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Using Isotonic Regression and Domatic Partitions
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§Intel Research, Berkeley

Miodrag Potkonjak�
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Abstract— We address the problem of energy efficient sensing
by adaptively coordinating the sleep schedules of sensor nodes
while guaranteeing that values of sleeping nodes can be recovered
from the awake nodes within a user’s specified error bound.
Our approach has two phases. First, development of models for
predicting measurement of one sensor using data from other
sensors. Second, creation of the maximal number of subgroups
of disjoint nodes, each of whose data is sufficient to recover the
measurements of the entire sensor network. For prediction of the
sensor measurements, we introduce a new optimal non-parametric
polynomial time isotonic regression. Utilizing the prediction models,
the sleeping coordination problem is abstracted to a domatic number
problem and is optimally solved using an ILP solver. To capture
evolving dynamics of the instrumented environment, we monitor the
prediction errors occasionally to trigger adaptation of the models
and domatic partitions as needed. Experimental evaluations on
traces of a medium size network with temperature and humidity
sensors indicate that the method can extend the lifetime of the
network by a factor of 4 or higher even for a strict error target.

I. INTRODUCTION

Energy is the single most important resource and constraint
in wireless sensor networks. Numerous techniques for reduc-
ing energy consumption and, therefore, enhancing the lifetime
of the network have been proposed and examined, including
multihop communication, adaptive sampling, compression, and
energy-aware routing. Sleeping has been demonstrated to be an
exceptionally effective strategy for prolonging the lifetime of
the network [1][2][3][4][5][6][7]. Our goal is to develop a new
sleeping coordination strategy that would enable nodes to enter
the sleep mode in such a way that the overall sensing capabilities
of the network are maintained. Maintaining sensing quality is
ensured by strategically placing a subset of nodes in sleep mode
in such a way that, from the remaining small set of awakened
nodes, one can recover the data at the sleeping nodes to within
a user specified target error rate.

Our approach has two main components. First, we develop a
model, using a new isotonic regression approach, for all pairs of
nodes such that one node can be used to predict another. Using
this predictive model, we build a graph, called a prediction graph,
in which a directed edge from sensor node i to node j exists only
if sensor node i can predict the value that node j senses (e.g., a
temperature reading) to within a target error rate. Second, we seek
to find subgroups (or partitions) of nodes such that each subgroup
can accurately predict the sensed values for the entire network.
We propose the idea of choosing these groups to be disjoint
dominating sets that are extracted from the prediction graph using

an ILP-based procedure. This procedure yields mutually disjoint
groups of nodes called domatic partitions. The energy saving is
achieved by having only the nodes in one domatic set be awake
at any moment in time. The different partitions can be scheduled
in a simple round robin fashion. If the partitions are mutually
disjoint and we find K of them, then the network lifetime can be
extended by a factor of K. Because the underlying phenomenon
being sensed and the inter-node relationships will evolve over
time, we extend our system to monitor for changes. Intermittent
periods of monitoring allow us to check our current prediction
error and thus initiate an adaptation (recalibration of models and
domatic partitions) when necessary.

Given a time series of data measurements from two sensors,
it is natural to ask whether the values sensed (e.g., temperature)
by one sensor can be predicted by the other, i.e., can sensor Y
be predicted via some function of sensor X’s data, Y = f(X).
Regression analysis uses data samples from both X and Y to find
the function f . There are many forms of regression analysis in
the statistics literature (discussed in Section IV). In this work
we propose the use of isotonic regression. Our regression is
isotonic because we impose an isotonicity constraint that says
if two sensor readings at sensor X are x1 ≤ x2, then we require
f(x1) ≤ f(x2). We find that adding the isotonic constraint
controls the search for a good predictor function f in a successful
way. This constraint has a very natural interpretation in sensor
networks. It is intuitive that if the phenomenon being sensed
(e.g., temperature, humidity, light) increases, then both sensors
will experience an increase in their measurements.

There are several efficient algorithms for isotonic regression
in the statistics literature [8][9][10]. In this paper we propose
a new optimal polynomial time algorithm. There are two key
advantages to our algorithm. First, previous isotonic regression
methods use an unlimited number of parameters (e.g., the number
of piece-wise linear components). Methods that limit the number
of parameters, could no longer maintain optimality [9][10][11].
Our solution allows the number of parameters to be specified
as an input (and hence limited to a small number) while still
finding an optimal solution. Limiting the number of parameters
is attractive because it avoids overfitting the data and because it
requires less memory for model storage. This is important for
sensor nodes that have limited storage. The second advantage of
the new approach is that it allows the use of any error function
to be minimized. Most regression methods work for a specific
error function and cannot easily be modified for other error
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functions. Our solution maps the isotonic regression problem to a
combinatorial domain. We solve the combinatorial problem using
a dynamic programming approach. It is because of this style of
solution that our method allows limiting the number of parameters
and an arbitrary form of error function.

Our contributions are multiple. First, we propose the idea of
using isotonic regression for having one sensor node predict an-
other, and provide a new solution for isotonic regression. Second,
we propose the idea of using domatic partitions for defining a
sleeping schedule. Third, we link the isotonic regression and
domatic partitions together in an overall methodology through the
use of a prediction graph. The prediction graph is specified using
the output of the isotonic regression, and constitutes the input to
the domatic partition problem. Fourth, we formulate the domatic
partition problem as a simple ILP. Fifth, we incorporate adaptivity
into our method to allow our models to evolve over time. Lastly,
we evaluate our method on a real dataset and compare it to two
other methods.

We find that using isotonic regression, a sensor node can be
predicted by a number of other nodes to within 1% error for
temperature and humidity. Since the ability of nodes to predict
other nodes is so good in this particular network, there is no
need to consider multivariate prediction models in which multiple
nodes are used to predict a single node. With a target error rate
of 2%, we can extend the lifetime of our network by 5 times
using our method without adaptive updates. If larger errors can
be tolerated, the network lifetime can be extended a good deal
more. By adding in the adaptivity feature, we introduce a tradeoff.
The periods of monitoring for change reduce the total network
lifetime, but yield more accurate sensing and prediction. Our
formulation of the domatic partitioning problem has two major
advantages in terms of flexibility and short run time. For example,
the ILP formulation can be used for solving the case when each
node has several sensors of different modalities and when each
node has a different amount of energy. Runtime for all instances
that we evaluated, even when the number of nodes was several
hundred, were less than a minute on a standard 1GHz PC.

Our techniques are applicable to sensor networks whose sen-
sors are located close enough to each other so that there is
overlap among subsets of nodes of the phenomenon being sensed.
Examples include environmental monitoring networks such as
temperature, light, humidity, etc. monitoring in vineyards, forests,
deserts and indoor buildings. Our focus is thus on networks
having subsets of sensors with spatial correlations. It is clear
that phenomena such as temperature or light vary little over
ranges of 10’s or 100’s of feet (in many environments). We
focus on sensor network applications targeting either continuous
or periodic monitoring, rather than event-driven (i.e., query based)
sensor networks as in [12]. Our methods could also handle bursty
events if they are are short in time, as long as the burst was spread
over a set of sensors. Bursty events that only affect one sensor
would not benefit from a system such as ours. In this paper we
use a dataset from an indoor building environment where the
sensors have 1-hop communication to a centralized server. We
propose an extension of our work for multi-hop and localized
environments in [13].

