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Abstract— Gupta and Kumar showed that throughput in a
static random wireless network increases with the amount of
hopping. In a subsequent paper (2004), it was shown that
although throughput benefits from a large number of hops,
this comes at the expense of higher delay. Separately, several
studies have shown that in ad hoc networks, transmission energy
decreases as hopping increases. However, when transceiver circuit
energy is also taken into account, hopping as much as possible
no longer maximizes energy efficiency and the optimal amount
of hopping depends on the topology and size of the network.

This paper attempts to unify these earlier results by estab-
lishing the optimal hopping for energy efficiency along with
throughput and delay. A random network model with n nodes
in area A(n) is considered. The effect of interference is captured
by the Physical model and the signal is assumed to decay with
distance ~ as %, § > 1. Both transmission and transceiver
circuit energy are taken into account. Optimal trade-offs between
throughput, delay and energy-per-bit scaling for this random
network model are established. These results show that the
amount of hopping still determines the optimal trade-off and
yield the amount of hopping that should be used to achieve any
point of the optimal trade-off. In a constant area network, where
A(n) =1, ©(1) hops result in the best energy and delay scaling
of ©(1) at the cost of the worst throughput scaling of ©(1/n).
At the other extreme, in a constant density network, where

A(n) =n, © (\/n/ logn) hops result in the best throughput

scaling of © (1/v/nlogn) and the best energy scaling but at
the cost of the worst delay scaling. For intermediate values of

A(n), V/B) = @(\/min{A(n),n/logn}) hops should be
used to obtain the minimum energy-per-bit scaling, which is
) (A(n)éB(n)%"s).

I. INTRODUCTION

Wireless networks of the future are envisioned to be very
large and possibly ad hoc, i.e., without fixed infrastructure.
To study such large, ad hoc networks, Gupta and Kumar [6]
introduced a random network model with n nodes. They
showed that the throughput scaling is O (1/y/nlogn) for
almost all network realizations. One of the insights provided
by their work is that the highest throughput scaling is obtained
at the smallest transmission range, or equivalently, maximum
amount of hopping is needed to mitigate interference in the
network.

Subsequently in [2], the optimal throughput-delay trade-
off for a random wireless network was established to be
D(n) = ©(nT(n)), where T'(n) and D(n) are the throughput
and delay, respectively. This work showed that at an optimal
point of the trade-off, delay scales as the number of hops and
both throughput and delay increase as the amount of hopping
increases. Thus the amount of hopping determines the point

of the optimal trade-off at which the network operates; more
hops results in higher throughput but also higher delay.

Energy is another important metric and assumes great
significance in the case of networks with limited energy
resources, particularly sensor networks. With the assumption
that signal attenuates with distance r as 9, it is easy to see
that if relay nodes are placed uniformly between the source
and destination, the total transmission energy decreases as
the amount of hopping increases. This leads one to believe
that hopping as much as possible is good for minimizing
energy-per-bit. However, when transceiver circuit energy is
also taken into account, this is no longer the case and the
optimal number of hops depends on the topology and the size
of the network [8]. A large body of work exists on optimizing
one of throughput, delay and energy subject to a constraint
on one of the others for a given placement of nodes (see [7]
for a representative sample). These studies have focused on
optimizing the performance metrics for a given realization of
the network, which is quite different from the framework of
random networks where the goal is to obtain general guidelines
for an entire class of networks.

Closer in spirit to the work in this paper is [1], which
studied the energy efficiency of random wireless networks. The
focus of this work was on energy efficiency without regard to
throughput or delay and without considering interference and
transceiver circuit energy. In [3], a preliminary study of the
trade-off between throughput, delay and transmission energy
for constant area random wireless networks was conducted.
Both these works reached the conclusion that energy efficiency
increases with hopping.

In this paper we determine the optimal hopping for energy
efficiency along with throughput and delay using the random
network framework, thus extending the work in [2]. We
assume that n nodes are randomly placed in area A(n) and are
split into n/2 source-destination pairs. We allow the density
of nodes in the network, n/A(n), to be anywhere between
1, for a constant density network, where A(n) = n, and n
for a constant area network, where A(n) = 1. The reason
for characterizing networks according to their node densities,
as we shall show later, is that node density determines the
amount of optimal hopping in a network. We assume the
Physical model for successful transmission [6], which cap-
tures the effect of interference in the network due to other
simultaneously transmitting users. We consider both Radio-
frequency (RF) transmission energy and transceiver circuit
energy. Thus the energy used in communicating a bit from



a source to a destination has two components — one due
to transmission, which depends on the number of hops and
the distance and power used at each hop, and the other
due to transceiver circuit energy, which is proportional to
the number of hops. Note that by increasing the number of
hops, the transmission energy component decreases whereas
the transceiver energy component increases. We establish the
optimal trade-offs between throughput, delay and energy for
this random network model. We find that even after the
inclusion of energy consumption into the model, which allows
for power control, hopping continues to determine the optimal
trade-offs between throughput, delay and energy. This happens
because the amount of hopping determines the amount of
power to use for optimal energy scaling. As a by-product,
we obtain the amount of hopping that results in the minimum
energy scaling.

