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Abstract—In this paper, we seek to understand the intrinsic
reasons for the well-known phenomenon of heavy-tailed degree in
the Internet AS graph and argue that in contrast to traditional
models based on preferential attachment and centralized opti-
mization, the Pareto degree of the Internet can be explained by
the evolution of wealth associated with each ISP. The proposed
topology model utilizes a simple multiplicative stochastic process
that determines each ISP’s wealth at different points in time and
several “maintenance” rules that keep the degree of each node
proportional to its wealth. Actual link formation is determined
in a decentralized fashion based on random walks, where
each ISP individually decides when and how to increase its
degree. Simulations show that the proposed model, which we
call Wealth-based Internet Topology (WIT), produces scale-free
random graphs with tunable exponent o and high clustering
coefficients (between 0.35 and 0.5) that stay invariant as the size
of the graph increases. This evolution closely mimics that of the
Internet observed since 1997.

I. INTRODUCTION

Recent studies show that real-life large-scale networks not
only exhibit power-law degree distributions, but are highly
clustered. Thus, a significant effort has recently focused on
developing graph generators that are capable of constructing
random networks with power-law degree distributions [1], [2],
[41, [7], [11], [13], [21], [22], [26], [35], [36], [43], [48] and
high clustering [7], [23]. Among the previous approaches,
preferential attachment [4] and optimized-based construction
[13] have become the two major paradigms for explaining the
Internet topology. The former theory relies on the principle
that each joining node attaches its links to existing nodes
with a probability proportional to their current degrees. The
main explanation behind this behavior is a premise that new
users perceive large-degree nodes as being more “attractive”
compared to low-degree nodes. The latter theory models node
join as an optimization problem and argues that each joining
ISP aims to solve a certain trade-off between the benefit of
improved connectivity and the cost of adding new links.

As we discuss next, the existing evolution theories exhibit
certain limitations in the context of the Internet AS-graph.
While acceptable in certain cases (such as social networks),
preferential attachment [4] is usually too restrictive to realisti-
cally model the Internet graph as it bases link formation solely
on the degrees of existing nodes and places too much weight
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on ISP “popularity.” From the practical perspective, it is clear
that such complex factors as geographic location, technical
feasibility, business strategy, and various economic consid-
erations contribute to the evolution of each network rather
than the attractiveness or size of other networks. Optimization-
based topology models [13] are viable alternatives to prefer-
ential attachment that capture more diverse factors related to
ISP peering; however, the lack of mutuality (i.e., a joining
provider cannot attach to an ISP that does not wish to peer
with it) and absence of economic basis for link formation (e.g.,
a joining network operator would not attach to an ISP close
to bankruptcy, regardless of how well-connected the latter one
is) make them potentially unrealistic as well.

In addition, both preferential attachment and optimization-
based construction depend on the global knowledge of the
system and always create random graphs using centralized
information. While this is certainly not a problem during
simulations (i.e., most generators are centralized), we argue
that any theory that relies on global knowledge inherently
fails to explain how the Internet could have reached its
current stage given the fact that no single ISP has complete
information about the AS graph. In preferential attachment,
it is hard to conceive that new ISPs will test the probability
p; of connecting to each existing ISP ¢ and then select the
peering point exactly according to the ratio of degree d; to the
global sum ZZ:1 dy,, where n is the number of nodes in the
system. As for the theory of optimization-based trade-off, the
algorithm requires complete information about the structure
of the graph (not just the degree of each ISP) and burdens
each new node with an optimization process with complexity
©(n?), which is hardly possible in practice.

In this paper, we overcome the above limitations and com-
plement the previous efforts by proposing a different theory
for the structure of the Internet that relies on 1) principles
of economic evolution that govern the degree of each ISP
and 2) distributed random walks that determine the actual
attachment decisions. While the main focus of this paper is
to understand the evolution of the Internet, we also provide
specific algorithms that can be used to create new graphs and
test them against those observed in the Internet over the last
decade.
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Fig. 1. Components of the wealth-based evolution model.

A. Degree

The structure of the proposed model is shown in Fig. 1,
where the construction of the graph is driven by two paradigms
— wealth evolution and random walks. As shown in the figure,
the former is responsible for the degree distribution, while the
latter for the formation of actual links. The main principle
of the proposed model is that the degree of an ISP is a
consequence of complex forces that can be macroscopically
modeled by the wealth! of the ISP and not by the metrics
found in the topology itself. This characteristic of the Internet
makes it fundamentally different from other real-life graphs
such as neural networks [4], [45], actor collaborations [4],
scientific citations [34], [41], and numerous networks observed
in physics [1], [9], [23], which also exhibit power-law degree
distributions, but lack the financial orientation of the Internet.

