On Heterogeneous Overlay Construction and Random
Node Selection in Unstructured P2P Networks

Vivek Vishnumurthy and Paul Francis
Department of Computer Science, Cornell University
{vivi, francis}@cs.cornell.edu

Abstract— Unstructured p2p and overlay network applications unstructured P2P applications have been so successful, and be-

often require that a random graph be constructed, and that some cause our applications are well-suited to unstructured gtaphs
form of random node selection take place over that graph. A key In this paper, we make two broad contributions: (i) We

and difficult requirement of many such applications is hetero- desi het h buildi d d d
geneity: peers have different node degrees in the random graph esign heterogeneous graph bullding and random node Se-

based on their capacity. Using simulations, this paper compares lection algorithms that are practical to deploy and that are
a number of techniques—some novel and some variations on functional over a wide range of requirements. Towards that
known approaches—.for heterogeneous graph construction. and end, we explore a number of fundamental approaches, in-
random node selection on top of such graphs. Our focus is on cluding variations on existing approaches as well as new

practical criteria that can lead to a genuinely deployable toolkit h i Usi imulati id broad
that supports a wide range of applications. These criteria include approaches. (i) Using simulations, we provide a broad com-

simplicity of operation, support for node heterogeneity, quality Parison of the various approaches. In so doing, we identify
of random selection, efficiency and scalability, load balance, and our novel technique, called SwapLinks, as the most attractive
robustness. We show that all these criteria can more-or-less graph construction mechanism from a practical point of view.
be met by all the approaches. Our novel approach, however, Te simulation results provide a basic understanding of the

stands out as the best from a practical perspective because of its h that licati that h . t i
simplicity: it achieves the criteria while requiring each node to approaches, so that applications that have requirements no

set only a single tuning parameter, its desired relative load. satisfied by these approaches may nevertheless gain from this
knowledge.
I. INTRODUCTION A. Motivation and Requirements

Many unstructured P2P and overlay networks are based orf N€ central goal of this work is to use random walks to
random graphs of one sort or another. P2P applications uspild unstructured graphs, and to do random node selection
such graphs often require that nodes randomly select otR¥ET those graphs, with control over both the load placed on

nodes. In this paper, we study variants of existing methods & node, and the number of times each node is selected.

well as new methods to satisfy both these requirements, i0r instance, all nodes should carry roughly the same load,

building a random graph, and doing random node selectigd Should be selected roughly the same number of times,
within the graph. Furthermore, we adapt these methods n‘toumform load balance is desired. On the other hand, in

ensure they accommodate the widely prevalent heterogenéﬂ‘iny cases certain nodes have more capacity or higher access
7

in node capacities in p2p networks. ink bandwidth than other nodes; here one may wish for the

This paper is motivated by the fact that we (the author@‘"‘d |mposed on each node (a_nd the number of times the
wished to build several new unstructured P2P applicatior%c,’de IS ;electgd) to .be proportional to the cqpacﬂy of the
e.g., overlay multicast and proximity addressing, that requi de. This desire for t_|ght control over load manifests itself in
the construction of graphs with heterogeneous node degr eral ways. These include the number of messages a node

and random node selection on top of these graphs. We deci ddlzs, and the nurr]nber 0:; links the node o?talns ("e'l’ the
that it would be preferable to build a single toolkit for graplﬁ‘0 e degree). Note t a_t we do not assume per ect contro over
construction and random selection. and use it for all tﬁgad, or the number of times a node is selected: after all there is

projects. Indeed, we feel that such a toolkit could potential significant random component in the algorithms and graphs.

serve other P2P applications as well. When we searched ther, we expect statistical control, along the lines of what

literature, however, we could not find a complete solutioWOUId be possible with true random selection.

that satisfied our requirements. Since existing approache_'g:o.ntrOI over node degree is m_portant fqr several reasons.
were studied in very different contexts, there was also I%ne is that we assume that there is a certain cost to maintain-

apples-to-apples comparison of them. We also wanted to avlid @ link—for instance in the periodic keep-alive messages

structured (DHT) approaches, in spite of the fact that they cHﬁeﬁ' tof deterr]mineh it a n?ighpor ?odde s Stw acti\(/je. Anothgr
potentially be adapted to be used for heterogeneous overfay'® .act that the app ication load on .t € node may be
roportional or otherwise closely related to its node degree. An

construction(e.g., [1]) and random selection. This is becau¥

IHaving said that, our intent is certainly to follow this work up with a
*This work is supported in part by National Science Foundation grant ANs$olid comparison of our best unstructured approach, called SwapLinks, and a
0338750, and DARPA project FA8750-04-2-0011. DHT-based approach.

example of such an application is file search in unstructurédy and node selection mechanism are: scalability, simplicity,
file sharing networks like Gnutella, or the closely relatetbbustness, selection independence, control over node selec-
Gia [2]. Accordingly, the authors of [2] propose that nod&on probability, control over node degree, and control over
degree be related to capacity, in order to not stress lomessage load. A mechanism satisfying these properties can
capacity nodes. then serve as a foundation for numerous unstructured P2P
Once a graph is built, with control over load and nodapplications.
degree, we also require similar control over the walks takenThe rest of the paper is organized as follows. Section I
on the graph. Here, we want control over the probability thdescribes related work. Section Il describes how joining nodes
a node will bevisited and selectedin random walks. A node get to know of already existing nodes in the graph. Sections IV
is selected when a random walk ends at that node. A nodeaisd V describe the four basic approaches for both building
visited when a random walk traverses that node during a watitaphs and walking them. Section VI presents detailed results
Control over visits is important for two reasons. First, nodesf simulations used to evaluate the performance of the four
experience load every time a node visits them. If we wislipproaches. Section VII concludes and outlines next steps.
to have control over load, then we correspondingly need to
have control over how often nodes are visited. Second, some
applications execute application functionality every time a Gia [2] is an unstructured file sharing system that uses
node is visited during a walk. For instance, in many fileandom walks rather than flooding to make file searching
search algorithms (e.g., [3], [4], [2], [5]), each node visitechore efficient and scalable. It does this by making high
is searched for the desired key words. Note that much of tliapacity nodes more “responsible” than low capacity nodes,
effect can be obtained by establishing the appropriate ndaeth by giving high capacity nodes higher degrees and more
degree in the graph. information to store, and by routing more search queries to
A number of applications require random node selectidhem. Gia does not give direct control over degree or load,
as a way of configuring application-specific topologies. Thand indeed [2] does not indicate how much load each node
selection should follow a uniform probability distribution.gets, and only gives very limited data on node degree. As such,
Examples of these include overlay multicast or file distributio@ia is tailored to the file sharing application and its random
applications [6], [7], [8], file sharing applications [4], [2],walks cannot be used as a general purpose graph building
and “proximity addressing” applications [9]. (The latter is aor node selection mechanism. Our approaches, on the other
application where nodes form addresses that can be usedhaod, while being simple, provide an amount of control that
indicate how close nodes are to each other in the network.)@a does not currently have. While it is clear that Gia requires
all these scenarios, the desired selection can be achievedrigyre functionality than our approaches provide (flow control,
using random walks with appropriate control over the nodésr instance), it may well benefit from this work.
selected. SCAMP [10] uses random walks to build graphs suitable for
Note that some applications(e.g., overlay multicast applicgessiping. An interesting goal of SCAMP is to build graphs
tions like Yoid [6]) use two separate graphs: one for normathere the average node degree is proportional to the log of
operation (e.g., the multicast graph), and the other a randtime number of nodes While the ability to tie node degree to
graph of the kind we discuss in this paper. The first graph gsaph size is a desirable property for some applications, we
built keeping constraints like network proximity in mind, andvant more control over node degree than SCAMP allows and
thus is not completely random, and therefore not as robust asoado not find it useful (though we do simulate it as a point
random graph. Maintaining the second (random) graph malafscomparison).
the application more robust to partition, while also giving the Bullet multicast [7] uses a random selection mechanism
application the ability to select random nodes in the graph.called RanSub [11]. RanSub operates in waves of network-
In addition to having good control over degree, loadyide coordinated phases, where in each phase lists of random
etc., our algorithms need also to be scalable and robustniodes are distributed through the network. Here, the nodes
churn: this is a natural requirement for any p2p system. Aielarned by a given node at a given time are not independent
finally, a key requirement that permeates all of our work isf the nodes learned by another node at the same time. The
that of simplicity. This requirement goes beyond the basfhases must be run multiple times if different nodes are to
notion that, all other things being equal, simple is better thatimately select different sets of other nodes. This approach
complex. We believe that algorithmic simplicity is central talso lacks flexibility: even if a node does not need to select
achieving scalability. Our intuition is that, as networks growgther nodes, it must anyway continue to learn of other nodes.
more complex algorithms will exhibit more failure modes anédn approach where any given node, at any time of its own
ultimately limit scalability even where the basic algorithmshoosing, can discover one or more random nodes without
scale according to traditional measures such as memory dmudening other nodes too much, is preferable.
message overhead. Indeed we would be willing to pay a smallAraneola [12] builds almost regular graphs that could poten-
penalty, say in the precision of load control, if we can gaitially be used for random selection. But [12] does not discuss
significant simplifications in doing so. the case of heterogeneity, and makes the assumption that the
To summarize, our requirements for a random graph buildxisting nodes contacted by newly joining nodes are uniformly

