender is able to exploit the time diversity i '
in MANET to increase their payoffs by adaptively allocating the  and isolated from the rest of the network. The advantage of
packets to be transmitted into different stages. Secondly, based these schemes is that they do not require central management
on the auction structure and routing dynamics, a simple optimal points, while the disadvantage is that these schemes usually
dynamic programming algorithm is developed to implement ann0t handle well the dynamically changing topology and
efficient multi-stage pricing for autonomous MANETS. Thirdly, . .
the path diversity of MANET is exploited using the optimal asymmetrllc packet forwarding request demand;, for example,
auction mechanism in each stage. The simulation results illustrate @ node with few packets to send has no incentive to forward
that the proposed dynamic pricing framework has significant all the packets for another node with a lot of packets to send.
performance gains over the existing static pricing algorithms. In the payment-based schemes, such as [8], [9], [13], [14],
a selfish node will forward packets for other nodes only if it
can get some payment from those requesters as compensation.
In recent years, mobile ad hoc networks (MANET) hav€ompared with those reputation-based schemes, the advantage
received much attention due to their potential applicatiomd the payment-based schemes lies in that they can work
and the proliferation of mobile devices [1], [2]. In generalunder various situations, such as the network with dynamically
mobile ad hoc networks refer to wireless multi-hop nethanging topology or asymmetric request demands, while the
works formed by a set of mobile nodes without requiringisadvantage is that they may require some management points
centralized administration or fixed network infrastructure, ito handle billing information.
which nodes can communicate with other nodes out of theirin this paper we focus on the payment-based mechanisms.
direct transmission ranges through cooperatively forwardimg autonomous MANETS, each node’s objective is to max-
packets for each other. In traditional emergency or militaiynize its own benefits. Specifically, from the sender’'s point
situations, the nodes in a MANET usually belong to thef view, he/she aims to transmit their packets with the least
same authority and have the common goals. To maximize thessible payments; from the relaying nodes’ points of view,
overall system performance, nodes usually work in a fullhey want to earn as much as possible payments through for-
cooperative way, and will unconditionally forward packetsvarding packets for other nodes; from the network designers’
for each other. Recently, emerging applications of MANEToint of view, they prefer that the network throughput and/or
are also envisioned in civilian usage [3]-[9], where nodd#etime can be maximized. By taking into consideration the
typically do not belong to a single authority and may nattility-maximization goal of the selfish users and the dynamic
pursue a common goal. Furthermore, such a network couldture of MANETS, to obtain good system performance, such
be completely self-organizing, where the network would bees energy efficiency, throughput, and network lifetime, the
run solely by the operation of the end-users. Consequenfigllowing important issues in autonomous MANETs should
fully cooperative behaviors such as unconditionally forwardinge addresses first: How to perform route selection among
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multiple routes? How many packets should be sent througbnder is able to exploit the time diversity in MANET to
the selected routes? And how much payment will be assignedrease their payoffs by adaptively allocating the packets to
to the forwarding nodes? be transmitted into different stages. Considering the mobility
Although the existing payment-based schemes, such aisthe nodes, the possible routes for each transmission pair
[9], [13], [14], have achieved some success in autonomoase changing dynamically over time. According to the path
MANETS, most of them assume that the network topology diversity, the sender will pay a lower price for transmitting
fixed or the routes between the sources and the destinatipaskets when there are more potential routes. Thus, the
are known and pre-determined. However, in MANETS, thexiterion for allocation can be developed based on the fact
usually exist multiple possible routes from the source that the sender prefers to send more packets in the stage
the destination; furthermore, due to mobility, the availableith lower costs. Secondly, an optimal dynamic program-
routes between the sources and the destinations may chamiggg approach is proposed to implement efficient multi-stage
frequently. In this paper, we refer fwath diversityas the fact pricing for autonomous MANETS. Specifically, the Bellman
that in general there exist multiple routes between a pair efuation is used to formulate and analyze the above dynamic
nodes, each with different characteristics, such as the numpesgramming problem by considering the optimization goal
of hops, cost (or requested payment), and valid time of this terms of two parts: current profit and future opportunity
route. We refer tdime diversityas the fact that due to mobility profits. A simple optimal allocation algorithm is developed and
and dynamic traffic patterns, the routes between two nodes wgitbved based on the auction structure and routing dynamics.
keep changing over time. Thirdly, the path diversity of MANET is exploited using the
For each node, to achieve its goal with ultimate perfopptimal auction mechanism in each stage. The application of
mance, both path diversity and time diversity of MANET$he optimal auction makes it possible to separately study the
should be exploited. The source (here we assume the souwpémal allocation problem and the mechanism design of the
pays to the forwarding nodes) can exploit the path diversitguction protocol based on the well-known Revenue Equiva-
such as introducing competition among the multiple availablence Theorem [21], which simplifies the dynamic algorithm
routes through auction, to minimize the payment needed at tlikile keeping the optimality.
current stage. Each node can also exploit the time diversity toThe reminder of this paper is organized as follows: The
maximize its overall payoff over time. The basic idea is that isystem model of autonomous MANETs are illustrated in
each stage the source can adaptively determine the numbeseftion 2. In Section 3, we formulate the pricing process
packets needed to be transmitted according to the current roatedynamic games based on the system model. In Section
condition, for example when the route condition is good (i.e4, the optimal dynamic auction framework is proposed for
the cost to transmit a packet is low), more packets should thee optimal pricing and allocation of the multi-stage packet
transmitted in the current stage, while when the route condititransmission. In Section 5, extensive simulations are conducted
is not good, less or no packets should be transmitted. to study the performance of the proposed approach. Finally,
Some preliminary works have been proposed to explaibnclusions are drawn in Section 6.
the path diversity, such as [13], [14]. Based on the ideas of
the auction-like pricing and routing protocols for the Internet
[15], [16], the authors in [13], [14], [17] have introduced An ad hoc network consists of a group of wireless mobile
some auction-like methods for the cost-efficient and truthfabdes, in which individual nodes cooperate by forwarding
routing in MANETS, where the sender-centric Vickrey auctiopackets for each other to allow nodes to communicate beyond
has been adopted to discover the most cost-efficient routdsect wireless transmission range. Prior research in ad hoc
which has the advantage that its incentive compatible propengtworking has generally studied the routing problem in a
ensures the truthful routing among the nodes. Router-basemh-adversarial trusted environment. In this paper we consider
auction approaches [18], [19] have also been proposed aiatonomous mobile ad hoc networks where nodes belong to
encourage the packet-forwarding in MANETSs, where eadlifferent authorities and have different goals. We assume that