Since individual and company wealth in many free-market
societies is governed by Pareto distributions [32], we argue
that the heavy-tailed degree of Internet ISPs is a result of the
particular structure of their wealth rather than anything else.
To understand this correlation, notice that it makes little sense
to build topologies in which small local ISPs are modeled with
extremely large degree, well-established backbone providers
are assigned a handful of peering points, and the structure
of individual companies evolves only based on the degree of
other ISPs. Causality between company wealth and degree can
be explained by many factors such as cost of link maintenance
that makes higher degree more expensive, customer pressure
that forces networks with many subscribers to be better
connected, and the various QoS objectives that necessitate
more peering points to deliver better service and extract more
revenue from transit traffic; however, the exact specifics of
this relationship are not essential and may be hidden under
the umbrella of a simple economic model discussed below.

To capture the dynamics of open-market competition be-
tween the ISPs, our model assigns certain wealth w;(t) to
each ISP 7 and acts on behalf of the ISP to keep its degree
d;(t) proportional to its wealth. Individual ISP wealth w;(¥)
is governed by one of the simplest wealth evolution models
that relies on random multiplicative increases/decreases in
response to the stock market and various random economic
decisions of the company. To account for bankruptcy that
is prevalent among new startups, each ISP is removed from

!Company wealth is an abstract concept that includes its revenue, cus-
tomers, income, property and stock value, equipment, bandwidth, etc.
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Fig. 2. Birth-death wealth evolution.

the system when its wealth drops below a certain threshold
wp, needed to operate and provide service to its customers.
This framework is illustrated in Fig. 2, where ISPs A1, A,, . ..
sequentially join the system and compete in the Internet market
using their individual assets w;(t) that include their initial
funding, customer revenues, stock market gains, etc. As shown
in the figure, at any time ¢, the system is composed of a
random number of ISPs that are still alive (i.e., those that
avoided bankruptcy), whose distribution of wealth determines
the degree structure of the AS-level graph.

B. Links

For the construction of actual links, it is rather clear that
the Internet evolves in a distributed fashion where the ISPs
are not aware of any global characteristics of the network. To
reflect the distributed nature of real attachment decisions, our
model allows each ISP that plans to expand to perform random
walks along the existing graph until it finds a neighbor that is
willing to accept its peering request and satisfy its financial
requirements (e.g., offer the right customer base, necessary
economic model, and reasonable peering conditions). While
the actual attachment decisions in real life are not haphazard,
we argue that the event that a given ISP satisfies all of the
above criteria for attachment may be modeled at some high
level as purely random.

The final note is that our theory of random walks (as
opposed to other means of finding neighbors) may be viewed
as a by-product of the Internet market being a large social
network, where many companies and individuals discover new
acquaintances through existing links (i.e., business or personal
relationships) rather than by randomly walking up to complete
“strangers.” This also allows our model to preserve locality
where geographically close ISPs are more likely to peer.

We combine the above two methods (degree evolution and
random walks) into a set of algorithms we call Wealth-based
Internet Topology (WIT). Simulations show that WIT succeeds
in producing power-law degree distributions with a flexible
exponent « (including o = 1.2 observed in the Internet)
and is able to achieve levels of clustering close to those in
the Internet (i.e., 0.45). More importantly, we find that the
clustering coefficient of WIT matches that of the Internet
during the entire evolution of the graph (i.e., as the size of
the system increases) rather than for a single value of n as
usually examined in prior work.



The remainder of the paper is organized as follows. We first
review the background and related work in Section II. We then
present our wealth evolution model in Section III and discuss
the details of the topology construction algorithm in Section
IV. Finally, we compare our model with existing methods in
Section V and conclude the paper in Section VI.

II. BACKGROUND AND RELATED WORK

In this section, we overview a small subset of related work
and mention several well-known models that we study later in
the paper.

A. Internet Topology and Power-law Degree Distribution

Faloutsos et al. [14] show that the Internet AS-level topol-
ogy exhibits a power-law degree distribution, or the so-called
“scale-free” phenomenon:

P(d; > x) = (x/8)"°, (D

where d; is the degree of node 4, [ is the scale parameter, and
« is the shape parameter of the power-law distribution. Note
that many similar observations [7], [10] are obtained from the
archived snapshots of BGP (Border Gateway Protocol) routing
tables collected by the Oregon Route View Server [31]. While
sometimes it is argued that this data set does not reflect the
whole view of the Internet, it has been reported in [10], [20]
that graph properties such as the degree distribution are robust
even with certain incompleteness in the data set of the Oregon
Route View Server. In fact, it is shown in [10] that the number
of links is the only difference between the graph inferred from
the information collected by the Oregon Server and the one
complemented with other sources (e.g., the Looking Glass tool
and Internet Routing Registry database) and that the power-
law degree distribution holds for both graphs. Note that similar
observation can be found in [20] regarding the size of the
largest connected component.