We note that the model in this paper differs from that in
[3] in three respects. First, in [3], a constant area model was
used, which is a special case of the general case of area A(n)
considered in this paper. Second, transceiver circuit energy
was not taken into account. Third, in [3], a combination of the
Protocol model and a rate function depending on the power
and distance based on the AWGN channel was used, instead
of the more widely used Physical model. These differences
yield more general results that are consistent with the work in
[2]. New proofs were required due to these differences in the
model and the more comprehensive nature of results in this
paper.

The outline of the rest of the paper is as follows. Section 11
presents the random network model, required definitions and
a preview of the main results. Section 11l states Theorem 1,
which is the main result of this paper and two corollaries.
Section IV presents a cellular scheme that achieves the trade-
off that is stated to be optimal in Theorem 1. Section V shows
that the trade-off achieved by this scheme is optimal, in that
no scheme can outperform it in terms of scaling. Finally in
Section VI, we discuss some of the implications of our results
on the design of wireless ad hoc networks.

Il. MODEL AND MAIN RESULTS

We first introduce the network model and the definitions of
the terms used in the paper.

Definition 1 (Random network model): The random net-
work consists of a torus of area A(n) in which n nodes are
distributed uniformly at random. These n nodes are split into
n/2 distinct source-destination (S-D) pairs at random. Time is
slotted for packetized transmission. For simplicity, we assume
that the time-slots are of unit length.

The network area A(n) is allowed to be a function of the
number of nodes n and the density of nodes in the network is
n/A(n). We refer to the case when A(n) =1 as the constant
area model. The other extreme is the constant density model
in which A(n) = n, i.e., n nodes are placed in a torus of area
n S0 that the density of nodes is 1.

Let the distance on the torus between two nodes ¢ and j be
denoted by ;;. We assume that signal decays with distance

as r—? so that power decays as 2%, where § > 1. We assume
the Physical model for successful transmission presented in [6]
and also used by several others since.

Definition 2 (Physical model): A transmission from node i
to j is successful if

Pr;»
SINR = >0,
N+ Zkel“,k;éi Tk
where T' is the set of simultaneously transmitting nodes. When
the transmission is successful, communication occurs at a
constant rate V.

The basis of the Physical model is the AWGN channel with
noise power N where interference from other transmitting
users is treated as independent Gaussian noise. Thus when
the transmission from node ¢ to node j is successful under the
Physical model, the energy-per-bit due to RF transmission is
P/W > B(N +I)rZ, where I is the total interference power
at node j due to other simultaneous transmissions.

In order to take the transceiver circuit power into account,
we assume a constant amount of energy per bit, cq, is also
dissipated during each transmission/reception [8]. Thus the
total energy-per-bit for a successful transmission from node
i10 jis P/W +co > B(N + I)r¥ + co.

Some authors assume the signal to attenuate with distance
ras (14r)~° since the r— attenuation is valid only in the far
field. This results in transmission energy-per-bit approaching
a constant strictly greater than 0 as the distance approaches 0.
We note that the results in this paper remain unchanged under
this model for the constant density random network. This is
because a constant amount of energy is anyway consumed at
each hop due to the circuits and further the rate is constant
when transmission is successful.

We now define a communication scheme and associated
performance metrics.

Definition 3 (Scheme): A scheme II for a random network
is a sequence of communication policies, (II,,), where policy
II,, determines how communication occurs in a network of n
nodes.

Let the maximum power used by any node in a scheme be
Praz(n) and let the minimum power be Py, (n). We impose
the further condition that

Pmaz (n)/szn (TL) < /6) (1)

Thus the power used by a scheme can depend on n but all
transmitters have more or less the same power.

Definition 4 (Throughput of a scheme): Let B, (i,t) be
the number of bits of S-D pair 7,1 < i < n/2, transferred
in ¢ time-slots under policy II,,. Scheme II is said to have
throughput Tr1(n) if 3 a sequence of events Ar(n) such that

An(n) = {

and P (An(n)) —1 as n—oo.
We say that an event A,, occurs with high probability (whp)
if P(A,)—1 as n—oo.

1
min lim inf ;Bnn (i,t) > Tn(n)} )

1<i<n/2 t—oo



Definition 5 (Delay of a scheme): The delay of a packet is
the time it takes for the packet to reach its destination after
it leaves the source. Let Df; (j) denote the delay of packet
4 of S-D pair ¢ under pollcy IT,,, then the sample mean of
delay (over packets that reach their destinations) for S-D pair
1 under is

DH = limsup — Z

k—o0 J 1

The average delay over all S-D pairs for a particular realization
of the random network is then

9 n/2
Dn, ==Y Dj .
The delay for a scheme IT is the expectation of the average
delay over all S-D pairs, i.e.,

n/2

Dr(n) = ZEDZ

Definition 6 (Energy-per-bit): Let EH (j) be the energy
spent to communicate bit j of S-D pair ¢, then the sample
mean of energy-per-bit for S-D pair 7 is

E[Dn,] =

k
&i ; 1 i
€ir, = limsup - Z: &, (7)
The average over all S-D pairs of the energy-per-bit for a
particular realization is

2 o 5
== E;‘S‘Hn‘

Energy-per-bit of scheme II is the expectation of the above
average, i.e.,

We will use Er(n) and Ex(n) to denote the components of
&n(n) due to transmission and the circuit respectively.