Il. RELATED WORK

. Biased Random Walks on Unstructured Networks
picked; this might not be the case in practice. Araneola a

needs to run .constant background .protocols like gossip Bicsed Forwaiding Biessd Halting
membership views, exchange of neighbor degrees, etc., (Fixed Length) (Variable Length)
we would like to avoid this kind of complexity if we can.

Law and Siu [13] give a distributed mechanism to CONSIL ygignnor Node degree Link Weights Sdiective Link
regular random graphs, but the scheme does not handle @inkmeobToainerob) - (terdiveseing Fol|owing Scamp Seffloops
erogeneity and is vulnerable to unexpected node departu Sty "

Our SwapLinks approach builds on the spirit of this approa Fig. 1. Classification of Biased Random Walks.
to handle churn and accommodate heterogeneity.

Two random walk approaches that we closely study in tt
paper are SelfLoops [14] and Iterative Scaling [15]. The unless the graph has perfectly uniform node degrees, the
methods are not suitable to use, as is, for graph construc random walk must somehow be biased against high degree
or to accommodate heterogeneity. In section IV, we disctnodes.
how we extend these techniques to adapt them to our sett While this is true both for walks used for the purpose of
selecting nodes to build the grapbu{ld walkg, and for walks
used for other node selectiosglection walkl the problem

Any new node that wants to join the graph needs to knol¢/ more severe for build walks. This is because any favoring
at least one already existing member in the graph. Whitg high-degree nodes by build walks will compound itself as
our algorithms work with any scheme that helps new nodése network grows. If a node obtains a slightly higher than
discover existing nodes, a practical and simple approach wgerage node degree, the subsequent joining nodes will select
envision for this purpose is to establish a rendezvous nodeitahore often and choose it as their neighbor, thus giving it an
a well known location (a DNS name or IP address). Joining/en higher node degree, thus making it a target for yet more
nodes first contact the rendezvous node, which tells thefgighbors. Indeed, it is not enough for build walks to simply
of previously joined nodes. The rendezvous node could telkgate the effect of node degree, so that selection is uniform.
joining nodes about the same small set of joined nodes, biie reason for this is that early joining nodes participate in
this puts an undue load on those joined nodes. The rendezvgiisie “selection trials"— they get more chances to be selected
node could remember all joining nodes, and tell the joinings neighbors by joining nodes than do later nodes. Therefore,
node of some small random subset, but this puts an und#gre must be additional bias or mechanisms to ensure high
burden on the rendezvous node. degree nodes do not keep collecting more links.

Therefore, we assume a very light-weight approach wherebyn addition to the above, our requirement of heterogeneous
the rendezvous node remembers a small set (of about 10)hgfe capacities requires random graphs where higher capacity
the most recently joined nodes. New nodes enter the netweigdes have proportionally higher node degrees than lower
by contacting some (or all) of these nodes. This approaghpacity nodes. Further we require that walks visit and select
effectively spreads the load of node discovery. Note, howev@gdes in proportion to their capacities.
that even this approach requires caution, because witfive na our basic approach to building graphs is for each node
graph-building scheme, this approach can lead to “long-thiR”in the graph to establish a fixed number of links;,
(high diameter) networks. Nevertheless, in the remainder @fjied outlinks with randomly selected nodes in the griph
this paper, we assume this style of node discovery. Thfg achieve heterogeneity, high-capacity nodes establish more
discovery mechanism can be made more robust by haviggtlinks than low-capacity nodes. For instance, if the lowest
the rendezvous node remember an additional small set @hacity node establishes 5 outlinks, a node with twice that
stable random nodes known to be up with high probability: th@pacity will establish 10 outlinks. Our construction must
rendezvous node discovers such nodes using selection walksrefore lead to nodes obtaining roughly as many inlinks as
The results presented in this paper however do not assumei, have outlinks (within random variations). We refer to this
more robust scheme. as theexpected node degres expected indegree

Note that the rendezvous node can be replicated, and onghere are two fundamental approaches to counteract the
can be selected by the joining node using DNS or even gfiects of early joiners obtaining more inlinks, and the
Internet Protocol (IP) form of delivery called IP anycast [16]5e|f_reinforcing trend of high-indegree nodes becoming even
In this case, however, the rendezvous nodes must take Carﬁi&?]er-indegree nodds One approach is to simply endow
keep each other informed of the initial joining nodes so as {Q;ild walks with an even stronger bias against high-indegree
avoid a graph partition in the early stages of its formation. yoges so that most nodes never get high indegrees. There are
several ways to do this, which are shown in the taxonomy of

IIl. I NITIAL NODE DISCOVERY

IV. ALGORITHMS FOR GRAPH CONSTRUCTION

A truly random walk, whereby each node selects uniformly 2we make only a logical distinction between outlinks and inlinks, for
randomly among its neighbors, will select high degree nodesitrol over degree distribution. In particular, message flow can occur in either
proportionally more often than low degree nodes simpffection overany link.

. . 3In general, when we say “high indegree”, we mean “higher-than-expected
because more links lead to those high degree nodes. Therefg@grgeen_ Yy 9 9 P

Figure 1. The other approach is to actively manage each nodaased-halting walks tend to unfairly load high-degree nodes,
indegrees, so that nodes explicitly shed inlinks when they dmtcause a large number of walks tend to be forwarded to high-
too many. The basic mechanism, which we c@&lapLinks degree nodes, only to continue on with high probability.

is for nodes with high indegrees to move an inlink to nodes

with low indegrees. We next describe the taxonomy of th§ SelfLoops (SL)

biased walk approaches, and then go on to describe each of))))

the biased walk approaches we study in this paper. Finally weBiased-halting approaches are ideal in settings where the
discuss the SwapLinks approach in Section IV-E. graph is not under one’s control, and the cost of calculating
Taxonomy of Biased walks: weightings is high. Indeed, the biased-halting approach we
In our biased walk approaches, the basic graph builditge iS based on work by Bar-Yossef et al [14], who used it
mechanism is for a joining nodeto establish and maintain {0 Select web pages with uniform probability. Their approach,
a constant number of outlink&; with nodes discovered by Which we callSelfLoopsis elegant and intuitively appealing.
taking &; random build walks. If an outlink is lost, for instancel he basic idea is to emulate a graph with perfectly uniform
because the neighbor crashes or leaves the network, the nioée degrees by adding virtual links to oneself (i.e. self loops!)
reestablishes the outlink by taking another biased random whR' €xample, say that the target uniform node degree (the
and adding an outlink to the discovered neighbor. virtual degree) is 100. A node with 90 real links would add 10

