
Mistreatment in Distributed Caching Groups
Causes and Implications §

NIKOLAOS LAOUTARIS†‡ GEORGIOS SMARAGDAKIS† AZER BESTAVROS† IOANNIS STAVRAKAKIS‡

nlaout@cs.bu.edu gsmaragd@cs.bu.edu best@cs.bu.edu istavrak@di.uoa.gr

Abstract— Although cooperation generally increases the
amount of resources available to a community of nodes, thus im-
proving individual and collective performance, it also allows for
the appearance of potential mistreatment problems through the
exposition of one node’s resources to others. We study such con-
cerns by considering a group of independent, rational, self-aware
nodes that cooperate using on-line caching algorithms, where the
exposed resource is the storage of each node. Motivated by content
networking applications – including web caching, CDNs, and P2P
– this paper extends our previous work on the off-line version
of the problem, which was limited to object replication and was
conducted under a game-theoretic framework. We identify and
investigate two causes of mistreatment: (1) cache state interactions
(due to the cooperative servicing of requests) and (2) the adoption
of a common scheme for cache replacement/redirection/admission
policies. Using analytic models, numerical solutions of these
models, as well as simulation experiments, we show that on-
line cooperation schemes using caching are fairly robust to
mistreatment caused by state interactions. When this becomes
possible, the interaction through the exchange of miss-streams
has to be very intense, making it feasible for the mistreated
nodes to detect and react to the exploitation. This robustness
ceases to exist when nodes fetch and store objects in response
to remote requests, i.e., when they operate as Level-2 caches
(or proxies) for other nodes. Regarding mistreatment due to a
common scheme, we show that this can easily take place when
the “outlier” characteristics of some of the nodes get overlooked.
This finding underscores the importance of allowing cooperative
caching nodes the flexibility of choosing from a diverse set of
schemes to fit the peculiarities of individual nodes. To that end,
we outline an emulation-based framework for the development
of mistreatment-resilient distributed selfish caching schemes.

I. INTRODUCTION

Background, Motivation, and Scope: Network applications
often rely on distributed resources available within a cooper-
ative grouping of nodes to ensure scalability and efficiency.
Traditionally, such grouping of nodes is dictated by an over-
arching, common strategic goal. For example, nodes in a
CDN such as Akamai or Speedera cooperate to optimize the
performance of the overall network, whereas IGP routers in
an Autonomous System (AS) cooperate to optimize routing
within the AS.

More recently, however, new classes of network applica-
tions have emerged for which the grouping of nodes is more
“ad hoc” in the sense that it is not dictated by organizational
boundaries or strategic goals. Examples include the various
overlay protocols [1], [2] and peer-to-peer (P2P) applications.
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Two distinctive features of such applications are (1) the fact
that individual nodes are autonomous, and as such, their
membership in a group is motivated solely by the selfish goal
of benefiting from that group, and (2) group membership is
warranted only as long as a node is interested in being part
of the application or protocol, and as such, group membership
is expected to be fluid. In light of these characteristics, an
important question is this: Are protocols and applications that
rely on sharing of distributed resources appropriate for this
new breed of ad-hoc node associations?

In this paper, we answer this question for content net-
working applications, whereby the distributed resource being
shared amongst a group of nodes is storage. In particular,
we consider a group of nodes that store information objects
and make them available to their local users as well as to
remote nodes. A user’s request is first received by the local
node. If the requested object is stored locally, it is returned to
the requesting user immediately, thereby incurring a minimal
access cost. Otherwise, the requested object is searched for,
and fetched from other nodes of the group, at a potentially
higher access cost. If the object cannot be located anywhere
in the group, it is retrieved from an origin server, which is
assumed to be outside the group, thus incurring a maximal
access cost.

Under an object replication model, once selected for
replication at a node, an object is stored permanently at that
node (i.e., the object cannot be replaced later). In [3], [4] we
established the vulnerability of many socially optimal (SO)
object replication schemes in the literature to mistreatment
problems, which make it more attractive for an individual
node to break away from the group, opting instead to operate
in isolation using a greedy local (GL) replication scheme.
A mistreated node is one whose access cost under SO
replication is higher than the minimal access cost that the
node can guarantee under GL replication. Unlike centrally
designed/controlled groups where all constituent nodes have
to abide by the ultimate goal of optimizing the social utility of
the group, an autonomous, selfish node will not tolerate such
a mistreatment. Indeed, the emergence of such mistreatments
may cause selfish nodes to secede from the replication group,
resulting in severe inefficiencies for both the individual users
as well as the entire group.

In [3], [4], we resolved this dilemma by proposing a
family of equilibrium (EQ) object placement strategies that (a)
avoid the mistreatment problems of SO, (b) outperform GL by
claiming available “cooperation gain” that the GL algorithm
fails to utilize, and (c) are implementable in a distributed
manner, requiring the exchange of only a limited amount of
information. The EQ strategies were obtained by formulating



the Distributed Selfish Replication (DSR) game and devising
a distributed algorithm that is always capable of finding pure
Nash equilibrium strategies for this particular game.

Distributed Selfish Caching: Proactive replication strategies
are not practical in a highly dynamic content networking
setting, which is likely to be the case for most of the Internet
overlays and P2P applications we envision for a variety of
reasons: (1) Fluid group membership makes it impractical for
nodes to decide what to replicate based on what (and where)
objects are replicated in the group. (2) Access patterns as well
as access costs may be highly dynamic (due to bursty net-
work/server load), necessitating that the selection of replicas
and their placement be done continuously, which is not practi-
cal. (3) Both the identification of the appropriate re-invocation
times [5] and the estimation of the non-stationary demands
(or equivalently, the timescale for a stationarity assumption to
hold) [6] are non-trivial problems. (4) Content objects may be
dynamic and/or may expire, necessitating the use of “pull”
(i.e., on-demand caching) as opposed to “push” (i.e., pro-
active replication) approaches. Using on-demand caching is
the most widely acceptable and natural solution to all of these
issues because it requires no a priori knowledge of local/group
demand patterns and, as a consequence, responds dynamically
to changes in these patterns over time (e.g., introduction of
new objects, reduction in the popularity of older ones, etc.)

Therefore, in this paper we consider the problem of
Distributed Selfish Caching (DSC), which can be seen as the
on-line equivalent of the DSR problem. In DSC, we adopt an
object caching model, whereby a node employs demand-driven
temporary storing of objects, combined with replacement.

Causes of Mistreatments Under DSC: We begin our exam-
ination of DSC by first examining the operational character-
istics of a group of nodes involved in a distributed caching
solution. This examination will enable us to identify two key
culprits for the emergence of mistreatment phenomena.