router constitutes an auction market instead of submitting bidach node is equipped with a battery with limited power
to the sender. Besides, a strategy-proof pricing algorithm feupply, can freely move inside a certain area, and communi-
the truthful multi-cast routing has been proposed in [20]. cates with other nodes through wireless connections. For each
However, none of the existing schemes have addressed hmde, packets are scheduled to be generated and delivered to
to exploit the time diversity, which we expect can significantlgertain destinations with each packet having a specific delay
improve the system performance. In this paper, we considmmstraint, that is, if a packet cannot reach the destination
the routing as multi-stage dynamic games and proposewdhin its delay constraint, it will become useless.
dynamic pricing framework to maximize the sender’s payoff In our system model, we assume all nodes are selfish and
over multiple routing stages considering the dynamic naturational, that is, their objectives are to maximize their own
of MANETS, meanwhile, keeping the forwarding incentives gbayoff, not to cause damage to other nodes. However, node are
the relay nodes by providing the optimal payments based attowed to cheat whenever they believe cheating behaviors can
the auction rules. The main contribution is as follows: Firstlyjelp them increasing their payoff. Since nodes are selfish and
by modeling the pricing and routing as a dynamic game, tli@warding packets on behalf of others will incur some cost,
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without necessary compensation, nodes have no incentiveatgiven communication session, any node can play only one
forward packets for others. In our system model, we assumithe following roles: sender, relay node, or destination. In
that if a packet can be successfully delivered to its destinati@ytonomous MANET, each node’s objective is to maximize
then the source and/or the destination of the packet can getown benefits. Specifically, from the sender’s point of view,
some benefits, and when a node forwards packets for othérs/she aims to transmit its packets with the least possible
it will ask for some compensation, such as virtual money @ayments; from the relaying nodes’ points of view, they want
credits [9], [22], from the requesters to at least cover its cost. i earn the payment which not only covers their forwarding
our system model, to simplify our illustration, we assume thabst but also gain as much extra payment as possible; while
the source of a packet pays to the intermediate nodes who hfreen the network designers’ point of view, they prefer that the
forwarded the packet for it. However, the proposed schemestwork throughput and/or lifetime can be maximized. There-
can also be easily extended to handle the situation that foee, the source-destination pair and nodes on the possible
destinations pay. Like in [9], we assume that there exist sorfewarding routes construct a non-cooperative pricing game
bank-like centralized management points, whose only functif®6]. Since the selfish nodes belong to different authorities,
is to handle the billing information, such as performing credihey only have the information about themselves and will not
transfer among nodes based on the submitted information figyeal their own types to others unless some mechanisms have
these nodes. Each node only needs to contact these certesn applied to guarantee that truth-telling does not harm
banking points periodically or aperiodically. their interests. Generally, such non-cooperation game with
The routing protocols are important for MANET to establisimperfect information is complex and difficult to study as the
communication sessions between each source-destination gétyers do not know the perfect strategy profile of others. But
Here, we consider the on-demand (or reactive) routing protaased on our game setting, the well-developed auction theory
cols for ad hoc networks, in which a node attempts to establishn be applied to analyze and formulate the pricing game.
a route to some destination only when it needs to send packet$he auction games belong to a special class of game with
to that destination. Since on-demand routing protocols are ableomplete information known as games of mechanism design,
to handle many changes of node connectivity due to the nodeiswhich there is a “principal” who would like to condition
mobility, they perform better than periodic (or proactivehis actions on some information that is privately known by
routing protocols in many situations [23]-[25] by having muckhe other players, called “agents”. In auction, according to
lower overheads. In MANETS, due to the mobility, nodean explicit set of rules, the principle (auctioneer) determines
need to frequently perform route discovery. In this paper, wesource allocation and prices on the basis of bids from the
refer to the interval between two consecutive route discoveagents (bidders). In the pricing game, the source can be viewed
procedures as a routing stage, and assume that for each sowasdhe principle, who attempts to buy the forwarding services
destination pair, the quality of the selected route between thémm the candidates of the forwarding routes. The possible
will keep unchanged in the same routing stage. Furthermoferwarding routes are the bidders who compete with each
to simplify our analysis, we assume that for each sourcether for serving the source node, by which they may gain
destination pair, the discovered routes in different routinextra payments for future use. In order to maximize their
stages are independent. own interests, the selfish forwarding nodes will not reveal
to others their private information, i.e., the actual forwarding
costs. They compete for the forwarding request by eliciting
After performing route discovery at each stage, multipltheir willingness of the payments in the forms of bids. Thus,
forwarding routes can be exploited between the source and Bezause of the path diversity of MANET, the sender is able to
destination. Assume there afgossible routes and let ; be lower its forwarding payment by the competition among the
the forwarding cost of theth node on theith route, which routing candidates based on the auction rules. It is important
is also referred to as the node type in this paper. Consideri@ag note that instead of considering each node as a bidder
possible node mobility in MANET/ andv; ; are no longer [13], [17], we consider each route as a bidder in this paper,
fixed values, which can be modelled as random variables. eiich has the following advantages: First, by considering
the probability mass function (PMF) dfbe f(¢) and the cor- the nodes on the same forwarding route as one entity, the
responding cumulative density function (CMF) B&¢). And, sender can fully exploit the path diversity to maximize its
v; ; is characterized by its probability density function (PDFpwn payoffs. Second, since it has been proved in [17] that
f”- and the cumulative density function (CDIF)J Define there does not exist a cheat-proof forwarding protocol for ad
the cost vector of théth route asv; = {v;1,v;2,...,v;5,}, hoc pricing games, the route-based bidding approach makes it
whereh; is the number of forwarding nodes on tita route. possible to study the utility-maximization allocation and cheat-
Thus, we have the total cost on thth router; = Z?;l v;, 5, proof mechanism design sequentially. Moreover, less bidding
which is also a random variable. Let the PDF and CDF,of information is required for route-based approach.
be f; and F;, respectively. In this section, we first consider the static pricing game
In this paper, we model the process of establishing a ro®PG), which is only played once for the fixed topology. Then,
between a source and a destination node as a game. T dynamic pricing game (DPG) is studied and formulated
players of the game are the network nodes. With respectdonsidering playing the pricing game for multiple stages.
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A. The Static Pricing Game to model such multi-stage games and analyze the long-run
In this subsection, we study the static pricing game mod@ghaviors of players. In dynamic games, the strategies of the