The remainder of this paper is organized as follows. Section II
outlines our overall methodology. Section III surveys the related
literature. In Section IV we describe our isotonic regression
solution, evaluate its performance and compare it to two other
regression approaches. Our formulation of the domatic number
problem as an ILP, along with an evaluation of the domatic
partition solutions is given in Section V. We present our approach
for dynamically updating the models and partitions in Section VI.
We conclude our paper in Section VII.

II. METHODOLOGY

A. Testbed Specification and Assumptions

We use the traces from the sensors deployed in an indoor
office environment. There are 54 sensors that are attached to the
ceiling spaced anywhere from 6 to 15 feet apart. The nodes are
composed of Crossbow MICA-2 motes [14] that implement the
processor/radio board. All modules provide a processor that runs
TinyOS based code [15], a two-way ISM band radio transceiver,
and have memory that can store up to 100,000 measurements. The
radio is capable of transmitting at 38.4 kbps. The sensor and data
acquisition cards that plug into the Mote Processor Radio boards
collect light, temperature and humidity measurements, sampled
once every 30 seconds.

The radios on the MICA-2 motes have an outdoor transmission
range of around 300m. Even though the radio range decreases
in the indoor environment due to the presence of obstacles and
interferences, the transmission range of the radios are still more
than the distances of the nodes deployed in our lab and their
distances to the server. For the purposes in this paper we assume
that all sensor nodes can directly communicate to servers. The
important assumption is that the energy consumption of the nodes
is dominated by the energy consumption of the radio unit. Several
studies have shown that the radio consumes a significant amount
of energy even when it is in the idle mode [2]. Thus, the most
efficient way to save power on the nodes is to completely shut the
radio down and put the CPU in power save mode. The CPU wakes
up periodically to read the samples from sensors. The sampling
task takes around 15ms and the rest of the time nodes can stay
in the power save mode with their radios down.

B. Approach

In Figure 1, we depict the overall flow of our proposed
methodology and indicate how the various components of our
approach are organized. We now explain this figure step by step.
We assume there is an initial phase in which all nodes are awake.
The initial phase is used to gather data so that we can build
models. We have chosen our initial phase to last for 48 hours; the
reason is because our testbed network (unsurprisingly) exhibits
strong diurnal patterns and thus it is important to examine, at a
minimum, one full day’s worth of behavior. Our second day is
used to validate the model. Using isotonic regression, we build
models for all pairs of nodes, in which one node predicts the
other. Given the models, we can know all the nodes that can be
used to predict any single node. The output of the modeling phase
is a prediction graph in which a directed edge between a pair of
nodes (i, j) exists if node i can predict node j well.
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Fig. 1. Overall flow of adaptive modelling and sleep coordination approach.

The prediction graph is the input to our ILP step in which we
find as many disjoint dominating sets as possible. The idea is that
one dominating set can be used at a time to predict the values
of all the sensor nodes. Energy can be saved because while the
nodes in one dominating set are awake, all other nodes are put
to sleep. Our ILP solution outputs these node groups, that are
then organized into a round robin schedule by the scheduling
step. In our evaluations, we ran each dominating set for a period
of one day, and then cycled to the next one. Since we do not
assume any extra cost for transitioning the node from sleep to
active, the amount of energy saving is independent of the length
of the round robin periods. If the sleep-active transition cost is
not insignificant, then the active period for each dominating set
can be extended to longer times such as a week or even longer.

The phenomenon that these networks are sensing are, by their
very nature, going to undergo change. Temperature and humidity
are clearly affected by seasonal changes. Also, the inter-node
relationships can change if, for example, a heater or cooler is
installed in an indoor environment. There can also be micro-
effects that cause the inter-node relationships to change. Thus a
system such as ours requires a monitoring mechanism to detect
change and launch a readjustment of the underlying models.

In our method, the monitoring box randomly schedules short
intermittent period when all the nodes are turned on. The “recent”
data obtained during a monitoring period from a given node i,
is compared to the prediction generated by the node assigned
to predict node i during the evaluation period. If the match is
good (i.e. the prediction error does not exceed the target error),
we decide the current models are valid and return to the original
schedule. If the match is poor, then we update our models by
leaving all the nodes on for a collection period whose length
depends upon when enough new data has been collected to bring
the prediction error under the target. This new data produces a
new prediction graph. If the new graph is different from the old
one, the new graph is fed back into the ILP step to recompute a
new collection of dominating sets.

III. RELATED WORK

Statistical modeling has been used to enrich data acquisition
and query processing applications [12][16]. Even though the
query processing optimization problems are very different from
our sleeping coordination problem, the underlying models are
relevant to our work. Deshpande et al. [12] propose an interactive
sensor querying system that is based upon statistical models.

Deshpande et al. further introduce a prototype for model-based
querying called BBQ that uses a specific model based on time-
varying multivariate Gaussian (MVG). BBQ uses historical data
to construct the initial representation of the Gaussian probability
density function (PDF). The authors illustrate examples of appli-
cations of MVG modeling on static sensor networks, to perform
range queries, value queries and average aggregates. Guestrin
et al [16] propose a distributed regression framework in sensor
networks. The algorithm is based upon Kernel linear regression,
where the model takes the form of a weighted sum of local basis
functions. They define basis functions that model the phenomena
within each local spatial region and smooth the overlaps of the
local models by a Gaussian elimination algorithm.

Aside from the obvious difference in application scenario, there
are other important differences between our modeling approach
and those of [16], [12]: (1) We do not impose strong prior
model assumptions, such as a Gaussian distribution on data.
Rather, we use data-driven non-parametric statistical modeling
techniques to capture the precise relationships among the sensors.
(2) We identify and utilize the isotonicity constraint as a means
to capture the hidden covariates (dependencies) that influence
the relationships between sensors. (3) We do not use models
that incorporate distance since we observed in our application
data, a substantial amount of inconsistency between correlations
across sensors and their inter-sensor distance. (4) Both BBQ
and distributed regression utilize models based on Gaussian
distribution that minimizes the L2 error norms. Our modeling
approach can handle many types of errors, including L2 and
others. This is beneficial since the L2 error norm is known to
be very sensitive to outliers common in sensor data.

The early work in energy efficient sensing has focused on
sensor deployment and fault tolerance [6]. More recently, there
have been a number of proposals for placing a subset of nodes
into a sleep mode while maintaining a suitably defined objective
function that captures sensing coverage. The proposed sleeping
approaches cover a broad range: [3], [7] use an asymptotic the-
oretical analysis that assumes stationary Poisson point processes
for deployment in two-dimensional field, [17], [5] emphasize
localized sleeping algorithms for distributed detection, [2] focuses
on system issues and prototyping, while [1] targets sleeping
while detecting rare events. In addition, there have been efforts
to simultaneously address communication coverage and sensing
surveillance [4]. The common denominator for all the previous
efforts is: (1) they use variants of disk sensing coverage models,
or (2) they emphasis ensuring that a movable target is detected.
In contrast, our approach is data-driven and does not place any
prior assumptions on the sensing coverage. We define complete
coverage as the maximum coverage attainable while all sensors
are awake. Our goal is to ensure that within a user’s specified er-
ror range, the complete coverage is maintained while a significant
number of nodes are placed in the sleep state.