Note that in all our biased walk approaches, a node nevditual links to itself. A node with 25 real links would add 75
has the option of refusing a request to create an inlink. OM&tual links to itself. Subsequently during a walk, each *link”
could easily imagine a scheme where we could do this, fisr selected with equal probability, and the virtual walks are of
instance by not terminating a build walk at a node if itsfixed length”, though the real walks are not. In practice, for
indegree-to-outdegree ratio is above some constant. We chgaéorm selection, the virtual degree is set to a large constant
not to consider such approaches in part because the bias teHd@ach node, and the value used for the virtual hop length can
to prevent the need for this, and in part because we wantedP® Set such that the average real hop length is as needed.
keep our approaches simple so that we could better understanfihe Bar-Yossef approach, as defined, does not support
their fundamental characteristics. heterogeneity or provide the needed bias for build walks. We

Note also that any given random walk may fail, for instang@odify the Bar-Yossef approach as follows to make it useful
because of packet loss or sudden node failure. In this pagBrour setting. For selection walks, the virtual degree of each
we assume that any node initiating a walk will repeat it if ifode is made directly proportional to its outdegree. For build
does not succeed within some short time. walks, the virtual degree is directly proportional to the square

Looking at the taxonomy in Figure 1, we see that there afé the outdegree and inversely proportional to the indegree
two fundamental ways to bias a walk, which we call biased%%-) (see Table I). To see how this leads to the desired degree
halting and biased-forwarding. In biased-halting, the next hejstribution, we first need to introduce the idearefreshes
at a node is picked uniformly at random from among all of th& refresh is where a node discards one of its outlinks and
links at the node — there is no weighting in this regard. Insteaghooses another (also see Section IV-D). Assuming a graph
the walk is ended at each node with a random probability thahere all nodes have performed a large number of these
is weighted inversely to the degree of the node. The resultrgfreshes, and have reached a stable degree distribution, let
that the length of each walk is variable, though the averagé examine the change in indegree of nadehen a node
length can be fixed. We discuss tBelfLoopsstyle of biased- chosen uniformly at random from the entire graph performs
halting walk in section IV-A. SCAMP, discussed in section lla refresh. Since the steady state has been reached, the net
also uses biased halting walks to find neighbors for newgpange in the expected indegree iotlue to the refresh is
entering nodes (not discussed further). zero. Nodei loses an inlink if the discarded link happened to

In biased-forwarding, the selection of the next hop in thee its inlink, so the probability thatloses an inlink because of
walk is weighted against high degree nodes. In these walkgg refresh is given by indeg(i), wherec is a constant. The
the number of hops is set at a fixed constahtwhich must probability that; gains an inlink because of the refresh is given
be long enough to allow the walk tmix into the network — by c’%. Thus we getndeg(i) = ¢ - outdeg(i), where
a constant times the diameter of the netwlorkhe biased- the constant of proportionality is of course 1. We show later
forwarding walks we study arénlinkinvProb, TotallnvProh through simulations that the linear dependence of indegree on
and Iterative Scaling discussed in sections IV-B — IV-C. outdegree is achieved even without refreshes.

There are trade-offs between the biased-halting and biasedwith this modification though, it gets much harder to esti-
forwarding approaches. On the one hand, biased-forwardimgite the virtual hop length to use to achieve a desired average
requires nodes to exchange state about their neighbors—tigifi hop-length during graph construction. A conservative
node degree or a more general weighting. Biased-haltingtion is to use a large enough value, but this results in a larger
requires no special knowledge of neighbors. On the other haaderage hop-length. In our experiments, we use trial and error

to estimate the virtual hop-length. This lack of tight control
4Given that the diameter grows slowly with the size of the graph, ané) b 9 9

given the range of network sizes and node degrees this paper examinesp\nethe average hop-length is a drawback of the SelfLoops
can simply pick a conservative value liké = 10. approach.

Name Link Weighting
A =

employ the IS scheme in a graph setting, each node assigns

SwapL\nks(_SW)- wiy m if N €In-nbrs(A) : . | R i .
NormalOutink ‘ outgoing and incoming weights to each of its links, where the
Swaplinks(SW)y = ooy f N €Outnbrs(a) outgoing weight of a link corresponds to the probability that
mininerone) i o 22Ldea) S Nenbmay el = 1 the !mk |s.p|ckeq during a random walk from ,the node,' and
ren() the incoming weight corresponds to the node’s perception of
A outaeg A _ ™ = . .
TORIVPIODTIY Wiy X Fotaldeg(N) UNENbrs(A)WN = the probability that it is picked during a random walk from
SelfLoops(SL)- | wif oc sk virt — deg(4) x outdeg(A) the other end of the link.
Selection o 7
2 Nodes periodically normalize their weights by scaling their
SelfLoops(SL) | wh o ———L —— wirt — deg(A) o 2utdeg(A)7 -) .
Build N 7 virt—deg(4) indeg(A) incoming (outgoing) weights so that the incoming (outgoing)
teratve Sywy =1 By (outdeg() wiy = weights add to 1, and exchange weights through updates: when
- outdeg
Selection node A receives a weight update from neighbor B for the link
teave Sywd =1 SR %) - A-B (dengtedl), A would setwt? (1) = wtZ (1) and vice-
caling - 1 H 1 1
Build outdeg(a)? versa. ot (1) Qenotes fche incoming weight a§S|gned by A t.o
indeg(A) link). The weight scalings and updates are intended to bring
TABLE | the system to a state where at every node both the incoming
SUMMARY OF THE DIFFERENT WALK STRATEGIES FSR A WALK AT and outgoing We|ghts add to 1 each7 SO a Sufficient|y |ong
NODE A; NODE IV IS A NEIGHBOR OF A, AND wj; IS THE random walk is equally likely to end at any node.
PROBABILITY THAT A WALK AT A IS FORWARDED TON.. To accommodate heterogeneity and the different biases for
virt — deg DENOTES THE VIRTUAL DEGREE build and select walks, we modify the IS approach similarly

to how we modified the Bar-Yossef approach. When used

Note that one of the problems with biased-halting walki®r selection, the ideal probability that a node is selected is
is that any given walk can be quite short. For instance, if thEoportional to its outdegree. When used for building, the ideal
walk length is set to terminate after an average of 10 hops, theaiue is directly proportional to the square of the outdegree and
there is a very small chance that a walk will end at one hopjraversely proportional to its indegree. So, when weight updates
bigger chance the walk will end within two hops, and so omre performed at a node A, the incoming weight for each link
Such short walks clearly do not mix well, so we experimented-B is scaled by the estimated probability of a walk reaching
with a hybrid approach where if the expected walk lengtB (which isk - outdeg(B) for selections an@.% for
was h hops, the walk could not terminate withfr/2 hops. graph build) before the normalization is performed.
For the firsth/2 hops, we use one of the biased-forwardin]]
walks described below (specifically the TotallnvProb walk%- Some Issues with Biased Walk Approaches
and for the later half we use SelfLoops. We call this hybrid Exchanging neighbor information: Given that the biased-

TotallnvProb-SelfLoops (Hyb-TIP-SL). forwarding schemes require nodes to have knowledge about
. their neighbors—explicit with inverse probability (IP), implicit
B. The Inverse-Probability walks with iterative scaling (IS)-we must address the question of

In this style of biased-forwarding walks, the probabilithow this knowledge is obtained. At one extreme, with IS we
of forwarding a walk to a node is directly proportionakould run the distributed computation to steady state every
to the outdegree of the node and inversely proportional time there is a link change somewhere. This is obviously not
either its indegreelilinkinvProb, or IP) or the total degree practical, as links may come and go at a rapid rate, and not
(TotallnvProh or TIP). IP produces a stronger bias, and igeally necessary either because in any event the effect of a link
used for build walks, while TIP is used for selection walks.change diminishes rapidly with distance from the link. With