By taking advantage of the auction approach, our goal is RgYers not only depend on the opponents’ current strategies
maximize the profits of the source-destination communicatiéht @lso the past outcomes and the future possible actions of
pair for transmitting packets while keeping the forwardingther players. Our pricing game for MANET falls exactly into
incentives of the forwarding routes. Specifically, considerin%'e category of dynamic games. In this paper, we will focus
an auction mechanisifQ, M) consists of a pair of functions 9" studying the dynamic pricing game. .

Q:D - PandM : D — RN, whereD is the set of Intuitively, the_ sender_prefers to transmit more packets
announced bidsp is the set of probability distributions overWhen more routing candidates are available and the number
the set of route<. Note thatQ;(d) is the probability that the ©f hops is small. Because, considering the application of
ith route candidate will be selected for forwarding avig(d) auction protocols at each stage, the sender has a higher
is the expected payment for thih route, wherel is the vector probability to get the service with a lower price when there
of bidding strategies for all routes, i.el,= {d;,d>, ..,d,} € &€ more bidders (rqutes) with lower type values. I\{Ioreovgr,
D. Let d_; denote the strategy vector of route opponents. the practical constraints in MANET need to be considered in

Then, the utility function of theth forwarding route can be DPG, such as the delay constraint of packet transmission or the
represented as follows bandwidth constraint of the maximal number of packets being
able to be transmitted within an unit time duration. Therefore,
Ui(di,d—;) = M;(ds, d—;) — Qi(di, d—;) - 5. (1) in order to maximize their profits, the source-destination pair
Sr}eeds not only to optimally allocate the packets to the routes
within one time period but also to schedule the packets for all
which each route bids its true cost, = r;. The Revelation periods. In our D.PG’ it is important to note that thg optimal .
Principle [21] states that given any feasible auction meck?—aCket transmission strategy for each source—destma}mn pair
.Is affected by both the past plays and the future possible out-

anism, there exists an equivalent feasible direct revelat|08meS Generally speaking. the packet transmission decision is
mechanism which gives to the auctioneer and all bidders e i Y sp 9. P

S : : : made by comparing the current transmission profit and future
same expected utilities as in the given mechanism. Thus, we . . .

. .’ opportunity profits. Also, due to the delay and bandwidth

can replace the bidd by the cost vector of the routes, i.e., : e g

. . constraints, the past transmission plays affect current decision-

r = {ry,re,...,r,} without changing the outcome and the . ) .

: . ..imaking. Capturing the dynamics becomes the key to the

allocation rule of the auction game. Therefore, the equilib-

: ; . . optimal solution of our DPG. Let; denote any realization
rlum of the SPG can be obtained by solving the followm%f the route number at théh stagte andr be ay realization
optimization problem to maximize the sender’s payoff while

providing incentives for the forwarding routes of the types of all routing candidates. Considefl'gperiod

dynamic game, the overall utility maximization problem for
4 4
max {Ee,r lg Y Qi(r) = > My(r)
’ i=1

the source-destination pair can be formulated as follows.
} @ T ¢ L
=1 t Ct
ma {Z B Bor, |G - Qulr) — b - ZMz-m)]}
R 1 =1 =1

Before studying the equilibria of the auction game, we fir
define thedirect revelation mechanisms the mechanism in

s.t. Ui(’f‘i,d_i) Z Uz(dl,d_l),le € D (3) = ‘ ‘ (4)
4
Qi(r) € {0, 1},ZQ¢(F) <L s.t. Uii(rig,d—ii) > Ui i(dig,d—iy),Vd;y € D
=1 L
where the constraint (3) is also referred as the incentive Qi(r) €{0,1},> Qi(r) <1.
=1

compatibility (IC) constraint, which ensures the users to report

their true types, ang is the marginal profit of transmitting £l

one packet. ke < B, Z ky = M. (5)
t=1

B. The Dynamic Pricing Game wherek; is the number of packets transmitted in tle stage

Considering the dynamic nature of MANET, the networland K, is the vector of the numbers of the transmitted packets
topology may change over time due to the mobility of tha the firstT — ¢+ 1 stages, which can be representedas=
nodes. Thus, the route discovery needs to be performed ffér, kr_1,..., k:}. Note that a smallet in this paper stands
guently. Moreover, for different routing stages, there may exidr a later time stage. In general, the physical meaning’ of
different number of available routes with different numbetan be the delay constraint of the packets to be transmitted.
of hops. It is important for each source-destination pair fbhus, the pricing game needs to be constrained withift a
decide the transmission and payment behaviors for each stpgaod time window as the above formulation shows. Here,
according to the route conditions. Therefore, the pricing gani&XC;) is the profit that the sender gains in ttle stage, which
in such dynamic situation can no longer be modeled as statiay not only depend on how many packets are transmitted in
games. Game theorists use the concept of dynamic gamesent stage, i.ek;, but also be affected by how many packets



have been transmitted in previous stag€s,;. Considering Equivalence Theoremit follows that all mechanisms that
the rate-distortion theory [27], we assume the profit function issult in the same allocation® for each realization of
concave ink;. For example, the marginal profit of transmittingyield the same expected utility. Thus, in order to obtain
one more packet when a lot of packets have already beée optimal pricing strategies, the mechanism design process
transmitted should be limited. Alsg,is the discount factor for proceeds in two steps: First, find the optimal allocat@fr);
multistage games, and the subsctifidicates theth routing second, find an implementable mechanism that prodges
stage. Note thaf” and B are the delay constraint and thefor each realizationr. By using the optimal auction approach
bandwidth constraint, respectively/ is the total number of for pricing, the utility-maximized allocation for the sender
packets to be transmitted withifi stages. is to choose the route with the minimal virtual typ&r;)

The above DPG formulation (5) extends the optimal pricinghen g — J(r;) > 0, otherwise the sender will not transmit
problem to the time dimension, which can exploit the pdhe packet as it will cause negative utility and violate his
tential of time diversity in the autonomous ad hoc networkdividual rationality. Therefore, if we assuniv) is strictly
considering its dynamic nature. However, directly solvinmcreasing inv, we can definerx = max,{(g — J(v)) = 0}
the nonlinear integer programming problem is very difficulias the reserved price for the sender, which is the largest
Because, not only does the current routing realization affquayment he/she can offer for transmitting a packet. Note that
the allocation decision, but also the past play and allocatitime distributions that have increasidgv) include the uniform,
decision influence the feasible actions and payoff functions imormal, logistic, exponential distributions, etc.
the current period. Based on the above discussion, we find that the static pricing
game is not efficient if the current routing realization shows a
IV. THE OPTIMAL DYNAMIC AUCTION FRAMEWORK FOR . - . .

EFFICIENT PRICING IN MANET high cos_t._Cons!d_erlng the dynamlc propertl_es of MANET,_a
more efficient pricing mechanism can be achieved by studying

In order to obtain the optimal strategies for the DPG angl a5 a multistage game and optimally allocating the packet

optimal dynamic auction framework for efficient pricing in
MANET in this section. First, the optimal auction mechanisrB. The Optimal Dynamic Auction Framework

is considered for maximizing the utilities for the sending nodes considering the optimal auction results in the DPG model
while keeping the forwarding incentives for the relaying nodegsrmulated in Section 2, we further propose the optimal dy-
Then, the dynamic multi-stage game is further formulat§thmic auction framework for pricing in autonomous MANET.
using the optimal auction and studied using dynamic programs it is difficult to directly solve (5), we study the dynamic
ming approach. Finally, the mechanism design is considerggjgramming approach in our proposed framework to simplify
for the proposed framework. the multistage optimization problem.
A. The Optimal Auction for Static Pricing Game D_efine the value f“”Ctio_th(l’) as the ma>_<imum expected
In Section 2, we have formulated the static pricing gan%om obtainable from peno_dS,t 7.1’.""1 given thf.it ther(_e
' are r packets to be transmitted within the constraint of time

l(:’;)sf_('je:’en thee fatlt(lf\t(la?n tpl'm:aCItFrJ\fTeass l:?%fot‘;tém:?x); Zr%?lsglériods. Simplifying (5) using the Bellman equation, we have
. , we fu utifiz u p UCOofh e maximal expected profit;(«) written as follows.