The number of hops of a scheme II is denoted by Hyi(n)
and is defined in the same way as the delay of a scheme.
Since it is a repeat of the above with obvious modifications,
the complete definition is omitted.

The T-D trade-off is defined as in [4]. The D-E and T-E
trade-offs are defined similarly.

Definition 7 (T-D-E trade-off): A triple
(T'(n), D(n),E(n)) is T-D-E optimal if there exists a
scheme achieving it and for any scheme II such that
Tru(n) = QT (n)), Du(n) = Q(D(n)) and for any scheme
satisfying Tri(n) = Q(T'(n)) and Dp(n) = O(D(n)),
&n(n) = Q(E(n)). The T-D-E trade-off consists of all the
T-D-E optimal triples.

We define T-E-D, D-T-E, D-E-T, E-T-D and E-D-T trade-offs
similarly.

Throughout the paper, we use ¢; to denote constants that
do not depend on n, the number of nodes. We also use the
shorthand notation, Q(f(n)) = T(n) = O(g(n)) to mean
T(n) = Q(f(n)) and T(n) = O(g(n)).

Now that the model and the performance metrics have
been defined, we summarize the T-D-E trade-offs that capture
the essential elements of our results. The T-D-E and all
other trade-offs are stated and proved in detail in subsequent
sections.

For any value of A(n) and § > 1, D(n) = ©(H(n)) at any
optimal trade-off point and the T-D trade-off turns out to be
D(n) = ©(nT(n)), which is the same as in [2]. The trade-
offs involving delay and energy-per-bit depend on the value
of A(n) and are discussed below.

Constant Area Network (see Corollary 1(i))
The T-D-E trade-off for A(n) =1 is given by

D(n) =0 (nT(n)) and &(n)=0©(D(n)),
for Q(1/n) = T(n) = O (1/y/nlogn).

In fact, Er(n) = o(Ec(n)) and Ec(n) = O(D(n)). That is,
the circuit energy, which is proportional to the number of hops,
or equivalently the delay, dominates over the transmission
energy as depicted in Figure 1(a). As a result, as longas § > 1,
the exact value of § does not affect the results.

The best £(n) that can be achieved in the constant area
network is ©(1) and is achieved when a constant number of
hops (that does not increase with n) is used. The corresponding
delay is ©(1), which is the best possible. However, the highest
energy efficiency and lowest delay come at the cost of the
lowest throughput of ©(1/n). As the amount of hopping in
the network increases by decreasing the transmission range,
throughput increases but at the cost of higher delay and higher
energy-per-bit.

Constant Density Network (see Corollary 2(i))
The T-D-E trade-off for A(n) = n is given by

D(n) =0 (nT(n)) and
E(n) =© (n°D(n)' "),
for  Q(1/m) = T(n) = O (1//nTogn).

In fact, Ec(n) = ©(D(n)) = o(Er(n)) and Er(n) =
© (n’(D(n))'~2%) as shown in Figure 1(b). Contrary to
the case of the constant area network, here the transmis-
sion energy dominates over the circuit energy. Therefore,
the value of § affects the energy consumption. The best
E(n) that can be achieved in the constant density network
is © (\/ﬁ(logn)5‘%2. Thus even at best, the energy effi-
ciency of the network decreases with increase in the size of
the network. The best energy scaling is achieved when the
maximum amount of hopping is used. This is because although
the circuit energy consumption increases in proportion to the
number of hops, the RF transmission energy, which is the
dominant component, decreases by using more hops. The
corresponding throughput is © (1/\/n logn), which is the
highest possible. However, the highest energy efficiency and
the highest throughput come at the cost of the highest delay
of © (y/n/log n) As the amount of hopping in the network
decreases, delay decreases but at the cost of lower throughput
and higher energy-per-bit.



£(n) Intermediate Density Network (see Theorem 1(i))

For a random network with area A(n), the T-D-E trade-off
is given by

Vo [ > Q D(n) = © (nT(n)), Ec(n)=0O(D(n))
: and Er(n) = O (A(n)°D(n)'~%),

for Q(1/n) = T(n) = O (1/y/nlogn).
. Thus for general A(n), & dominates at ©(1) hops and
p : Ec dominates as hops increase as shown in Figure 1(c).
: The minimum energy-per-bit scaling is obtained when £ =
1 I~ =D(n) ©(&¢). This happens at /B(n) hops, where B(n) =
N Er Toam min{A(n),n/logn}. The minimum energy-per-bit scaling is
© (A(n)°B(n)'~2%). The trade-off between D(n) and &(n)
for general A(n) is thus a combination of that for the extreme

cases of A(n) =1 and A(n) = n.

(a) Constant area random network.

