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Abstract—The topological structure of the Internet infras-  evolution of the system [6], [7], [8], [9]. One problem that
tructure is an important and interesting subject that attracted  arises in this context is that it is impossible to measure the
significant research attention in the last few years. Apart from the full structure of the Internet directly and to obtain the full

pure intellectual challenge of understanding a very big, complex, - .
and ever evolving system, knowing the structure of the Internet connectivity graph. This is not only due to the fact that the

topology is very important for developing and studying new Internet is too big and ever evolving, but largely because
protocols and algorithms. Starting with the fundamental work there is no direct way to retrieve information from each node
of Falostous et. al, a considerable amount of work was done regarding its direct neighbors. Thus, it is very difficult to

recently in this field, improving our knowledge and understand- characterize the Internet since it may well be the case that

ing of the Internet structure. However, one basic problem is . . .
still unanswered: how big is the Internet. In the AS level this this characterization is a result of the sampling process, and

means: how many peering relations exist between ASs. Finding it does not hold for the “real” Internet. In other words, it is
this number is hard since there is no direct way to retrieve extremely difficult to know if the picture we have is a good
information from all nodes regarding their direct neighbors, and  approximation of the “real” Internet connectivity, or if it is

all our knowledge is based on sampling processes. Thus, itis Verypizseq to a large extend by the measurements, and thus does
difficult to characterize the Internet since it may well be the case > . !
not reflect the “true” picture.

that this characterization is a result of the sampling process, and : i .
it does not hold for the “real” Internet. In this paper we attack this problem by suggesting a novel

In this paper we attack this problem by suggesting a novel us- usage of the measurements themselves in order to infer infor-
age of the measurements themselves in order to infer information mation regarding the whole system. In other words, rather than
regarding the whole system. In other words, in addition to looking looking at the overall graph that is generated from the union
at the overall graph that is generated from the union of the f the data obtained b £ . t
data obtained by performing many measurements, we consider 0 _e ata obtaine . y periorming many measurements, we
the actual different measurements and the amount of new data consider the actual different measurements and the amount of
obtained in each of them with respect to the previous collected new data obtained in each of them with respect to the previous
data. Using the second moment allows us to reach conclusionscollected data. This technique allows us to reach conclusions
regarding the structure of the system we are measuring, and in regarding the structure of the system we are measuring. In our

particular to estimate its total size. We present strong evidence
to the fact that a considerable amount (at least 35%) of the links case we apply the methods to the Autonomous System (AS)

in the AS level are still to be unveiled. Our findings indicate l€vel connectivity graph.

that almost all these missing links are of typepeer-peey and In Section Il we start with a rigorous study of the different
we provide novel insight regarding the structure of the AS data collecting techniques that are used in order to collect AS
connectivity map with respect to the peering type. connectivity information. We then use the characterization of

the data collection to draw conclusions regarding the actual
structure of the full AS map. We consider a new measure for
The topological structure of the Internet infrastructure igraphs, the number of (policy-based) shortest path spanning
an important and interesting subject that attracted significardes needed to cover the edges of a graph and show that the
research attention in the last few years. Apart from the pufS map is unique in the sense that a considerable amount of
intellectual challenge of understanding a very big, complelnks are not revealed in this covering process. We also show
and ever evolving system, built by people and used by mathat these unrevealed peers are mostly of the pyger-peer
more, knowing the structure of the Internet topology is venyhile this process unveiled many of theustomer-provider
important for developing and studying new protocols angeers. We also analyze the routing policy of available database
algorithms. using concepts that have been presented in [7] and [6], and we
The work in this area composed of collecting informatiosettle a fundamental difference between the results that were
regarding the current (and possibly past) state of the Intgresented in these works.
net [1], [2], [3], inferring from the collected data the actual While the size of the full AS connectivity map is unknown,
topological structure [4], [5], and analyzing this structure im Section Il we show several methods to estimate this size. In
order to understand the inherently important characteristic apdrticular, we use a data from several databases to approximate

I. INTRODUCTION



the actual number of missing links and present a stromigat follows the policy guidelines presented above, from a
evidence to the fact that at least 35% of the links in the Agiven node to all the nodes in the graph.
level are still to be unveiled. The question of discovering peering relations translates now
In Section IV we examine the vertex degree distribution db the amount of edges covered by a union of such trees rooted
the AS connectivity map. Using our inferences from Section It a given set of nodes. In other words, the amount of peering
we explain the difference between earlier results that shaoelations covered by a collection of BGP path vectors from
that the AS connectivity map follows the power law [4] and set of ASes, corresponds to the amount of edges covered
other results that question this observation [5], by showing tHay a set of the corresponding trees. In this work we use the
while the customer-providesubgraph follows the power law, Route-View project [1] as a source for our BGP database. This
the peer-peersubgraph behaves differently. project collects a snapshot of the Internet AS level topology
on a daily basis from about 40 ASes.
Il. UNDERSTANDING THEAS DATA GATHERING PROCESS  The second method to gather information is the Internet

The AS level connectivity map is modelled by a gra@h= Rou_ting Rggistry (IRR) [2]. This is a union of W(_)rld-wide_ _
{V,E}. Each node in the graph represents an autonomd@&ting policy databases that use the Routing Policy Specnfl—
system, and an undirected edge represents a peering relafdiPn Language (RPSL) [13], [14]. These databases contain,
between two ASes. In order to formalize the methods used@8'ong other things, the local connectivity information for
gather information about the available peering relations in tHa€ registered ASes. In terms of the AS connectivity graph,
Internet we use several simplifications and assumptions. THES corresponds to discovering all the edges connected to a
helps us create a rigorous view of the discovery process, &H4en node. and therefore these objects are referred to as stars.
hopefully maintains the most important and relevant aspects@pviously, if we had such a complete and an updated database
the discovery process while eliminating less important issud¥e could easily derive the AS connectivity map. However, not

