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Abstract— Before a sensor network is deployed, it is important
to determine how many sensors are required to achieve a
certain coverage degree. The number of sensor required for
maintaining k-coverage depends on the area of the monitored
region, the probability that a node fails or powers off (to save
energy), and the deployment strategy. In this paper, we derive the
density required to maintain k-coverage under three deployment
strategies: (i) nodes are deployed as a Poisson point process,
(ii) nodes are uniformly randomly distributed, (iii) nodes are
deployed on regular grids. Our results show that under most
circumstances, grid deployment renders asymptotically lower
node density than random deployment. These results override
a previous conclusion that grid deployment may render higher
node density than random node distributions.

I. INTRODUCTION

Research on wireless sensor networks has received tremen-
dous attention in recent years due to the advances in MEMS
technology, as well as their potentially wide applications in
both civilian and military environments, such as environmental
monitoring, industrial sensing and diagnostics, and informa-
tion collecting for battlefield awareness [2], [3], [5], [7].

In most applications, a sensor network is used to monitor a
certain region, and it is desirable that every point in a region
R is monitored by k sensors, where k is often determined
by applications. For example, for event detection, k = 1
may suffice, while for event localization and target tracking,
multiple nodes are required to simultaneously monitor any
point in a region R (so that the triangulation technique can
be applied). An interesting and important question is then to
determine how many sensors need to be deployed in an area
in order to provide k-coverage. This has to figure in the fact
that sensors are often considered not reliable, and they may
also switch between the on and off states to save energy.

The problem of sensor deployment is often formulated as
follows. Given a square region R with area A, how many sen-
sors are needed to ensure k-coverage, assuming that (i) each
sensor can cover a circular region centered at itself and with
radius r; and (ii) each sensor has a probability p to be active. In
addition, there are two fundamentally different ways to deploy
sensors: random deployment (such as Poisson point process
or uniform distribution), or deterministic deployment (such as
grid deployment). Intuitively, deterministic deployment seems
to require a fewer number of sensor nodes to achieve a given
degree of coverage k than random deployment. In this paper,
we would like to investigate whether or not this intuition holds
true.

Zhang and Hou [10] first studied the density requirement for
k-coverage of a square region with side length l. Assuming
Torus convention [4] and that the sensors have sensing radius
r = 1/

√
π, are distributed as a Poisson point process, and

are always active, they showed that a necessary and sufficient
condition for satisfying k-coverage with high probability (i.e.,
its probability tends to 1) is that the node density λ = log l2+
(k + 1) log log l2 + c(l) and c(l) → ∞. In particular, they
avoided the boundary problem by assuming Torus convention.

Kumar et al [6] studied a similar problem in a square
with unit area and considered the boundary conditions. In
addition, three deployment strategies are considered: (a) grid
deployment, (b) uniformly random node distribution, and (c)
Poisson point process. Let n denote the number of sensors
in the unit area, r the sensing range, p the probability that a
node is active. They show that (i) for grid deployment, if there
exists a slowly growing function φ(np) (i.e., φ(np) tends to
infinity but grows slower than log log n) such that

npπr2 ≥ log(np) + φ(np)(1 +
�

p log(np)) + k log log(np), (1)

then the whole region R is k-covered with high probability;
and (ii) for random deployment with uniform distribution, if

npπr2 ≥ log(np) + k log log(np) + φ(np), (2)

then the region R is k-covered with high probability. Compar-
ing Eqs. (1) and (2), it seems to conclude that deterministic
deployment requires more sensor nodes than random deploy-
ment to achieve the same level of coverage degree.

The counter-intuitive results presented in [6] have motivated
our study in this paper. We consider the case when the sensing
range is fixed at 1/

√
π but the area A of the monitored

square region R tends to infinity.1 By performing rigorous
analysis, we show that (i) for random deployment with uniform
distribution, if

np/A = log A + 2k log log A + c(A), (3)

and c(A) → ∞ as A → ∞, the square region R is k-covered
with high probability; (ii) for grid deployment, if

(− log(1 − p))n/A
= log A + 2k log log A + 2

�
−2π log A log(1 − p) + c(A), (4)

and c(A) → ∞ as A → ∞, the region R is k-covered with
high probability. Comparing Eqs. (3) and (4), we find that the
number of nodes required in the grid deployment is less than
that in the random deployment if 0 < ε ≤ p ≤ 1 − ε < 1

1This simplifies our derivation and the results can be readily converted into
the case presented in [6].
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for some constant ε > 0, since the most significant terms
in the right hand sides of both Eqs. (3) and Eq. (4) are the
same (i.e., log A), and p < − log(1 − p). A more careful
analysis shows that even for p → 0 as A → ∞, the number
of nodes required for k-coverage using grid deployment is
asymptotically less than or equal to that using random node
distribution. Therefore, we conclude the intuition holds true if
p ≤ 1 − ε < 1!