First, we identify the mutual state interaction between
replacement algorithms running on different nodes as the
prime culprit for the appearance of such phenomena. This
interaction takes place through the so called “remote hits”.
Consider nodes v, u and object o. A request for object o issued
by a user of v that cannot be served at v but could be served
at u is said to have incurred a local miss at v, but a remote hit
at u. Consider now the implications of the remote hit at u. If
u does not discriminate between hits due to local requests and
hits due to remote requests, then the remote hit for object o will
affect the state of the replacement algorithm in effect at u. If u
is employing Least Recently Used (LRU) replacement, then o
will be brought to the top of the LRU list. If it employs Least
Frequently Used (LFU) replacement, then its frequency will be
increased, and so on with other replacement algorithms [7]. If
the frequency of remote hits is sufficiently high, e.g., because v
has a much higher local request rate and thus sends an intense
miss-stream to u, then there could be performance implications
for the second: u’s cache may get invaded by objects that
follow v’s demand, thereby depriving the user’s of u from
valuable storage space for caching their own objects. This
can lead to the mistreatment of u, whose cache is effectively
“hijacked” by v.

Moving on, we identify a second, less anticipated, culprit
for the emergence of mistreatment in DSC. We call it the
common scheme problem. To understand it, one has first to
observe that most of the work on cooperative caching has
hinged on the fundamental assumption that all nodes in a
cooperating group adopt a common scheme. We use the word
“scheme” to refer to the combination of: (i) the employed
replacement algorithm, (ii) the employed request redirection
algorithm, and (iii) the employed object admission algorithm.
Cases (i) and (ii) are more or less self-explanatory. Case (iii)
refers to the decision of whether to cache locally an incoming
object after a local miss. The problem here is that the adoption
of a common scheme can be beneficial to some of the nodes of
a group, but harmful to others, particularly to nodes that have
special characteristics that make them “outliers”. A simple
case of an outlier, is a node that is situated further away from
the center of the group, where most nodes lie. Here distance
may have a topological/affine meaning (e.g., number of hops,
or propagation delay), or it may relate to dynamic performance
characteristics (e.g., variable throughputs or latencies due to
load conditions on network links or server nodes). Such an
outlier node cannot rely on the other nodes for fetching objects
at a small access cost, and thus prefers to keep local copies of
all incoming objects. The rest of the nodes, however, as long as
they are close enough to each other, prefer not to cache local
copies of incoming object that already exist elsewhere in the
group. Since such objects can be fetched from remote nodes
at a small access cost, it is better to preserve the local storage
for keeping objects that do not exist in the group and, thus,
must be fetched from the origin server at a high access cost.
Enforcing a common scheme under such a setting is bound to
mistreat either the outlier node or the rest of the group.

In addition to the identification of the two causes of
mistreatments in a DSC setting, this paper presents a number
of concrete results regarding each one of these two causes. We
summarize these results next.

Mistreatment Due to Cache State Interaction: Regarding
the state interaction problem, our results answer the following
basic questions: “Could and under which schemes do mistreat-
ments arise in a DSC group?”, and “What are the possible
ways in which a node may react to such mistreatments?”.

+ We show that state interaction may occur when nodes do
not discriminate between local and remote hits upon updating
the state of their replacement algorithms.
+ To materialize, state interactions require substantial request
rate imbalance, i.e., one or more “overactive” nodes must
generate disproportionally more requests than the other nodes
in the group. Even in this case, mistreatment of less active
nodes depends on the amount of storage that they posses:
Mistreatment occurs when these nodes have abundant storage,
otherwise they are generally immune to, or even benefit from,
the existence of overactive nodes.
+ Comparing caching and replication with regard to their
relative sensitivity to request rate imbalance, we show that
caching is much more robust than replication. This means that
the occurrence of mistreatment is much more difficult under
caching.
+ Regarding the vulnerability of different replacement algo-



rithms, we show that “noisier” replacement algorithms are
more prone to state interactions. In that regard, we show that
LRU is more vulnerable than LFU.
+ Even the most vulnerable LRU replacement is quite robust
to mistreatment as it requires a very intense miss-stream in
order to force a mistreated node to maintain locally unpopular
objects in its cache (thus depriving it of cache space for locally
popular objects). In particular, the miss-stream has to be strong
enough to counter the sharp decline in the popularity of objects
in typically skewed workloads.
+ Robustness to mistreatment due to state interaction evap-
orates when a node operates as a Level-2 cache [8] (L2) for
other nodes. L2 caching allows all remote requests (whether
they hit or miss) to affect the local state (as opposed to only
hits under non-L2 caching), leading to a vulnerability level
that approaches the one under replication.

Mistreatment Due to Use of Common Scheme: We clas-
sify cooperative schemes into two groups: Single Copy (SC)
schemes, i.e., schemes where there can be at most one copy
of each distinct object in the group – two examples of SC
schemes are HASH based caching [9] and LRU-SC [10];
Multiple Copy (MC) schemes, i.e., schemes where there can
be multiple copies of the same object at different nodes.
+ We show that the relative performance ranking of SC and
MC schemes changes with the “tightness” of a cooperative
group. SC schemes perform best when the inter-node distances
are small compared to the distance to the origin server; in
such cases the maintenance of multiple copies of the same
object is redundant.1 MC schemes improve progressively as
the inter-node distances increase, and eventually outperform
the SC schemes.
+ We demonstrate the possibility of mistreatment due to a
common scheme by considering a tight group of nodes that
operate under SC and a unique outlier node that has a larger
distance to the group. We show that this node is mistreated if
it is forced to follow a SC scheme.

Towards Mistreatment-Resilient DSC Schemes: More con-
structively, we present a framework for the design of
mistreatment-resilient DSC schemes, which allow individual
nodes to decide autonomously (i.e., without having to trust any
other node or service) whether they should stick to, or secede
from a DSC caching group, based on whether or not their
participation is beneficial to their performance compared to a
selfish, greedy scheme. Resilience to mistreatments is achieved
by allowing a node to emulate the performance gain possible
by switching from one scheme to another, or by adapting some
control parameters of its currently deployed DSC scheme.

II. DEFINITIONS AND NOTATION

Let oi, 1 ≤ i ≤ N , and vj , 1 ≤ j ≤ n, denote the ith
unit-sized object and the jth node, and let O = {o1, . . . , oN}
and V = {v1, . . . , vn} denote the corresponding sets. Node
vj is assumed to have storage capacity for up to Cj unit-sized
objects, a total request rate λj (total number of requests per
unit time, across all objects), and a demand described by a

1We do not consider load balancing and node reliability concerns in this study.

probability distribution over O, ~pj = {p1j , . . . , pNj}, where
pij denotes the probability of object oi being request by the
local users of node vj . Successive request are assumed to be
independent and identically distributed.2 Later in this paper,
we make the specific assumption that the popularity of objects
follows a power-law profile, i.e., the ith most popular object
is requested with probability pi = K/ia. Such popularity
distributions occur in many measured workloads [15], [17]
and, although used occasionally in our work (e.g., in Sec-
tion III-A to simplify an analytic argument, or in Section IV
for producing numerical results), they do not constitute a basic
assumption, in the sense that mistreatment can very well occur
with other demand distributions that do not follow such a
profile.

Let tl, tr, ts denote the access cost paid for fetching an
object locally, remotely, or from the origin server, respectively,
where ts > tr > tl.3 User requests are serviced by the closest
node that stores the requested object along the following
chain: local node, group, origin server. Each node employs
a replacement algorithm for managing the content of its cache
and employs an object admission algorithm for accepting (or
not) incoming objects.