In many scientific modeling scenarios, physical considerations
suggest that the response variable is an isotonic (monotonic)
function of explanatory variables [9][10][11]. The earliest and
most widely used nonparametric algorithm for isotonic regression
is pool adjacent violators (PAV) [8]. The approach is designed for
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univariate regression and works by sorting the explanatory and
then averaging the responses that violate the isotonicity require-
ments. The PAV algorithm is prone to misadjusting the models to
the outliers. To alleviate this problem, several heuristic smoothing
methods have been proposed [9][10][11]. We have developed
a new isotonic regression approach that solves the problem by
mapping it into the combinatorial domain. By addressing the
problem this way, we are able to find in polynomial time, a
model that is provably minimal for an arbitrary error norm. One
of the most effective ways to smooth a function is to restrict
the number of parameters used. We can find the optimal smooth
isotonic regression in polynomial time, by forming a model that
is minimal in error for a limited number of parameters.

IV. INTER-SENSOR MODELING

An attractive way to capture the complex relationships between
distributed sensor measurements is to use data-driven statistical
modeling techniques. The readings at a sensor sY could be related
to numerous other elements of the networks, including multiple
sensor nodes, spatial coordinates (denoted by a generic x, y, z),
and time τ ; hence the goal of a data-driven model is to uncover
the mapping function sY = f(sX1, sX2, x, y, z, τ). We use the
term response variable to refer to the measurements at sensor
sY , and the term explanatory variables to refer to each of the
arguments inside the mapping function f .

There are two broad classes of statistical modeling techniques
that could be used: (i) parametric, and (ii) non-parametric models.
Parametric statistical models assume that the form of mapping
function f is known with the exception of a limited number of
parameters. Nonparametric models differ from parametric models
in that the mapping function is not specified a priori, but is instead
determined from data. The term nonparametric is not meant to
imply that such models completely lack parameters; rather, the
number and nature of the parameters is flexible and not fixed in
advance. Nonparametric models are also called distribution free.

Parametric statistical modeling techniques have the advantage
of being simple and of having a limited number of parameters.
However the performance achieved is based on specific assump-
tions about the form of the mapping function and the distribution
of the variables. If these strong modeling assumptions do not
hold, the performance of such methods could be quite poor.
The advantage of nonparametric models is that they place much
milder assumptions on the variables. However their potential
drawback is that they can potentially explode in terms of the
number of parameters used to describe the model. A large number
of parameters is not desirable as there is a danger of over-fitting
the data.

We build a nonparametric model that finds a piece-wise linear
fit to model the response variable. Our regression method is
isotonic because we impose isotonicity constraints, and it is
univariate because we will build models that rely on a single
explanatory variable, thus keeping things simple. Unlike previous
methods, our solution explicitly allows the number of linear com-
ponents to be limited (specified in advance), thereby avoiding the
problems of an excessive number of parameters in nonparametric
methods.
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Fig. 2. Similar temperature and humidity readings for 3 sample sensors (31, 39
and 38) hint of correlation and predictability.

A. Exploratory Data Analysis

We begin our development of statistical models for pairs
of sensor nodes (called inter-sensor models) by doing some
exploratory data analysis. This initial phase of examining the data
is used to try to uncover correlations (or lack thereof) that can
be exploited in modeling, to identify which variables can act as
explanatory variables (to predict the response variable), as well
as to expose hidden covariates (correlations or dependencies). We
observed the following.
• Spatial and Temporal Correlations Figure 2 shows temper-

ature and humidity measurements at sensors 31, 39, and 38,
for the first two days of the experiment. These plots reveal the
existance of spatial correlations across nodes in that different
nodes behavior similarly. The readings at individual sensors are
correlated in time because the phenomenon being sensed is a
slowly changing phenomenon.
• Spatial correlation and distance. It is natural to postulate

that there could be a correlation between the distance between
two sensor nodes and their ability to predict each other’s measure-
ments. To check whether a clear relationship between inter-sensor
correlation and distance exists, generally across all of our sensors,
we generated scatter plots of correlation versus distance for all
the nodes in the network (Figure 3). Each dot corresponds to a
single sensor. It is clear from this figure that there is no consistent
relationship between inter-sensor correlation and distance.

Another way to examine this distance hypothesis is to make
the following consistency check. Let σxy denote the correlation
between nodes x and y, and d(x, y) denote the physical distance
between x and y. If two pairs of nodes (x, y) and (x, z) have
σxy > σxz and d(x, y) > d(x, z) then a distance hypothesis is
consistent for these two pairs of nodes. We count the number of
times such node pair comparisons are consistent. We found that
for temperature readings, our data exhibited 68% consistency, and
for the humidity readings, our data had 66% consistency. This is
considered a low level of consistency and thus again indicates
that distance would not be good enough to use as an explanatory
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variable for sensor node prediction.
We believe the reason why distance is not a good indicator of

correlation in our network is because even though two sensors
may be physically close and exposed to similar sources of
temperature and humidity, there can be other things in indoor
environments that affect the sensor readings such as walls, air
vents, and so on. We thus elect not to include distance as an
explanatory variable in our model.
• Isotonicity. If two sensors sX and sY are exposed to the

same sources of stimuli, then intuitively increasing the value
of the stimuli should result in higher readings at both sX and
sY . We incorporate this into our prediction model by adding an
isotonicity (non-decreasing monotonicity) requirement that when
the values of sensor sX increase, so should the predicted values
for sensor sY increase. Such constraints expose physical phenom-
ena that would otherwise be hidden covariates in our model. We
checked the consistency of our isotonicity hypothesis as follows.
If x(t2) > x(t1) and y(t2) > y(t1) then our count of consistency
increases by one. We calculated the consistency by checking this
over all time slots and over all node pairs. In order to allow
for small amounts of noise in the measurement process, we also
consider a pair of readings to be consistent if x(t2) > x(t1) and
y(t2) > y(t1)+δ where δ is a small noise tolerance parameter. In
Figure 4 we show the consistency of monotonicity between two
sensors for a range of tolerance values (δ ∈ [0, 0.05]). Even with
zero noise tolerance, the consistency of monotonicity is very high,
greater than 96% (94%) for temperature (humidity) respectively.
This very strong consistency of the isotonicity constraint indicates
that it would be a very useful constraint to include in regression
analysis, limiting the search for a solution to the right portion of
the search space.

B. CIR: Combinatorial Isotonic Regression

In Section III, we discussed our motivations for proposing a
new method for solving isotonic regression. We present a four
step method in which the first two steps are used to convert the
isotonic regression into a combinatorial problem. We then rely
on a dynamic programming paradigm to solve the problem. We
call our solution combinatorial isotonic regression (CIR). Our
method finds the univariate isotonic regression of the data in
polynomial time. The advantage of converting this problem to
the combinatorial domain is that this yields additional flexibility
inside the solution. In particular, we will see that there is a natural
way to limit the number of parameters of the resulting model.

Let the time series of readings from sensor sY be denoted
by the data stream Y = {y(t)} with time index t = 1, 2, ..., T
where T denotes the total number of measurements. Similarly, the
time series data measured at sensor node sX forms data stream
X = {x(t)}. Our data comes in the form of pairs (x(t), y(t))
where x(t) denotes the value of sensor sX at time t and y(t)
indicates the value of sensor sY at time t. We can have pairs such
as (18, 19) and (18, 20) since sensor sX could read 18 degrees
at two different times while sensor sY has two different readings
at these two time slots.