Note that one could invent any number of inverse weightingB or IS we could have each node send a message to all of
derived from neighbor node degree (square of the degrés,neighbors every time it experiences a link change. This is
square root of the degree, etc.). Though we did explore thedl somewhat heavyweight, but certainly reasonable. A third
variations, we found the above approaches (IP and TIP) to &egproach is to simply piggyback the neighbor information on
adequate for our purposes, and therefore do not report anyotiier messages. This will result in less accuracy, but is simpler

the other variations in this paper. and more efficient.
]) Note that it may or may not be possible to piggyback all
C. lterative Scaling (IS) neighbor information on the periodic keep-alive messages used

In this next style of biased-forwarding walk, an iterativddy nodes to determine if neighbors are still up. The reason
distributed computation is executed across all nodes, allowiiggthat, for high-degree nodes (or for nodes that belong to a
the nodes to assign weights to all links. The computatiolarge number of low-degree graphs), it is easy to imagine an
called Iterative Scaling(IS), is based on a technique used toptimization whereby only a few of a node’s many neighbors
derive the elements of a matrix when the row and column sumobe for liveness. These few neighbors would then tell the
are known [15]. SCAMP applied this technique to randomemaining neighbors if the node went down. In this case, the
walks as a means of randomly selecting an “introducer” nod@de obviously cannot convey periodic information to most of
that helps a newly entering node join the network [17]. Tits neighbors.

Graph refreshes: As described above, build walks have OnlylnLinks: This is one type of random walk that is
a stronger bias in order to counteract the effect of earbssentially a biased-forwarding walk, but in fact requires no
joining nodes having more opportunities to obtain neighborsnowledge about the neighbors. In this fixed-length walk, each
One of the effects of this bias is that joining nodes haverade chooses uniformly randomly among its inlinks only.
higher probability of attaching to more recently joined nodebhe idea here is that when the indegrees of nodes are close
than old nodes, thus removing some of the randomness frtanthe outdegrees, walking only inlinks results in selection
the graph. And, in spite of the bias, older nodes inevitabhpughly proportional to each node’s outdegree. OnlylnLinks
accumulate more links (as described earlier); this too detraitself though cannot be used to build graphs, because the
from the uniformity of the graph. One way to counteract thieendezvous server would return a list of the most recently
is for nodes to periodically remove an outlink and replageined nodes, and since all links point from new nodes to
it with another randomly selected node. We call this proces&ler nodes without refreshes, walking only the inlinks would
refreshing As our results show, refreshing can have a stromgever take the walk outside this set of recent nodes. The end
improvement on the quality of the graph. result would be a “long and skinny” network, one with a large

Refreshing has a number of negative aspects though. Gli@meter, and therefore not desirable.
is its overhead. Another is that graph changes may negativelyOnlyOutLinks: This is the analogous walk where each
affect the application using the graph (though to be fair inode chooses uniformly randomly among its outlinks.
none of our example applications is this a problem). A third The SwapLinks approach works as follows. When a node
is simply that it introduces a new engineering requirement injoins, it follows the procedure described above — for every
the system. With refreshing, one now has to ask how oftenfi@de with which it forms an outlink, it steals one randomly
refresh, when it is no longer necessary to refresh, and so éalected inlink. The build walk used for selecting the node is
All things being equal, it is better not to have to ask an@nlylnLinks. This works in this case because the swapping

answer these questions. of links mixes the graph sufficiently to completely avoid any
Note that churn, where nodes leave the network, has fignd towards newly joined nodes.
same effect as refreshing. If a node A loses an outlink (due to node deletion), then it

replaces the outlink with a new neighbor discovered with
an OnlylnLinks build walk. Unlike the case of a new node
join though, nowO does not donate any of its inlinks t, as

SwapLinks is inspired by, but quite different from, thed is not looking for inlinks here. Analogously, when a node
approach used to build random graphs by Law and Siu [13}. loses an inlink due to a node departui@,checks if its
The basic idea in [13] is that when a joining node A adds andegree is less than its outdegree. If so, it needs to establish
outlink to a node B discovered during a build walk, one of new inlink. It does this by launching an OnlyOutLinks walk
the inlinks of node B is transfered to node A. This has the discover a nodd. A randomly selected in-neighbor df
effect of maintaining a constant number of inlinks at node Biow discards its outlink witl, and forms a new outlink with
and of giving the joining node A the same number of inlinkg. 5
as outlinks, which is our goal. Indeed, if a graph only grows Now consider a sequence of node deletions. Assuming that
(nodes never leave), then every node will have an indegnée indegrees of the deleted nodes are close to the respective
that is equal to its outdegree. outdegrees, we will have roughly the same number of broken

The wrinkle to this approach is when nodes leave. If weutlinks and broken inlinks as a result of the deletions. Now
want to maintain the invariant of all nodes having exactly thehen a node A repairs its broken outlink, it forms a new
expected indegree, as Law and Siu do, then the proceduotdlink to a new neighbor O, thus increasing O’s indegree,
becomes quite complex. Law and Siu's approach to handliirg turn increasing the likelihood that O is chosen for the
node departures is to have each departing node help all ofgtgpose of repairing a broken inlink by some other node,
neighbors form new links so that the invariant is maintaineahich results in O’s indegree dropping back to its earlier value.
after the departure as well. This approach fails in the presenidaus the churn-handling mechanism described above ensures
of abrupt (non-graceful) node failures. To make this robusitat the degree distribution never gets too far from the desired
against abrupt departures, we might need to have each nddribution, even after a long sequence of node departures.
know some or all of its neighbors’ neighbors, but then thiSection VI has the related results.)
will fail in the presence of simultaneous multiple departures. Although the biased walk approaches have a certain ele-
Dealing with all of this would require additional mechanismgance to them, SwapLinks has a certain engineering appeal. In
not specified by [13], and makes this approach unattractiveparticular, there are no engineering decisions required about

However, if we relax the constraint of having to maintaiflow to exchange information between nodes (as in biased-
the perfect indegree invariant at all points of time, then tiferwarding), and how often to refresh (as in both biased-
problem of handling churn becomes much more tractabferwarding and biased-halting), and no uncertainty about how
Before we discuss how our SwapLinks technique handle%N N .

. - . ote that a walk is initiated here only if some node departure led to a

churn, we need to provide definitions of two kinds of Walkﬁnk loss; in the above instancé,will not launch any walks as a result of its
used solely with SwapLinks: losing its inlink to B.