[28] to simplify the optimization problem. From [28], we know

that by considering the optimal auction, the sender’s expected & &

total payoff can be expressed only in terms of the allocafion V:(z) = max {Eet,r HG(’Q) D Qi—k- Y J(vi)Qz}
L . Q,k¢ ‘ ‘

which is independent of the payment to each route candidate. i=1 i=1

Specifically, the optimization problem (2) can be rewritten as Y8 Vi (z — k‘t)]} 8)
follows. N '
l4 4
max<{ Eor |g- ) Qi(r) — Ji(ri)Qi(r)] }, (6) b
Q { ; ; st Qi(r)€{0,1}, Y Qi(r)=1, k <B.
¢ =1
s. t. Qi(r) €{0,1}, ZQi(r) <1. (7) Moreover, the boundary conditions for the above dynamic

i=1 programming problem are

WhereJ(ri) =7r;+ 1/p(’l“i), andp(ri) = fi(ri)/Fi(Ti) is the VO(I) = O,I = 1, . M, (9)

hazard rate [28] function associated with the distribution of the

routing cost. Note thaf/(r;) is also called the virtual type of Recall that we have the delay constraifitof the maximal
theith player. It's proved in [28] that the solution of the abovallowed time stages and the bandwidth constrdnof the
optimization also satisfies the incentive compatible constraimaximal number of packets able to be transmitted for each
The assumptions for the above formulation are rather geneisthge. Based on the principle of optimality in [29], an alloca-
(1) F is continuous and strictly increasing, (2) the allocationson Q that achieves the maximum in (8) givent andr is
Q;(r;,r—;) are increasing in;. From (6) and theRevenue also the optimal solution for the overall optimization problem



(5). Note that the above formulation is similar to that of th@herefore, given the optimdl} (z + 1), we have
multi-unit sequential auction [30] studied by the economists x

. o o AR >0-AVici(z+1—m+1),form=1,2,....k{(x+1).
First, note that from (8) and the monotonicity &f-), it is (m) > f e mt 1), for m (@ (1%)
clear that if the sender transmits packets within one time As we assumeé; (z+1) > kf(z)+2 and lettingm = k" (2)+2
period, these packets should be all awarded to the forwardiag(15), we obtain

route with the lowest cost;. Therefore, define the marginal

benefits from theth stage as ARy(ki(z)+2) > B-AVia(z+1—(k(z)+2)+1)
. = B-AVimi(z — (ki (z) +1) +1).(16)
Ri(k¢) = maX{ (K+) - ZQ — ke - Z J(r)Qi(r) Since R(k) is decreasing irk, (16) can be further written as

> PBAV. 1(x*(/f*( )+ 1)+ 1)(17)

Considering the optimality criterion of; (z) in (14), &} (z)
should be the largest number of packets satisfying (14).

Qi) € 0,11, Y @ilr) = } (10)

which can also be solved and written as

Ru(ky) = 0 if k=0, Therefore, (17) contradicts the optimality &f (z). The RHS
t Glke, Kiy1) — ki - J(rny) if k>0, inequality is proved. ]
(11) It can be seen from the proof of Lemma 1 that the optimal

where r(;) means the lowest cost of the forwarding routegyiocation of packet transmission over multiple stages can also
Thus, the dynamic optimization objective (8) can therefore g determined under the conditidnl;_; (z) > AV,_1(z+1).

rewritten in terms off, (k) as follows: Then, we will prove the above condition holds for &ih the
following lemma.
Vi) =, max {E/fn,r[Rt(kt) +0-Viea(w - kt)]}v (12)  Lemma 2: AV;(z) is decreasing in: for any fixedt and is
o ’ increasing int for any fixedz.
which is also subject to (9). Let;(x) denote the optimal Proof: See the Appendix. ™

solution above, which is the optimal number of packets to The idea of Lemma 2 can also be illustrated in an intuitive
be transmitted on the winning route at thih stage given way as follows. At any fixed time period, the marginal
remaining capacityr. Letting AR, (i) = Ry(i) — R:(i — 1) benefit AV,(x) of each additional packet declines because
and AV, (i) = Vi (i) — Vi(i — 1), we can rewrite the maximal the future possible routes are limited; therefore, the chance of

expected profit; (z) as transmitting the additional packet at low prices also decreases.
k. Similarly, for any given remaining packet number the
Vi(z) = max E,, Z[ AR, (i) — marginal benefit of an addltlopal packet increases Wlth
0<k;<min{B,z} because more number of possible future routes are available

i=1
. when more remaining time periods; therefore, the chance of

ﬂ'AW—1($—i+1)]” G- Vi—i(x). (13) getting a higher marginal benefit goes up. Also, Lemma 2
relaxes the assumption of Lemma 1 and we always have

The above formulation will help us to simplify the optimalk; (z) < kf(z + 1) < kj (z) + 1,Vz > 0.
dynamic pricing problem. Then, in order to solve the dynamic Considering Lemma 1 and Lemma 2, the optimal allocation
pricing problem (8)-(9), we need to first introduce the followef packet transmission for the proposed dynamic auction

ing lemmas based on (13). framework can be characterized by the following theorem.
Lemma L:1f AV,_q1(z) > AVi_i(x + 1), thenk}(z) < Theorem 1:For any realizatiorn(¢;,r) at thetth stage, the

Ei(x+1) <Ef(x)+1,Vz > 0. optimal number of packets to transmit at statet) is given

Proof: We study the left hand side (LHS) inequalityby

first. If k}(z) = 0, the inequality holds true. It (z) > 0 max{1 < k < min{z, B} :

and c0|jS|der|ng tht_'-z assumptidkV; 4 (z) Z_Av;,l(x +1), . ARy (k) > 8- AVi_i(z — k + 1)}

the optimal allocationk; (z + 1) may be higher due to the ki (z) = it R,(1)> 8- AVia(z) (18)

additional packet in queue. Hendg(z + 1) > k; (z). 0 otheiwise. R

As for the right hand side (RHS) inequality, we prove it o .

by contradiction. Assumé; (z + 1) > k;(z) + 2. From (11), Moreover, it is optimal to allocate thedg () packets to the

we know thatR(k) is decreasing in its argument. Furtherfoute with the lowest cost;. _

from (13) and the assumption of this lemmdal;_;(z) > Proof: V;(x) is the summation of two terms in (13). As