III. MISTREATMENT DUE TO STATE INTERACTION:
ANALYSIS

Our goal in this section is to understand the conditions under
which mistreatment may arise as a result of (cache) state
interactions. We start in Section III-A with a replacement-
agnostic model that focuses on the rate-imbalance (between
the local request stream and the remote miss stream)4 neces-
sary for mistreatment to set in. Next, in Section III-B, we
present a more detailed analytic model that allows for the
derivation of the average access cost in a distributed caching
group composed of n nodes that operate under LRU.

A. General conditions

We would like to determine the level of request rate imbalance
that is necessary for mistreatment to be feasible. We model
this imbalance through the ratio λn/λj , where λj denotes
the request rate of any normally-behaving node vj , while λn

denotes the request rate of an over-active node, which we
use to instigate mistreatment problems. As a convention we
assume this overactive node to be the last (nth) node of the
group.

We focus on the interaction between vj and vn. Fig. 1
shows a particular choice of demand patterns that fosters the
occurrence of mistreatment. The initial most popular objects
in ~pj and ~pn up to the two capacities (Cj for vj and Cn for vn)
are completely disjoint, while the remaining ones in the middle
part of the two distributions are identical; both demands are

2The Independent Reference Model (IRM) [11] is commonly used to characterize
cache access patterns [12], [13], [14], [15]. The impact of temporal correlations was
shown in [6], [16] to be minuscule, especially under typical, Zipf-like object popularity
profiles.

3The assumption that the access cost is the same across all node pairs in the group
is made only for the sake of simplifying the presentation. Our results can be adapted
easily to accommodate arbitrary inter-node distances.

4Recall that state-interaction-induced mistreatment occurs when the remote miss
stream pollutes the local cache with objects that are not popular to the local users—
thereby depriving them from valuable cache space.
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Fig. 1. Reference model for the study of mistreatment due to state interaction. The
most popular objects for the two nodes, i.e., those that would fit in the caches under
optimal placement, are assumed to be completely disjoint. The subsequent, more popular
ones, i.e., those that would be placed in the dashed parts of the figure if the nodes had
more storage capacity, are assumed to be identical.

assumed to be power-law with parameter a. Let X denote the
most popular object that is common to both distributions. A
boundary condition for the occurrence of mistreatment can be
obtained by considering the ratio λn/λj that results in a switch
of ranking between X and Y at vj , where Y denotes the least
most popular object that would be kept in the cache of vj under
a perfect ranking of objects according to the local demand, if
no miss-stream was received. To derive the condition for the
switch we first note that X is the (Cj + 1)th most popular
object for vj and the (Cn + 1)th most popular one for vn.
Y is the Cj th most popular object for vj . Let f(n) denote a
function that captures the operation of different object location
mechanisms in a group of n nodes (used for locating and
retrieving objects from remote nodes).

For example, f(n) = 1 can be used for modeling request
flooding (following a local miss, a request is sent to all
other nodes in the group); f(n) = 1/(n − 1) can be used
for modeling index-based mechanisms [10] (following a local
miss, a request is sent to only one of the nodes that appear
to be storing the object according to some index). Then the
boundary condition for the occurrence of the switch can be
written as follows:

λjpCj
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Writing a continuous approximation for the rate of change of
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Using the approximation from Eq. (2) on Eq. (1) we obtain:
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Eq. (3) states that the amount of imbalance in request rates
(λn

λj
) that is required for the occurrence of mistreatment is: (i)

increasing with Cn, (ii) decreasing with Cj , and (iii) increasing
when request flooding is employed for locating remote objects
(in this case all the nodes get the full miss-stream from vn,
otherwise the miss-stream weakens by being split into n − 1
parts).

Now assume that as a result of the received miss-stream,
k objects of vj are switched (objects with ids Cj , . . . , Cj −

k + 1 evicted, objects Cj + 1, . . . , Cj + k inserted); k can be
computed from a condition similar to that in (Eq. 1). Define
the Loss of vj as the reduction in the probability mass of the
objects that it caches locally.

Loss =

Cj
X
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where K is the normalization constant of the power-law
distribution pi = K/ia. The generalized harmonic number
H

(a)
C can be approximated by its integral expression (see [18])

H
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C =

∑C
i=1

1
ia ≈

∫ C

1
1/ladl = C1−a−1

1−a . Plugging this into
Eq. (4) we obtain:

Loss = K

„

2
Cj

1−a
− 1

1 − a
−

(Cj − k)1−a
− 1

1 − a
−

(Cj + k)1−a
− 1

1 − a

«

(5)
From Eq. (5) it is clear that as Cj increases, both Cj − k
and Cj + k → Cj thus leading to Loss → 0. Combining our
observations from Eq. (3) and Eq. (5) we conclude that the
occurrence of mistreatment is fostered by small Cn and large
Cj . Its magnitude, however, decreases with Cj . So, practically,
it is in intermediate values of Cj that mistreatment can arise
in a substantial manner.

B. Analysis of Mistreatment Under LRU Replacement

In the remainder of this section, our objective will be to derive
the steady-state hit probabilities ~πj = {π1j , . . . , πNj}, where
πij denotes the steady-state probability of finding object oi at
node vj upon request.

Let ~π = LRU(~p, C) denote a function that computes the
steady-state object hit probabilities for a single LRU cache in
isolation, given the cache size and the demand distribution.
Due to the combinatorial hardness of analyzing LRU replace-
ment, it is difficult to derive an exact value for ~π; there are,
however, several methods for computing approximate values
for it (see for example [19] and references therein). In this
paper, we employ the approximate method of Dan and Towsley
in [20] that provides an accurate estimation of ~π through
an iterative algorithm that incurs O(NC) time complexity.
Having computed ~πj , ∀vj ∈ V , we can obtain the per node
access cost costj , as well as the social cost of the entire group,
costsoc =

∑
∀vj

costj , by using Eq. (6). In this equation πi−j

denotes the probability of finding oi in any node of the group
other than vj .

We can obtain ~πj by using the LRU(·, ·) function for
isolated caches as our basic building block and taking into
consideration the impact on the local state of the hits caused by
remote requests. Deriving an exact expression for these added
hits based on the involved cache states is intractable as it leads
to state-space explosion. We, therefore, turn to approximate
techniques and, in particular, to techniques that consider the
expected values of the involved random variables, instead of
their exact distributions. The basic idea of our approach is to
capture these added hits by properly modifying the input to
the LRU(·, ·) function. We do so next.