E(n) I11. OPTIMAL TRADE-OFFS
A This section states the following main result of the paper,
P which establishes the optimal trade-offs between throughput,
nd delay and energy-per-bit. The corollaries following it are

specializations to the case of the constant area network and
the constant density network.
Er Theorem 1: For the random network model with area
A(n), at any optimal trade-off point, D(n) = O(H(n)).
Further the following statements hold, where B(n) =
Q min{A(n),n/logn}.
Vn(logn)®=3 L > D(n) (i) The T-D-E and D-T-E trade-off are given by

fo,0" \Jwew D(n) =6 (T(n), Ec(n) = O(D(n))
and Er(n) = 0O (A(n)°D(n)'~%), )
for Q(1/n) = T(n) = O (1/y/nlogn).
E(n) (i) The D-E-T and E-D-T trade-offs are given by (2) for
i Q(1/n) = T(n) = O ( /B(n)/n).
For Q (\/B(n)/n) =T(n) = O (1/v/nlogn), the D-
E-T and E-D-T trade-offs are degenerate and are given
by T(n) = © (\/B(n)/n), D(n) =6 (\/B(n)) and
E(n)=06 (\/B(n) .
(iii) The T-E-D and E-T-D trade-offs are given by (2) for
Q (\/B(n)/n) =T(n) =0 (1/y/nlogn).
For Q(1/n) = T(n) = O (w/B(n) /n), the T-E-D
and E-T-D trade-offs are degenerate and are given by
T(n) = © («/B(n)/n), D(n) = © («/B(n)) and
&) =0 (A(n)éB(n)%—é).
B(n) [ n_ Substituting A(n) = 1 in Theorem 1 yields the following
¢ result for the constant area network.

Corollary 1: For the random network with area A(n) = 1,
at any optimal trade-off point, D(n) = ©(H (n)). Further the

i : _ following statements hold.
Fig. 1. The D-E trade-off in a random wireless network. The scale of each ) o
axis is in terms of the order in n. Point P corresponds to ©(1) hops while (i) The T-D-E trade-off is given by

point Q corresponds to © (W) hops. D(n) = 6 (T(n) and E(n) =0 (D(n)).

(b) Constant density random network.

(c) Random network with area A(n).



for Q(1/n) = T(n) = O(1/ynlogn). In fact,
Er(n) = © (D)%) = o(Ec(n)) and Ec(n) =
e(D(n)).

(ii) The T-E-D, D-T-E and E-T-D trade-offs are identical to
the T-D-E trade-off.

(iii) The D-E-T and E-D-T trade-offs are degenerate with
D(n) =&(n) =06(1) and T'(n) = ©(1/n).

The D-E-T and E-D-T trade-offs are degenerate, since both
the lowest delay and lowest energy scaling come together
when using a constant number of hops as shown by point
P in Figure 1(a). The other trade-offs are identical because as
the amount of hopping increases, throughput increases but at
the cost of higher energy-per-bit and higher delay.

Substituting A(n) = n in Theorem 1 yields the following
result for the constant density network.

Corollary 2: For the constant density random network
model, at any optimal trade-off point, D(n) = ©(H(n)).
Further the following statements hold.

(i) The T-D-E trade-off is given by

D(n) =0 (nT(n))
E(n) =0 (n°D(n)' %),

for  Q(1/n) = T(n) = O(1/y/nlogn). In fact,
Ecn) = ©DMn) = ol&r(n)) and &Er(n) =
O (n’(D(n))'=29).

(ii) The D-T-E, D-E-T and E-D-T trade-offs are identical to

the T-D-E trade-off.

The T-E-D and E-T-D trade-offs are degenerate with

T(n) = © (1/y/nlogn), D(n) = © («/n/ logn) and

E(n)=0 (\/ﬁ(log n)‘;’%).

The T-E-D and E-T-D trade-offs are degenerate, since both
the highest throughput and the lowest energy-per-bit come
together when using maximal hopping. The other trade-offs
are identical because as the amount of hopping decreases,
delay decreases but at the cost of lower throughput and higher
energy-per-bit. This is clear from the T-D trade-off and the
D-E trade-off shown in Figure 1(b).

IV. A CELLULAR TDM SCHEME

In this section, we present Scheme II that achieves a trade-
off between throughput, delay and energy in a random network
of area A(n) with n nodes. We will show that the scaling
trade-off provided by this scheme is of the same order as that
claimed in Theorem 1. This will establish that the trade-off
claimed in Theorem 1 is achievable.

Scheme II is similar to Scheme 1 in [2], with modifications
to account for the Physical model. It is a multi-hop, time-
division-multiplexed (TDM), cellular scheme parameterized
by a(n), where a(n) = Q(ogn/n) and a(n) < 1. The
network area is divided into square cells, each of area b(n) =
a(n)A(n) so that the torus of area A(n) consists of 1/a(n)
cells as shown in Figure 2. The parameter a(n) is the fraction
of the total network area that each cell occupies.

Let the straight line joining a source, S, and a its destination,
D, be called an S-D line. Scheme II is described below.

and

(iii)

Cell of size b(n)

S-D lines

Fig. 2. The torus of area A(n) is divided into cells of area b(n) = a(n)A(n)
for Scheme 1. The S-D lines passing through the shaded cell in the center
are shown.