To model the scale-free property in the Internet, many ef-
forts have been brought forward to design topology generators
that produce power-law degrees. Some of them construct ran-
dom graphs incrementally and others do not allow the growth
of the network. We call the former algorithms evolving and
the latter non-evolving. We next review two major classes of
evolving models, i.e., preferential-attachment and optimization
trade-offs, and follow it up with a discussion of non-evolving
methods.

B. Preferential Attachment

The most common scale-free models used today are based
on the theory of “preferential attachment” which is proposed
by Barabasi et al. [4] and implemented in their topology model
Barabdsi-Albert (BA). At each discrete time step, BA adds
a new node x to the graph, which is then randomly linked
to m > 1 existing nodes using the preferential-attachment
function:

di(t)

IO di(t)’ @

pi(t) =

where p;(t) is the probability that node i is selected for link
formation at time ¢, d;(t) is its degree at time ¢, and n(t)
is the number of nodes in the graph at time ¢. This version
of preferential attachment always produces graphs with shape
parameter o ~ 2. To relax the constraint on a, a method
known as Albert-Barabdsi (AB) [1] adds the operations of
link re-wiring and growth suspension (i.e., the graph evolves
without adding new nodes).

Bu et al. [7] utilize shift-parameter A € [—o0, 1] in their
model, which they call Generalized Linear Preference (GLP),
and modify (2) to:

pi(t) = di(f) — A

P di(t) =)
Through the use of (3), GLP achieves arbitrary values of o =
2 — ) € [1,00) and high levels of clustering. Similar methods
are proposed by Simon [6], [35], [36] and Krapivsky et al.
[24], [25].

Other mechanisms in this category include BRITE [27] and
Inet [21]; however, throughout this paper, we only study BA,
AB, and GLP since their performance can be used to infer
that of the other models.

3)

C. Optimization-Based Models

Another major class in generating power-law degree distri-
butions is first proposed by Carlson et al. [9] and later studied
by Fabrikant et al. [13] in the context of the Internet. In their
models called Highly Optimized Tolerance (HOT) each new
node selects the attachment point based on the minimization
of two objectives: the geographical length of the peering link
and the average number of hops to other nodes in the graph.
In particular, a new node ¢ attaches to node k that minimizes
the following:

k = arg m<in{9dij +h;}, “)
j<i

where d;; is the Euclidean length of link (4, ), h; is the
average distance from j to other nodes in the graph, and 6 is a
parameter tuning the relative significance of the two objectives
d;; and h;. Chang et al. [10] further explore optimization-
based construction methods by allowing each AS to have
multiple geographical locations, called Points of Presences
(PoPs), where each new node ¢ computes (4) by replacing
d;; with the minimum distance to all PoPs of node j.

D. Non-evolving Power-law Generators

In this category, we mention several generators that do not
grow (evolve) the network over time. One of the simplest
power-law graph construction models is called Given Expected
Degree (GED) [11], [28], [29], [30]. GED is an extension of
the classical Erdos-Rényi graph model G(n,p) [12] in which
edge-existence probability p is adjusted on a per-link basis
to produce a heavy-tailed degree distribution. Specifically, a
sequence of weights {w;} is first generated according to a
Pareto distribution and then each edge (i,j) is created with
independent probability:

P;j = min (wguj , 1) , 4)
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where D = Zzzl wg. The min function is necessary since
product w;w; may exceed D, especially in sequences drawn
from power-law distributions with shape parameter o < 2.

A similar graph construction method called Power-Law
Random Graph (PLRG) [2] replicates each node ¢ exactly w;
times and then places random edges between the replicated
nodes with equal probability. Thus, nodes with larger initial
weight w; receive proportionally more edges than nodes with
smaller weight.

Additional non-evolving generators include random geomet-
ric graphs [22] and rewired small-world (Watts) networks that
exhibit a heavy-tailed degree distribution [33], [45].

III. WEALTH MODEL

We present our wealth evolution model in this section and
proceed to show how it fits into our topology generator in the
next section.

A. Wealth Evolution

According to the theory proposed in this paper, the Internet
can be modeled as an economic entity, where ISPs dynamically
join and leave the system based on random events. Denote by
w;(t) the wealth of ISP 4 at time ¢{. When a new ISP joins
the system at time ¢;, it comes with a certain amount of initial
wealth wg, which accounts for the startup capital obtained
from venture capitalists.> During the lifetime of an ISP, it
invests its wealth in business activities, retrieves financial
return, and suffers losses, all of which allows its wealth w;(t)
to randomly evolve over time.

Notice that the amount of investment return is usually
proportional to the wealth of a company. Thus, we start with
a basic unscaled model in which the individual investment-
return cycle is a multiplicative stochastic process:

uz(t) = )\i(t)ui(t — 1), for t > t;, (6)

where wu;(t) is the unscaled wealth of user 4 at time ¢, \;(¢)
is a random variable drawn from some distribution describing
the randomness of the investment-return market cycle, and ¢;
is the join time of node i. We assume that \;(¢) is a stationary
process that is independent among the ISPs.