There are several methods to gather and sample informatfhthe ASes are willing to publish their peering relationship.
of the AS connectivity map. The first one is a BGP basdfCreover, in some cases the entries in the database are out
database consisting of a set of BGP routing tables fromChdate, thus they may fail to contain existing peers while in
set of ASes. Each routing table contains the paths (in ter$@M€ other cases they may contain peering relationships that
of ASes) to each of the relevant subnetworks. For simplicit§€ no longer valid. _ o
we assume that this data, the path vector of an AS, contajnd N€ Most updated and complete IRR database is maintained
paths to all other ASes and not to specific subnetworks. Sirfé RIPE [15]. This is one of four Regional Internet Registries
most AS level routing do not distinguish between differerfi?d during June 2005 it consisted of about 6800 ASes that
networks within the same AS, this should not add a significaigVe registered in Europeln this database almost all the
inaccuracy. Thus, the collection of all the path vectors fromg9iStered ASes (over 98%) share their peering relationship. In
given AS to all other ASes is a DAG (Directed Acyclic Graph)_(_:ontrast, only 400 ASes out of 11000 ASes that have registered

Retrieving the peering connectivity as reflected by the data BfARIN (American Registry for Internet Numbers) share this

a specific AS is the most basic peering retrieval process. THEormation.

can be done by a direct access to the BGP data, or via thé'S mentioned above, entries in the IRR may be invalid.
Looking Glasstool. Thus, one should use a filtering mechanism in order to remove

One of the well appreciated advantages of BGP is i{gese entries. In this work we use a filter that is based on the
ability to use policy based routing where each AS defing@nity checks that have been presented in [5]. These filters are

its own local policy. In practice, the policy of an AS reflectP@sed on the fact that a valid peer should appear in the entries

the commercial relationship with other ASes. Thus, the A4 Poth ASes while a peer that appears in only one entry may

connectivity graph has a hierarchical structure in which coR€ ©ut of date and should be removed from the IRR. In case

nected ASes have eustomer-providerelationship if a small that one of the ASes does not have an entry in the IRR it is
AS is connected to a larger AS, and they havpeer-peer not clear whether this peer should be filtered out or not. Thus,
relationship if they have comparable size [10], [11]. Moreovef'® consu_jer_two filtered database, the first one contains these
permitted paths do not include so callealleysnor steps[g], P€ers while in the second one the peers are removed.

[12]. Although ASes may use other policies and BGP routing P'MES [3] is a new project that samples the Internet
table may reflect more than one route for a destination AlSIng traceroute In particular, distributed agents _Iocated in
we assume that under the above policy, routing is done alof{pusands hosts around the world, perform periogiceroute

shortest paths and the information retrieved form a single A3 @ Set of IP addresses. In contrast to the other methods
(h§- BGP routing tables and IRR) this technique obtains

is a tree. This assumption makes the discussion regard! i ) o
the retrieval process formal and rigorous. Thus, one can ng{jermation regarding the Internet connectivity in the router

model the process of retrieving peering information by creatiﬁﬁvel' Nevertheless, one can correlate between an IP address

a pOIICy based shortest path tree, namew a shortest path trQgctually there are almost 10000 registered ASes but over 3000 out of them

seem to be inactive due to the fact that they do not appear in the Route-View
1A list of ASes that provide access to theoking Glasgool can be found database and their entries look invalid (see discussion regarding IRR filtering
in www.traceroute.com . mechanism in the next paragraph).



and its corresponding AS (i.e. the AS that allocated this IP 100000

address) and therefore connectivity in the router level induces Route-View =
connectivity in the AS level. Currently (June 2005), DIMES 10000
consists of 3781 distributed ageht®cated in 77 countries =
around the world and it spans 39000 links from the AS map. % 1000 F
A. Covering graph by shortest path trees % e TSI
In [5] the authors found that the available databases con- é 100
sisting of BGP routing data alone, are not complete enough 2
and when adding the IRR database, a significant number of 10 ¢
links are revealed. They explain this result by the fact that
there are several paths to each AS while only one path is 1 ; ‘ ‘ ‘ ‘ ‘ ‘
5 10 15 20 25 30 35 40

published, and by the private naturepger-peetinks. In [16]

the authors pointed out that the majority of these new links,
connect between so calledch nodes- nodes with large Fig. 1. Route View Covering Process
numbers of links. In this section we reconstruct the gathering

process that is used to build the Route-View database, using

Number of BGP trees

information from June 2005. We show that most of the links 100000 Small Random Graph —
in this database are already disclosed by less than 10 BGP LafgeSRa”dom Graph ———

. . . 5 mall BA Graph *
routing tables (from different sources) while the amount of o 10000, Large BA Graph o
peers that are discovered by the rest of the sources is very § 3 ;ffgg:ggm% fg:gg WAX gggﬂ T
small. Simulating this process over several graph models we 2 1000 Mo B DD
find that policy has a significant role in the revealing process fs B}
and that most of the hidden peers are of tpeer-peerwhile 5 100 t *yea,
almost all thecustomer-providepeers are unveiled. E \‘333‘::**