E. SwapLinks (SW)

long walks may take (as in biased-halting). Perhaps the omgirt because of the random nature of our techniques—neither
negative of SwapLinks is that there is extra overhead whertte order of events or the timing of events are very important.
node leaves, because sometimes two walks must be taken (td/e examine two graph building scenarios:
replace both outlinks and inlinks) instead of just one. (i) Shrink: A graph is built with a given number of nodéé-
without any churn until all nodes have joined- and then nodes
start leaving one at a time until the graph shrinks to 25% its
The previous section focused on graph building. The fowgriginal size
walks described, however, can be used for selection over gily Churn: An N-node graph is built - without any churn until
of the graphs — how a graph is walked is independent of ha nodes have joined - and then there aré churn-events,
it is built (assuming that the necessary neighbor informatiavhere a churn-event consists of either a single node kill or
is exchanged during building). To summarize, they are Totalsingle node join, with the same probability. The expected
Inverse Prob (TIP), lterative Scaling (IS), SelfLoops (SL), andetwork size after this sequence of eventshis In all our
the hybrid TIP-SL(Hyb-TIP-SL). measurements, unless otherwise mentioned, w&/ ¢et5000.
There is an important limitation to the SL and hybrid TIP- When the network only grows, i.e., when nodes only enter
SL approaches that result from the fact that SL is a biasegithout leaving, SwapLinks’' degree distribution (by design)
halting scheme and therefore has variable length walks. Spe@fperfect, and therefore is not a fair comparison; we do not
ically, the file sharing applications described in Section I-fresent these results here. On the other hand, the other schemes
require long walks where work is done (a local file search) perform worse during the grow-only phase than they do under
each node visited. SL walks, however, do not exhibit uniforghurn, because of the refreshing nature of churn (see below).
selection during the walk, as each step is unbiased. RatherTo measure the quality of random selection, we ton\/
they only exhibit uniform selection upon ending. selection walks using the algorithm to be evaluated, where the
While the file sharing application is an important one, morgraph hasM nodes at the time of selection (i.e., after the
generally the notion of a node starting a walk from the nodshurn or shrink has completed), and look at the distribution
where the last walk ended, instead of from itself, is usefwf the selected nodes, and the selection load balance.
We refer to these types of walks asrsor walks, due to the To model heterogeneity in our measurements, we use the
fact that the last node visited can be seen as a cursor pointjoowing setting: Each of theV nodes in the graph is a
to where to start next. The cursor walk works as follows: thgefault-degreanode with probability 0.5, and lheterogeneous
node initiating the walk remembers the previously selecte@de with probability 0.5. Each default-degree node has an
nodeP, and when the next selection is to be performed, takeatdegree of 5. Each heterogeneous node chooses its outdegree
a short (1 to a few hops) walk froi, instead of starting each uniformly randomly from the range [2,50]. As before, churn
walk from itself. The first random selection here is performegk shrink is performed on the graph after all nodes have joined
in the usual non-cursor manner, and the subsequent selectigng formed all their outlink8.
are performed using the cursor. The default setting we use in our experiments\is5000
In addition to being suitable for applications like the filenodes, build walk length of 10 hops, and, except in case of
sharing application, the cursor approach reduces the imposegerogeneity, a constant outdegree of 5 at every node. A walk-
load and latency by an order of magnitude, at the cost of maiength of ten was chosen because this produced better results
taining information about the cursor. Further, by spreading thigan a shorter walk-length, but longer walks did not perform
selection load uniformly across the network, it improves theignificantly better than 10-hop walks. (In Section VI-E, we
load balance in scenarios where a small set of nodes initigifow that 10-hop build walks are sufficient for a wide range
the majority of the random walks, whereas in the non-cursef network sizes.)
approach the initial load during any random walk is necessarily For simplicity, we ensure that all build walks only find nodes
borne by nodes close to the initiating node. that are not already neighbors of the initiating node, by storing
It should be noted, however, that individual cursor selectiofige initiator's neighbor-list in the walks. This could be easily
are not very random relative to the immediately precedingmulated in a real implementation by having the initiator retry
cursor selections. Over a long period, however, the selectigry build walk ended at a node that is already a neighbor.
does tend towards uniform distribution (see Section VI-F). Gjven that we have four graph-building techniques, four
selection walks, heterogeneity, cursor walks, graphs of differ-
ent sizes, and numerous parameters to measure, we need a
We start by describing the simulations used to evaluate @y to prune down the results presented here. We do this by
various approaches. We use static (non-time based) simuylgst evaluating the four graph construction techniques in terms
tions. When simulating node additions or deletions, each nogethe “goodness” of the graphs they generate. We look at
is fully added or deleted before the next node is added or
deleted. Likewise, there is no notion of packet loss. While the®By contrast, Gia simulated heterogeneity spanning three orders of magni-

simulations are not therefore fuIIy realistic. we believe thafde. While indeed node capacities vary by this much in measured Gnutella
' networks, we do not believe that a node with 1000 times the capacity of a

they reflect the basic Che_‘raCteriSﬂCS of the various ?pproa_cnﬁéaup would be willing to devote all of that capacity to file sharing, and so
and allow them to be legitimately compared. We believe this ire a more moderate capacity split.

V. SELECTION WALKS

VI. EXPERIMENTAL RESULTS

graph construction when all nodes have the same outdegrd@h,and standard deviation of the loBetv(BLoad-Kill)caused

i.e., the homogeneougase in section VI-A. We evaluateby the deletions.

the performance of all the graph construction algorithms in Table Il shows the results for the homogeneous-capacity
conditions of heterogeneity in section VI-B. Looking at thesgraph building simulations. A noticeable trend is that all
results, we pick the most promising graph building algorithnparameters improve with refreshes, the improvement with a
which is SwapLinks, and present most of our subsequestiurned graph being more noticeable than that with a shrunk
results on that graph. We examine the quality of randograph. This is because the effects of shrink ensures that
selection: first we execute the four selection schemes oveeach node will have refreshed its out-neighbor set multiple
homogeneous SwapLinks graph in section VI-C, and then téishes with high probability, so a shrunk graph is effectively
all the selection walks over heterogeneous graphs in secteguivalent to a refreshed graph.

VI-D. We next look at the scaling behavior of the SwapLinks Another key thing to note from the results is that they are
algorithm in section VI-E. Finally, we evaluate the cursoalmost all reasonably good as far as the degree distribution

mechanism in section VI-F. is concerned. For instance, the standard deviation in node
degree for TrueRandom is 2.23, and the only graph that
A. Graph Construction (Homogeneous Case) did significantly worse than that was InlinkinvProb where

In this section we compare the different graph buildinE]Eighbor information was only piggy-backed. Most did better
algorithms in terms of the following parameters: degree distf?a"n True_Rar)don_]. _ _
bution, network diameter and average distance between nodesWapPLInks’ policy of neighbor replacement ensures it has
and distribution of the load placed on the network by the buili}€ best indegree distributibnSwapLinks also has the best
walks. The graphs we study here are all homogeneous. \pad distribution during node addition, mainly because its
evaluate both graphs with and graphs without refreshes (excBptghbor discovery walks use only inlinks and thus do not
for SwapLinks, which does not benefit from refreshes). THEStinguish between nodes based on their degrees, since all
refreshes are performed after the churn or shrink as descrif}@fies have the same outdegree. SelfLoops unfairly loads high-
above has completed. For IS and IP graphs, we evalugfegree nodes because it does not bias among links during walk
both the case where all immediate neighbors are informfQfwarding, while InlinkinvProb and lterative Scaling end up
immediately of any link changelthop updatesand the case loading Iow-mdegree_ nodes L_mfalrly heavily as a re_sult of t_helr
where neighbor information is only piggy-backed on buil@ndom walk yvelghtlngs. InlinkinvProb and Iterative Scaling
walk messagesPiggybacking. We include in the comparison €1d Up with high message load overheads anyway when they
graphs built using SCAMP, and@irueRandomgraphs, where US€ 1-hop updates. The diameter and distance estimates are
each node forms 5 outlinks with distinct uniformly chosef’ore or less the same for all the four building strategies.
nodes in the network. The load during node deletion is the only parameter here
Ideally, at any given time, the load caused by the entry that is worse for SwapLinks than for some of the other strate-

new nodes or departure of existing nodes should be spréi@S: The reason here is SwapLinks’ higher aggregate load
uniformly over the existing nodes in the network. We veri uring n(_)de deletions: neighbor d|s_covery walks are initiated
load balance under node addition in the following mannef’ in-neighbors as well as out-neighbors. Nevertheless, the
10 new nodes are added to the system and the load placed’§)(BL0oad-Kill) parameter with SwapLinks is still quite close
previously existing nodes (barring the last 10 joirfgrs form to the pther s_trateg|es_. And, con_sudermg tha_t neither refreshes
of the number of messages received by them, is logged. TRARY neighbor information is required, SwapLinks may after all

is repeated a total of 100 times with the load summed over tig More efficient as well as simpler. .
100 times. Finally, the average load per nodgBLoad-Add SCAMP here has the worst degree distribution, partially due

and standard deviation of the load valuBev(BLoad-Add) to its Igrger average tqtal degree of 15.7. We did pqt run churn
of all nodes is computed. We chose the comparatively smngShr_'nk on SCAMP since SCAMP does not explicitly discuss
number of nodes added (10) here, as we want to focus '&andling of unannounced departures.