We order the values (temperature measurements) in X accord-
ing to x1 ≤ ... ≤ xN where x1 = min x(t) and xN = max x(t),
hence the range of values the sensor measures falls within is
[x1, xN ] and the cardinality of the values in stream X (the
number of measurements) is given by |X| = N 1. There will
be redundancies in this ordering since at many times the sensor
obtains the same reading. To reduce this ordering to a strict
order, we eliminate redundancies by grouping the same values
together, and thus generate an order x(1) < ...x(i) < ...x(I). This
specifies the distinct I values that sensor sX may read. Thus the
notation x(t) = x(i) indicates that sensor sx at time t measured
the value x(i) where x(i) denotes the i-th value in our ordered
set of temperature readings. We produce the same strict order
for the data stream Y yielding y(1) < ...y(j) < ...y(J) where J
denotes the number of distinct values for sensor sY . Note that,
the sensors in our experiment are quantized and have less than a
1000 distinct values for humidity and temperature readings.

Our goal is to find a mapping X → Ŷ denoted by Ŷ =
f(X). Regression analysis selects a mapping that minimizes a
specified error metric. Let εp denote a function for measuring the
prediction error, i.e., εp = g(Y −Ŷ ). The objective of the isotonic
regression is to find the mapping f to predict Y , Ŷ = f(X),
that minimizes the error metric εp subject to the non-decreasing
isotonic constraint ŷ1 ≤ ŷ2.... ≤ ŷN .

One advantage of our approach is that it is independent of the
form of the error function εp. Commonly used forms of εp are
the Lp norms of error that are shown in Equation 1.

(
J∑

j=1

wj |yj − ŷj |p)1/p if 1 ≤ p < ∞; (1)

maxJ
j=1wj |yj − ŷj | if p = ∞.

1Although N = T we use different notation here to emphasize that the index
N corresponds to the size ordering rather than a temporal ordering
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where wj could be weights, or penalties, of making specific
errors.

Our method consists of four steps that are executed for each
pair of sensor nodes. We state them now and then explain each
one in detail below. We will use the example in Figure 5 to help
illustrate each of these steps.

1) Build the relative importance matrix R.
2) Build the error matrix E.
3) Build a cumulative error matrix C.
4) Starting at the minimum value in the last column of C,

trace back a path to the first column that minimizes the
cumulative error.

Step 1. We start by using the data tuples to form a relative
importance matrix R where each rij captures the number of times
when sensor sX measured value x(i) and sensor sY read the value
y(j) at the same moment. If we define ρij(t) to be:

ρij(t) =
{

1, if x(t) = x(i), and y(t) = y(j)

0, otherwise;

then the elements of the matrix R are obtained from: rij =∑T
t=1 ρij(t). In the example in Figure 5, each sensor can take

on one of five different values. In the R matrix, we see that
whenever sensor sX read value x(1), sensor sY can experience
any of the readings y(1) through y(5). A particular entry in R
indicates how many times a value of say y(3) was observed
when the explanatory variable measured x(1). This is essentially
a histogram since it indicates, for example, that when sensor sX

measures the temperature to be x(1), then node sY is more likely
to measure the temperature y(1) than other values (although others
are also possible). The matrix R is a histogram on the entire set
x(i), y(j) for all i and j.

p(x1,y*2) = L1(x1,y*2)= t’ r1,t’ |yt’-y2|

t’=1,…,5

c3,4 = e3,4+mint’ c2,t’

t’=1,…,4

46 43 48 9 17

32 28 30 13 15

24 23 20 25 25

20 24 18 39 35

18 25 32 55 47
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y1
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y4

y5
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Fig. 5. Example: steps for building a CIR model for a response sensor sY from
the data at sensor sX , where each sensor has only 5 possible values.

Step 2. We now populate the error matrix E whose elements
{ei,j} each describe the error that would be made if the prediction

of Ŷ was selected to be y(j) whenever sensor sX observed the
reading x(i). We can see, as in the example, that whenever we
have X = x(1), the most common observation at Y is y(1),
although there are times when sensor xY observes the readings
y(2) or y(3) and so on. Hence the predictor y(1) isn’t always
correct, and thus some error arises for this prediction. In our
example, we use the error

eij =
∑

k

rik|y(j) − y(k)|

which corresponds to the L1 error norm. The weight rik captures
how often the particular error y(j)−y(k) occurs. We could define
any other error metric, based on eij =

∑
k εp(yk, yj , rik), but

for ease of presentation we limit ourselves here to the L1 norm.
Our example in Figure 5 shows how the matrix E is constructed.
We highlight e12 and illustrate how it is computed using the first
column of the R matrix as weights in the error function.

Step 3. We can now interpret the goal of the isotonic regression
(i.e. finding ŷ = f(x)) to be equivalent to finding a non-
decreasing function that traverses the graph under matrix E in our
example. We want to find a non-decreasing “path” that starts at
the point x(1) with some y-intercept, and moves in non-decreasing
fashion across the space of x values to x(I) (generally, and to
x(5) in our example). This path should accumulate the minimum
error and visit each column exactly once. To find this path we
construct a cumulative error matrix C in which each element cij

summarizes the errors seen so far when the X takes on values
less than or equal to x(i), i.e., x(1), ..., x(i). In our example we
start filling the cumulative error matrix C by copying the first
column of E matrix. The C matrix is then filled column by
column, from left to right. Each value of ci,j is simply the sum
of its corresponding value in the matrix E, namely eij , and the
minimum value in the previous column to the left. This value
from the previous column describes the accumulated errors seen
so far, for values of x(l) where l < i. By building up the i-
th column, we are adding to this cumulative error, amounts that
occur when predictions are made using sensor value x(i). We
are constrained on the minimum value used from the previous
column. If we are computing cij then we can look in the i− 1st
column only for values of Y that are less than yj . In our example
we show how c3,4 = 71 is computed by adding e3,4 = 30
and the minimum of its lower or equal Y value in the previous
column of C. The candidate values are highlighted; the minimum
is c2,3 = 41. For each value in C matrix, we also keep the index
that identifies the minimum value in its previous column that led
to the current estimate of the cumulative error.

Step 4. Once the cumulative matrix C is fully constructed, we
find the minimum value in the last column of C (index j = 5) and
extract the associated index (called mini) to the previous column
(in our example mini = 5). Finally, the procedure backtracks
over the columns updating the mini value at each step (steps
9-11). For each column, the value of y(mini) is stored as the best
predicted value for ŷ(j). In our example, the final mapping is
shown by thick perimeter boxes on Figure 5.

The procedure used here for steps 3 and 4 corresponds to
a dynamic programming solution to the problem of finding
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Procedure IsotonicRegression(E,X, Y, Ŷ )
{ 1. ∀ i, ∀ j, ci,j = 0;
2. for (j = 1 to j = J) {
3. c1,j = e1,j ; }
4. for (i = 2 to i = I) {
5. for (j = 1 to j = J) {
6. ci,j = ei,j + min1≤j′≤j ci−1,j′ ;
7. indexi,j = arg min1≤j′≤j ei−1,j′ ; } }
8. mini = arg mini=I−1,1≤j<J ci,j ;
9. for (i = I − 1 down to i = 1) {

10. ŷ(i) = ymini;
11. mini = indexi,mini; }
}

Fig. 6. Pseudocode for the dynamic programming algorithm for finding the
isotonic model between node pairs.

an isotonic regression that minimizes the chosen error. Our
pseudocode given in Figure 6 specifies the detailed procedure.

The runtime of the procedure in Figure 6, is dominated by
the two nested loops in steps 5 and 6. Hence, it is (I × J) (the
procedure in step 7 can be optimized for execution in a constant
runtime). Assuming that the tuples were not sorted, the original
ordering of tuples takes an order of O(NlogN) if standard sorting
techniques are used. Since the number of values measured by
the sensor is often significantly larger than the set of unique
values for X and Y (i.e. N >> I × J), the runtime of the
procedure is dominated by the original sorting of the data, which
can be accomplished in linear time with respect to N by using
bucket sort [18]. It is easy to show that the dynamic programming
procedure presented calculates the provably optimal model (i.e.,
minimum error) with respect to the given error norm and with
the current set of data points [18].