Remote hits can be considered simply as additional re-
quest that augment the local demand, thereby creating a new
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aggregate demand for the LRU(·, ·) function as explained
later. The idea of modifying the input of a simpler system
to capture a policy aspect of a more complex system and then
using the modified simpler system to study the more complex
one has been employed frequently in the past [21], [22]. Since
the remote hits are shaped by the states of the caches, which
are coupled due to the exchanges of miss-streams, an iterative
procedure is followed for the derivation of the per-node
steady-state vectors and access costs. The uncoupled solution
(corresponding to nodes operating in isolation) is obtained
first, and is refined progressively by taking into account the
derived states and the cooperative servicing of the misses.
The resulting approximate analytic model for predicting the
average access cost in a distributed caching group is described
below. In the next section, we show that the results produced
from this analytic model match very well the results obtained
through simulations of the actual system.
The iterative procedure follows:

(1) For each node vj compute ~π
(0)
j = LRU(~pj , Cj), i.e.,

assume no state interaction among the different nodes.
(2) Initiate Iteration: At the kth iteration the aggregate

demand distribution for vj , ~pj
(k) = {p

(k)
ij }, 1 ≤ i ≤ N ,

is given by Eq. (7) (see top of page). The function [x]+y
returns 0 if y = 0 and x otherwise.5 The steady state
vector of object hit probabilities for vj at iteration k can
be obtain from:

~π
(k)
j = LRU(~pj

(k), Cj)

(3) Convergence Test: if |~π
(k)
j − ~π

(k−1)
j | < ~ε for all vj ,

1 ≤ j ≤ n, then set ~πj = ~π
(k)
j and compute the per

node access costs from Eq. (6); ~ε denotes a user-defined
tolerance for the convergence of the iterative method.
Otherwise, set ~π

(k−1)
j = ~π

(k)
j and ~p

(k−1)
j = ~p

(k)
j and

perform another iteration by returning to step 2.
The nominator of Eq. (7) adds the requests generated by

the local population of vj for object oi, to the requests for the
same object due to the n−1 miss streams from all other nodes
that create hits at vj . The explanation of the circumstances
under which such hits exist, goes as follows (see also Fig. 2):
a request for oi received at the contributor node vj′ (prob. pij′ )
affects the tagged node vj , if the request cannot be serviced at

5This function is used to ensure correctness when the denominator
Pn

j′′=1,j′′ 6=j′
π

(k−1)

ij′′
becomes zero. Notice that the nominator π

(k−1)
ij

is
included in the denominator, so when π

(k−1)
ij

> 0, the denominator is guaranteed to
be non zero.

the contributor node (prob. (1 − π
(k−1)
ij′ )), can be serviced at

the tagged node (prob. π
(k−1)
ij ), and is indeed serviced by the

tagged node and not by any other helper node vj′′ that can
potentially service it (prob. π

(k−1)
ij /

∑n
j′′=1,j′′ 6=j′ π

(k−1)
ij′′ , i.e.,

the model assumes that when more than one helper nodes can
offer service, then the request is assigned uniformly to any
one of them).

IV. MISTREATMENT DUE TO STATE INTERACTION:
EVALUATION

In this section, we use a combination of simulation ex-
periments and numerical solutions of the analytical model
developed in the previous section to explore the design space
of distributed caching with respect to its vulnerability to the
on-set of mistreatment as a result of the state interaction phe-
nomenon. We start by validating the accuracy of the analytical
model of Section III-B and follow that with an examination of
various dimensions of the design space for distributed caching,
including a comparative evaluation of mistreatment in caching
versus replication.

It is important to note that throughout this section, we
use a number of settings to gain an understanding of state
interaction in distributed caches and its consequences on
local and group access costs. Some of these settings are
intentionally very simple (i.e., small “toy” examples) so that
they can be possible to track. Others are larger and, therefore,
closer to real-world scale, especially when considering the
dissemination of voluminous content, e.g., digitized movies
or software updates.

Also, it is important to note that the various parameteriza-
tions of our analytical and simulation models are not meant to
represent particular content networking applications. Examin-
ing specific incarnations of the state interaction phenomenon
is, after all, not our intention in this paper—which is the first
to identify and analyze the problem. Rather, our exploration
of the extent of mistreatment is meant to help us gain insights
into the fundamental aspects of state interactions in distributed
caching, such as its dependence on the request rate imbalance
and the relative storage capacity.6 In most of the following
numerical results we assume that nodes follow a common
power-law demand distribution with skewness a. Our interest
and focus on this type of demand is based on two facts: (i) such
distributions have been observed in actual workloads, and (ii)

6With respect to storage capacities, it is important to note that performance results
depend on the relative size of the cache to the object space–i.e., the ratio C/N , but not
on the particular values of C and N , i.e., our results are immune to scale.
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Fig. 3. Validation of the approximate analytic
model of Section III-B through comparison with
simulation results on the social cost of the group.

cooperative caching is meaningful, and can be effective, only
when there is a substantial similarity in the demand patterns
of the nodes.

A. Analytic Model Validation

The analytic model presented in Section III-B included a
number of approximations—namely: (i) the basic building
block, i.e., the LRU(·, ·) function, is itself an approximation;
(ii) our capturing of the effect of the remote hits on the local
state through Eq. (7) is approximate; the solution of the model
through the iterative method is approximate.

In this section, we show that despite these approxima-
tions, the analytic model presented in Section III-B is fairly
accurate. We do so by comparing the model predictions with
simulation results in Fig. 3. As evident from these results, the
aforementioned approximations have a very limited effect on
the accuracy of the model. We have obtained similar results
across a wide variety of parameter sets. Thus, in the remainder
of this section, we use this model to study several aspects of
mistreatment due to state interaction.

B. Understanding State Interaction

Fig. 4 provides a microscopic view of state interaction by
showing its effect at the object level. The results are from an
illustrative example involving a group of n = 4 nodes, each
of which has storage for up to C = 4 objects, in a universe
of N = 10 objects (other parameters are shown in the caption
and legends of the figure). Nodes v1, . . . , v3 have the same
fixed request rate λ1 = 1, whereas the overactive node v4

has request rate λ4 = 1, 10, 100 (i.e., we have three sets of
results that correspond to different λ4; each set is depicted on
a different row of Fig. 4). The three graphs on the left depict
the demand and the steady-state vector for node v1 (which
will be used as a representative for all three non-overactive
nodes), while the ones on the right depict the corresponding
quantities for node v4. Each graph includes four curves. The
bottom two curves indicate the local demand distribution ~p
and the aggregate demand distribution ~p∗, which includes the
effect of the other nodes’ miss streams (each of these curves
sums up to 1). The top two curves ~π and ~π∗ show the steady-
state vectors of a node when the input is ~p (no miss-stream
present) and ~p∗ (miss-stream present), respectively, as obtained
from the analytic method of Section III-B (each of these curves
sums up to C).
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Fig. 4. Analytic results on the effect of request rate imbalance on the per object
request and hit probabilities under LRU (values with “*” superscript) and LRU without
state interaction. ~p denotes the demand and ~π the steady-state hit probabilities. Other
parameters: N = 10, n = 4, C = 4, α = 0.9.
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Fig. 5. Analytic results on the repetition of the λ4/λ1 = 100 (third row of Fig. 4)
- but this time with a smaller storage capacity C = 3.