AV,_1(z + 1), we obtain that achieving the optimal for the second term is fixed given the optimalk; maximizing

the tth stage in (13) is equivalent to finding the maxintal the first term needs to be studied. Based on the definition

satisfying the following inequality (11), AR(-) is decreasing in its argument. Als8\V;_1(-) is

decreasing in its argument from Lemma 2. ThusR(k) —

AR(k) > 8- AVi1(z —k+1). 14) B - AVi_i(x — k + 1) is also monotonically decreasing in



k. Therefore, the optimal allocation &th time period with policy. Considering the truth-telling property of the second-
x packets in queuek; (z), is the largestt for which this price auction, we focus on this mechanism in our paper.
difference is positive. [ ] In a traditional second-price auction [21], the bidder with
Theorem 1 shows how the source node should allocdte highest bid wins the item and pays the second highest
packets into different time periods. The basic idea is faid for it. In our framework, the source node is trying to find
progressively allocate the packets to the route with the smallgst route with the lowest cost, which implies the application
realization of.J(r(;)) until the marginal benefif\ R, (i) drops of reverse second-price auction. The source node allocates
below the marginal opportunity coatV;_;(x — i + 1). the packet transmission to the route with the lowest payment
In order to have the optimal allocation strategies usifgjd and actually pay the second-lowest bid to the selected
Theorem 1, we first need to know the expected profit functigaute. Moreover, the auction mechanism can be performed in
AV (x),Vt,z. For finite number of time periodd;, in prob- many forms, such as open auctions and sealed-bid auctions.
lem (8), the optimal dynamic programming proceeds backwa@pen auctions allows the bidders to submit bids many times
using the Bellman equation [29] to obtaihV;(z). Due to the until finally only one bidder stays in the game. In sealed-bid
randomness of the route number and its type, it is difficuituctions, the bidders only submit their bids once. Considering
to obtain the close-form expression 4fV; (x). Thus, we use the sealed-bid auctions require less side-information and hence
simulation to approximate the values 4fV; (x) for different save the wireless resources, we analyze the sealed-bid second-
t and x, which proceeds as follows: Start from the routingrice auction for our optimal allocation policy.
stage 0. For each stagegenerateN samples of the number It is important to note that the straightforward application of
of available routes and their types, which follow the PDEhe reverse second-price auction can not guarantee the truth-
fe(¢) and f;(r;), respectively. For each realization and fotelling property of the bidders. Lek(r) = G(1,Ki1)— J(r)
each pair of valuegz,t), calculatek;(z) using Theorem and# = J; '(AVi_1(z:)), wherex, is the packets to be
1. By using the conclusion of Lemma 1, we simplify thdransmitted from theth stage. Considering the scenario where
computation ofk; (z) and only needD(NM) operations to the lowest cost of the routeg,) > 7, it can be seen from
calculate V;(x) for all = at fixed ¢t time period. Therefore, Theorem 1 that no packet will be assigned for forwarding
O(NMT) operations are required for the whole algorithmwithin current time period. Hence, the route with the lowest
Note that the computation oF;(z) can be done off-line, cost may have incentive to bid below their true cost and
which will not increase the complexity of finding the optimakatisfy the threshold constraint. In this way, this route will
allocation for each realization. win the packet and get positive utility as the sender awards it
We then study the expected profit function for infinitdhe second lowest bid. But the expected profit of the sender
number of routing stages. Such scenario gives the upper-bowitl decrease according to (13). Therefore, we need to modify
of the expected profit, because the source node can wait uit second-price mechanism by usifgas the reserved price
low-cost routes being available for transmission. For infinit@r every stage, which is the highest price that the sender
horizon, the maximal profit’;(z) in (8) can be rewritten as agrees to pay for transmitting one packet within current time

4 period. Specifically, given the submitted bid vectdr =
V*(x) = Egp [min {Z(G(zc) — k- Jr))Qi(r) + 8- V*(x — k) {d1¢,day, ...,ds+ }, the sender allocates the packet to the route
R with lowest bid below the reserved price and the selected

. ) "/ route gets the paymeniax{d s, 7}, whered,,, is the second
or, equivalentlyV* = 7V*, whereT is the operator updating Iowestgtype of ?hg forwgfd{in(gz)rgites @

V™ using (19). ASS””“'”Q*? is the feasible _Set of states_, Note that the mechanism we developed above can prevent
The convergence proposition of the dynamic programminge single route from not reporting the true cost. But in
algorithm [29] states that: for any bounded fu?ctmm * the presence of collusion of the routes, it may be not able
S — R, the optimal profit funct|on' satisfied’ (a?) ~ to maintain the truth-telling property. This problem can be
lim, o (T*V)(z), Vo € 5. As V(z) is bounded in our g.o4 from two aspects: First, the greediness of the selfish
algorlthm,_ we are ab"? to apply the value iteration methor‘autes can help to prevent the collusion. Assume two routes
to approximate thg _o_pt|mal’(?c), which proce%ds as follows: collude to increase their profits. The collusion requires the
Start from some initial function foi’(x) as V"(x) = 9(x), g routes to act and share the extra gain cooperatively. But,
yvherg the superscript stand; for the iteration number. Th?ﬂe greediness of the routes decide that the cooperative game
iteratively update/(z) by Iettln%V”“(x) = (TV?)(z). The  can ot be carried out between them. The noncooperative
iteration process ends unti»* *(x) —VP(@) e forallz, penaviors wil eventually lead to an inefficient outcome and
wheree is the error bound fol(z). break the collusion of the players. Second, in our scheme,
the sender can discourage the collusion among the routes
by setting a higher reserve price. The collusion behaviors of

Thus far, we have developed the optimal allocation abidders is also referred as the bidding ring in the context of
gorithm for packet transmission. Next, our task is to finthe auction theory. The optimal reserve price is analyzed in
auction mechanisms that achieve the derived optimal poli¢21] to combat the collusion of bidders, which can be directly
Many auction forms can be applied to achieve the optimapplied to our scheme for handling the route collusion.

C. Mechanism Design for the Optimal Dynamic Pricing



D. Profit Sharing among the Nodes in a Selected Route payment as follows.

In the above sections, we developed the optimal dynamj N _ 1 - -1
auction framework for multi-stage pricing in MANET anggg"‘[m)(r*i)m <roylr-al = [1— F(#)]¢-! /T =Pl .
designed the mechanism of the second-price auction with (21)
reserved price for assuring the truth-telling property of ead¥ting that the probability of winning the auction for thi
route. But, in this paper, we consider each route as an entfQute is
Thu;, the residual problem is that how to share the forwarding Prob(i; < ray(r_s) = [1 — F(i))L (22)
profits of the route among the forwarding nodes on the routes.
Although the proposed mechanism can ensure the truth-tellifgbstituting (21) and (22) into (20), the total profits can be
of each route as one bidder, the cooperation among thétten as o
nodes on one route can not be pre-assumed and cheat-proof Ui (#) :/ [1— F(x)}f—ldx_ (23)
mechanisms need to be further designed for the profit-sharing 7
problem. In this part, we will first prove that no dominantrhen, using the profit-sharing strategy, the profit of the
cheat-proof strategy exists for each node on the same mujth node on theth route can be calculated. We consider two
hop forwarding route. Then, the profit-sharing mechanisms aggses: (a) the node reports the true type; (b) the node
designed to enforce the cooperation behaviors of the nodescprats and reports a higher valiie= v;,j + €. For case (a),
the same route. the profit of thejth node on theth route is represented as
As the nodes on the same forwarding route belong to théallows.
own authorities, they will act greedily to get more profits

from the total profits that the route gains, which forms a Uij(vig) = O‘i,j‘Uigi)
profit-sharing game. Let the profit sharing vector for e — o / [ — F(a)]' " da. 24)
route bea; = {a;1,®2,...,n, }, wherea; ; represents A .