Scheme II

1) Divide the unit torus using a square grid into square
cells, each of area b(n) = a(n)A(n) (see Figure 2). The
packet size is © (1/n\/a(n)).

2) Verify whether the following conditions are satisfied for
the given realization of the random network.

« Condition 1: No cell is empty.
o Condition 2: The number of S-D lines through each

cell is at most cany/a(n).

3) If either of the above conditions is not satisfied then use
a time-division multiplexing (TDM) policy, where each
of the n/2 sources transmits directly to its destination
in a round-robin fashion.

4) Otherwise, i.e., if both conditions are satisfied, use the
following policy I1,,:

a) The cells are divided into k2 groups, where k
depends only on 4, 3, and N, and is independent of
n. Figure 4 illustrates this for the case of £ = 3. All
cells belonging to the same group become active
simultaneously and each group becomes active at a
regular interval of k2 time-slots. Thus the scheme
uses TDM between nearby cells.

b) A source S transmits data to its destination D by
hops along the adjacent cells lying on its S-D line
as shown in Figure 2.

¢) When a cell becomes active, it transmits a single
packet for each of the S-D lines passing through
it. This is again performed using a TDM scheme



that slots each cell time-slot into packet time-slots
as shown in Figure 3.

d) Each transmitting node transmits with power
P(n) = Pb(n)°, where P depends only on (3, §
and N and not on n.

Cell time-slots

» Time

Packet time-slots

Fig. 3.  The TDM transmission schedule of Scheme 1. Each cell becomes
active once in 1 + ¢; time-slots and each active time-slot is divided into
several packet-slots.

1 |2 3
4 5 6
7 8 9

Fig. 4. An illustration of the cells being divided into &2 groups for the case
of k = 3, i.e., 9 groups. All the shaded cells which are in group 1 transmit
in the same time-slot. In the next time-slot all the cells in group 2 transmit
and so on.

The point of trade-off at which Scheme II operates is
determined by the parameter a(n) and this dependence is made
precise in the following theorem.

Theorem 2: With a(n) = Q(logn/n), Scheme II has

1 1
T(n)=Q (m> , Dn)=6 <m> ,

Thus the trade-off achieved by this scheme is

D(n) =0 (nT(n)) and

E(n) = © (D(n) + A(n)’ D(n)'~2)

for Q(1/n)=T(n)=0 (1/\/n10gn) .

Proof: As shown in Lemma 1 of [4], no cell is empty
whp. Further, it follows from Lemma 3 in [4] that in our
setting, the number of S-D lines passing through each cell is
0 (n\ /a(n)) whp. This guarantees the existence of a constant
¢ S0 that Condition 2 is satisfied whp. Thus Conditions 1 and
2 are satisfied whp.

If the time-division policy with direct transmission is used,
then the throughput is 2W/n with a delay of 1. But since
it happens with a vanishingly low probability, the throughput
and delay for Scheme II are determined by that of policy I1,,.
Hence we will only consider policy II,, for the rest of the
proof.

First we will establish that for an appropriate choice of
k = k(8,6,N) and P = P(3,4,N), the SINR is greater
than 8 at each receiver as required by the Physical model.
This will be done by showing that the worst-case interference
power P;(n) at any receiver is bounded above by a constant
that decreases monotonically in k& and does not depend on n
for 6 > 1. It is easy to see that the placement of the receiver
and the transmitters as shown in Figure 5 results in the the
worst case interference at the receiver node. Let I,,,.(n) be
the total interference from all other transmitters when each
transmitter uses power Pb(n)°. This interference can be split
into 3 components (I1(n), I2(n) and Is(n)) based on the
positions of the interfering transmitters as shown in Figure 5,
so that

Imaw(n) < Il (TL) + Ig(n) + 4.]3(71) (3)

R B

)
T
1
1
L
|
1
|
T
|
1
|
|
I
1
|
|
T
|
1
t
|
1

Fig. 5.  The node marked T transmits to the node marked R in an adjacent
cell. The hollow nodes are the other nodes transmitting simultaneously.



Using m = 1/a(n) to denote the total number of cells, we
have,

Li(n) = 25
i=1 ((k:z —2) b(n))
Vm/2
P P P
< o
S ¥ Tak—n T ; (ki)?0
_ A
- (k—2)2  (2k—2)%
p [vm/2-1 95
+ —= xr “°dx
e
_ P P P
S -2 T eE—2® T @

for § > 1/2. Similarly for 6 > 1/2, we obtain

vm/2
IQ(n) _ Z Pb(n)5 -
N (CERN®D)
p P
S EEE L W

1 1
= P ((k+ 0% @25 1)1@) '

Using similar but tedious manipulations, which we do not
include here, it can be shown that for 6 > 1, I3(n) is less
than P times a decreasing function of k. Thus from (3) it
follows that I,,,...(n) = Pf(k) where f(k) is monotonically
decreasing in k. Thus in the worst case,

Pb(n)° (5b(n)) ">
N+ Inaz(n)
5—6

K+ flk)

Since f(k) decreases monotonically in k, we can choose &
and P depending on 3, § and N so that even in the worst
case, SINR > (3.