During June 2005 the Route-View database consisted of Z 10 L \X‘X\j\j‘e%
about 20000 ASes and 43200 links and it was a superposition Q
of 40 different BGP routing tablés With respect to the L ‘ ‘ AN ‘ -
discussion above, the process of composing these BGP routing 5 10 15 20 25 30 35 40
tables into a complete database is similar to the process of Number of trees

spanning a graph by a set of policy-based shortest path trees. In
order to examine the process in which these routing tables are
composed, we took from the Route-View database the 40 BGP
routing tables (each representing a policy-based tree). Then,
using 50 random permutations, we calculated the averag@ih tree. Thus, we can simulate this covering process by
number of new links found in each step. Figure 1 depic@enerating graphs and cover their edges by a set of shortest
the average number of new peers that are unveiled by the @@th trees. In Figure 2 we show this covering process for
BGP tree. Clearly, the first routing table discover over 200Gveral random graphsOne can see that similar to the Route-
links® (the average size of a BGP routing table). However, thdew covering process, the contribution of new trees by means
amount of new discovered links decreases very fast. In fagf, new edges decreases very fast. Obviously, the degression
starting from the tenth routing table, each new table unveilégl more moderate in graphs that have more links due to the
less than 300 new peers (compare to more than 1000 pd@g that each tree contains exaclly—1 edges, thus exposing
in the first 5 trees), a very small number comparing to tHarge graph requires more trees.
size of the graph. In other word, a small number of BGP treesThere are two main differences between the covering pro-
revealed a significant amount of peers while the rest of t§€ss of the AS database and our simulated graphs. The first
routing tables reveal very little. Although many links remaifne refers to the quantity of the cover. From the fact that the
hidden, incrementing the number of BGP routing tables wilRR database contains thousands of links that do not appear in
not help much in increasing the number of unveiled links. the route-view database we know that the route-view database
As mentioned before, by disregarding the policy, a BGFovers at most 60% of the links in the AS connectivity map.

routing table can be approximate|y simulated by a short€an the other hand, in our simulation the set of 40 trees cover
almost all the edges in the graph (see Figure 3). The second

Fig. 2. Graph Simulation Covering Process

SNote that several agents can be located in a single AS.

4Actually, there are 45 routing tables but 5 of them contains less thanfin this experience, and throughout this paper we consider the following
1500 links compare to more than 20000 links in the others. Since their totahdom graphsG y (p) graphs in which an edge between two nodes exists
contribution is less than 200 links, we ignore these small tables to avaigith probability p, a Barabasi-Albert graph [17], [18] and Waxman graph
unnecessary deviations. [19], all have about 18000 nodes. For each model we generated two graphs

5In practice, a complete BGP routing table may contain several pathsviith 40000 (termed a a small graph), and one with 80000 edges (termed a
each AS. Thus, each table contains more links compared to a tree. large graph).
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difference can be observed by considering figures 1 and%aPhs that have been used in our simulation, more than 54%
While the degression of the number of new link becoméd the edges are of typrustomer-providewhile in the random

moderated in the AS graph (see Figure 1), it remains line@2Phs and the Waxman graphs only 30% and 35% of the
(in the log scale) in our simulation (see Figure 2). edges are of typeustomer-providerespectively. Moreover,

In order to understand these differences we study the impIn the Barabasi-Albert graphs a single tree unveiled couple

. . . . %?tthousands vertices, in the Waxman graphs a single tree
of the policy routing on the covering process. According to our . ) S

. . . . unveiled couple of hundreds vertices, while in the Random
policy paradigm, as described above, two ASes from different

hierarchy level are connected bystomer-providetink while graphs only a few dozens of vertices are unveiled by a single

. ree. One can observe that there is a correlation between the
two ASes from the same hierarchy level are connected - . .
. : : number ofcustomer-providelinks in a graph, its structure,
peer-peeplink. In order to simulate this structure we need

to classify the nodes in each one of our graphs into seve‘?ad its reachability.
grap he intuition behind this property is that a permitted path

h|.erar'chy levels and give orientation to the links according tcoannot contain more than omeer-peerlink [6], [21]. More-
this hierarchy.

. o . over, customer-providetinks must precedeustomer-provider
Using the guidelines frpm [20], [§]' [21] we divide the S_eﬁinks. Thus, in a heavy-tailed graph, where many vertices are

of nodesV of each graph into four hierarchy groups accordingynnected to a heavy core bystomer-providetinks, almost

to the vertex degree where the number of ASes in each grayjpine ases are connected. In other models, every vertex can

increases exponentially. Thus, the set of nodes of each grapfigeh only its local environment since the existence of many

divided in the following way: 15 ASes (that have the higheg{oe.peerlinks forbid many (long) paths. Using the fact that

degree) are in level 1, 150 ASes are in level 2, 1500 ASﬁ?e AS graph is strongly connectesimilarly to the Barabasi-

are in level 3, and about 16500 ASes (that have the loweghert model, we simulate the policy-based covering process
degree) are in level 4. According to this hierarchy, ASes frogyer this model alone. In Figure 4, one can see that similar to

the same groups are connected byeer-peerrelationship evious simulation, a small number of trees reveals most of
while ASes from different groups are connected luatomer- e |ink and similar to the AS graph, the degression of number
provider relationship. Note that while this approach (degreg; ney jink become moderated. In addition, significant amount
based hierarchy) may not be the best to approximate {ieneers (more than 45%) remain hidden (see Figure 5).
hierarchy structure of the AS connectivity map, it provides apqiher interesting point is the difference between the
“good enough” method to simulate the policy-based discovegyyering process opeer-peerlinks and customer-provider

process. links. In [6], [21] the authors presented some heuristics to
In general, when routing policy is considered, connectivitifer the type of relationship of the peering in the AS graph.