20ur model uses fixed wq; however, a simple extension to random startup
funding is possible as well. Simulations show that such an extension produces
almost identical results.

Time Time

(c) scaled wealth under explosion  (d) scaled wealth under collapse

Illustration of wealth evolution (wp = 10,000, n = 10, 000).

Note that in (6), we do not constrain the distribution of A;(t)
for generality of the model; however, such generality may
result in a collapse or explosion of system wealth. Specifically,
if E[X\;(t)] > 1, the average wealth will grow to infinity as
the system evolves. On the other hand, if E[\;(¢)] < 1, the
average wealth will diminish to zero. To keep system wealth
at an equilibrium (see below for a discussion of the reasons
for doing so), we counteract any possible inflation of wealth
by scaling (6) and taking the result to be the real wealth of
each ISP:

u;(t)

w;(t) = o)

where w;(t) is the scaled wealth of user ¢ at time ¢ and p(¢)
is a random process that we determine next.

As before, define n(t) to be the number of ISPs in the
system and @(t) to be the average unscaled system wealth at
time ¢:

(7

1 n(t)
u(t) = —— it).
i(t) = o5 D)
=1
Then, we have the following lemma.
Lemma 1: Defining p(t) to be:

t) = —= 8
o) = (®)
the average scaled wealth of the system
1 n(t)
0(t) = ——= i(T). 9
(t) n(t);wz() ©)
remains constant and equals wy.
Proof: Substituting (7)-(8) into (9), we get:
n(t) _
- it t
w(t) = =L el 20, (10)

pt)n®) — p(t)
which produces the desired outcome. |

Fig. 3 illustrates the effect of scaling in both explosion
and collapse cases. In the first example shown in Fig. 3(a),
we set A\;(f) to be uniformly random in [0.55,1.55] (i.e.,
E[Xi(t)] = 1.05) and track the evolution of wug(t) together
with that of the average unscaled wealth u(t) for ¢ = 80
time units. The figure shows that the unscaled average wealth
u(t) keeps increasing and becomes 35 times larger than wq
at the end of the observation interval. If we apply w;(t) in
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Fig. 4. Wealth distribution at time ¢ = 200 under static join (10, 000 joining
ISPs).

a topology generator in which ISP degree is proportional to
wealth, the resulting network will expand its combined wealth
and connections unboundedly, which will eventually result in
a complete graph. In the second case presented in Fig. 3(b),
we conduct the same simulation except this time A;(t) is
uniformly random in [0.45,1.45] (i.e., E[\;(t)] = 0.95). As
shown in the figure, u(t) drops toward zero steadily during
the evolution process, which leads to the opposite effect
and results in all ISPs completely losing their degree. To
illustrate that this effect does not happen to w;(t), Fig. 3(c)-(d)
plots scaled wealth wg(¢) and the corresponding system-wide
average w(t). The figure demonstrates that in both cases, wq (%)
fluctuates around its fixed mean w(t) despite the explosion and
collapse of the underlying unscaled wealth u(t).

Given a model of ISP wealth represented by (7), we next
discuss the conditions of bankruptcy and obtain the power-law
exponent of w;(t) as a function of the bankruptcy boundary.
As discussed in the introduction, we impose a lower boundary
w, = &wp on each ISP’s wealth such that no one in the
system is poorer than this baseline. For simplicity of discussion
in the rest of the paper, we use metric £ € (0,1) as the
ratio of the bankruptcy boundary wj to the initial wealth wq
of each joining ISP. Armed with Lemma 1 and bankruptcy
definitions above, one can reduce (6)-(8) to static models of
wealth evolution in economics [8], [16], [18], [19], [37], [40]
and immediately obtain the following result.

Theorem 1: For sufficiently large ¢, the wealth evolution
process w;(t) described by (6)-(8) achieves a power-law
distribution with exponent:

1

[ ﬁ,
where 0 < & < 1 is the ratio of the lower boundary w; of
personal wealth to the initial wealth wy.

Y

B. Simulations

We confirm (11) under two different ISP join schemes. The
first method, which we call static, forces all individual ISPs
to start their wealth evolution processes at the same time. We
plot in Fig. 4(a) the resulting distribution of w;(¢) and observe
that it is indeed power-law with an exceptionally good fit. We
next vary £ in simulations and generate 1,000 instances of the
evolution process to examine the correlation between £ and .
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Fig. 5. Wealth distribution at time ¢ = 200 under dynamic join (© = 50).

Fig. 4(b) presents the resulting box-plot distribution of actual
power-law exponents « and shows that their average value
agrees with model (11) very well.