the load placed on already existing nodes: with increase @) Graph Construction Under Heterogeneity

the number of nodes added, there is an increase in the loa
placed on the new nodes themselves. Since this method
testing imposes the same load on the network irrespective
the size of the graph, the per-node load values are going
be higher for smaller graphs. To evaluate the load caused
node departures, we selekf/5 nodes randomly, where the

?n this section we study how well the different schemes
agfapt to heterogeneity. The setting we will be using here is
one where a 5000 node graph is shrunk or churned. Each
(é’rothe 5000 nodes has, with a probability of 0.5 the default
OLYtdegree of 5, and with a probability of 0.5 a uniformly

. icked outdegree from the range [2,50]. We present results of
graph contains\/ nodes, and. delete them (one by one) frlo' e shrink case without refreshes; all the other cases, namely,
the graph, and log the resulting load placed on the remainin

nodes. We then compute the average load per AvgBLoad- 8frink with refreshes, churn with and without refreshes give

8In SwapLinks, the entry of new nodes negates, to a certain extent, the bad
"The last 10 joiners would be unfairly heavily loaded because of theffects of prior node deletions, since each new node entry can only improve
rendezvous scheme. the degree distribution.

Dev Indeg- MaxIindeg | Diam | Dist | Dev(BLoad- Dev(BLoad- AvgBLoad- AvgBLoad-
(Deg) 95pc Add) Kill) Add Kill
Grow TrueRandom 2.23 9.00 15.03 5.06 | 3.97 - -
N=5K SCAMP* 6.97 28.24 44.68 5.34 | 3.45 7.81 - 10.60 -
IP-Norefs 2.23 9.00 15.00 5.19 | 3.98 12.32 7.08 15.27 33.68
IP-10refs 1.82 8.00 13.20 5.03 | 3.98 6.28 6.93 17.56 33.84
Churn IS-Norefs 2.04 8.05 13.40 5.27 | 3.99 13.81 6.95 15.49 33.47
N=5K IS-10refs 1.57 8.00 11.80 5.03 | 4.01 6.88 6.74 17.58 33.40
SL-Norefs 2.03 8.00 13.34 5.30 | 4.00 5.54 5.36 9.51 14.87
SL-10refs 1.55 8.00 11.66 5.03 | 3.99 4.60 4.63 9.58 12.58
SW-NoRefs 1.31 7.00 11.66 5.01 | 3.99 411 5.19 9.63 17.86
IP-Norefs 1.83 8.00 12.65 475 | 3.38 18.85 6.95 69.05 33.84
IP-10refs 1.84 8.05 12.50 473 | 3.37 19.11 6.93 69.16 33.85
Shrink IS-Norefs 1.58 8.00 11.10 4.77 | 3.38 21.18 6.70 70.75 33.31
N=5K to IS-10refs 1.57 8.00 10.95 475 | 3.37 20.94 6.63 70.73 33.24
N=1.25 K SL-Norefs 1.55 7.94 11.02 4.78 | 3.39 16.25 5.14 47.82 15.22
SL-10refs 1.56 7.92 10.86 475 | 3.38 15.24 4.62 39.07 12.56
SW-NoRefs 1.50 7.70 11.64 475 | 3.37 14.97 5.27 39.02 17.60
Piggy- IP-Churn 531 12.15 75.45 5.02 | 3.86 16.66 11.84 6.61 10.98
back IS-Churn 2.24 9.00 15.85 519 | 3.98 8.44 571 7.68 11.12
Only IP-Shrink 2.74 9.50 27.70 483 | 3.38 18.40 4.62 32.53 11.18
NoRefs 1S-Shrink 1.85 8.00 12.90 4.74 | 3.38 20.16 4.87 34.93 11.15
TABLE Il

HOMOGENEOUS GRAPH CONSTRUCTIONDEGREE DISTRIBUTION DIAMETER, AND BUILD -LOADS OF THE DIFFERENT MECHANISMS
ALL GRAPHS EXCEPTSCAMP HAVE EXACTLY 5 OUTLINKS PER NODE AND USE 10-HOP BUILD WALKS. Diam AND Dist ARE THE
AVERAGE ESTIMATED DIAMETER AND THE AVERAGE INTER-NODE DISTANCE, ESTIMATED USING A SAMPLE SET OF20NODES. Dev(Deg)
IS THE STD. DEVIATION OF DEGREES Indeg-95pas THE AVG. 95TH PERCENTILE VALUE, AND MaxIndegiS THE AVG. MAXIMUM VALUE
OF THE INDEGREE BLoad-AddaND BLoad-Kill ARE THE LOADS CAUSED DUE TO NODE ADDITION AND NODE DELETION RESR
(*)SCAMP’s Indeg-95pcAND MaxIndegvALUES CORRESPOND TO THE TOTAL DEGREESINCE ITS OUTDEGREE IS NOT A CONSTANT

similar results, which are not shown here. Graphs built usimtiameter, load balance, etc. Second, and just as importantly,
InlinkinvProb and Iterative Scaling make use of 1-hop updates.seems the easiest to engineer: SwaplLinks has just one

We show here the average indegree and the build load durjjayameter to set, namely the outdegree of each *nofféh
addition as a function of the outdegree. For each outdegree, the other strategies, in addition to setting the outdegree, we
get the set of nodes with that outdegree, and compute averagesd to worry about the frequency of exchanging neighbor
from that set to get the figure for the particular outdegree. Viflsformation (with IP or IS), or about setting the virtual hop-
use the same model to measure build load during node additiength to achieve a target average hop-length(with SL), and
as we did in section VI-A (all 10 nodes added have degree H)e frequency of refreshing(IP, IS, SL). While none of these
The distribution we want to achieve is one where all relevatasks is inherently difficult, it is nice to be able to avoid them
parameters are directly proportional to the outdegree. since we can.

Fig. 2 shows the variation of the indegree and the buil
load during addition of new nodes. All strategies result i
a linear dependence of both the indegree and the load oriaving picked SwapLinks as the most promising algorithm
the outdegree, demonstrating that the modifications madet@build graphs (from sections VI-A and VI-B), we now
the walk probabilities indeed work as intended. In separa@¥aluate the quality of random selection of the four selection
experiments, we found that the load during node deletion (rigthemes executing over a SwapLinks graph. We use two
shown here) also grows |inear|y with the outdegree_ parameters to measure the quality of selection: the distribution

In the figure, the IS and IP load curves are much high&f the selected nodes, and the distribution of load imposed by
than the other two because of the 1-hop update load: edBR selection walks. The selection strategies TotallnvProb and
node that gains an inlink during the test needs to let all of itierative Scaling make use of only piggybacked information
neighbors know, and with an expected total degree of 31 heg€nt over build walks, so these do not incur any extra mes-
this results in a significant overhead. Note here that we cofidge overhead to do state maintenance. We do not employ
reduce the frequency of updates to achieve a smaller mess@ig@ybacking on the selection walks here because the number
overhead, but this comes at the cost of reduced accuracyobselection walks we use in the simulations is comparatively
the maintained state. We do not evaluate this trade-off in th@§ge, so piggybacking on even the selection walks would
paper. If we altogether drop the use of 1-hop updates wigad to an undesirable artificial improvement in the measured
IS or IP, we will have to use proactive methods like planne@uality of selection.
refreshes, or exchange of neighbor information, or both, toWe refer to the node selected by a random walk as the node
generate good graphs; these result in overheads of their oi.by the walk. To evaluate selection quality, we start a set of

Nevertheless, all build strategies do exhibit good contrtndom walks from aingle node, and log the number of hits

over heterogeneity, but we prefer the SwapLinks strategy ove
9 y P P gy 5Strictly speaking, all strategies need to also set the walk length to some

Fhe others. There are tV_lo _mam reasons. The f_lrSt_ IS _th/%he optimal to the number of nodes. Practically speaking, however, this can
it performs well along criteria such as degree distributiome set by default to a conservative large value such as 10 hops-see VI-E.