We can use this to analyze the throughput of the trade-
off scheme. When policy II,, is used, since Condition 1 is
satisfied, each cell has at least one node. This guarantees that
each source can send data to its destination by hops along
adjacent cells on its S-D line. In Scheme II, each cell becomes
active once in every k2 time-slots and moreover the rate at
each transmission is W according to the Physical model since
at each receiver, SINR > (3 as shown above. Hence the cell
throughput is ©(1). The total traffic through each cell is that
due to all the S-D lines passing through the cell, which is

0 (n\/a(n)) since Condition 2 is also satisfied. This shows

that
T(n) = (1/n\/m> .

Next we compute the average packet delay D(n). The delay
of a packet is the time it takes to reach its destination after

SINR >

leaving its source. This is equal to the sum of the amounts
of time spent at each hop and so we first bound the average
number of hops over all n/2 S-D pairs.

Since each hop covers a distance of 6)( b(n)), the

number of hops per packet for S-D pair i is © (di/\/b(n)),
where d; is the length of S-D line 4. Thus the number
of hops taken by a packet averaged over all S-D pairs is
() (% Zf:/f di/«/b(n)). Now the expectation of the average

distance between S-D pairs, E[2 Zf:/f d;] = Gg A(n))
0

n
and so the expectation of the average number hops is

0 (1/\/a(n)), since b(n) = a(n)A(n).

Recall that each cell is active once every k2 time-slots and
since Condition 2 is satisfied, each S-D line passing through a
cell can have its own packet time-slot within that cell’s time-
slot. Since we allow the packet size to scale in proportion to
the throughput T'(n), each packet arriving at a node in the cell
departs in the next active time-slot of the cell. Thus the delay is
at most k2 times the number of hops. Since k does not depend
on n, we conclude that the delay, D(n) = © (1/\/a(n)).

Now we can compute the energy-per-bit £(n) for this
scheme. Since the throughput is T'(n) and there are n/2 S-D
pairs, nT'(n)L/2 bits are communicated from the sources to
their destinations over a long enough period of L time-slots.
The total transmission energy spent in the network during this
time is that due to 1/k%a(n) cells in each time slot, which
is equal to Pb(n)?L/k?a(n). The total circuit energy spent is
proportional to the number of hops in the network, which is
L/k?a(n). Hence

E(n) = O(PAn)°a(n)’*/nT(n)+ 1/na(n)T(n))
= 0 (A(n)‘;a(n)‘sfl/2 + 1/\/a(n)) .
This concludes the proof of Theorem 2. [ ]

V. PROOF OF OPTIMALITY

In this section, we present a converse to Theorem 2 to show
that the trade-off provided by our trade-off scheme is indeed
the optimal trade-off as far as scaling is concerned. That is, we
show that no scheme can provide a better scaling trade-off than
the one achieved by the scheme presented in Section IV. This
is the content of Theorem 3 and this along with Theorem 2
proves Theorem 1 thus establishing the optimal scaling trade-
off between throughput, delay and energy.

To establish a converse, we need to show that if any scheme
has throughput T'(n) then its delay scaling is Q(nT(n)),
i.e., its delay scaling can be no better than that achieved by
Scheme IT in Section V. By the definitions of the performance
metrics, this means, we need to show that if any scheme has
throughput T'(n) whp over all realizations then its expected
delay over all realizations is Q(nT(n)). We also need to
show a similar relationship between delay and energy scaling.
Before doing this, we consider a fixed realization of a network
and determine how the throughput, delay and energy-per-bit
of any scheme depend on the average transmission range. The



analysis of the trade-off scheme in Section IV showed that the
transmission range of scheme determines the amount of hops
used by S-D pairs and this in turn determines the throughput,
delay and energy-per-bit. The following lemma shows that
the transmission range of a scheme puts a bound on its
performance and that our trade-off scheme uses multi-hopping
in the best possible way, as far was scaling is concerned.
Lemma 1: Consider any realization of the random network
with 2n nodes in area A(n). Let d; be the distance between
S-D pair i,1 < i < nandlet L = 237" d; With any
scheme for this realization, let the throughput be ), the average
transmission range be 7, the average number of hops per bit
be h and the average energy-per-bit be £. Then the following
hold:
@ h>L/r
(b) A < czA(n)h/ (nL?),
(€) € > BL*h' 2 + ¢oh.

Proof: (a) Consider any realization of the random
network with 2n nodes. Suppose that a scheme provides
throughput A for this realization. Then given a sufficiently
long time interval 7', each source communicates A7 bits to its
destination. The total number of bits is B = AnT since there
are n S-D pairs. The most general scheme can transmit bits
via multiple hops and paths in the network. Suppose that bit
b,1 < b < B, is communicated to its destination by H; hops
and let »(b,h),1 < b < B,1 < h < H, be the length of hop
h of bit b. Thus r(b, h) is the transmission range at hop h of
bit b.