The second method, which we call dynamic, allows ISPs to
join the system according to some arrival process of rate p.
We experimented with several join processes and observed no
impact on the corresponding wealth distribution. Without loss
of generality, the rest of the paper uses Poisson arrivals of rate
1 ISPs per time unit and keeps the average number of ISPs
that join the network by time ¢ equal to pt. Simulations shown
in Fig. 5 demonstrate that dynamic join also produces power-
law wealth distributions and that the corresponding expected
power-law exponent F[a] follows (11) very accurately.

With the result in (11), we are ready to present our topology
model and show how the power-law wealth distribution affects
topology generation in the next section.

IV. ToPOLOGY MODEL

We start this section by introducing the role of wealth in our
topology model, then present link-construction algorithms, and
finally study the degree distribution and clustering properties
of the resulting generator.

A. From Wealth to Topology

This subsection describes how the wealth model interacts
with the topology generator and how it determines the degree
evolution of the Internet.

In the hypothetical Internet market modeled in this work,
the connectivity of an ISP to the rest of the network decides its
usefulness to the customers. In order to maximize its revenue,
an ISP tends to build as many links to other ISPs as possible.
However, such link expansion is always limited by the wealth
of the ISP since each link incurs a certain amount of expense,
which represents the cost of purchasing routers and other
equipment, leasing bandwidth, and maintenance. Therefore,
an ISP builds additional links when it has spare wealth and
similarly removes links when its wealth cannot sustain the
expense of existing links. In this regard, we model the degree
of an ISP as being proportionally dependent on its wealth and
closely correlated with random fluctuations in w;(t).

Suppose the link between nodes ¢ and j induces certain
(potentially random) cost Cj;. Throughout the rest of the
paper, we replace random variables C;; with their expectation
C and omit the discussion of random link cost as it produces



very similar results. Denote by z;(t) = Cd;(t) the expense
induced by all links of node ¢. Then, whenever the wealth of
an ISP 4 drops below its current link expense:

the ISP must remove some of the existing links to reduce
expense z;(t) below its wealth w;(¢). On the other hand, if
the wealth of ISP ¢ allows more links than it currently has:

new connections are built until z;(¢) reaches its wealth limit.
A direct result of the above mechanism for link adjustment
is the linear mapping between ink expense and wealth:

zi(t) = w;(1), (14)
which leads to the following result:

Recalling that the economic system presented in (6)-(8)
produces a power-law wealth distribution, the next theorem
follows immediately.

Theorem 2: For large enough ¢, the degree distribution
of random graphs constructed under conditions (12)-(13) is
power-law with exponent:

1

a = —¢
where constant ¢ is the wealth boundary ratio.
Notice that conditions (12)-(13) may result in oscillatory
link behavior, which is not the case in reality. To this end, we
provide a dampening threshold 7" to relax conditions (12)-(13)
to read:

(16)

wilt) — zi(t) < ~T, (17)

and

By carefully choosing dampening threshold 7', we are able
to suppress the oscillations in link adjustment while allowing
(16) to hold (see below for simulations).

We next focus on the link construction algorithm.

B. Topology Construction

As mentioned in the introduction, link addition in our
topology generator depends on a simple set of rules based on
random walks. When a new node x decides to enter an existing
graph, it uniformly and randomly selects one existing node y
in the network as the point of entry (while the assumption of
uniformity may not be necessary, some degree of randomness
is required). Once the node is introduced into the graph, it
decides to “explore” its new location by performing a random
walk of [ steps. Once the initial walk stops at a node z, the
new node z establishes a link to z, which is illustrated as
the dotted line in Fig. 6(a). The above represents a selection
process in which z searches for the first “acceptable” peering
ISP. In the second phase of the join, node z starts from z and
performs m — 1 additional random walks to find the remaining

(a) initial attachment

(b) link addition

Fig. 6. Random walks in topology generation.

m — 1 neighbors, where m is determined by the initial wealth
wq and the link price C. The decision to attach is determined
solely by the final node where the walk stops and represents
the random process where ISPs seek business partners with
matching interests.

When an existing node u needs to build a new link, the
procedure of finding a new neighbor is the same as in the
initial attachment except that random walk start from u as
shown in Fig. 6(b). On the other hand, when a node is forced to
eliminate some of the existing links, it uniformly and randomly
chooses a neighbor from its peering list and terminates the
corresponding connection.

Finally, our topology model starts at time zero with a fully-
connected core network of size mg, which represents the initial
stage of the Internet. Since simulations show that the actual
setting of m( does not affect the properties of constructed
graphs, we use the commonly suggested value mo = 3 in the
rest of the paper.

We refer to the set of algorithms described above as Wealth-
based Internet Topology (WIT) and next study its degree
distribution and clustering properties.