the percentage of profits that tgh forwardlng node on For case (b), the profit includes the cheating profit of reporting

the ith route can get and_", a;; = 1. Recall that the an exira cost and the allocated profit from thih route, which
type vector of the nodes on  thieh route is defined as; = can pe written as

{vi1,vi,2,...,vin, } @and the PDF ob; is fl, which we assume
to be identical for all nodes without loss of generality. Then, Ui j(%i ;) = € - Prob(#; < ry(r—)) + o ; - Ui(7s)
we study the existence of the dominant cheat-proof strategies -
in the following theorem. = [1—F(ri +6) " +aj, / [1—F(z)]" 'dz. (25)
Theorem 2:There does not exist a dominant cheat-proof Tite
strategya for the profit-sharing game consisting of the nodeSubtracting (24) from (25), we have
on the same multi-hop f.orwardlng route. o Usi (915) — Uss(viy) = [1 = F(ra + A
Proof: We prove this theorem by contradiction. Assume rete 1 p(g))-l
o is a dominant cheat-proof profit-sharing strategy for the {6 - ai’j/ Z_ldgj}_ (26)
ith route, which means by using;, every forwarding node’s r [1 = F(ri+ )]
dominant strategy on thé&h route is to report its true type From the Mean Value Theorem, we know that there exists
(or cost). Equivalently, if thejth node reports a higher cost,some < [0, 1] satisfying
5,5 = vi; + ¢ than its true typey; ; while other nodes report s 1
the true value, thgth node will get a lower profit. In order / 1= F(o)] d — 6.([1 — F(ri + )‘E)}) (27
to show the dominant strategy;, we need to calculate and (1= F(ri + o) [1 = F(ri +¢)]
compare the node’s profit when it is cheating or not. First, theyg for simplicity, let
total profits of theith route are obtained and then we study i
the profit of each node. Based on our second-price mechanism W(e) = ([1 — F(r; + Ae)]) ' (28)
and considering (1), the total profits of thith route can be [1—F(r;+e)] ’

represented as follows. which is a decreasing function i) and has the limit

lim W(e) = 1. (29)

Ui(7:) = Prol(f; < r(1y(r—s)) - (Br_;[ray(r—:)|fs <ry(r—s)] — Tﬁ%’

where?; is the bidding cost of théth route, which theth route  Thus, there always exists a positive valiieWhene < 4,
believes to be the true cost, but may be not if some node #fte) < 1/a; ;. Further, by putting (27) into (26), we have
the ith route is cheating by reporting a higher type value, and, . _ —1p

r1)(r—;) represents the lowest cost of all routes except thz]” (04) = Uiy (vig) = e 1= Flrit O L —aiy ¥ () (30)
ith route. Without loss of generality, we assume the PDF ofherefore, 34, for e < 4, Ui ;(0:;) — Ui j(vi ;) > 0, which
r; to be identical for all routes a$. By using the results of contradicts the assumption tha} ; is a dominant cheat-proof
order statistics [31], we have the condition expectation of tlstrategy. Considering such contradlctlon holds for afy, we
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finally prove that there does not exist a cheat-proof strate
for the profit-sharing game.

Since there is no dominant cheat-proof strategy as Theor%
2 shows, it is necessary to design certain mechanisms
enforce the cooperation among the forwarding nodes on
same forwarding route. There are many ways to design s
mechanisms. For instance, an intuitive idea is to provi
over-payment [13] to the nodes on the winning route

%Om for each node, and each node moves according to the

dom waypoint model [33]. Dynamic Source Routing (DSR)

] is used as the underlying routing to discover possible

tes. Let\ = N'w/100 denote the normalized node density,

L}E'ﬁt is, the average number of neighbors for each node in the
twork. Note that each source-destination pair is formed by

gndomly picking two nodes in the network. And, multiple

the compensation for their cooperative behaviors. The ové _uttes \t'Y'th dlffer(;rjt ho?hnumbte ' ma}t);] i)ﬁstlfor te:;ch sour(;)e—
payment should be more than the cheating gain the nodes gronation palr. since € routes with the feast hop humber
obtain. But who is responsible for the over-payment? It is n pve much higher probabilities to achieve lower costs, without

reasonable to ask the sender for the payment-compensat 858 of generality, we only consider the least-hop routes as the

Because, in this way, the sender may have incentives to swi ding routes for simplicity in the proposed optimal dynamic

his/her transmission to the route with higher true cost, Whié’:HJCt'on fra.mework.. Considering the mobility of each node,
asks for less over-payment. It is also a rational behavi 4 fo_rwardlngAcost is no longer a fixed v_alu_e a_nd WEE assume
for such route to require a less over-payment, which mayRt Its PDF f(v) follows the umf_orm d;stnbuﬂonbl_[u, ul
make them have a positive profit instead of losing the aucti ich ha? t_he meap and the variance”. Thus, using the
with zero payoffs. Therefore, a more practical way is t entral L|r_n|t Theorem [31], the CQSt .Of @—hop_route can

let the central-bank periodically compensate the forwardi ge approxmated by 2the normgl d'St.”bUt'on Wlth the mean
nodes. The over-payment amount can be decided based onth# aqd variance: - . In our S|mulat|on, we first study the
Vickrey-Clarke-Groves (VCG) mechanism [13], [21], whicH ynamics of MANET and ther_1 illustrate the perfqrmance of
pays each node the difference between the routing cost with84f proposed framework for different network settings.

this node and the other nodes’ routing cost with the presencdn order to study the dynamics of MANET, we first conduct
of this node. It is important to note that the application cfimulations to study the hop number on the least-hop route
the VCG mechanism here does not conflict with our dynami@r source-destination pairs. L&tn;,n;) = [dist(ni,n;) /7]
pricing mechanism. They are carried out separately by tgenote the minimum number of hops needed to traverse from
central bank and the sender for ensuring the cooperatidpde i to nodej, where dist(n;,n;) denotes the physical

of forwarding nodes on one route and maximizing the totglistance between nodeand j, and leth(n;, n;) denote the
profits of the sender, respectively. Besides, the punishmeRtmber of hops on the actual least-hop route between the
based mechanisms [11], [32] or the cryptographic mechaniéwP nodes. Note that we simulat®® samples of topologies
[17] can also be applied together with our proposed schedfestudy the dynamics of MANET. Firstly, Figure 1 shows

to enforce the cooperative behaviors of the nodes. the approximated cumulative probability mass function (CMF)
of the difference between th&(n;,n;) and fi(n;,n;) for
V. SIMULATION STUDIES different node densities. Based on these results, the average