C. Evaluation

To evaluate our approach, we compare prediction error of the
combinatorial isotonic regression (CIR) to prediction errors of
(a) ordinary least square (OLS) linear regression and (b) robust
least-square (LOESS) non-parametric regression. The reasons for
selecting these two models as comparison points were (i) to
compare the results of isotonic regression to both parametric and
non-parametric models, (ii) OLS regression is the most widely
used parametric modeling method, and (iii) LOESS regression
with proper parameter selection is a widely used robust non-
parametric modeling method. The major difference of CIR with
respect to LOESS is inclusion of the isotonicity constraint. Our
intent is to gain insight as to what extent the prediction error can
be reduced by including the isotonicity requirement.

We briefly summarize OLS and LOESS modeling. If the goal
is to model the readings Y of sensor sY , from the readings X
at sensor sX , the OLS model would be: OLS(X) = Ŷ = β0 +
β1.X +εols, where β1 and β2 are the OLS regression coefficients
and εOLS is the vector of residuals. The least squares estimates of
the unknown coefficients are the values of β̂0, β̂1 that minimizes∑

(Y −[β0+β1.X])2. In applications where the residuals (errors)
εols follow the Gaussian Normal distribution, the result of OLS
regression is the same as the Maximum Likelihood (ML) estimate

of the response variable and is optimal. Another advantage of
OLS model is its simplicity and closed-form of computation. The
drawback is that for many real-life data sets, the assumptions
about the underlying distributions being Gaussian and the form
being linear do not hold. The LOESS non-parametric regression
is often referred to as locally weighted polynomial regression
[19]. In this method a low-degree polynomial is fit to the data,
usually by the method of least squares.
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Fig. 7. Frequency of prediction errors for 3 different prediction models (OLS,
LOESS, CIR) on all node pairs for temperature and humidity.

To compare the different models, we use learn and test proce-
dures, resampling, bootstrapping and confidence intervals as our
statistical validation and evaluation methods. For the learn and
test procedure, we split our N data tuples (xn, yn), n = 1, .., N
into two disjoint sets: the learning set that contains Nlearn

tuples and a test set with Ntest = N − Nlearn tuples. Each
model is built using the learning set, and the test set is used to
evaluate accuracy. The residual for each predicted value is defined
as ri = yi − ŷi. Thus, from each model we obtain a vector
of residuals [r1, r2, ..., rNtest

]. We have used several different
norms to obtain the summary statistics of residuals and relative
residuals. The Lp error norm for relative residuals is defined as:
Lp(relative) = (

∑Ntest
i=1 | ri

yi
|p)1/p, for yi �= 0 and 1 ≤ p < ∞.

We have experimented with a wide variety of error measures,
including L1 and L2 norms of both residuals and relative residu-
als. The resulting prediction error comparisons were very similar
across the different error measures. Due to space limitations, the
results shown in this section are limited to the average (L2) error
of the relative residuals. We use two days of data for our modeling
phase with one day for learning and one for testing. We use the
rest of the days from our data for the operational phase with
monitoring and scheduling to see how long we can prolong the
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life of this network. The frequency of L2 prediction errors over
all possible node pairs, for the test data, is shown in Figure 7
for all three methods. It is easy to see small errors are much
more likely for CIR than for two other methods and that OLS
has significant heavier tail of large errors. Analysis indicates that
for both temperature and humidity sensors the unconstrained non-
parametric LOESS modeling achieves on average a factor of 2
lower error when compared to OLS modeling.

Isotonic modeling method achieves on average more than
4 times improvement in prediction error when compared to
the LOESS modeling approach. For example, according to our
results, for both temperature and humidity, the number of the
internode models with the relative error rate of less than 1% is
around a 1000, while the number of internode models with less
than 1% error is less than 250 for the LOESS model and less
than a 150 for the OLS model.

We can also interpret the prediction error results in terms of
absolute temperature and humidity values. During the test phase,
the average temperature in the lab was 18.76◦C and the average
humidity in the lab was 42.17%. For the temperature models,
those node pairs with a relative error measure of 2% or less, can
predict the response sensor with an absolute error of less than
0.4◦C. Similarly, for humidity the node pairs with relative error
less than 2% can predict the response sensor with an absolute
error of less than 0.8%. This included over half the node pairs
for the CIR modeling. When we set 2% as the target error rate
and carry out our sleeping algorithm, we only use the node
pairs that achieve this relative error. Thus CIR enables many
more options for sleeping than the other regression methods that
identify fewer node pairs for prediction. Direct comparisons of
performance with previous work are difficult because different
studies use different error metrics. However, we note that in [16],
they achieved errors of roughly 1◦C using a root mean squared
error metric. Our L2 and L1 errors are less than this. Although
these are not directly comparable because of the different error
metrics, and the differing scenarios for application, it seems clear
that both methods are high performing with acceptable error rates
in roughly the same range.

We apply resampling and bootstrapping to find the distribution
and confidence intervals for the prediction errors. Specifically,
we randomly select 65% of the data from the first two days data
as the learning set. We use the rest of the data as a test set and
calculate the prediction errors. We perform bootstrapping on the
prediction error by repeated resampling from the original data set
and estimating the sampling distribution of the prediction error.
The confidence intervals of the modeling method are directly
found from this distribution. An example for the bootstrapping
results between two nodes is shown in Table I, where the
resampling was repeated 100 times. The distribution quantiles
are computed over all pairs of sensors included in the prediction
graph. The results indicate that for a 95% confidence, the CIR
method is a factor 3 to 4 times better than LOESS, and that CIR
not only produces smaller error values, but is a more consistent
method than the alternatives.

quantile 5% 25% 50% 75% 95%
OLS 0.0368 0.03375 00.0379 0.0388 0.0392

LOESS 0.0138 0.0139 0.0147 0.0150 0.0153
CIR 0.0039 0.0041 0.0042 0.0044 0.0045

TABLE I

SAMPLE QUANTILES FROM DISTRIBUTION OF TEMPERATURE PREDICTION

ERRORS.

D. Flexibility of the CIR Approach

A key advantage of our CIR modeling method is its inherent
flexibility. Modeling in sensor networks is often a precursor
for subsequent optimizations. Because the CIR method solves
the isotonic regression problem by mapping the problem into a
combinatorial domain, the flexibility of the combinatorial domain
can be exploited to impose additional modeling requirements.
Examples of additional requirements on the models include
imposing specific forms on the regression function such as
symmetric or convex, robustness, limiting model discontinuity
and limiting the number of parameters in a model. The exact
description of the flexibility of CIR is beyond the scope of this
paper and can be found in [20]. Here, we only focus on the
aspect of limiting the number of parameters which is useful
for smoothing the model and avoids overfitting the data. This
is particularly important for sensor networks when nodes are
constrained in memory size, and distributed versions ([20]) of
our methods are used.
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Fig. 8. Fitting of two sample humidity models predicting sensor-2 from sensor-
1: unlimited CIR (solid line) model with 73 parameters and limited CIR (dashed
line) with 9 breakpoints; break points are shown by circles.