. Quality of Random Selection on Homogeneous Graphs

5Knodes shrunk to 1.25 K, 10 BuildHops, No refreshes, Default OutDeg=5, DefaultFrac=0.5 5Knodes shrunk to 1.25 K, 10 BuildHops, No refreshes, Default OutDeg=5, DefaultFrac=0.5

60 —1—— T . 800 —
SwapLinks +——+— . SwapLinks —+— x
IteratScaling ---*--+ H IteratScaling ---x--- X
InlinkinvProb +--%---: R InlinkinvProb ------ X X
SelfLoops & 700 - elfLoops &
50 S
X Ky
600 X X
40 il
@ 3 500 ; *X
@ g i
g 3 U
E] N
o 0 @ 400 Hox
& g X in®
I o 7K
2 [%
< I 300 x
20 oy w
e %
X *
200 o
X
< 13|
N 100 w55 RRRPELT onngete”
e85
¥ semaaansie
0 o L imeaees=q
02 5 10 15 20 25 30 35 40 45 50 02 5 10 15 20 25 30 35 40 45 50
Outdegree Outdegree
(a) Avg. Indegree vs. Outdegree (b) Avg. BldLoad-Add (Load due to node addition) vs. Outdegree

Fig. 2. Heterogeneity : Variation of Build Parameters with Outdegree

5K node SwapLinks Graph shrunk to 1.25Knodes, 10 build-hops, 5 outlinks per node 5K nodes initially, 10 build-hops, 5 outlinks, SwapLinks Graph shrunk to 1.25K
T X T T I T 50 T T T
aat v R — (122.88)TIPISW ——
(15.87) SL ---*- (128.3)IS/SW ---x---
(15.33) HybTIP-SL & 45 . (125.2)HybTIP-SLISW - |
a2 (15.0) True Random —-—-- | #.f' - (132.6)SL/SW -~
e (118.96)IS/IS-10refs(1-hop upds) —-m--
| 40 r \

IN
T

w
@
T

bl 35

Stdev(Hits)

[l
e
T

b 30

w
kS
T

25

#Nodes

w
[N
T
o

20

w

4 6 8 10 12 14 16 18 20 15
#Hops

10
Fig. 3. Std.dev(hits) vs. #Hops for the homogeneous SwapLinks graph.
Numbers in parentheses indicate the 95th percentile value of hits at 10 hops °
(the average is 10 hits). o

100 120 140
Load

each node receives: we use a single start point to avoid ffig¢ 4. Homogeneous selection load distribution over the SwapLinks graph

artificial smoothing introduced by having multiple start nodeg.t 10 hops. In parentheses are the 95th percentile values of the load.

The number of walks executed is equal to 10 times the current

number of nodes in the graph. We use the standard deviation

of hits as the metric to measure selection quality. mechanism on any other graph. TotallnvProb’s selection also
We show the results of the shrink scenario here; resuitsgood, though it stabilizes at a distribution slightly different

for the SwapLinks churn graph are similar. The results shovitom TrueRandom’s distribution. Iterative Scaling’s distribu-

here correspond to a 5000 node graph before the shrinktian is not as good as the others because only piggybacking

performed. All nodes here have the same outdegree of 5. on the build walks is insufficient to bring the weights to the
Fig. 3 shows the average standard deviation of hits esquired state of convergence. Because SelfLoops is a variable

a function of the length of the walk, using TrueRandomvalk-length strategy, its performance when the number of hops

selection, where nodes are picked uniformly randomly from small is poor since quite a few of its walks would be very

the entire population, as a benchmafkOnce again, the main short and end very close to the start point.

thlng to note is that all of these walks perform Sa.tiSfa.Ctor“y We measure the selection load seen by a node as the number
well. The 95th percentile number of hits values are similar f@jf selection walks that pass through or end at the node. To
all approaches, and not far from that of TrueRandom. Hybheasure the selection load, we again execute a given number
TIP-SL gives the best hit distribution on the SwapLinks grapf walks (again the number of walks is 10 times the number
and this is very close to the best hit distribution using amyt nodes in the graph), this time with the origins of the walks
distributed across the graph such that every node in the graph

10TrueRandom selection is just an instance of the Balls and Bins problem, lected th tart d | b ti Th
resulting in a Poisson distribution of selection hits; its standard deviation ¥ selected as the start noage an equal number ol umes. €

hits is given by the square root of the mean number of hits each node receive€a here is that the load distribution should be uniform when

5Knodes shrunk to 1.25 K, 10 BuildHops, 0 refs, 12.5K selns, ~10 seln hops Churned SwapLinks Graph, 10-hop build-walks, Selection with TotallnvProb

45 T T J Outdeg=4 —+—
SLISW —+—i L e e
TIPISW - ‘ 1 83{52822 e
SL/SL +—a-—1 g 13
35 TIP/SL »- -1 3 . o
IS/SL =3
Hyb-TIP-SL/SL 8 n
30 SL/IP 2 /\/ M
TIP/IP & 10 -
IS/p 2 T
n 25| Hyb-TIP-SL/IP : 3 o .
I SLIS ¢ g . - X
3 TIPAS +-e—1 2 e o
g 20+ IS/IS +--e---1 s 7 *:
g Hyb-TIP-SL/IS o - 3 . * o
g s - e
5 [
10 5 3 100 500 1000 5000 10000 50000
X ﬂr‘ lagEd® = #Nodes in graph
5 #T% 4 55
,ﬁ"’fﬁ Fig. 6. Variation of the required selection walk-length for a range of network
0 size and average degrees
-5

0 2 5 10 15 20 25 30 35 40 45 50

Outdegree Deg || Dev(Deg) | 95pc(Deg)| MaxDeg | Diam | Dist
4 1.22 6.0 11.0 7.0 5.65
Fig. 5. Heterogeneity: Average Hits vs. Outdegree 5 1.32 7.0 14.0 6.15 | 4.93
6 1.39 8.0 15.0 6.0 4.63
8 1.52 11.0 16.0 5.05 | 4.13
all nodes are involved in about the same number of walks TABLE I

- note that if some nodes start more of the walks than the GRAPH PARAMETERS FOR50,000NODE CHURNED GRAPHS
others, there will be an unavoidable skew in the selection load
seen by the nodes very close (within 3-4 hops) to the given

start nodes. Fig 4 shows the bell curves of the selection load . . i
distribution when the walk-length is set at 10. selection algorithms on top of all the four different graphs. We

Note here that we have added one curve that is not badBgasure the distribution of selection hits as a function of the

on the SwapLinks graphs: this is IS selection on an IS graBthegree' , . . .

with neighbor information exchange and ten refreshes. WeFIg 5 contains the result_s. The selection .h|ts vary I!nearly
show this curve as a point of comparison because it is t ét'h outdegree for all combl'natlons of selection strateglgs .and
best of all selection/build combinations. Among the remainingUild methods. The selection load curve follows a similar
TotallnvProb gives the best load distribution here, while Hy jattern: linear, with even smaller variance; we _do not show
TIP-SL's selection load curve is slightly worse. Both of thes@e load re_sults here for lack of space. So with regard_to
curves themselves are reasonably close to the best (IS}F§ erogeneity, we are gble to_ engineer all of the selection
curve. Iterative Scaling as a selection mechanism on toprB thods to function satisfactorily well.