Looking at the three graphs on the right-hand-side of
Fig. 4, we see that overactive node v4 is not affected by the
miss streams of the other nodes. For λ4 = 10 and 100, its
aggregate demand and its steady state vector are identical to
the corresponding ones without state interaction, i.e., ~p∗

4 ≈ ~p4

and ~π∗
4 ≈ ~π4. For λ4 = 1, there is a very slight effect due to

the presence of the miss streams of the other three nodes, but
this has almost no effect on the steady-state vector ~π∗

4 .
Looking at the top left graph in Fig. 4, which corresponds

to λ4 = 1, we see that the same slight effect exists for node
v1 due to the reception of the other three miss streams. The
situation, however, changes radically when increasing λ4. In
that case, ~p∗1 and ~p1, and as a consequence ~π∗

1 and ~π1 also
become distinctively different. The intense miss stream from
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Fig. 9. Analytic results on the comparison of replication and caching under three cases of request imbalance (1,10 and 100).

v4 increases the popularity of some objects from the middle
part of ~p1, thereby making them the most popular objects in
~p∗1. For example, when λ4 = 100, objects 2,3 and 4, become
more popular than object 1. This change in the profile of ~p∗

1 is
then reflected in ~π∗

1 , thereby affecting its access cost (Eq. (6)),
as we explain below.

C. Effect on Performance

Fig. 6 provides a macroscopic view of state interaction, by
considering its effects on the normalized access cost of each
node. The normalized cost of node vj under the aggregate
demand ~p∗j is defined as follows:

ˆcostj(~p
∗
j , ~pj) =

costj(~p
∗
j )

costiso
j (~pj)

, (8)

where costiso
j (~pj) =

∑N
i=1 pij · [πij · tl + (1 − πij) · ts] is the

cost that would be incurred by vj if it operated in isolation
(outside the group) and received only its local demand ~pj .
If ˆcostj < 1, the node is benefited from its participation in
the group, otherwise, it is being mistreated. When considering
two nodes, vj and vj′ , then the fact that 1 > ˆcostj > ˆcostj′ ,
means that although both are better off by participating in the
group, vj gets a relatively larger benefit.

There are two main points to be concluded from Fig. 6.
First, it requires a very strong imbalance of request rates in
order to create a substantial difference in the incurred nor-
malized access costs. In the presented example, the overactive
node v4 has a 30% reduction of its normalized cost, only
when it produces a 100-fold more intense request stream. Even
such a strong imbalance, is not enough to mistreat the other
nodes (v1, . . . , v3 have normalized access costs < 1). For the

occurrence of mistreatment, remote accesses have to be even
more expensive (this is shown in Fig. 7, where tr increases
from 1 to 1.4, thereby making the normalized access cost of the
group nodes > 1). Second, the nodes must have large storage
capacity to be affected by state interaction related phenomena.
In the presented example, the nodes must have at least 20%
relative storage capacity C/N to be affected by the overactive
node. Surprisingly, for small C/N , e.g., less than 15%, the
group nodes actually benefited more than the overactive node,
i.e., they achieve a smaller normalized access cost.

Fig. 5, gives an explanation of this phenomenon by
presenting what happens in the toy example of Fig. 4, when
decreasing the storage capacity from C = 4 to C = 3
(λ4/λ1 = 100 while keeping all other parameters identical
to the ones in Fig. 4). Under C = 4, ˆcost1 = 0.7 and ˆcost4 =
0.63, but under C = 3, ˆcost1 = 0.65 and ˆcost4 = 0.69,
i.e., the group nodes do better than the overactive node under
C = 3, whereas they did worse than it under C = 4. To explain
the phenomenon, one has to compare the left graph of Fig. 5,
with the left graph of the third row of Fig. 4. Comparing the
profiles of ~p∗1 and ~π∗

1 from the two figures, we see that the
miss-stream of the overactive node reduces the popularity and
the hit probability of object 1 in both cases, but the reduction
is much smaller under the smaller storage capacity (this is
because under C = 3, v2 will send more requests for oi to
v1). The next more popular objects, are requested and found
in the cache with similar probabilities under both capacities,
whereas the least popular objects are more filtered under the
smallest capacity. Comparing now, the left and the right graphs
of Fig. 5, it becomes obvious the aggregate demand fed to
v1, . . . , v3 is more skewed (as a result of the state interaction)



than the demand going to the overactive node v4. This does
not apply to the C = 4 case (third row of Fig. 5), where the
hit probability for the (important) object 1 at v1 is seriously
decreased due to the reception of the miss-stream from v4.
Combining the more skewed demand with the help received
from fetching some objects from the other nodes, v1 achieves
a lower normalized access cost than the overactive node v4.

Fig. 8 shows that increasing the size of the group, reduces
the effects of the state interaction. This happens because the
miss stream of the over-active node(s) (here just one) weakens
by being divided among more nodes.

Another important observation relates to the effect of an
over-active node on the social cost of the group. By increasing
its rate, the over-active node succeeds in hijacking some of the
storage of other nodes for caching its own next most popular
objects. This lowers its access cost but the gain is inherently
limited due to the fast decline of the popularity distribution.
The small gain of the over-active node has, nevertheless, a
much more serious negative effect on the access cost of the
mistreated nodes, which see some of their most popular objects
being evicted for much less valuable objects (observe that
the angle of increase for the cost of the mistreated nodes
is larger than the angle of decrease for the overactive node).
Consequently the social cost obtained by adding the individual
(unweighed) costs, gets worse with the imbalance of request
rates, as is also the case in our previous results regarding object
replication [4].

D. Caching versus Replication

In this section we will consider both replication and caching
and compare their relative robustness to mistreatment. For
replication we will consider the socially optimal (SO) replica-
tion algorithm of Leff et al. [23]. For simplicity of exposition,
and also to be able to compare with our previous numerical
results from [4], we will consider a group with only n = 2
nodes and a universe of N = 100 objects. The three graphs
of Fig. 9 depict the normalized access costs7 for nodes v1 and
v2 (overactive), for three cases of request imbalance, 1, 10,
and 100. When there is no request imbalance (first graph), no
node is mistreated. Caching yields the exact same performance
for both nodes (the two curves for v1, v2 coinciding), while
replication might unintentionally favor one of them (there are
several optimal solutions, and the particular one chosen has to
do with the specific solution algorithm that is employed, here
an LP relaxation of an integer problem solved via Simplex).

The different sensitivity to mistreatment becomes appar-
ent as soon as request imbalance is introduced, i.e., with
λ2/λ1 = 10 and 100 (second and third graphs of Fig. 9).
By observing these figures, we see that the curves for caching
are always contained within the angle specified by the curves
for replication (except for very small C/N , where we have the
peculiar behavior of caching discussed in the previous section).
The point to be kept from these results is that replication
is much more sensitive to mistreatment than caching. Under
replication, the slightest imbalance of request intensities is
directly reflected in the outcome of the replication algorithm.

7For the case of replication, the normalization is conducted by dividing with the
performance of the greedy local (GL) replication strategy. See [4] for details.

In contrast, the state interaction that takes place in caching
is a much weaker catalyst for mistreatment. This fortunate
weakness owes to the stochastic nature of caching, and to the
requirement for the concurrent occurrence of two independent
events: An unpopular object must first be brought to the cache
from the local demand, and then the miss-stream must feed it
with requests, if it is to lock it in the cache (and thereafter beat
the local request stream that tries to push it out and reclaim
the storage space).