First note that the average number of hops,

1 &
:EZHba (4)
b=1

and the average transmission range for the scheme is
B H,

S

Zb 1be 1 h=1

Recall that the distance between the source and destination
of S-D pair i,1 < i < n, is d;. Since each bit belonging to
S-D pair ¢ has to travel at least distance d;, it follows that

r(b, h). (5)

B H,
)\TZd <N (o h). (6)
b=1 h=1
Starting from (4), we obtain the following.
_ 1 E
=T ; B

n

B
- )\nTZZ L d; nzzdzz_:Hb

Zb 1 He
Zb L oty (b, h)

where inequality (a) is due to (6) and (b) is by the definitions
of 7 and L.

(b) The proof of this part of the lemma is essentially the
same as that of Theorem 2 in [2] which uses the Protocol
model and follows from the equivalence between the Physical
model and the Protocol model as shown in [6].

Let the position of node 7 be denoted by X; and let | X; — X |
denote the distance between nodes ¢ and ;5. Then as shown in
the proof of Theorem 2.1 of [6], the Physical model implies
that if node ¢ is transmitting to node j, and & is any other
simultaneously transmitting node then

[ Xe — X;| > (14 A)1X; — X1,
1
where A = (% * o
As a result of this equivalence with the Protocol model, as
shown in [6], in every time-slot ¢

Z (b, h)? < c3A(n),
(b,h)ET,
where T'; is the set of (b, h) pairs such that hop h of bit b
occurs in time-slot ¢ and c3 is a constant that depends only on
W. This is based on the idea that each transmission consumes
an area proportional to the square of the range of transmission
and the total area is A(n). Summing over all T' time-slots, we

obtain
B H,

h)? < c3A(n)T. 7
b=1 h=1
By convexity,
B H,

< Y > (b, h)?

Zb VHy 2o
Combining the above two equations and rearranging, we

obtain
Z Hy <
Substituting from (5) into (6) and using (8), we obtain

ATy d; < esA)T

72
i=1

63/4 (8)

r

This can be rewritten as

(i %)

Now using part (a) of the lemma, we obtain

/\nI/<M
— L b

CgA )

which proves part (b) of the lemma.

(c) Consider hop h of bit b and let P(b,h) be the power
used for this transmission. Suppose this transmission occurs
in time-slot ¢. Then as per the Protocol model

P(b, h)r(b, h)~20
N+ 3 per, PO, 5)r(i, j) =2

> p.



Thus by ignoring the interference, we obtain
P(b,h) > BNr(b,h)?.

Therefore the average transmission energy-per-bit over time
T!

B 1 B
&r = 3 ; }; P(b,h)
5 1 B H,
> Zb_é Zle m ; hz::l P(b,h)
(g) 7157725
(i) ﬁ[_/%ﬁl_%, (9)

where inequality (a) is due to convexity and inequality (b) is
due to part (a) of the lemma.

As per our energy model, each hop consumes a constant
amount of energy, co and hence the average circuit energy,
Ec = coh. As a result, the average energy-per-bit

E=Er+E > BLPR' % + ¢oh,

which proves part (c) of the lemma. ]

We would like to note that (9) in the proof of part (c)
of the above lemma is a natural extension of the minimum
transmission energy-per-bit for an AWGN channel to the case
of a network with multiple hops. For the AWGN channel with
noise power N, the rate when using power P to communicate
over a distance r is 3 log (1 -+ Pr=2°/N), which implies that
the minimum transmission energy-per-bit is Nr2°/2. In our
case, if we ignore the interference due to other simultaneous
transmissions, the minimum energy-per-bit for a single trans-
mission over distance r would be 3N72 /W, which is the
same as that for the AWGN channel except for the constant
B/W. Thus the above lemma lower bounds the minimum
energy-per-bit in the case of a network by taking into account
multiple hops and ignoring the effect of interference due to
other simultaneous transmissions. Ignoring interference does
not hurt in determining the correct scaling, as long as it does
not dominate the noise NV and this is what our trade-off scheme
does.

Using the above lemma, we prove the converse to Theo-
rem 2 for the cases of the T-D-E and D-T-E trade-offs. This
converse establishes that no scheme can provide a better T-D-E
or D-T-E scaling trade-off than that provided by our trade-off
scheme.

Theorem 3: In a random network with area A(n), if a
communication scheme has has throughput, T'(n), delay, D(n)
and energy-per-bit, £(n) then

D(n) =Q(nT(n))
and if the scheme has D(n) = ©(nT'(n)) then
E(n)=Q(D(n) + A(n)‘SD(n)l_%) .

and

Proof: From part (b) of Lemma 1, we have

< CSA{H)B.
-~ nlL?

(10)

Combining this with the obvious fact that A < W, we obtain

An < mm{c#}/(;l)h’ nW} .

(11)

By the law of large numbers, L = © («/A(n)) whp.
Moreover the rate of convergence is exponential in n. Let B,,
be the set such that L = ©(1) and let I(B,,) be the indicator
of set B,,. Then from (11), we have

5 [C3A(n)h

nE[\]

IN

12

I(Bn)] + E[nWI(Bg)]

< ¢ E[h] + o(1), (12)
where the last term is o(1) since P(B¢) converges to 0
exponentially.