Since we fit piece-wise linear components to our data, we
define breakpoints as those points where two components meet.
In general, breakpoints are coordinates where a change in the
form of the model begins. The number of breakpoints is thus
an indicator for the number of model parameters. In Figure 8,
we show the fitting for both the unlimited CIR model (shown as
a solid line) that selected 73 breakpoints, and the limited CIR
model (shown by the dashed line) using 9 breakpoints (shown
with circles). Traditional smoothing methods like splines can find
a modeling solution that uses fewer parameters [21]. However,
blind usage of smoothing methods to restrict the number of
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parameters affects the optimality of the solution. The goal is
to constrain the number of parameters of the model in such a
way that we maintain the lowest possible prediction error under
imposed constraints.

We now explain how we modify our CIR algorithm presented
in subsection IV-B to produce a regression function that has at
most D break points. The modified CIR model still guarantees
both the isotonicity constraint and the minimum error for the
given number of parameters. In order to restrict D, the model
should have a notion of its local slope which indicates the value of
jump from the current prediction (f(x(i))) to the next (f(x(i+1))).
The maximum possible slope is J , but the local slopes are
typically much smaller than that.

The basis for the algorithm that calculates CIR with a restricted
(specified) number of breakpoints D and a maximum slope of
L is a version of the generic CIR dynamic programming-based
algorithm that creates for each entry of the cumulative error
matrix (C), a separate matrix SM of size D × L. Entry (d, l)
of matrix SM for the entry cij of matrix C stores the cumulative
error that corresponds to the cumulative error of the best CIR
mapping that ends at values sX = x(i) and sY = y(j) while the
mapping uses exactly d parameters, and its slope at that point is l.
This value is denoted by a four dimensional entity SMC(i, j, d, l)
and is calculated as shown in Equation 2.

SMC(i, j, d, l) = min{SMC (i − 1, j − l, d, l) + E(i, j) (2)

, {
q=l
min
q=1

SMC (i − 1, j − q, d − 1, q) + E(i, j)}}

The first term in Equation 2 corresponds to the path that does
not induce a need for a new parameter on the considered path and
retains its previous slope. This first term only exist if a valid value
of mapping function can be defined for the previous column,
and for the given slope and number of parameters. The second
term corresponds to the path that uses one more breakpoint and
changes the slope of the mapping CIR function at x(i), y(j).
Therefore, with respect to the basic CIR dynamic programming
algorithm we store D × L more variables at each step, and we
find the optimal solution in overall time that is D×L longer. Note
that, the maximum number of parameters is I and the maximum
slopes is at most J . At the limit case where D = I and L = J ,
the runtime becomes the square of the original CIR runtime. In
practice, D and L are small constants in order to ensure creation
of a smooth model with few parameters. Therefore, the runtime
of the algorithm is most often just increased by a small constant
and stays linear.

The goodness of fit of a model and comparison between
different models on the same data set can be quantified through
the use of statistical information criteria, such as AIC (Akaike
information criteria), BIC (Bayesian information criteria), or DIC
(deviance information criterion). We have used AIC [22] as the
goodness-of-fit measure of choice for our models. AIC uses the
logarithm of the likelihood of the model and also penalizes for
the number of parameters in the model. AIC is formally defined
as, AIC = −2log(likelihood) + 2D, where 2D is the number of
parameters in the model. Using the AIC criteria, we compare
the original isotonic model to models where we restrict the
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Fig. 9. AIC (y-axis) for different number of breakpoints (x-axis) in the model.

number of breakpoints. The results, shown in Figure 9 depict
the AIC of the best predictor of each node for humidity. (The
results for temperature, not included here, are very similar.) Each
boxplot shows the values for a defined number of breakpoints
in the model. The sensors have around a 1000 discrete values
and the unrestricted isotonic model has in average more than
300 breakpoints. The results show that limiting the number of
parameters in general provides a large improvement for the
popular AIC goodness-of-fit metric. Moreover, it shows that with
a small number of parameters, around 10 or so, our limited CIR
method achieves a good fit.

As a second example of the flexibility of our methods, we
now extend them to produce models that rely on more than one
sensor as an explanatory variable. For some applications it may
be beneficial to build such multivariate models. It is already
clear that our method, relying on only one sensor to predict
another, achieves very low error rates and thus intuitively there
is no need for additional explanatory variables. Nevertheless,
we consider this case here because of the often espoused view
that using more sensors to predict a single one is a good idea.
Increasing the dimensions make the CIR modeling problem
NP-complete and finding a solution in polynomial time is not
possible. We introduce an ILP formulation of the multivariate
modeling problem that finds a practical solution to the small
modeling instances on our sensor data.
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Fig. 10. Comparison of prediction errors between the best univariate model and
the bivariate model built from the 2 best univariate models.

The use of multivariate models can only be justified if they
decrease the prediction error for the response variables. In our
experiments, we developed bivariate models for each of the
response sensors using its two best univariate predictors (i.e.
predictors with the least amount of prediction error). The resulting
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errors are presented in Figure 10, where boxplots show the
prediction errors for the best univariate model and the best
bivariate model for each of the nodes. By best univariate model
we mean the univariate model with the predictor that has least
amount of prediction error. We can see that the bivariate models
do not achieve a significant reduction in modeling error when
compared to the best univariate models. This can be explained
by the fact that the modeling errors for the best univariate models
are so small that adding more variables could not significantly
reduce the already small errors. Therefore, we decided not to use
multivariate models on our data; the increase in complexity does
not warrant the tiny improvements in prediction errors. We do
not describe the details of our multivariate modeling method due
to space limitations and refer the reader to [20] for the exact ILP
formulation and solutions for multivariate modeling.

V. CENTRALIZED SLEEPING COORDINATION

Once the intersensor models are available on the server, we
can formally define the problem of sleeping coordination. The
problem is to find multiple subsets of the sensor nodes such
that each subset can achieve complete sensing coverage, over
the entire field spanned by the network, for multiple modalities
simultaneously. Complete sensing coverage is defined as the
maximum coverage attainable by the network while all sensor
nodes are awake. We guarantee that within a user specified error
range ε, the complete coverage is maintained, while a significant
number of nodes are placed in the sleep state. The sleeping
coordination method works by selecting the awake nodes in such
a way that the data from the sleeping nodes is predictable from
the data at the awake nodes, within a ±ε error bound.

The starting point for the problem specification is to abstract
the sensor network into a graph G(S,E), where |S| = Nn

and Nn is the number of nodes in graph. There is an edge (or
hyperedge) from the sensors sX1, sX2, ... to a sensor sY , if and
only if the ŝY = f(sX1, sX2, ...) predicts the value at sensor
si within a user’s specified error tolerance ±ε. Edges indicate
a relationship between two nodes and therefore correspond to
univariate models. Hyperedges indicate a relationship between
several nodes and thus correspond to multivariate models.

Before we instantiate a graph, we have to answer the following
questions: (i) do we need hyperedges or regular edges? (ii) Should
edges be directed or not? (iii) Should edges be dynamic or
static? The results of the prediction studies in the previous section
directly answer the first two questions: (1) we do not need data
from multiple nodes (or hyperedges); (2) although not presented
here due to space limitations, we found in our data that prediction
accuracy is not symmetric, and thus the graph should be a directed
one; and (3) the edges in the graph are considered valid and
static as long as the isotonic prediction errors are within the
specified error bound. During time periods when the models are
unchanging, our graph remains static. To accomodate changes, we
incorporate a monitoring capability that updates the models and
the schedule as needed (Section VI). Note that there are multiple
graphs (m) that each correspond to different sensor modalities.
For a given set of m prediction graphs, we adopt the following
problem formulation.

Problem: Domatic Partition on Multiple Directed Graphs.