C. Degree Distribution

Our analysis of WIT in this subsection focuses on how
degree exponent « is affected by four parameters: lower
boundary wy, link cost C, dampening threshold 7', and walk
length [. For convenience, we normalize the first three metrics
by wy to obtain lower-boundary ratio £ = wy,/wq, cost ratio
¢ = C'/wy, and dampening ratio T = T /wy.

Before we begin, we first verify the quality of power-law
distributions produced by WIT. Fig. 7 plots four examples of
degree distributions obtained in simulations using several dif-
ferent values of [ and &. This figure combined with additional
results (not shown for brevity) indicates that WIT’s degree
exhibits very clear power-law tails that hold remarkably well
for both short and long walks [.

Now, we are ready to examine the role of the four pa-
rameters introduced earlier in this subsection in the degree
evolution process. To avoid confusion as to which parameter
is responsible for which graph property, we study the effect
of these factors separately by changing only one of them
and keeping the other three fixed. We generate 1, 000 random
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Fig. 9. Clustering coefficient under £ = 0.2,

graphs for each point in the figures and show the distribution
of shape parameter « in the box-plots of Fig. 8. The results in
Fig. 8(a) demonstrate that o increases as a function of £ and
follows model (16) very accurately. Additionally, Fig. 8(b)-(d)
indicate that « is not sensitive to cost ratio ¢, dampening ratio
7, or walk length [, which also agrees with Theorem 2 very
well.

Numerous additional simulations with different parameters
show similar results (omitted for brevity) and conclusively
establish that boundary ratio ¢ is the only parameter that affects
shape « of the degree distribution, which explains our global
view of the model in Fig. 1. By tuning &, one can achieve
arbitrary power-law exponents o € [1,2], and, as we show
in the next subsection, tuning walk length [ allows WIT to
achieve flexible clustering v € [0.008, 0.64].

D. Clustering

The clustering coefficient of a graph measures how fre-
quently neighbors of a node connect to each other. Define
T; to be the number of triangles incident to node ¢. Then for

c=0.5,7=0.1,1=1 (=200, p = 50).

a graph G(V, E), its clustering coefficient is given by [44]:

1 T
Q= i
19 = oy 2

75 (19
e T di(d; —1)/2

where V(1) is the set of degree-one nodes in G and d; is the
degree of node i.

In what follows, we study clustering of WIT and show that
it only depends on walk length [ and not other parameters of
the generator. Again, we conduct four sets of simulations as in
the previous subsection and vary one of the four parameters in
each set while keeping the others ones fixed. The box-plot of
Fig. 9 shows clustering coefficients of WIT graphs generated
under these conditions. In Fig. 9(a)-(c), the average clustering
coefficient stays around 0.52 and does not exhibit much
correlation with the change in the corresponding parameters.
On the other hand, Fig. 9(d) shows that v(G) responds to walk
length [, which we analyze in more detail next.

We start our discussion of how random walks determine
local connectivity and clustering under the assumption that
walk lengths are large, i.e., [ > 1. Recall that random walks
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on graphs represent the evolution of a stationary Markov chain.
For a stationary chain the probability for a walk to terminate
at node ¢ is simply [47]:

o di(®)

Dkt di(t)
which is exactly the same as preferential probability (2).
Therefore, we immediately obtain the following result.

Theorem 3: For walks longer than the mixing time of the
corresponding Markov chain, WIT’s clustering reduces to that
of preferential attachment.

To validate Theorem 3, we implement a variant of our model
that deploys preferential attachment instead of random walks
in link construction. We refer to this variant as WIT-PA and
compare it to pure WIT in simulations. By setting [ = 1, 000,
we generate 1,000 WIT graphs of different sizes n and plot
their average clustering coefficients along with those of WIT-
PA in Fig. 10(a). The figure shows that E[y(G)] of the two
models is almost identical.

Analysis of short (i.e., significantly smaller than the mixing
time of the chain) walks in WIT becomes non-trivial since
the stationary distribution (20) does not hold. For [ = 1,
WIT always produces a lattice of triangles, where each node
with degree d; > 2 has d; — 1 triangles. Therefore, without
considering link deletion and rewiring, the clustering of node
i is given by 2/d;, where d; is the degree of node i. This
immediately leads to:

Eh(e) = Fl2/d) = [
where F'(z) = 1—(8/z)* is the CDF of the power-law degree
distribution. It follows from (21) that:

2«

BRG] = s
which is a constant independent of the graph size n. Com-
bining this with & = 1.2 and 8 = 1.45 (obtained from
simulations with ¢ = 0.2, ¢ = 0.45, 7 = 0.3, | = 1), we
get E[y(G)] = 0.75. The actual expected clustering of WIT
for [ =1 is slightly lower and equals 0.64 as shown in Fig.
10(b), which can be explained by link deletion and rewiring
not included in the above analysis.