In this section, we evaluate the performance of the proposedmber of hops associated to the least-hop route from node
dynamic pricing approach in multi-hop ad hoc networks. W® j can be approximated using tlkst(n;,n;), v, and the
use an event-driven simulator to simulate mobile ad haorresponding CMF of hop difference. Also, it can be seen
networks ' nodes are randomly deployed inside a rectangulitom Figure 1 that lower node density results in having a larger
region of 10y m x 10y m according to the 2-dimensionnumber of hops for the least-hop routes, since the neighbor
uniform distribution with the maximal transmission range- nodes are limited for packet forwarding in such situations.
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Secondly, we study the time and path diversity of MANEifferent schemes: our scheme with finite time horizon, our
by finding the maximum number of least-hop routes for threcheme with infinite time horizon and the fixed allocation
source-destination pair. Note that there may exist the scenagéeme. Note that the infinite time horizon can not be achieved
where the node may be on multiple least-hop forwardirig real application. But it can serve as a upper bound for
routes for the same source-destination pair. For simplicitjjeasuring the performance of our scheme. The fixed scheme
we assume during the route discovery phase, the destinat@d@cates a fixed numbed//T" of packets into each stage while
randomly picks one of such routes as the routing candida®so using the optimal auction at each stage. Assume the cheat-
and feedbacks the routing information of node-disjoint leageroof profit sharing mechanisms are in place to ensure the
hop routes to the source. Figure 2 shows the CMF of tig@operation of the forwarding nodes on the same route. Let
number of the least-hop routes for different hop number whée benefit function b&/(KC) = g -k, whereg is the benefit of

the node density is 10. The results for the node density soccessfully transmitting one packet. Note that the simulation
and 30 are shown in Figure 3 and Figure 4, respectively. parameters are set @ = 20, M = 100 and B = 10. Let

can be seen from the above figures that when the node dengity 60, « = 10, andu = 15.

is increasing, the probability of having more routes betweenlin Figure 5, we compare the overall profits of the three
each source-destination pair is becoming much higher. Susdhemes for different node densities. The concavity of the sim-
facts also indicate a higher order of path diversity can hgated value functions of our scheme matches the theoretical
exploited when each node has more neighbors. Moreover, gtatement in Lemma 2. It can be seen from the figure that our
possibility of getting more routes for the route with more hopscheme achieves significant performance gains over the fixed
is much lower since the path diversity for multi-hop routing ischeme, which mainly comes from the time diversity exploited
limited by the forwarding node with the worst neighborindgy the dynamic approach. For instance, our scheme with time
situation. Therefore, the number of routing candidates addversity 7' = 20 in the scenario of node density being 10 can
their types can be approximated using the above results.eien achieve similar performance of the fixed scheme with
the following parts, we consider the performance for thraede density 30. We observe that the performance gap of the
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two schemes becomes larger when the node density decreagebility and the routing dynamics. The simulation results
Thus, in order to increase the profits under the situations of lglustrate that the proposed scheme achieves significant per-
node densities, it becomes much more important to exploit thgmance gains over the fixed one under different simulation
time diversity. Also, the total profits of our scheme increasegttings. For instance, only by using a small number of time
with the increment of the node density due to the higher Ordg%_ges’ the proposed scheme with node density 10 is able to
of path diversity. Besides, since the performance gap betwegihieve similar overall profits as the fixed scheme with node
the schemes with finite and infinite time horizon is Sma”jensity 30 which degree of node density allows nodes to have

only a few routing stages are required to exploit the timg@uch higher freedom to choose forwarding routes.
diversity. In Figure 6, the average profits of the three schemes

are shown for different node densities. This figure shows that APPENDIX
the average profit of transmitting one packet decreases as therlgroof of Lemma 2

are more packets to be transmitted. It is because the packets
need to share the limited routing resources from both t%
time diversity and path diversity. When the node density B
30, the average profit degrades much slower than other Cags
since the potential of utilizing both the time diversity an ypothesis for period — 1 as AV, () > AV;_q(z + 1).
path diversity is high. The overall profits of our scheme wit hen. we will show that if the ih_ductivg hypi)_thesis holds
finite time horizon are compared for different total packets iﬁVt(;:) also decreases. '
Figure 7 for node density being 10. This figure shows that theConsider a realization o, routes and their cost vecter=
overall profits increases with more routing stages due to t e o r¢,). Define the inner maximized term in (12) as
time diversity. Also, the saturation behavior can be observ bwé"” e

when using more stages. In Figure 8, the overall profits are

Proof: First, we prove that\V;(z) is decreasing i at

y fixed time period. Note that the induction method is used
rove this part of Lemma 2. For= 0, the lemma obviously
s sinceVp(z) = 0 for all z. Assume the inductive

compared for different time stages. Considering the limitedy, (z, ¢,,r) = max  {Ry(k)+ 6 Vi_i(z—k)}, (31)
routing resource, the overall profits saturate when the packet O<k=<min{B,z}
number is high. and define the difference function as

VI. CONCLUSIONS

In this paper, we have investigated the pricing mechanisms _
for efficient routing in autonomous MANET. We model theThus AVi(z) can be obtained as

pricing procedure as a multi-stage game by considering the B
dynamic nature of MANET. A dynamic pricing framework AVi(x) = B, x[AU(2, b, 1)]. (33)

is proposed to maximize the profits of the transmission paigy simplicity and without loss of generality, we omit the
and simultaneously provide the forwarding incentives for ﬂ}%gumentsét,r in AU (z,;,r) and simply useAU,(z).

forwarding routes by auction. The proposed framework cfioreover, it can be seen from (33) that it is sufficient to prove
enable the sender to fully exploit the time diversity in MANE Tyt AUy (z) is decreasing in: for the proof thatAV;(z) is
which substantially increases his payoff by dynamically a"QIecreasing inc.

cating the packets to be transmitted into different stages. TheUsing the inductive hypothesis and Lemma 1, we have the
optimal dynamic auction algorithm is developed to achievgstraint onk}(z + 1) as

optimal packet allocation and route selection, meanwhile pro-

viding the corresponding payment rules considering the node’s ki (z) <kj(z+1) <kj(x)+1. (34)

AUt(.’IJ,gt,I‘) :Ut(w,ft,r)—Ut(x—Lﬁt,r). (32)



Based on the constraint, we then study the valu@\of, (z +
1) for the two possible outcome#; (x + 1) = k;(z) and
Ef(z4+1)=kf(z)+ 1

1). If Ef(z + 1) Ef(z), then AU(z + 1) = -
AVi_y(x — kf(x) + 1) from (31) and (32). Also, from the [7]
optimal condition ofk in (14), we know (8]

ARy(ki (z+1)+1) < -AVia(z+1= (ki (x+1)+1)+1). (85) g

(5]

(6]

Consideringk; (x + 1) = kf(x), (35) can be rewritten as
ARy (k; () +1) < 8- AVi_y(x — kf () + 1). (36)

2). Similarly, If kf (x+1) = kf () + 1, thenAUy(z+1) =
ARy (kf(z)+ 1) from (31) and (32), and

ARk} (z) +1) > B+ AVi_y(z — K} (z) + 1).