SwapLinks again suffers to some extent due to its imperfegt Scaling to Larger Sizes

piggybacked state. SelfLoops is the worst in terms of Ioad-In this section we evaluate the scaling behavior of

_balance, as _her_e the number of walks that pass through a ng%pLinks over a wide range of network sizes and average
Increases W_'th Its degree' . . degrees: we vary the network size from 100 to 50,000, and
The deC|5|or_1 of which algorithm to use to perfom_] selectlome outdegree per node from 3 to 8, and measure the number
on the SwapLinks graph depends on the application. If eagh ,,hq it takes to obtain a random selection distribution
node performs selections relatively infrequently, then the algen,se standard deviation is within 5% of that of true random
r|.thm to use would be TotgllnvProb (since Hyb-TIP-SL has thﬂﬁstribution. The graphs are churned before the selections are
virtual walk-length selection problem). If, on the other hand, tormed: the number of selections is ten times the network
selection walks are more frequent, then by using piggybackigge e yse TotallnvProb as the selection mechanism here. All

converge to the required state, so it would be the strategyy, only 3 outlinks per node, TotallnvProb was not able to
to use. Generally, on any graph, if Iterative Scaling is givethnsjstently reach the required quality of selection when the
enough time to stabilize, it gives good selection in terms Q{tem size grew beyond 1000, so these results are not shown.
both the hit distribution and load balance. When the outdegree is more than 3 though, TotallnvProb
reaches the desired quality. The number of hops needed grows
logarithmically with the network size, and, as can be expected,

We now look at the quality of selection when nodes hawtecreases as the average degree increases. The rate of change
different outdegrees. We use the same setting we used dbrthe number of required hops as the system size increases
evaluating graph building under heterogeneity (section VI-B)s very small. From a practical perspective, this would allow
i.e, a 5000 node graph subjected to shrink, and the sasmmeone deploying a P2P application to select a conservative
expected outdegree distribution. We present the results lnft reasonable value for number of hops given their largest
running 12,500 random selection walks using each of the foexpected user population.

D. Selection with Heterogeneity

5K nodes initially, 5 outlinks per node, 10 build-hops, SwapLinks graph, Selection with TotallnvProb

o ety © oulnts pernode, 10 puiops, St intuition is that unstructured random selection will be easier to

shrink - implement and will scale better. But this is only an intuition:
I 1 it needs to be tested.
- °T 1 Another important piece of work that needs to be done is
f ash] to consider misbehaving nodes. Although not reported, we ran

experiments with the biased-walk approaches where misbehav-
ing nodes would terminate every build walk at themselves.

4

] Even without creating any additional outlinks, these nodes
—_— obtained inlinks with almost every every other node in the
' ' s graph! We need to explore simple mechanisms to prevent this.

A third area we need to explore is that of establishing
proximal neighbors (those with low latency or high bandwidth)
in addition to random neighbors. While this could in theory

To verify that SwapLinks builds good graphs even at larde® 1ft to the application (once it has a random network to
scale, we show in Table Il the indegree distribution an@*Plore”), it seems that providing this capability as part of
the estimated diameter and average distance for 50,000 n##e toolkit would be broadly useful.

E:r?]urned gristlphsh fort:iif?rr]ent valrl:is'l?jf outdegr:ee. per ngdtﬁ. ACKNOWLEDGEMENTS

ese results show that the graph building mechanism an . .
selection walk procedures both scale well. In addition, theae%’hgfiuthorsdvgouldlg:kg Lo the;nk Ff]opbe” _/e}nRt_anessed, E”l"”
results, along with those presented in the previous subsectio E,rll .'"terr]’. an _or: einberg for their participation and help
also demonstrate the robustness of our methods to the kiffgsY ' this project.

Fig. 7. Std Dev(Hits) vs. #Hops in each Cursor Walk

Qc

of network churn tested in this paper. REFERENCES
[1] M. Castro, M. Costa, and A. Rowstron, “Debunking some myths about
F. The Cursor Approach structured and unstructured overlays,”Rroc. NSD) 2005.

; ; ; i[2] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker,
In .thls SeCFlon’ we evaluate th.e .Cursor walk de.SCFIbed.nE? “Making gnutella-like p2p systems scalable,” Rtoc. SIGCOMM '03.
Section V. Fig 7 shows the variation of the quality of hit{3) | A. Adamic, R. M. Lukose, B. Huberman, and A. R. Puniyani, “Search

distribution with increase in the expected walk-lerdgtiThe in power-law networks,Phys. Rev. Evol. 64, no. 046135, 2001.

total number of cursor walks initiated here is equal to ted* Q-Lv. P- Cao, E. Cohen, K. Li, and S. Shenker, *Search and replication
in unstructured peer-to-peer networks,”ImICS’02 2002.

Fimes the. networ_k size. The result shows that the approach i§ | clarke, 0. Sandberg, B. Wiley, and T. Hong, “Freenet: A distributed
indeed viable, with about 3 hops on each small walk needed anonymous information storage and retrieval systemPrioc. Interna-

; it ; tional Workshop on Design Issues in Anonymity and Unobservability
to approach the uniform dIStrIbutIQh. When the 'walks are _° LNCS, vol. 2009, Springer-Verlag, 2001, pp. 4666,
shorter than this length, the probability of reselecting already) p. Francis, “Yoid: Extending the internet multicast architecture;” in

selected nodes increases, affecting the selection distribution. Unrefereed report2000.

A trend that can be noticed is that even numbered hops at@ D- Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, "Bullet: High
bandwidth data dissemination using an overlay meshPioc. ACM

local maxima in the plot. We believe this is because with an sosp 2003
even hop length, the probability of the walk backtracking and8] “Bittorrent, http:/Aww.bittorrent.com/.”

; ; ; [9] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A decentralized
returning to the previously selected node increases. network coordinate system,” iAroc. ACM SIGCOMM 2004,

VIl. CONCLUSIONS AND FUTURE WORK [10] A.J. Ganesh, A.-M. Kermarrec, and L. Massoulie, “Scamp: peer-to-peer
' lightweight membership service for large-scale group communication,”

The broad conclusion that we draw from this work is that in Proc. 3rd Intnl. Wshop Networked Group Communication (NGC,'01)

i _ : ; ; 2001, pp. 44-55.
our Ongmal goal to find a S|mple and scalable mechani] D. Kostic, A. Rodriguez, J. Albrecht, A. Bhirud, and A. Vahdat, “Using

for building random graphs and doing random selection, ' random subsets to build scalable network services?rat. USITS'03.
with good control over heterogeneity —is Certainly satisfiefll2] R. Melamed and |. Keidar, “Araneola: A scalable reliable multicast

re ; system for dynamic environments,” Proc. NCA 2004 2004.
Specmcally, our Swalenks approach lets us construct grapﬂg,] C. Law and K.-Y. Siu, “Distributed construction of random expander

while requiring the setting of only a single parameter by each ™ networks” inProceedings of the IEEE Infocom '03 Conferen2603.
node, namely its desired node degree, and enables the dediréidZ. Bar-Yossef, A. Berg, S. Chien, J. Fakcharoenphol, and D. Weitz,

: : “Approximating aggregate queries about web pages via random walks,”
random selection on top of the graphs thus built. Our next in Proc. VLDB 2000.

step is to implement the SwapLinks algorithm, and test it in@s] |. Csiszr, “Information theoretic methods in probability and statistics,”
real setting (i.e., planetlab). We plan to compare this strate y] IEEE lunformagon Theory Society '\éeWSIGFBt?Ii 48, pp. 21-30, 1998.

] . : H. Ballani and P. Francis, “Towards a global IP Anycast service,” in
with a random selection strategy that uses DHTSs. In particular,” o, ~, SIGCOMM 2005.
we have focused on unstructured approaches because of[tfieA. J. Ganesh, A.-M. Kermarrec, and L. Massouli, “Peer-to-peer member-
success of unstructured P2P applications, and because we ship management for gossip-based protocolsiEERE Trans. Computers

ourselves are building unstructured P2P applications. Our 52(2) 2003, pp. 139-149.

l1Here a fractional walk-length of say 1.5 hops corresponds to the set of
cursor random walks where each walk is independently of length 1 or 2, with
probability 0.5 each.