For [ = 2, new nodes produce mostly quadrangles instead of
triangles and thus construct a poorly clustered graph, while for

pi(t) (20)

oo

2
~dF (), 1)

10° 10°

—WIT —WIT
---WIT-PA| - --WIT-PA

B

- -2
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Walk length | Walk length |

() E[v(Q)] for n = 500 (b) E[v(G)] for n = 2,000

,a
o,

10

Expected clustering

Expected clustering

=
S,

Fig. 11. Effect of walk length on the clustering coefficient (§ = 0.2,c =
0.45,7 = 0.3).

I = 3, WIT builds a mixture of triangles and pentagons, and
exhibits lower clustering than with [ = 1, but much higher
than with [ = 2. Fig. 10(b) plots WIT’s average clustering
coefficient for / = 3 and shows that it also stays constant as
the graph evolves.

Alternating behavior in clustering between odd and even
walk lengths is obvious for short walks and disappears when
I becomes long enough. In Fig. 11(a), we show that WIT’s
clustering coefficient starts from 0.64 with [ = 1, drops to
0.008 with [ = 2, then oscillates with a decreasing amplitude,
and finally converges to 0.038 as walk length [ reaches 40.
For larger n, Fig. 11(b) shows that when the system contains
more “randomness” (i.e., 2,000 nodes join the system), the
clustering coefficient converges to its asymptotic value much
quicker than in Fig. 11(a).

In reality, it is not hard to conceive that a new node in
the Internet prefers short walks instead of long ones when
deciding on link attachment. This in practice means that WIT
equipped with short walks builds graphs with both constant
and high clustering. Preferential attachment, on the other hand,
only captures the behavior of long walks, produces small and
decreasing clustering (see Fig. 10(a)), and thus cannot fully
explain the structure of the Internet as we show next.

V. EVOLUTIONARY COMPARISON OF TOPOLOGY MODELS

With the topology model developed in the previous sections,
we are now ready to answer the question of whether our model
can track the evolution of the Internet. We start by understand-
ing Internet’s graph-theoretic properties as functions of time.

A. Analysis of the Internet Topology

In addition to the degree distribution and the clustering
coefficient, the characteristic path length and average degree of
a given graph are usually used in the evaluation of topology
generators [4], [7]. A combination of these four metrics is
usually sufficient to distinguish between most of the existing
random graph models. Denote by h(x,y) the hop distance
between nodes = and y and by h(z) the average distance from
x to the rest of the graph. Recall that characteristic path length
L is defined as the median of average distances over all nodes
in the graph, i.e., L = mediangcy {h(z)} [44]. With the help
of these metrics, we next explore how the Internet has evolved
in the last 8 years.
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From the Oregon Route View Server [31], we collected
333 AS snapshots between November 1997 and May 2005
(one snapshot every ten days), extracted the corresponding
AS topologies, and computed for each graph its average
degree, power-law exponent «, clustering coefficient v, and
characteristic path length L. To examine the dynamic behavior
of the Internet, we plot in Fig. 12 these graph properties against
the size of the Internet. Fig. 12(a) shows that the degree
distribution exhibits a constant power-law exponent, which
is rather stable in [1.15,1.23]. Besides the scale-free degree
distribution, the Internet is almost invariant in its average
degree and characteristic path length, which stay around 4
and 3.7 in Fig. 12(b)-(c), respectively. More interestingly, Fig.
12(d) indicates that the clustering coefficient of the Internet is
not only high as reported in [7], [23], but also fairly constant
between 0.35 and 0.47.

B. Comparison of Topology Models

It is possible for a topology generator to construct graphs
that match the structural metrics of the Internet at a given time
point (i.e., size n). However, as the Internet evolves and its size
increases, graph properties of the generator may deviate from
those in the Internet. Therefore, it is important to compare
existing topology models from an evolutionary point of view,
which tracks the corresponding graph metrics over the entire
construction process. Fig. 12 shows that even though the size
of the Internet keeps increasing over time, the four graph-
theoretic properties remain invariant to the growth. The main
question we aim to address in this section is whether this
invariance is captured by the existing generators? We answer
this question by examining how several existing models be-
have during the graph construction process and its evolution.
Note that our work complements the previous efforts since
it performs comparison analysis from a completely different
perspective.

In particular, we compare WIT to several classical topology
generators. For preferential attachment, we use BA, AB, and
GLP. For optimization-based algorithms, we study HOT and
allow each new node to link to m > 2 peering points. For
non-evolving models, we modify GED to support incremental
construction, where each new node joins the system and builds
links to existing nodes with the probability described by (5).
We refer to our version of GED as Evolving GED (EGED).

=3
=)
2
I
o

--- Average
—— One instance

o
=)
B
[N}

o

I

o o
o 9
S o
S ®

Clustering

N

0.004

Characteristic path length
w

N

0.002

4%00

—=— BA
--- Internet

16000 20000

8000 12000 20000 4%00

Number of nodes

16000 8000 12000

Number of nodes

(a) clustering v(G) (b) characteristic path length L

Fig. 13. Evolution of BA.