E. LRU versus LFU

Fig. 10 shows analytic results under LRU replacement, as
well as simulation results under perfect LFU replacement [7]
(two group sizes, n = 2 and n = 4, are considered). We
plot the absolute, instead of the normalized access costs, as
we are considering different replacement algorithms. Looking
first at LRU, we notice the following. The effects of state
interaction (reflected in the width of the angle between group
and overactive curves, after λn/λj = 10) decrease as the group
grows larger, as also noted in the previous section. Moreover,
the absolute access costs for both the group and the overactive
node also decrease with the size of the group. The reason is
that a bigger group has more aggregate storage capacity and
thus succeeds in caching more distinct objects, which in turn
benefits all the nodes.

Turning our attention to the LFU curves, we see a com-
pletely different behavior. For a given n, both the overactive
node and the rest of the group, have the same access cost,
i.e., the request imbalance has no affect on the nodes under
LFU. This happens because once in steady-state, perfect LFU
avoids replacement errors, thus does not give any opportunities
for locking unpopular objects and losing storage due to the
miss-stream of remote overactive nodes. Thus LFU has an
advantage over LRU in terms of its immunity to request
imbalance. What is even more interesting, however, is that
the access cost under LFU remains the same under different
n, i.e., increasing the group size does not help in reducing the
access costs. This happens because under LFU and common
demand patterns, all the nodes end up caching exactly the
same sets of objects. In such a group, a local miss is bound
to miss also in the group. In other words, LFU eliminates all
the cooperation gain in groups of similar nodes. This does not
occur when the group operates under LRU: the replacement
errors committed by the individual nodes in this case, create
a healthy amount of noise that increases the distinct objects
held in the group, thereby decreasing the access cost of all the
nodes. Thus, in large groups under small inter-node distances,
LRU is more appropriate than LFU (see for example the
access cost for small tr in Fig. 13 in Section V-A, where
n = 10). When the inter-node distances increase, then the
perfect ranking of objects under LFU becomes more important
than the cooperation gain and, thus, LFU becomes better for
the group (see Fig. 13 for large tr).

F. L2 versus Non-L2 Caching

In this section we consider the case in which each node of
the group acts as an L2 cache for each other node of the
group [8]. This means that a node fetches and maintains a copy
from the origin server, for every (remote miss) request that it
receives from a remote node. We can capture this behavior by
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modifying Eq. (7), so that all the remote requests affect the
local state (as opposed to only the remote hits under non-L2
mode):

p
(k)
ij =

λj · pij +
Pn

j′=1
j′ 6=j

λj′ · pij′ · (1 − π
(k−1)

ij′
)

PN

i′=1

„

λj · pi′j +
Pn

j′=1
j′ 6=j

λj′ · pi′j′ · (1 − π
(k−1)

i′j′
)

« (9)

Figs 11, 12 compare the sensitivity of L2 (Eq. (9)) and non-
L2 (Eq. (7)) caching, under two different scenarios: (i) all the
nodes following the same demand, and (ii) when the overactive
node has a “flipped” popularity distribution (meaning that its
most popular object is object N , the next most popular N −
1, and so on). Looking at Fig. 11, we see that L2 caching
is much more sensitive to mistreatment than non-L2 caching
(notice that the angle formed by the L2 curves is much wider
than the corresponding one for the non-L2 curves, and that
the group has normalized cost > 1 in the first case). The
reason is that every remote request affects the local state as
opposed to only the remote hits under non-L2 caching. Fig. 12
shows that the intensity of the phenomenon increases under
the flipped distribution case, for both the L2 and the non-L2
cases (the normalized access cost of the group grows from
1.1 to 1.5 for request imbalance 100 and L2 caching, while
it goes from 0.76 to 1.1 for non-L2 caching). The reason for
the increase is obvious for L2, the caches of the group are
clogged by objects that are completely useless for the local
users. The same happens for non-L2, but through a different
mechanism. The occasional extremely unpopular objects that
are brought in the cache due to the local demand, are easily
locked by the miss-stream of the overactive node because these
are popular objects for the second. Notice also that when there
is no request imbalance (i.e., when λn/λj = 1), the (no longer)
overactive node with the flipped demand actually does worse,
because it receives a 3-fold more intense miss-stream from the
other nodes (that follow a different demand than its own).

A final observation regarding L2 caching is that both the
overactive nodes and the rest of the group incur a higher access
cost than in the non-L2 case. This is most probably attributed
to the amplification of replacement error [19] that occurs under
L2 caching (a request for an unpopular objects leads to its
caching in all the nodes of the group thereby amplifying the
number of replacement errors committed).

V. MISTREATMENT DUE TO USE OF A COMMON SCHEME

In this section we study cases of mistreatment due to the
use of a common scheme vis-a-vis the object admission
control algorithm. Specifically, we consider Single Copy (SC)
schemes, like, HASH and LRU-SC 8, i.e., schemes that allow
for the existence of up to one copy of each object in the
group and, Multiple Copy (MC) schemes, i.e., schemes that
allow for the existence of multiple copies of the same object
at different nodes of the group. All the replacement algorithms
when combined with a non-SC object admission control fall
into the MC category.

A. Single Versus Multiple Copy Schemes

Fig. 13 depicts simulation results showing the average access
cost of a group (social cost) under different SC and MC
schemes, and for different values of tr representing different
levels of “tightness” of the group. Three types of demand are
considered: lightly (a=0.2), moderately (a=0.6), and highly
skewed (a=0.9) demand. The following observations apply.
Single copy schemes, (i.e., HASH and LRU-SC, whose curves
overlap almost completely in these figures, as the two have
very similar caching behavior) perform better when the access
cost between the nodes is small. In such cases the cost of local
and remote accesses is similar, so it pays to eliminate multiple
copies of the same object at different nodes and instead make
room for storing a larger number of distinct objects. Multiple
copy schemes, (i.e., LRU and LFU) perform better when the
access cost between the nodes is high. In such cases, a much
higher cost is incurred when an object is fetched from the
group, so it becomes imperative to maintain some of the
most popular objects locally (thereby creating multiple copies
at different nodes). The threshold value of tr at which the
performance ranking between SC and MC changes depends
on the skewness of the demand: the higher the skewness, the
lower the value of tr and the earlier the MC schemes become
better.

It is also worthwhile noting that the curves for LFU
are parallel to the x-axis, i.e., the access cost is immune

8Under HASH, requests are received by the local node which then employs a hash
function to identify the node that is responsible for the requested object. The responsible
node returns the object immediately if it already caches it, or contacts the origin server,
and then returns it, also keeping a local copy in this case. The local node does not keep
a local copy, unless it is the one responsible for that object according to the employed
hash function. Under LRU-SC (single copy), a local copy is maintained at the local node
only for objects that were fetched from the origin server. When an object is fetched from
elsewhere in the group, no local copy is kept. In both cases, the number of copies of
each object in the group is limited to at most one.
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Fig. 13. Simulation results on the effect of the remote access cost tr on the performance ranking of different SC and MC schemes for three cases of skewness of demand
(a = 0.2, a = 0.6, a = 0.9). MC schemes (LRU, LFU) perform better when tr → ts.

to the inter-node distance under LFU and identical demand.
This happens because, as noted earlier, under LFU all the
nodes store the same objects, and this has the consequence
of eliminating all remote hits. In that case, the exact value of
the remote access cost does not affect the LFU curves, since
there are no remote hits. Regarding the relationship between
LRU and LFU, the figure shows that LFU is better when the
remote access cost is high (see the discussion in Section IV-E
for an explanation of this).