does not necessarily mean reachability, namely if two AS@$ poth works they found that in the Route-View database,
are physically connected via one or more physical paths|dss than 8% of the links are of tygeeer-peer Using the

does not necessarily means that there is a permitted path vgf§orithm presented in [6] we have found that 39700 out
respect to the adopted policy. In heavy-tailed models sugh 43200 links in the current Route-View database are of
as Barabasi-Albert, there is a strict correlation between tRge customer-providewhile 3650 are of typepeer-peer In

hierarchy structure of the graph and the policy. Thus, In theggntrast, in [7] the authors show that in the IRR database more

kind of models more edges are of typestomer-provideand  than 56% of the links are of typeeer-peer They have tried to
the reachability under the policy routing constraints is stronger

compare to other model. In particular, in the Barabasi-Albert’in the Route-View database every single tree unveiled almost all the ASes.
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. s . 0 :
explain this fundamental difference by the fact that one of thze5758 link are of typeustomer-provider84% of these links

algorithms may mislead or by the fact that entries in the RIgere covered. This coverage is smaller than the one in the large

are incorrect. We suggest a different explanation that is basaergph since there are less links in this graph and reachability

on the fundamental difference between BGP based databssa®'® difficult. Nevertheless, in both graphs the coverage of

and IRR database. As explained before, due to the locality tﬂg tCtl;‘SJOEWSer(;grr]()nvgz\rztlbg:gpp Ea;/ea:ys:ari?aer Vgggcahvi:)r?p_lll_ﬁis
peer-peetinks, it is hard to unveiled this kind of links by BGP y grap ’ '

. ) . s while the covering process of the Route-View database is not
routing tables, thus this overwhelming majority aistomer- R . Mg
rovider links in the Route-View database is not Surprisincomplete and a significant amount of links are remain hidden,
b % large portion (80%-90%) of theustomer-providepeers are

and one should not infer that this is _the_rauq between trl‘f?weiled by this database. Namely, the Route-View database
number ofpeer-peerand customer-providetinks in the full

AS graph. In contrast, the IRR database is not affected Bgan almost aIItheus_tomgr-prowdesubgraph while theeer-
! . . ; péer subgraph remains hidden.
the policy and therefore it unveils mopeer-peerlinks and

reflects the ratio betweepeer-peerand customer-provider B. IRR Policy Analysis
links more accurately. Our simulations support this explanationr« information that is gathered by projects like IRR and

and show that in the covering process (that simulates the B%'Sute-\ﬁew is also incomplete in the sense that the type of

database) less than 3% of the links that ha\_/e been unveiled @i8tionship (i.e., customer-provider or peer-peer) is not part
of type peer-peercompare to almost 45% in the full graph.of the collected information. This incompleteness is due to

Namely, a graph may contain mapger-peerinks that will o 20t that many ASes do not expose their commercial

be hidden in a subgraph composed of BGP routing tables. i),iionship, or due to the fact that this information is gathered
addition, in a subgraph that consist of a §et of s';ta.rs (S|mulat|ﬂgm BGP resources consisting on a set of path vectors. In [6]
thg !RR database) there are 44fer-peetinks, similar to the the author presented algorithms that infer the AS relationships
original full graph. based on the heuristic that the size of the AS is typically
Recall that when we ignored policy, the covering processroportional to its degree in the AS connectivity graph. Using
unveiled almost all the edges in the graph (includingdber-  this heuristic (that was used in [20] to classify the ASes
peer links). We also saw thapeer-peerlinks are almost not into four hierarchy levels) they classify the type of peering
revealed when policy is used. An interesting question is, fetween ASes. In [21] the authors define the ToR (Type of
we consider thecustomer-providersubgraph alone (i.e the Relationship) as an optimization problem aiming at giving
subgraph that consist @ustomer-providetinks), what is the an orientation to the edges of a graph such that the number
quality of the cover? namely, Does the covering process Co\ifinvalid paths is minimized. They propose a technique to
most of these links, or due to policy consideration many IinI@assify the type of peering relationship by combining data
remain hidden? from multiple vantage points. The algorithms presented in both
Figure 6 depicts the coverage of both theer-peerand work are based on an analysis of BGP pathes, thus they can be
the customer-providessubgraphs. In the large graph (i.e. thapplied over BGP database such as Route View, and not over
graph that has about 80000 links) 48000 links are of typRR database that gives only local view. In [7] the authors
customer-providerand more than 90% of these links weraleveloped framework to analyze the RPSL policies of ASes
unveiled in the covering process (recall that 97% of all the the IRR and infer the type of relationship of these ASes. In
links were unveiled when the policy is ignored). In the smathis section we use the concept that was presented in [7] and
graph (i.e. the graph that has about 40000 links) in whianalyze the policies in the IRR database using a variant of this



method. Using this analysis we infer the business relationship customer provider
of the registered ASes. In addition, we consider two practical
scenarios in which links may be classified in more than one
way.

Routing Policy Specification Language (RPSL) allows net-
work operator to specify routing policies at various levels in
the Internet hierarchy. In particular, RPSL is used in IRR to
describe BGP routing policy at the Autonomous System level.
RPSL is an object oriented description language that contains
many classes and attributes. The most important class from
our point of view is theaut-numclass that containgnport
andexportattributes that describe the routing policy of an AS.
Parsing the RIPE IRR we have obtained the export policy of

about 8,200 registered ASes. To infer the business relationshigsnum: ass aut-num:  AS5
between connected ASes (ie. the type of peers) we use tHEIT  IILIIINISAS  IND DASLNIS

1 i i i 1 export: to AS5 announce AS1 AS2 AS3 AS6 export: to AS4 announce ASH
gUIdeltlnteS pl’(ti'SentES Itn [11]t and [1O]t In tVVhItCh an dAS CanCdX{JOIL: to AS6 announce AS1 AS2 AS3 AS5 ! ’
export its routes and its customer routes to its providers an

eers, but usually does not export its provider or peers routeSut-num: Ass aut-num:  AS6

p ) y p p p
In contrast, AS can export its routes and its customer routes, &8 1o 5 s 1) exports {0 ASS amnounce ASG
well as its provider or peer routes to its customers and sibling.