(10]

(11]
(37) [12]
Thus, it can be concluded from the above two cases that
AU (z + 1) satisfies [13]
AU (z+1) = max{AR:(kj (x)+1),8-AVi_1(z— ki (z)+1)}. (38)
14
Consider nowAU(z + 1) and AU, (z) and compare their (el
values. Given the constraint dij (z) by Lemma 1, the value
of AUy(x + 1) in (38), and considering that\R;(m) and
AV;_1(m) decrease in their arguments, we have the following
expressions. [16]
AUt(fﬂ)
max{ARy(k;(x — 1) + 1),
B-AViq(z—1—-ki(z—1)+1)}
max{AR, (k} (z) + 1), 8- AV (x — (K} (x) — 1))}
AUt(CC + 1).

(17]

Y

Therefore, the first part of Lemma 2 is proved by the above
discussion. Next, we show thatV;,(z) is increasing int for [21}
any fixedz. Similarly, it suffices to prove the statement f0|[
a particular realizatior,, r. Following the results in (38), we
get that

AU (z) > B - AVi_i(x — kf (x)), (40)
and from the fact that\V;_,(-) is decreasing, we have (24l

As taking the expectation with respect 4o r on both sides

of (41) does affect the inequality, we prove [26]

AVi(z) > AVioy(2). 42) 1?1
(28]
B 29

REFERENCES 301

[1] C. Perkins,Ad Hoc Networking Addison-Wesley, 2000. (31]
[2] C. K. Toh, Ad Hoc Mobile Wireless Networks: Protocols and Systems
Prentice Hall PTR, 2001. (32]
[3] J.-P. Hubaux and T. Gross and J.-Y. Le Boudec and M. Vetterli, “Toward
Self-Organized Mobile Ad Hoc Networks: The Terminodes Project,”
IEEE Communications Magazinéan. 2001. [33]
S. Marti, T. J. Giuli, K. Lai, and M. Baker, “Mitigating Routing
Misbehavior in Mobile Ad Hoc Networks,” ifMobicom 2000 August
2000, pp. 255-265.

(4]

P. Michiardi and R. Molva, “Core: a COllaborative REputation Mech-
anism to Enforce Node Cooperation in Mobile Ad Hoc Networks,” in
IFIP - Communications and Multimedia Security Conferer@02.

S. Buchegger and J.-Y. Le Boudec, “Performance Analysis of the
CONFIDANT Protocol,” inMobihog 2002, pp. 226 — 236.

V. Srinivasan, P. Nuggehalli, C. F. Chiasserini, and R. R. Rao, “Coop-
eration in Wireless Ad Hoc Networks,” itEEE INFOCOM 2003.

L. Buttyan and J. P. Hubaux, “Enforcing Service availability in mobile
Ad-hoc Network,” inMobiHOC, August 2000.

S. Zhong, J. Chen, and Y. R. Yang, “Sprite: A Simple, Cheat-
Proof, Credit-Based System for Mobile Ad-Hoc Networks,” IEEE
INFOCOM, 2003.

S. Buchegger and J. Le Boudec, “Nodes bearing grudges: towards
routing security, fairness, and robustness in mobile ad hoc networks,”
in Proc. of the Tenth Euromicro Workshop on Parallel, Distributed and
Network-based Processing002, pp. 403-410.

W. Yu and K. J. R. Liu, “Attack-Resistant Cooperation Stimulation in
Autonomous Ad Hoc Networks;To appear in IEEE Journal on Selected
Areas in Communications: Autonomic Communication Syst86e5.

M. Felegyhazi, J.-P. Hubaux, and L. Buttyan, “Nash Equilibria of Packet
Forwarding Strategies in Wireless Ad Hoc Networks, appear in IEEE
Transactions on Mobile Computing005.

L. Anderegg and S. Eidenbenz, “Ad hoc-VCG: A truthful and cost-
efficient routing protocol for mobile ad hoc networks with selfish
agents,” inACM Mobicom’03 2003, pp. 245-259.

S. Eidenbenz, G. Resta, and P. Santi, “COMMIT: a sender-centric
truthful and energy-efficient routing protocol for ad hoc networks with
selfish nodes,” 2004.

] J. Feigenbaum, C. Papadimitriou, R. Sami, and S. Shenker, “A BGP-

based mechnism for lowest-cost routing,” time 21st Symposium on
Principles of Distributed Computin@2002, pp. 173-182.

N. Nisan and A. Ronen, “Computationlly feasible VCG mechnisms,”
in ACM EC’0Q 2000, pp. 242-252.

S. Zhong, L. Li, Y. Liu, and Y. R. Yang, “On designing incentive-
compatible routing and forwarding protocols in wireless ad-hoc networks
- an integrated approach using game theoretical and cryptographic
techniques,” Tech. Rep. YALEU/DCS/TR-1286, Yale University, 2004.
K. Chen and K. Nahrstedt, “iPass: an incentive compatible auction
scheme to enable packet forwarding service in MANET,” 2004.

H. Frey, J. K. Lehnert, and P. Sturm, “UbiBay: an auction system for
mobile multihop ad-hoc networks,” 2004.

W. Wang, X. Li, and Y. Wang, “Truthful multicast routing in selfish
wireless networks,” iPACM Mobicom’04 September 2004.

V. Krishna, Auction Theory Academic Press, 2002.

L. Buttyan and J. Hubaux, “Nuglets: a virtual currency to stimulate
cooperation in self-organized ad hoc networks,” Technical Report EPFL,
2001.

23] J. Broch, D. A. Maltz, D. B. Johnson, Y. Hu, and J. G. Jetcheva, “A

performance comparison of multi-hop wireless ad hoc network routing
protocols,” inACM MohbiCom981998.

P. Johansson, T. Larsson, N. Hedman, B. Mielczarek, and M. Degermark,
“Scenario-based performance analysis of routing protocols for mobile
ad-hoc networks,” iPACM MobiCom99 August 1999.

C. E. Perkins and E. M. Royer, “Ad-hoc on-demand distance vector
routing,” in Second |IEEE Workshop on Mobile Computing Systems and
Applications (WMCSA99february 1999.

D. Fudenberg and J. Tirolé&same TheoryThe MIT Press, Cambridge,
1991.

T. M. Cover and J. A. Thomas]nformation Theory John Wiley &
Sons, Second edition, 1991.

R. Myerson, “Optimal auction design,” Math. Oper. Res. 6, 1981.

D. Bertsekas, Dynamic Programming and Optimal Controlol. 1,2,
Athena Scientific, Belmont, MA, Second edition, 2001.

G. Vulcano, G. V. Ryzin, and C. Maglaras, “Optimal dynamic auctions
for revenue management,” Management Science, 48(11).

A. Papoulis and S. U. Pillai, Probability, Random Variables and
Stochastic ProcessMcGraw Hill, Fourth edition, 2002.

Z. Han, Z. Ji, and K. J. R. Liu, “A cartel maintenance framework to
enforce cooperation in wireless networks with selfish users,” submitted
to IEEE/ACM Trans. on Networking, 2004.

D. B. Johnson and D. A. Maltz, “Dynamic Source Routing in Ad Hoc
Wireless Networks, Mobile Computing,” IMobile Computing edited

by Tomasz Imielinski and Hank Korth, chapter 5, pages 153-181, Kluwer
Academic Publishers, 1996.