The above observations highlight the fact that “fixed
schemes” operate efficiently only under specific parameter
sets. If these parameter sets are common to all the nodes,
then good design choices can be made among the different
schemes. When, however, some of the parameters (e.g., inter-
node distances) are not common to all nodes, then it may well
be the case that no single scheme is appropriate for all the
nodes. Enforcing a common scheme under such conditions is
bound to mistreat some of the nodes. The following section
illustrates such an example.

B. Relaxing the Common Scheme Requirement

So far, we have assumed that all group nodes are required
to employ the same (common) caching scheme. In this section,
we look at the advantages to be begotten from relaxing this
constraint.

Consider the group depicted in Fig. 14 in which n − 1
nodes are clustered together, meaning that they are very close
to each other (tr → tl), while there’s also a single “outlier”
node at distance t′r from the cluster. The n − 1 nodes would
naturally employ the LRU-SC scheme in order to capitalize on
their small remote access cost. From the previous discussion
it should be clear that the best scheme for the outlier node
would depend on t′r. If t′r → tr, the outlier should obviously
follow LRU-SC and avoid duplicating objects that already
exist elsewhere in the group. If t′r � tr, then the outlier should
follow a MC scheme, e.g., LRU.

To permit the outlier to adjust its caching behavior accord-
ing to its distance from the group, we introduce the LRU(q)
scheme, under which, objects that are fetched from the origin
server are automatically cached locally, but objects that are
fetched from the group are cached locally only with probability
q. For q = 0, LRU(q) reduces to LRU-SC, while for q = 1 it
reduces to the multiple copy LRU scheme. One may think of q
as a reliance parameter, capturing the confidence that a node
has in its ability to fetch objects efficiently (i.e., “cheaply”)

outlier node

cluster

n−1 nodes

r

   t       0r

Single Copy scheme

/  t PSfrag replacements

t′r (outlier’s distance)

     cache

   virtual cache

requests

PSfrag replacements

t′r (outlier’s distance)

Fig. 14. An example of a group
composed of a cluster of n − 1 nodes
and a unique outlier.

Fig. 15. Block diagram of a node
equipped with a virtual cache.

from other members of the group.
Figure 16 presents the performance of LRU(q), for q =

0, 0.1, 0.5, 1 under different t′r. The results are normalized
by dividing the access cost of each LRU(q) scheme by the
corresponding access cost of the LRU(q = 1) scheme. The
later can be seen as a basis for what a node can achieve by
operating greedily, i.e., when it always keeps a copy of each
incoming object. Such a behavior corresponds to a node that
wants to avoid relying on other nodes for fetching objects.
As with the state interaction case, mistreatment is signified
by a normalized access cost greater than 1. Figure 16 shows
that always keeping local copies of all incoming objects (i.e.,
employing LRU(1) and incurring a normalized access cost
of 1) is a reasonably good choice across most values of t′r.
The only case that LRU(1) performs poor is when t′r gets
very small, which correspond to the case that the node ceases
to be an outlier, and actually becomes part of the cluster.
As discussed earlier, in this case maintaining multiple object
copies within the group becomes wasteful, with the optimal
scheme being the single copy LRU(0) scheme.

Another interesting observation from the above results
is that there is a noticeable performance differential between
the single copy LRU(0) scheme, and any other multiple copy
LRU(q) scheme with q > 0. A non-zero LRU(q) scheme, even
one where q is small, is capable of eventually caching locally
the most popular objects, even if this requires several misses.
LRU(0), on the other hand, has almost no chance of bringing
a globally popular object locally since it is much more likely
for such an object to be cached in the cluster before being
requested by the outlier node (which means that it won’t be
cached locally). When this happens for several popular objects,
the performance degradation for the outlier node becomes very
serious. That is why LRU(0) performs poorly for large values
of t′r.
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VI. TOWARDS MISTREATMENT-RESILIENT CACHING

From our exposition so far, it should be clear that there
exist situations under which an inappropriate, or enforced,
scheme may mistreat some of the nodes. While we have
focused on detecting and analyzing two causes of mistreatment
which appear to be important (namely, due to cache state
interactions and the adoption of a common cache management
scheme), it should be evident that mistreatments may well arise
through other causes. For example, we have not investigated
the possibility of mistreatment due to request re-routing [24],
not to mention that there are vastly more parameter sets and
combinations of schemes that cannot all be investigated in the
context of a single paper.

In an open system, the fact that group settings (e.g.,
number of nodes, distances, demand patterns) change dynam-
ically, precludes the possibility of addressing the matter with
predefined, fixed designs. Instead, we believe that nodes should
adjust their scheme dynamically so as to avoid or respond
to mistreatment if and when it emerges. In this section, we
present a framework for designing such mistreatment-resilient
schemes. We discuss the use of such a framework to deal with
mistreatments due to the use of a common scheme–namely the
LRU(q) scheme. Later in this section, we briefly discuss the
use of our framework for the development of caching schemes
that are resilient to state-interaction-induced mistreatments.

A first requirement for mistreatment resilience is that a
node must be able to realize that it is being mistreated. In our
previous work on replication [4], a node compared its access

cost under a given replication scheme with the guaranteed
maximal access cost obtained through GL replication. This
gave the node a mistreatment test. In that game theoretic
framework, it was necessary for each node to know its demand
pattern to be able to derive its GL cost threshold. In caching,
however, demand patterns (even local ones) are not known a
priori, nor are they stationary. Thus nodes have to estimate
and update their thresholds in an on-line manner. We believe
that a promising approach for this is emulation.

Fig. 15 depicts a node equipped with an additional virtual
cache, alongside its “real” cache that holds its objects. The
virtual cache does not hold actual objects, but rather object
identifiers. It is used for emulating the cache contents and
the access cost under a scheme different from the one being
currently employed by the node to manage its “real” cache
under the same request sequence—notice that the input request
stream is copied to both caches. The basic idea is that the
virtual cache can be used for emulating the threshold cost
that the node can guarantee for itself if it employs a scheme
that is different from the one currently in use.

Resilience to Common-Scheme-Induced Mistreatments:
Referring back to the outlier node of Section V-B, the virtual
cache could be emulating the LRU(1) scheme, i.e., the scheme
in which the reliance parameter q is equal to 1. This emulates
the case that the outlier node does not put any trust on the
remote nodes for fetching objects and, thus, keeps copies of
all incoming objects after local misses. Equipped with such a
device, a node is able to calculate a running estimate of its
threshold cost based on the objects it emulates as present in
the virtual cache.9 By comparing the payoff from sticking to
the current scheme versus the emulated (selfish) one, a node
is able to decide which one is more appropriate. Below we
give such an example.