Consider a simple topology of six ASes described in Fig-aut-num: Ast , aut-num:  AS2 ,

. . . . export: to AS3 announce AS6 export: to AS3 announce AS2 AS4 ASH
ure 7. The export policy of each AS is also described in RPSL export:  to AS4 announce AS2 AS3 AS3
format usingaut-numclass ancxportattributé. For example, eorts 1o ASS ammounce AS2 AS3 ASY
AS5 does not export AS4 and AS2 to AS3. Thus, according Fig. 7. Routing Policy Example

to the guidelines described above, the p&8b6-AS3annot be
a customer-providetink (where AS5 is the provider), neither
sibling-siblinglink. In order to determine the type of this link
we should explore the export policy of the other edge (i.& its neighbors, regardless the type of relationship. Thus, the
AS3). Since AS3 exports all its neighbors to AS5 we now cafkPort policy in these cases is not enough to determine the
infer that AS5-AS3s a customer-provide(where AS3 is the type of relationship of a link. For instance, using the same
provider). One can observe that in order to determine the ty¥Port policy described in Figure 7, the likS1-ASZan be
of a single peer, the export policy of both edges are requirdgentified as apeer-peerinstead of acustomer-providerand
Moreover’ the import po“cy of an AS does not reflect thg‘le I|nkA83'AS&:an be |dent|f|ed as Sibling-sib”nginstead
export policy of the other edge. Thus, only peers in whichf @ customer-providerin the RIPE database only 950 links
both edges describe their export routing policy in the IRR cdfut of 36237) are in this category and may be interpreted
be analyzed. As described above our first IRR filter mechanidinmore than one way. In particular, 3@fbling-sibling links
that is used to remove invalid peers meets this requirement & be classified asistomer-providelinks and 650customer-
therefore it is used in our analysis. After analyzing the IRRrovider links can be classified gseer-peer
database using this method, we have found that 26700 out ofVhile this problem refers to the way in which the export
36237 links in the IRR database are of typeer-peey 8990 policy is interpreted, the second problem questions the classic
links are of typecustomer-provideand small amount of 490 paradigm that consider three, well defined, types of rela-
links are of typesibling-sibling tionship (i.e.customer-providerpeer-peer sibling-sibling. In
Analyzing peering type of relationship as described abogentrast to the theoretical guidelines in which an AS either
may lead to several problems in which the type of links magxports all its providers (and peers) or none, in practice there
be interpreted in different ways. The first problem refers to theay be case in which an AS export only a subset of its
case in which an AS has no more than one provider (e.g. if provider. For instance, consider that AS5 exports AS3 to
AS is a stub or if an AS is in top hierarchy). In this case (an8S4 but does not export AS2. According to our analysis,
according to our export guidelines) an AS exports all its routd3 this case the linkAS4-AS5is interpreted as eer-peer
link (since AS4 does not export AS2 and AS5 does not
8In particular, we do not rely on the import policy of an AS, since in mangxport AS2). Nevertheless, this analysis may be wrong since
T e s ool o 1 eigber Athough AS5 does not export all s providers it exports part
export policy of both edges are available. of them. Thus, these link cannot be interpreted by the classic
9n practice, theaut-numclass contains more attribute suchiaportto ~ paradigm presented above. In particular, one may infer that
describe the import policy and other administrative attributes for maintenangge type of the linkAS4-AS5should becustomer-provider
In addition, theexportmay be more complex and contain regular expressmnfwhere AS5 is the provider) and npeer-peer This kind of

routes, and aggregation of routes and ASes (uasigetand route-setRPSL 2 ]
classes). ambiguity is very common and 4800 peers in the IRR meet
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24000 - ’ SIZE
e I I a Using data, collected during June 2005 from Route-Views,
e ] IRR, and DIMES projects we unveiled 83782 AS pérs
g seof 1 Nevertheless, as discussed earlier, this data is not complete
g aeooo ] enough and despite the increasing effort to reveal the full map,

some peers may remain hidden. In this section, we address
| the following question: What is the overall size of the AS
— connectivity graph. We want to be able to answer this question
| without assuming anything about the full (partly unrevealed)
graph. It is important to note that having a good approximation
6000 - P o v s L of the size of the AS connectivity map is not just a theoretical
Threshold guestion. The overall number of active ASes is known (about
21000 during June 2005), and thus the overall number of edges
translates directly to the average node degree - which is an
important parameter regardless of the model we use. We show
in this section that the AS connectivity map contains at least
128000 links and most likely the size of the graph is higher.
First, we try to estimate the size of the connectivity graph
this category. These links may be interpretedcastomer- ysing the degree of the stars in the IRR database assuming that
provider or sibling-sibling instead ofpeer-peeror customer- the database is representative. This database consist of 6583
provider respectively, since at least one edge exports subseis@irs and 72474 links, using the first filtering or 7129 stars
its providers. and 82339 links, using the second filtering. Thus, the average
o _ _ degree is2% = 11 and 8222 = 11.54 respectively. Using
One way to deal with this problem is to determine the typge tact that the AS graph consists of 21000 active ASes this
of each link by a threshold as follow. We say tha\&-i jnpjies that the AS graph consists 2000 - 4 = 115000 or
is x-provider of AS-if exactly 1002% of AS-i providers are 21000- 154 = 121000 peers. Clearly, the estimation using this
exported toAS-} According to this definition ifAS-jis O-  method depends on the filtering used. An aggressive filtering,
provider of AS-iand AS-iis 0-provider of AS- thus the link 1,5y remove legal peers and therefore it induces a smaller IRR
AS-j, AS-iis of type peer-peer If AS-jis 1-providerof AS- 4.50h compare to the real one. Thus, the estimation in this case
i and AS-iis 1-provider of AS-j thus the linkAS-j, AS-iiS  qeviates down. On the other hand, using a moderate filtering
of type sibling-sibling And finally, If AS-jis 1-provider of  hq inquced graph may contain peers that are no longer valid.
AS-iand AS-iis O-provider of AS thus the linkAS-j, AS- |, this case the estimation deviates up. To emphasize this issue
I is of type customer-providewhere AS-jis the provider). |o¢ 5 estimate the size of AS connectivity graph using the
For the rest of the cases (i.e. where< » < 1) we define | hfitered IRR data. In this case the database contains 9247
a thresholdt. If = > ¢ thenx is considered to be. If  gar5 and 138343 reflecting an average degreeisf and a
r < t then z is considered to bé. Elgur_e 8 _deplcts the size of 156000 edges for the full graph.
number ofpeer-peerand customer-providetinks in the IRR\yith respect to the assumption that the database is represen-
for different threshold values. Clearly, for small thresholghse one may refer to the fact that almost all the ASes in the
values the amount otustomer-providerlinks increases at |pr are located in Europe and it is possible that the average
the expense opeer-peerlinks (in absolute number, the totalyeyree of ASes in Europe differs from the average degree of
amount ofsibling-sibling links almost does not change and,\"ages in other region. In order to avoid such assumption, we
thus it is not considered in our discussion). Another interesting, estimating the number of AS peering relations using the
inference from Figure 8 is that almost all the links that move(giaIta added by the IRR database to the Route-View database.
from peer-peetto customer-providetype have a big threshold In Section II-B we analyzed the type of relationship in the
value (i.e.t = 0,.9)_ Na”_‘e'y in almost all the cases, a Spe‘:iﬁﬁ:RR database and showed that 8990 out of 36237 peers (i.e.
AS exports all its providers (to another AS) except one. 25%) in the filtered IRRL are of typecustomer-provider|f
Je consider the last discussion in Section II-B regarding the
ay in which export policy is analyzed, there may be a doubt
arding 420@eer-peetinks. In this case, when we consider
only the undoubt links-=32%0___ — 29% of the link are of