In our simulations of these generators, we attempt to ensure
that the average degree and exponent o are the same as in the
Internet (i.e., 4 and 1.2, respectively). Considering that BA and
HOT always produce fixed a ~ 2, we allow this rule to be
violated in BA and HOT, but guarantee full conformance of the
two metrics in the remaining models examined in this paper.
Further note that AB and EGED usually produce disconnected
graphs, in which case, we examine graph properties of the
largest connected component of the corresponding graph.

In our first simulation, we let each generator build a random
graph with 20,000 nodes. During graph construction, we
record snapshots of the partial graphs at different time epochs
and compute their clustering coefficients and characteristic
path lengths. We omit the snapshots of small graphs to be
consistent with the size of the Internet whose structure before
1997 is not currently available.

As we show below, oscillation in the clustering coefficient
exists in all studied generators. To augment the information
provided by a single instance of each stochastic process, we
also show the expected clustering coefficients in all studied
methods. For each generator, we create 1,000 random graph
evolutions and average the clustering coefficient at each time
t. All figures below plot instant clustering as solid lines and
their expected values as dotted curves.

Fig. 13(a) shows that BA exhibits very small clustering
coefficients, which decay towards zero as the graph grows in
size. This is clearly not representative of the situation in the
Internet in Fig. 12(d). The characteristic path length of BA
grows from 4.6 to 5.1 as shown in Fig. 13(b). Compared to
the Internet where L is around 3.7, BA tends to push new
nodes away from the center of the graph and thus produces
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substantially larger characteristic path lengths than those in
the Internet. AB improves over BA in terms of clustering as
shown in Fig. 14(a); however, its (G) also decreases as the
graph size increases. The characteristic path length in AB is
similar to that of BA as shown in Fig. 14(b).

Among the three preferential attachment methods, GLP
shows the best clustering in Fig. 15(a) reaching as high as
0.37 for n = 4,000. However, as n increases to 20, 000, v(G)
drops to 0.32, which is a common drawback of all examined
preferential attachment methods, i.e., the clustering coefficient
decreases as n — oo. In Fig. 15(b), the characteristic path
length of GLP stays constant at 3.2, which is slightly smaller
than that in the Internet.

In the category of non-evolving methods, EGED also
demonstrates decaying clustering in Fig. 16(a) and keeps
its 7(G) significantly smaller than that of the Internet. Its
characteristic path length starts from a small value of 2.9,
but then becomes larger than that of the Internet at the end of
graph evolution as shown in Fig. 16(b).

Interestingly, HOT exhibits in Fig. 17(a) very high cluster-
ing, which oscillates around 0.49. However, its characteristic
path length is much higher than in the Internet and increases
from 6.1 to 8.1 almost as a linear function of n as shown
in Fig. 17(b). The preference of HOT for geographically
short links leads to a graph that spreads out over the entire
coordinate plane and thus results in a significantly larger
characteristic path length than needed to model the Internet.

Similar to HOT, WIT displays high clustering during the
entire graph evolution as shown in Fig. 18(a). The average
clustering starts from 0.39 for n = 4,000 and converges to
0.43 for n = 20, 000. Instant clustering oscillates around the
dotted line in Fig. 18(a) and at certain points reaches as high as

0.45, which closely mimics the random fluctuation of + in the
Internet. In addition to producing flexible a,, WIT is different
from HOT in terms of characteristic path length. WIT’s metric
L is initially small, but eventually converges from below to
3.7 observed in the Internet as shown in Fig. 18(b).

Based on a combination of clustering coefficients and char-
acteristic path lengths, one must conclude that graphs con-
structed by WIT are the closest to the Internet’s evolutionary
structure among the compared models. We also believe that
WIT is a more realistic framework than some of the existing
methods as it relies on distributed construction rules and allows
each ISP to independently select its peering points based on
internal factors such as its wealth, customer base, and QoS
requirements that do not depend on the parameters or decisions
of other ISPs.

VI. CONCLUSION

In this paper, we presented an alternative theory of the
Internet evolution and developed a new topology generator
based on wealth evolution and random walks. We showed
that the generated graphs exhibited power-law degree distri-
butions with flexible o and high, non-decreasing clustering
coefficients. The characteristic path length of the proposed
model was also close to that of the Internet and demonstrated
invariance with respect to n. This combination of WIT’s
properties indicates that the proposed topology algorithm is
viable in explaining the structural evolution of the Internet,
at least to the extent possible in a very simple model. Future
work includes extension of WIT with randomized parameters,
derivation of theoretical expressions for WIT’s clustering
coefficients, and analysis of its spectral properties.
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