Consider the case in which an outlier emulates the selfish
LRU(1) scheme, but currently employs the completely un-
selfish (fully cooperative) LRU(0) scheme, which is equivalent
to LRU-SC. This can occur, for example, if the node knows
that it is initially close to the cluster, but cannot guarantee
that this will remain the case (e.g., due to node movement
in an ad-hoc network, or due to changing load conditions in
the network). Figure 17 shows that the relative performance
ranking of the two schemes depends on the distance from
the group t′r and that there is a value of t′r in which the
ranking changes. Whenever the outlier crosses this point it
can compare the emulated cost from the virtual cache with
its actual cost and switch schemes (employ the previously
emulated one and emulate the previously employed one). One
can also design a smoother mistreatment-resilient scheme by
enabling a node to manipulate the reliance parameter q at a
finer scale, in pursuit of an even lower access cost than the
one offered by the two extreme schemes. Indeed, there are
situations in which intermediate values of q, 0 < q < 1, may
offer superior performance (see the LRU(0.1) and LRU(0.5)
curves in Fig. 16). Controlling the parameter q becomes more

9The outlier can include in the emulation the remote fetches that would result from
misses in the emulated cache contents; this would give it the exact access cost under
the emulated scheme. A simpler approach would be to disregard the remote fetches and
thus reduce the inter-node query traffic; this would give it an upper bound for the access
cost under the emulated scheme.



involved in this case. As part of our ongoing work, we
investigate the use of different types of controllers, each of
which resulting in different convergence and stability profiles.

Resilience to State-Interaction-Induced Mistreatments: Im-
munizing a node against mistreatments that emerge from state
interactions could be similarly achieved. For instance, one
may define an interaction parameter ps, which is used as a
control parameter for an LRU(ps) scheme. Here, a remote hit is
allowed to affect the local state with probability ps, whereas it
is denied such access with probability (1-ps). The interaction
parameter ps could be controlled using schemes similar to
those we considered above for the reliance parameter q.

It is important to note that one may argue for isolationism
(by permanently setting ps = 0) as a simple approach to
avoid state-interaction-induced mistreatments. This is not a
viable solution. Specifically, by adopting an LRU(ps = 0)
approach, a node is depriving itself from the opportunity of
using miss streams from other nodes to improve the accuracy
of LRU-based cache/no-cache decisions (assuming a uniform
popularity profile for group members). This was highlighted
in the results shown in Fig. 6.

To conclude this section, we note that the approaches we
presented above for mistreatment resilience may be viewed
as “passive” or “end-to-end” in the sense that a node infers
the onset of mistreatment implicitly by monitoring its utility
function. As we alluded at the outset of this paper, for the
emerging class of network applications for which grouping
of nodes is “ad hoc” (i.e., not dictated by organizational
boundaries or strategic goals), this might be the only realistic
solution. In particular, to understand “exactly how and exactly
why” mistreatment is taking place would require the use of
proactive measures (e.g., monitoring/policing group member
behaviors, measuring distances with pings, etc.), which would
require group members to subscribe to some common ser-
vices or to trust some common authority—both of which are
not consistent with the autonomous nature (and the mutual
distrust) of participating nodes.

VII. RELATED WORK

Apart from our previous work on distributed selfish repli-
cation [3], [4], we are aware of only two additional works
on game-theoretic aspects of replication, one due to Chun et
al. [25] (distributed selfish replication under infinite storage
capacities) and the other due to Erçetin and Tassiulas [26]
(market-based resource allocation in content delivery); we are
not aware of any previous work on distributed selfish caching.
The issue of dynamic adjustment of caching schemes has
been raised recently also by Sivasubramanian et al. [27], in
a completely different context from ours (consistency control
of cached objects). For studies on the social utility of dis-
tributed caching we recommend Korupolu and Dahlin [28]
and Rodriguez et al. [29].

VIII. SUMMARY AND CONCLUDING REMARKS

Distributed on-demand caching enables loosely coupled
groups of nodes to share their (storage) resources to achieve
higher efficiencies and scalability. In addition to its tradi-
tional use in content distribution/delivery networks, distributed

caching is also used as an important building block of many
emerging applications and protocols, including its use in route
caching in ad-hoc networks [30] and in P2P content replication
[2], [31].

Summary: This paper has uncovered the susceptibility of
nodes participating in a distributed on-demand caching group
to being mistreated. We have identified two causes of
mistreatments–namely mistreatment due to cache state inter-
actions between various members of the group, and due to
the use of a common scheme for cache management across all
members of the group. We have backed up our findings by
analytic models, numerical solutions of these models, as well
as simulations in which assumptions (necessary for analysis)
have been relaxed.

The results of our analysis and evaluation suggest that
on-demand distributed caching is fairly resilient to the onset
of mistreatment as long as proxying (a.k.a. L2 caching) is not
enabled, and as long as intra-group access costs do not include
outliers. More constructively, we have outlined an efficient
emulation-based approach that allows individual nodes to
decide autonomously (i.e., without having to trust any other
node or service) whether they should stick to, or secede from
a caching group, based on whether or not their participation is
beneficial to their performance compared to a selfish, greedy
scheme.

Other Incarnations of Mistreatment in On-Line Dis-
tributed Resource Management Problems: In this paper,
we focused on distributed caching as an instance of an on-
line protocol for the management of a distributed resource—
namely the limited storage available at each node. While
our exposition has focused on the well-known problem of
caching “retrievable” content (e.g., web pages and media
objects), it should be evident that our results extend to any
other type of cached content, including non-retrievable content
used as part of the control plane of a distributed protocol or
application (e.g., route paths stored in routing tables of group
members). Clearly, given the different nature of the workloads
that such distributed resources must support, a more specific
examination of potential mistreatments in such settings is
warranted, and is a current subject of inquiry of ours.

Coincidental versus Adversarial Mistreatment: In this pa-
per we focused on the onset of mistreatment due to benign
operating conditions of a caching group. For instance we
identified rate imbalance (of local versus remote requests
streams) conditions as well as cache sizing conditions that
are necessary for mistreatment to occur. As such, the cases of
mistreatment we have uncovered could be considered “coin-
cidental”. Another possible source of mistreatment, however,
could be adversarially motivated, in the sense that one (or
more) of the group members collude to negatively impact the
performance of other members. While we did not consider
adversarial mistreatments per se, our results suggest that dis-
tributed caching is fairly immune to high potency exploits [32]
(a.k.a. low rate attacks) by non-clairvoyant adversaries. More
work is needed to characterize the vulnerability of distributed
caching to more elaborate adversarial exploits, including those
from more powerful agents (e.g., those with knowledge of a



victim’s cache contents).

Towards Intrusion-Resilient On-Line Schemes: More
broadly, the results we have put forth in this paper confirm
the observations in [32] that distributed on-line algorithms
used by a group of autonomous, self-aware agents—of which
distributed caching and replications are examples—must be re-
examined to assess their vulnerability to parasitic behaviors
(whether intentional or not). Game theory provides a good
basis for understanding such issues, but it does not have the
expressiveness to capture the vast complexities of real mech-
anisms. The use of tools from other domains—e.g., the use of
control theory in [32]—may be necessary to fully understand,
and more importantly provide fixes for such problems. This is
precisely our current research agenda.
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