L 218990+22056 a )
customer-providerAssuming that the sampling space is

14000 -
12000 F
—_—

10000

8000 -

Fig. 8. x — customer-provideiThreshold

Another way to deal with this problem is to consider ne
types of relationship. Recall, that the types of relationsh
intend to describe the business relationship between ASes.
instance, in &ustomer-providelink the providers gives to the
customer full access to its routes. Nevertheless, in some ca¥bs
a provider gives only partial access to .ItS prowder (i.e. some OfloThis is after filtering the IRR data as discussed in Section 1.
the routes are blocked), thus the provider is natlaprovider HRecall that this analysis requires that both edges will be in the database.
but a semi-provider Thus, we have used only the second filter mechanism.



representative, 25-29% of the peers in the full AS connectivity | (B;Aaph Sizelgls%“oaﬁon Grl%plgsséze‘
map are of typecustomer-providewhile 71-75% are of type BA+Wax 141085 141135
peer-peer(or sibling-sibling. Since the Route-view database TABLE |

contains 3970Ccustomer-providedinks it indicates that the
full AS connectivity map contains at Ieaéfg—O * 39700 =
138000 links. Using a more conservative analysis, considering

GRAPH SIZE ESTIMATION

all the doubt links (i.e. link that their type is unknown with o 400 1000

respect to the last discussion in Section 1I-B) asuatomer- Estimation Method Biggest Stars| Small Stars
. . o . . Average Degree (First Method) 718000 58900

provider links, 37% of the links in the IRR are of type | paa intersection (Second Method) 195000 121800

customer-provider Therefore, the same technique indicates
that the AS connectivity map contains at least 107300 links.
Nevertheless, in this ca®e36x36237 = 13045 of the peers in
the IRR are of typeustomer-providewhile the IRR and the
Route-View data have only 6730 commouastomer-provider

links. Thus, the size of theustomer-providessubgraph is at method depends of the independency of the database. Thus,
least39700 + 13045 — 6730 = 46015 links. In this case the if there is a correlation between the data the estimation will
lower bound is 128000 link&. deviate and indicate a smaller value (and vice versa).
~ Obviously, these estimations are very conservative andip order to examine the method we simulated the process
intent to give a lower bound on the size of the AS maRyer several graphs. The first graph is a Barabasi-Albert graph
For instance, in the last estimation we assumed that thgq the second one is a superposition of a Barabasi-Albert
Route-View data does not discover about 65Q@stomer- graph (that contains 40000 edges) and a Waxman graph (that
provider links in Europe alone. This indicates that (undeggntain 100000 edges). Both graphs contain 18000 nodes.
the assumption that 36% of the links are of typestomer- rrom each graph we have constructed two subgraphs. The first
provider) a large portion of 2000@ustomer-providerinks  one consisted of 5000 random stars (that simulates the IRR
remain hidden and therefore the estimation should be 165399(abase) and the second consisted of 40 policy based shortest
links. o ) ) path trees (that simulates the Route-View database). Table |
The next estimation is based on the intersection of thgmmarizes the average results of the estimation process over
new sample space (the stars coming from the IRR) wiBly independent iteration, with respect to the actual*3ize
the existing coverage created by trees from the BGP routingi, contrast to the vertex degree method, where the esti-
information. If the new data cont_alns a set of independepiation is significantly affected by the average degree of the
edges, we could measure the portion of the full graph covergghypling space, this method seems to be much more robust
by the BGP data, because it gives us the probability that g, respect to the degree of the nodes in the sampling space.
edge is covereq by the BQP data. Recall t.hat the ROUte'V"f‘-Ylﬁwever, our sampling space is indeed dependable and the
database contains 43200 links and the unfiltered IRR contaii§imation is still affected by the average degree. Every AS
102106 links. The union of these two graph contains 128697 at least one peer in the Route-view (Recall that the Route-
links. This means that 16618 out of the 102106 edges Whejg\w consists of a set of trees that span the graph), thus
already covered by the Route-View database. Therefore, the probability of an edge in an AS with small degree to
probability. of an edge to be discovered by the Route-Vieye covered by the Route-View is bigger than an AS with
database 'ﬁ% = 0.16 and the total number of edges carhigger degree. To demonstrate it, we divided the IRR into two
be approximated byl /0.16 x 43200 = 265400. Obviously, gypgraphs. The first subgraph contains the 400 biggest stars
removing invalid peers from the IRR database, increase & the stars with the highest degree) and the second contains
probability of an edge to be discovered by the Route-Viewgy small stad. Table Il summarizes the estimation using
database. Thus, similar to pervious method (using the avergggse two subgraphs (instead of using the full IRR).
degree of a node), the estimation is significantly affected byNext, we use the same technique to estimate the size of
the filter mechanism. Using the filtered IRR, this probability if;e ag map using data from the DIMES project. Thus, we
increased tdz5y; = 0.26 (where 12107 is the number of P€€ISneasure the intersection between DIMES and IRR data and
exists in the IRR and have already covered by the Route-Vigjinyeen DIMES and Route-view data. During June 2005,
database, and 46611 is the total number of peers in the filtefgfe s unveiled 38928 links. 7000 links of them have already
IRR database) using the first filter mechanism & =  peen revealed by the IRR data, while 23850 of them have been