Instance: m directed graphs Gm = (S,Em), where all the graphs
have the same set of nodes.

Question: Is there a partition of nodes in the graphs to K disjoint
sets, S′

1, S′
2, ...., S′

K , such that for each set S′
k, the subset S′

k ⊆ S
is such that all nodes in each graph Gm that are not in S′

k have
at least one incoming edge from a node in S′

k?
The decision problem can be mapped to a maximization

problem using a binary search. The problem of finding the
maximum K on one graph is a special case of our graph (where
there is only one modality), is called the domatic number problem
and is one of the classical NP-complete problems [23].

We now formulate the sleeping coordination problem as an
instance of an integer linear program. Even though the problem
is NP-complete, for our scenarios of networks with less than
100 nodes, we are able to find the solutions quickly on a
standard PC. We believe that even networks with a few hundreds
of nodes could be solved on a standard server. Even though
attractive approximation algorithms are available [24], we decided
to develop an ILP formulation to retain optimality so as to be able
to assess the maximum extent of the gain of our approach. We
solve our ILP using the commercial CPLEX package. We first
introduce the constants and variables for our ILP formulation,
and then formulate the objective function and constraints.

Given: A number K ≤ (δ + 1) and m prediction matrices
Pm{Nn×Nn} (one for each modality) with elements pmXY , s.t.

pmXY =
{

1, If |ε(ŝY = f(sX))| ≤ |ε|
0, otherwise

(3)

Where |ε(ŝY = f(sX))| is the error in predicting the value at
sensor sY given the data at sX , and ε is the user’s specified error
tolerance and δ is the minimum degree of the nodes in the graph.

Variables: m matrices Zm{K×Nn} with elements zmXk, and a
vector U{K} with elements uk s.t.

zmXk =
{

1, If node sX is in set S′
k

0, otherwise
(4)

uk =
{

1, If the set S′
k was selected

0, otherwise
(5)

Objective Function: The objective function is to maximize the
number of disjoint dominating sets, i.e., max

∑
k uk.

If we find, say 5, dominating sets, then we can extend the life
of the network 5 times as compared to a scenario in which all
nodes are left on all the time. This is because each dominating set
achieves complete sensing coverage. Since our goal is to extend
the network lifetime as much as possible, clearly, this corresponds
to finding the largest number of dominating sets possible.

Constraints: The problem has three sets of constraints. The first
set of constraints (C1) ensures that if a set S′

k exist (i.e. uk = 1),
for each Gm, all nodes in Gm that are not in S′

k have an incoming
edge from a node in S′

k. For m = 1, ...,M , X = 1, ..., Nn,
k = 1, ...,K,

C1 : zmXk +
∑
Y

PmXY zmY k ≥ uk (6)
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The second set of constraints (C2) is that if a node is selected in
one group, it cannot be selected for any other group. Since the
assignment of nodes to the groups is done for all m graphs, we
introduce an auxiliary variable wXk that indicates that a node
sX is assigned to a group S′

k in at least one of the graphs.
In other words, the variable wXk is the OR function over the
variables zmXk. We write the OR function in the language of
linear constraints as shown in C2a. The relationship C2b ensures
that each node is only selected for one group. For m = 1, ...,M ,
X = 1, ..., Nn, k = 1, ...,K,

C2a : wXk ≥ zmY k, wXk ≤
∑
m

zmY k, 0 ≤ wXk ≤ 1

C2b :
∑

k

wik ≤ 1 (7)

The last set of constraints (C3) ensures that the variables uk

and zmXk are within the [0,1] range. For m = 1, ...,M , X =
1, ..., Nn, k = 1, ...,K,

C3 : 0 ≤ uk ≤ 1, 0 ≤ zmXk ≤ 1 (8)

Since we have two modalities (temperature and humidity), we
have m = 2. We extract the Pm matrices and constant K =
(δ + 1) from our modeling studies.

A. Evaluation of Centralized Sleeping Coordination

In this subsection, we show the results of applying our ILP
solver to domatic partitioning problem. Naturally, we desire to
have the maximum number of possible domatic sets, so we can
coordinate more groups to prolong the lifetime of the network.
The number of domatic sets are dictated by the topology of
internode constraints (models) that are defining the edges on the
graph. An important factor in determining the edges on the graph
is the user’s specified error bound (ε).

Table II shows the number of domatic partitions obtained
for different target errors. Each partition found can be used
to predict both temperature and humidity. The first column
indicates the target ε allowed for the prediction. The next three
columns indicate the number of partitions resulting from different
prediction models. The last column shows the average runtime
of the solver on a 1GHz PC. We observe a number of interesting
things from this table. First, if the target error is less than 1%, all
the methods fail to find more than one domatic partition. However
with a target error of 2%, all methods can find multiple domatic
partitions, with our isotonic regression finding the most (5). It is
a substantial gain to be able to extend the life of a network by
a factor of 5 just by tolerating a mere 2% average relative error.
If we consider larger target errors, such as 5%, we can extend
the lifetime between 6 to 12 times depending on the prediction
model used. Second, we find that the isotonic fit (with a limited
number of parameters) is significantly more effective than the
linear and non-parametric LOESS fits. Third, although we used
an optimal ILP, we see that the average runtimes are low. We were
also able to solve randomly generated instances with more than
1000 nodes in less than 10 minutes, indicating that our technique
is scalable, for many realistic network scenarios, even when we
insist on optimality.

Ave Prediction Model CPLEX
Err Linear LOESS Isotonic (D=15) Time

0.01 1 1 1 0.07
0.02 3 3 5 0.31
0.03 3 4 6 1.16
0.04 4 4 9 1.16
0.05 6 8 12 0.98
0.06 7 12 17 3.22
0.07 10 14 24 1.58

TABLE II

NUMBER OF DOMATIC PARTITIONS FOR 3 PREDICTION MODELS AND VARIOUS

ERROR BOUNDS. AVERAGE RUNTIME (SEC) ALSO SHOWN.

B. Distributed Coordination Algorithm

The centralized coordination algorithm proposed so far is
well-suited for our in-building application, where the size of
the network and the radio ranges of the nodes permits direct
communication to a server. In a number of other sensor network
settings, nodes might not be able to communicate to the server
in a single hop. In order to generalize our approach to multi-hop
networks, we have designed two different localized algorithms
for the sleeping coordination problem. We have also evaluated
the quality of the solutions and computed the communication
energy consumption for each of these localized schemes. Because
of space considerations, we do not provide the details of the
localized sleeping coordination here and refer the interested
readers to our technical report [13].

VI. SCHEDULING, MONITORING AND ADAPTIVITY

The domatic partitions-based approach for optimization of the
lifetime of a network provides a sleeping decision procedure that
implicitly assumes a scheduling strategy that places the nodes in
each of the partitions to sleep for equal amounts of time. The
approach so far has assumed that the observed phenomena is
such that prediction models are static. However, intuition suggests
that due to changes in weather patterns, seasons, environment
(e.g. workday vs. holiday or weekend) and other factors, the
models are not time invariant. There is a need to develop
scheduling, monitoring, and adaptations procedures that address
the dynamics of the observed signals. The scheduling procedure
decides the length of each round of the round robin procedure.
The monitoring procedure indicates at which points in time one
will collect information to check the validity of models among
sensors. Finally, the adaptation procedure determines how long
one has to collect measurements from all sensors in order to build
a new set of models and new domatic partitions.