By definition, if a scheme has throughput T'(n) then there
exists a set F,, on which A > T'(n) and P(F,,) converges to
1. Therefore we have

EN = EN(F)]+ EN(FY)]
> T(n)(1 - o(1). (13)

From (12) and (13), it follows that nT'(n)(1 — o(1)) <
c4E[h] + o(1), which is the same as E[h] = Q(nT'(n)). Now
each packet spends at least one time-slot at each hop and hence
the delay of each packet is at least as much as the number of
hops it takes. As a result, if D(n) is the delay of the scheme
under consideration then by definition, D(n) > E[h] = H(n).
Thus we have shown that for any scheme,

D(n) = Q(H(n)) = Q(nT (n)). (14)

This establishes the desired relationship between throughput
and delay. Next we deal with energy-per-bit. Taking expecta-
tion on both sides of part (c) of Lemma 1, we obtain

E[¢]
BE [L*h'~%] + coE [h]
= E[L*h'"™] +coH(n).

E(n)

Y]

(15)

Now L = © (\/A(n)) whp and moreover the rate of
convergence in the law of large numbers is exponential in
n. Let A be the event that L = © (\/A(n)) then

E[R'™*] = B[R~ |A]P(A) + E[[A'"*|A|(1 - P(A)).
(16)
Now A'~2% is a polynomial in n and since 1 — P(A) decays
exponentially fast to 0, it follows that

E [R'7%] = E [A72°|A] P(A)(1 - o(1)).



Using the above, we obtain
E [E%}_Ll_%} > E [E2651_26|A] P(A)
> ¢, A(n)°E [h' 72| A] P(A)
= cAn)°E [A'7] (1 - o(1))
(1—o(1))
= c1A(n) H(n)' " (1 - o(1)),
where inequality (a) is due to Jensen’s inequality.
Using the above equation, (15) can be rewritten as
En) =Q(An)°H(n)' "2 + H(n)).

Now assume that the optimal trade-off between throughput
and delay is achieved by a scheme, i.e., D(n) = O(nT(n)).
Then it follows from (14) that D(n) = ©(H (n)). As a result,
we have

1—
1-26 1

Y cAmy B[]

En)=9Q (A(n)‘;D(n)l_25 + D(n)) .

[ |

The above converse shows that the trade-off obtained by
Scheme II in Section IV is optimal in terms of scaling and
this establishes the optimal T-D-E and D-T-E trade-offs for
the random network. This also proves part (i) of Theorem 1.
Converses for the remaining two parts can be proved similarly.
The additional variable B(n) arises in Theorem 1 because, to
ensure connectivity in the network, the number of hops must

be O (m)

V1. CONCLUSION

Using a random network model to study large, ad hoc
wireless networks, previous work established the optimal
throughput-delay trade-off. The optimal number of hops to
minimize energy consumption for a given placement of nodes
has been studied in a separate body of work. In this paper,
we used a random network model to unify these results by
establishing the optimal trade-offs between throughput, delay
and energy-per-bit. In so doing, we also determined the amount
of hopping needed to operate at an optimal point of the trade-
off between these performance metrics. We also showed that
at any optimal trade-off point, delay scales as the number
of hops and the amount of hopping determines the trade-
off point at which the network operates depending on the
node density. This is a consequence of the interference-limited
nature of communication, due to which the amount of hopping
determines the optimal power to use for transmissions.

Maximum hopping is required for the highest throughput
but results in the worst delay. Whether it is energy efficient
or not depends on the network node density. Hopping is
expensive in terms of energy in a constant area network with
node density n and the minimum energy-per-bit is obtained
using ©(1) hops. On the other hand, in a constant density
network, hopping is necessary for energy efficiency. But even
with maximum hopping that provides the highest energy
efficiency, the energy-per-bit increases as the network grows
in size.

Our results suggest some general guidelines for building ad
hoc wireless networks.

1) In high density networks consisting of low data-rate
nodes, where the main concerns are energy and delay,
our results suggest the use of minimal hopping. This also
saves the energy and delay overheads of implementing
complex multi-hopping protocols.

2) In high density networks consisting of high data-rate
nodes with limited energy, maximum hopping is needed
to accommodate the high throughput requirement. As
our results show, this requires the nodes to operate at
far from minimum energy consumption in addition to
the overhead of high protocol complexity. In this case
it may be necessary to have an infrastructure of relay
nodes with unconstrained access to energy.

3) In applications where the network extends over a large
geographical area, in spite of maximal hopping be-
ing optimal, energy efficiency can be low. Again this
problem can be mitigated by adding wired or wireless
infrastructure.

4) We showed that a cellular, TDM network architecture
with equal node transmission powers determined by
the cell size achieves the optimal scaling. Such an
architecture is attractive due to its simplicity.

Finally, we note that the results in this paper used a “fluid”
model, which means that the size of packets is allowed to be
arbitrarily small. Scheme IIT presented in Section IV required
the fluid nature of packets in order to achieve the optimal trade-
off since the size of packets scaled down with n. The fluid
model was used to avoid the problem of scheduling packets in
the network. However, from recent work in [5], it is clear that
these results hold even if the size of packets is kept constant.
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