0.24 using the second filter mechanism. Thus, the total numbege1eqd by the Route-View data. Namely, the probability of
of edges can be approximated by0.26 x 43200 = 166000

and1/0.24 x 43200 = 180000. Note that the accuracy of this 13recqj| that in the simulations, unlike in the AS case, we know the actual
size of the full graphs.
12In [7] the authors indicate that 42% of the links in the IRR are of type 1#The IRR contains many ASes with one peer (i.e. their degree is one).
customer-providerthus estimating the lower bound using their results mayhese links are found by the Route-View as well. Thus is order to avoid this
be different. However, since information regarding the comroaostomer- side effect we did not took the ASes with the smallest degree but ASes that
provider links is also required, we cannot present this estimation. have at least 5 peering relationship.

TABLE I
ROBUSTNESS OFESTIMATION



an edge in the DIMES data to be discovered by the IRR ™ ‘ ‘ T oV —
data or by the Route-View database 3522 = 0.55 and

900 = 0.19 respectively. Thus, the total number of edges 10000 [

can be approximated by/0.55 x 38928 = 201606 using
IRR and1/0.19 x 38928 = 70522 using Route-View. Clearly,
the second estimation (using DIMES and Route-View data)
seems to be very low. However, since DIMES is based on
traceroutequeries, it obtains only links that traverse permitted
AS paths. Thus, it has strong overlapping with BGP based
database such as Route-View and the probability of an edge 10}
covered by DIMES to be unveiled by Route-View is bigger
compare to two independent subgraphs.

1000 |-

1-CDF

100 -

Currently DIMES consists of almost 4000 distributed agent ! 1 Vertor begree 1000 10000
performingtracerouteto a set of random IP addresses. While _ S
the IRR contains peering information of ASes located in Fig. 9. AS Vertex Degree Distribution

Europe, less than 25% of DIMES agents are located in Europe.
Moreover, the majority of IP addresses are located outside

Europe. Thus, most of thHaceroute_penformed by DIMES the, AS graph. We show that despite the fact that the databases
agents are probably targeted to destination that are not covered

. ) . e not complete, their vertex degree distribution may reflect
by IRR data and their source s outside of IRR scope as W%r'e distribution of the full graph. In particular, we observe that

Therefore, the correlation between IRR and DIMES data | . .
. . e customer-providessubgraph follows the power-law while
weaker than independent random subgraphs and the estimation )
. e peer-peersubgraph may behave differently. Although
based on these two data set deviates up.

Using the estimations presented so far, one can bound %RS most complete database contains both IRR, Route-View

size of the AS connectivity map between 128000 and 2000 @?rit?tzlt\iﬂoisog?r:z’ Alg orrierhtc\),vsnudseerstthaentlthlge d;’gézxsed(;?;ﬁg
links. Both methods used in this section are sensitive to many i grapn, . e
.._simce it is not affected by the policy and therefore it is much
parameters (e.g. the average degree, the accuracy of filtefin e representative in the sense that the ratio bet n

and the type of relationship analysis, independency of the b wee

database, etc.), thus trying to approximate the accurate sizé)%?rand customer-providefink is more accurate.

the AS connectivity map is very difficult. Nevertheless, while AS discussed in Section I, BGP based database contains
the lower bound seems to be too conservative, the upper bolRestly customer-providelinks and therefore it may be consid-
is too loose. Therefore, the actual size of the AS connectivigj€d @s @ subgraph of ticestomer-providegraph. Moreover,

map is somewhere between these boundaries. using more representative database (i.e the IRR database)
we showed that the ratio betwegmeer-peerand customer-
IV. VERTEX DEGREEDISTRIBUTION provider links is completely different and there are many

In their paper, Faloutsos et al. [4] showed that despifgorepeer-peerlinks ir! th_e fu_II AS graph. Therefore, although
the apparent randomness of the Internet, simple power-laUQE vertex degree distribution of databases_ such as Route-
hold for the Internet in the AS level. This novel observatiol€W and NLANR follows the power-law, it reflects the
was adopted by many researches and it is one of the baditribution of thecustomer-providesubgraph alone and does
building blocks for modelling the AS connectivity map. Thdot give information regarding the distribution of theer-peer
authors use the NLANR - National Laboratory for Appliedubgraph.