To determine a strategy for these three procedures, four key
questions should be answered: (1) Is there indeed a need for
updating the dominating sets due to dynamic changes in the
observed phenomena? (2) How long should a single round of
the round robin scheduling be? (3) How often and for how long
should monitoring be conducted in order to detect whether or not
the models and dominating sets need to be updated? (4) What
should the conditions be that initiate the creation of new models
and domatic partitions?
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Fig. 11. Prediction error vs. hour for two nodes in the experiment. We use the
model built from the first day of data to predict the second day of experiment.
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Fig. 12. The autocorrelation of the residuals of the model built on the first day’s
data and tested on the second day’s data: temperature (left), humidity (right).

Our approach to answering these questions is data driven.
Figure 11 shows time behavior of a typical prediction error. We
summarize error behavior for each hour using box-plots. The
figure shows only data for one day in order to maximize visibility
of the important information. Three observations are valid over
the range of all pairs of nodes: (i) all high errors appear between
6 am and 6 pm; (ii) high errors in humidity lead to high errors
in temperature by a lag that is between an hour and three hours;
and (iii) error rates are slow changing and very consistent within
intervals as long as one hour. Figure 12 shows autocorrelation
of prediction error for unit time lag of 30 seconds. We see that
correlation is very high (above 90%) even for rather long periods
of time (longer than 10 minutes).

Figure 13 presents a histogram of the number of high error pre-
dictions (above 2%) for each 100 consecutive samples (sampling
rate is 30s) in the second day of the experiment. For example,
value 0 indicates that there was no error in a 100 consecutive
samples. We see that most often the erroneous values in a 100
sequential samples are consistent.

Using these observations, we concluded that the minimum
period of a round robin sleeping schedule should be once every
12/k hours, where k is the number of disjoints sets in the domatic
partition. We use equal periods so that all nodes are awake for
equal amount of time and therefore have the same rate of energy
consumption. This is reasonable for networks with homogeneous
sensors, all starting with the same energy store. Note that, one
can select other periods for the round robin schedule. Since we
do not assume a high cost for the sleep to active transitions, our
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Fig. 13. Histogram of percentage (%) of high error measurements in 100
consecutive error values for temperature (left) and humidity (right) sensors. The
error is for the model built on the first day and tested on the second day’s data.

results would be the same for different round robin periods. In
situations where the wake up cost is not insignificant, the rounds
can be set to longer periods (such as a week or even more).

We also concluded that from 6:00PM to 6:00AM there is no
need for monitoring since there was no single instance when
the initial model were not accurate. Monitoring from 6:00AM
to 6:00PM should be guided solely by acceptable delay in
detecting the first instance of unacceptable error prediction and
it is sufficient to monitor only humidity. Recall that the error
autocorrelation is high and the histogram indicates that once the
first error is observed, the probability of consecutive errors is very
high. Thus, once high errors are detected, data collection has to
be conducted at all nodes, in the same period (30 seconds), at
the initial sampling rate, to ensure completeness of the collected
data. The collection should continue until the first simultaneous
occurrence of a very few (no more than ten) correctly predicted
samples. The correctness of the sample predictions are evaluated
using the initial models.

Lastly, we examine the overall performance of the system for
two cases. First, we perform initial modeling and use a target
error of 2% to find the prediction graph for the two modalities.
We run the ILP-based partitioning procedure on this graph to
find the domatic sets. We schedule the nodes in each set to be
active for one day and then report the mean of the prediction
error over all predicted sensors that are not awake for around 10
days of the network operation after the initial phase. We do not
perform any monitoring or adaptive scheduling for this case. In
the second case, we add the monitoring, remodeling and adaptive
scheduling to our system. During the 10 days of operation, we
found we only needed to update our models once, on day 9. We
found that this removed all errors greater than 3% that occurred
on the 10th day when no adaptivity was done.

A portion of the network’s overall energy is going to be
consumed by the overhead due to the initial modeling, monitoring
and updating phases. We have used the graphs with different
target errors to study the net extension to the network’s lifetime
with all the components of our methodology active (i.e., including
monitoring). Table III shows the overhead and the extension
results for different target errors shown on the first row. The
duration of the monitoring and collection phases are denoted by
Tmoni and Tcol respectively. The overheads of the initial modeling
phase, monitoring and collecting durations are calculated in hours
and are shown on the second, third and fourth row respectively.
The fifth row shows NS , the number of domatic sets found. The
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total overhead time is the sum of the second, third and fourth
rows of the table and is shown by TOH . If the original life time
was TOrig , the extension to the lifetime after considering the
overhead is simply calculated as, NS(TOrig−TOH)+TOH

TOrig
and is

shown at the last row of the table. We see that we achieve a large
saving in network lifetime, even after considering the monitoring
and remodeling overhead. Because little remodeling was needed
for our dataset, we did not have enough data to fully examine
the three-way tradeoff between overhead, error performance and
life extension. We leave this for future work that will examine
datasets of longer duration.

Target Error .02 .03 .04 .05 .06 .07
Initial Phase 48h 48h 48h 48h 48h 48h∑

Tmoni 12h 10h 9h 9h 9h 9h∑
Tcol 57h 15h 9h 8h 7h 7h

TOH 117h 73h 66h 65h 64h 64h
Number of Sets 6 8 10 13 21 29
x Life Extension 3.6 5.9 7.5 9.8 15.7 21.4

TABLE III

AMOUNT OF LIFETIME EXTENSION CONSIDERING ALL MODELING,

PARTITIONING, SCHEDULING, & MONITORING OVERHEAD.

VII. CONCLUSIONS

We have developed a methodology for extending the lifetime
of a sensor network by exploiting the redundancy in sensor
readings. Through the use of an isotonic regression method we
discover which nodes can be used to predict other nodes well.
Based on our prediction models, we organize the nodes into
domatic partitions such that each partition (subset of nodes)
can predict the sensing capabilities of the entire network. This
combination of methods works very well. Through exploratory
analysis of our indoor network data, we discovered that the data
obeys an isotonic constraint with extreme consistency. We thus
selected isotonic regression as our regression method of choice
for prediction. We illustrated that including this constraint brings
significant gains because the resulting prediction models are very
accurate. We compared our method to a common form of robust
regression (LOESS) and showed that our method achieves better
performance by roughly a factor of 4 over robust regression
for a few different performance metrics related to prediction
errors (e.g., when performance is measured by the number of
pairs of sensors whose prediction model achieves less than a
specified error target, and when performance is measured by
the 95% confidence interval on errors). Our isotonic regression
also outperforms linear and LOESS regression in that it provides
superior inputs to the domatic number problem. They are superior
in the sense that the ILP solution finds more domatic partitions
when isotonic regression is used for inter-sensor modeling.

Our isotonic regression solution is new in that we convert
the regression problem to one that can be solved using dynamic
programming. Solving the problem in the combinatorial domain
enables us to support any modeling error function, and allows
us to limit the number of regression parameters. We address the
practical issues of adapting our models and sleeping schedules to
evolving data by extending our method to monitor for changes
and to update the models and domatic partitions as necessary.

Putting all the components of our method together, and account-
ing for all overheads this incurs (as it consumes energy), we found
that if average relative errors of 2% can be tolerated, then our
method can extend the life of our type of sensor network by over
3 times (depending upon the modeling method). If higher error
rates (say 5%) are acceptable, then the network’s lifetime can be
extended even more; our isotonic method achieved a factor of 12
extension (Table II) and the simpler LOESS method combined
with our domatic partitions achieved a factor of 8 improvement.
It is encouraging to know that this is possible.
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