Network Research data [22] consisting of several BGP routingTo support this finding, we use an independeunstomer-
tables. This kind of database (i.e. a database that consistingPpvider subgraph that is based on IRR data. We use the
routing tables alone) is incomplete and may cause a significam@lysis described in Section II-B to divide the IRR data
inaccuracies. In other words, the graph that is derived froifto peer-peerandcustomer-providesubgraphs. With respect
this kind of database is only a subgraph of the full AS grapkp the last discussion in II-B, we consider only the links
thus properties that hold in the subgraph may not be valid féfith undoubt type. Thus, we have 89%@istomer-provider
the full graph. In [5] the authors questioned this observati@d 22050 peer-peer links. Figure 10 depicts the vertex
and showed using a more complete database (yet not fuli§gree distribution of theustomer-providesubgraphs as they
complete) that the vertex degree distribution deviates froderived from the Route-View and the IRR database. The size
the straight line (reflecting a power-law distribution). One ca®f the customer-providesubgraph derived from the IRR data
see this deviation in Figure 9 that depicts the complementdfymuch smaller than the Route-View subgraph (in particular
distribution function of the AS degree as it is derived from théhe first contains 8990 links while the second contain 43200
route-view database alone, and from the route-view plus IRRKS), thus it is located below Route-View subgraph. Clearly,
data. The data for this graph has been collected during Juigh graphs follow the power-law.

2005. In this section we study the vertex degree distribution ofIn contrast to thecustomer-providersubgraph we suggest
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that the peer-peersubgraph does not follow the power lawto a set of destination, may be heavy-tailed. Thus, one may
Figure 11 depicts the vertex degree distribution of pleer- question our inferences by suggesting that these subgraphs do
peer subgraph derived from the IRR. The distribution isiot represent the vertex degree distribution of the full graph.
completely different. In particular, it is much more similar However, in [23] the set of destination vertices is very small
to the distribution of Waxman graphs (see Figure 12). compare to the number on vertices in the graphs (only 1%)
Naturally, the distribution of the full graph is a superpositiomhile when we consider BGP routing table, the destination set
of both distributions (i.e.customer-providerand peer-peer contains almost all the vertices in the graph. The significance
subgraph). Figure 13 depicts the vertex degree distribution aff this difference is depicted in Figure 14. One can observe
the IRR. Recall that about 75% of the links in the IRR databasigat when the size of the set of destination is small, the vertex
are of typepeer-peerand only 25% are of typeustomer- degree distribution of the derived subgraph follow the power-
provider. Thus, the distribution of the full graph is mostlylaw, but increasing the size of the set bring the distribution
affected from thepeer-peersubgraph. of the derived subgraph closer to the distribution of the full
So far we drew conclusions regarding the vertex degreandom graph.
distribution using only partial data. In particular, we used While the Route-View database represents a policy-based
subgraph consisting of a collection of policy-based shortestiortest path trees subgraph, the IRR database may represent a
path tree (i.e. the Route-View database) and another subgragihdom subgraph (generated by a set of random stars) and does
consisting of a set of random “stars” (i.e. the IRR databaseapt follow the last discussion. Our simulation results indicate
As pointed up in [23], the vertex degree distribution of &hat in this case the vertex degree distribution of the subgraph
graph may be differ from the distribution of a subgraph that is similar to the full graph. Figures 15 and 16 depicts the vertex
derived from the original graph. In particular, given a randomegree distribution of small and big subgraphs generated by a
graph, the vertex degree distribution of a subgraph formedt 1500 and 5000 random stars respectively. Both subgraphs
by a collection of shortest paths trees from a set of sourge®serve the vertex degree distribution of the full graph.
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V. DiscussiON ANDFUTURE WORK

In this paper we showed that despite the increasing eﬁ(eﬁ

to unveil the AS connectivity map at least 35% of the link

are still missing from all known databases. Less conservativ

estimations indicate that more than 50% of the link rema

hidden. By understanding the gathering process of databagro
such Route-View and IRR we showed that almost all missirgq

links are of typepeer-peerwhile a considerable amount of
customer-providelinks are revealed. Thus, trying to disclos
the full AS connectivity graph by an increasing set of BG
routing table or by a set of agents performing periddicer-
oute (both discover mostlycustomer-providedinks) may be
insufficient in order to fully unveil thepeer-peersubgraph.
A better understanding and modelling the structure of the
unveiledpeer-peerinks and their location in the hierarchical
structure is a subject to future work. Note that unlike th

Route-View and IRR databases, at this time the DIMES project

is relatively new and a more thorough study of its informatio
gathering is in place.

We also studied the vertex degree distribution of the A%
connectivity graph and showed that the distribution of the

peer-peersubgraph is considerately different from the on
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Fig. 16. Vertex Degree Distribution of a Waxman Subgraphs

of the customer-providersubgraph. These inferences, may
lead to new models describing the AS connectivity map that
consist of two separate models. One describing peer-
peer subgraph and another describing ttiestomer-provider
subgraph. In particular, these models should take into ac-
count our finding regarding the vertex degree distribution of
each subgraph. Namely, the vertex degree distribution of the
customer-providesubgraph follows the power-law and the the
vertex degree distribution of theeer-peersubgraph is similar

to the distribution of a Waxman graph.

An interesting area for future work is studying a more
complex peering relationship that does not follow the classic
export paradigm. As we pointed out in Section II-B, an
AS may export to some its customers only a subset of its
provider's paths. In such a case, one or more providers may
give (to this AS) only local services. This kind of export
policy that actually determines a new type of relationship
between ASes, was not studied in the past and it may lead to a
trerent model describing and characterizing the AS hierarchy
gonnectivity map.
ineAnother direction is to study some classical routing related
reoblems (e.g. minimum spanning tree, the cache location

Solem) that have been well studied in the past over flat
aphs, over the hierarchical structure of the AS graph. In

é)articular, in this case the AS graph connectivity does not
Igeces:s;arily mean reachability and the triangle inequality does

not necessarily holds, and thus new approaches may useful.
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