The seemingly contradictory results between the paper [6]
and this paper result from three factors. First, all the above
results are sufficient conditions. Therefore, we have obtained
much weaker sufficient conditions on node density required to
maintain k-coverage (especially for grid deployment). Second,
although both Kumar et al.[6] and we have necessary condi-
tions as well, the necessary condition for grid deployment in
[6] is obtained under the assumption that p → 0 as the number
of nodes goes to 0, which is actually a special case of the
results in this paper. In addition, there is a huge gap between
the necessary condition and the sufficient condition in [6]. In
our work, in the case that nodes are distributed randomly with
uniform distribution or as a Poisson point process, there is no
gap between the necessary and sufficient conditions. In the
case of grid deployment, the gap between the necessary and
sufficient conditions are much smaller than that in [6], and
most of the gap is caused by the variance of the number of
lattice points contained in a circle (which is called Gauss’s
Circle problem [1]). Moreover, for p = O(1/ log A), the gap
between the necessary and sufficient conditions diminishes.
Third, we would like to point out that both the Eqs. (1) and
(2) (from [6]) contain a minor mistake at the coefficient of the
term of log log np, which will be further discussed in Section
VI.

In addition to the difference in the conclusion, our proof
technique is different from [6]. To prove the sufficient con-
ditions, we use the linearity property of expectations and
Markov inequality instead of Janson’s inequality. The linearity
property of expectations does not require any conditions on the
random variables and simplifies the proof greatly. To prove the
necessary conditions, we consider the k-vacancy area instead
of counting a certain number of grid points, which enables
us to obtain tighter conditions of the node density required to
maintain k-coverage.

The rest of the paper is organized as follows. In Section II,
we state the assumptions made throughout the paper and the
system model. Then we present our derivation on the number
of nodes required to provide k-coverage in Section III, IV, and
V for the cases that nodes are distributed as a Poisson point
process, with uniformly random distribution, and deployed on
grids, respectively. Following that, we summarize related work
in Section VI, and conclude the paper in Section VII.

II. MODEL ASSUMPTIONS

A. Assumptions on the System Model

We assume the region R to be monitored is a square region
with area A and side length

√
A. Each sensor node can detect

an event of interest within a distance of r, and this distance
is termed as the sensing range. The disk centered at a sensor

node and with a radius of r is termed as the coverage disk
of this node. Without loss of generality, we assume that each
sensor node has a sensing range of r = 1√

π
and thus each

sensor node can cover a disk of unit area. We assume each
sensor has an independent probability p < 1 to be active and
p may be either a constant or dependent on A. When we say
a region is k-covered, it means every point in the region is
covered by at least k active nodes. We assume A >> 1.

We consider sensor nodes are deployed as one of the three
models.

1. Poisson point process: the nodes form a Poisson point
process with density D.

2. uniform distribution: n nodes are randomly, indepen-
dently placed with uniform distributions. In this case, we
define D = n/A.

3. grid deployment: n = k2 nodes are regularly placed on√
n ×√

n grids. In this case, we define D = n/A.
We assume k is a finite constant value, and consider most

of the variables are functions (which may be constant) of A
and investigate the asymptotic probability as A → ∞. For two
functions f and g, We denote f = O(g) if f(A) ≤ Cg(A) for
some constant C > 0 and sufficiently large A, and similarly,
f = Ω(g) if f(A) ≥ Cg(A). We denote f = o(g) if
f(A)/g(A) → 0 as A → ∞, and f ∼ g if f(A)/g(A) → 1 as
A → ∞. Therefore, f = o(1) means f goes to 0 as A → ∞,
and f = (1 + o(1))g means f ∼ g. We also denote f � g if
f(A) ≤ g(A)(1+ o(1)) and f � g if f(A) ≥ g(A)(1+ o(1)).
Throughout the paper, the logarithm is of the natural base.

B. Major Results

We obtain the following results. Assume D and p are
defined as above.

1. In the case that nodes are deployed as a Poisson point
process, Let Dp = log A+2k log log A+c(A). If c(A) →
∞, then the region R is k-covered with high probability,
and if c(A) ≤ C, then

P (the region R is k-covered)

≤ 1 − 1
1 + 32eC/22k−2(k + 1)!/

√
π

< 1. (5)

2. In the case that nodes are deployed according to uni-
formly random distributions, the results are identical to
those in the Poisson point process.

3. In the case of grid deployment, assume 0 < p ≤
1 − ε < 1 for some constant ε. If −D log(1 − p) =
log A + 2k log log A + 2

√−2π log A log(1 − p) + c(A),
and c(A) → ∞ as A → ∞, then the probability that the
region R is k-covered tends to 1. If −D log(1 − p) =
log A + 2(k − 1) log log A − 2

√−2π log A log(1 − p)−
c(A), and c(A) → ∞ as A → ∞, then the probability
that the region R is NOT k-covered tends to 1.

Now we show that using grid deployment requires asymp-
totically less or equal node density than using uniform random
distribution in all cases of 0 < p ≤ 1− ε < 1 for any positive
constant ε (0 < ε < 1). If p ≥ ε > 0, since p < − log(1 − p),
the result follows immediately. If p = O(log−1 A), the extra
term 2

√−2π log A log(1 − p) in grid deployment is in the
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order of
√

p log A and bounded by a constant, so the result
holds. In the last case, we consider p → 0 but p log A → ∞ as
A → ∞. By Taylor series expansion, we have − log(1−p) =
p + ξp2 for p < ε where ξ > 0 (since the second order
derivative of − log(1 − p) at p = 0 is 1 > 0). Hence, the
sufficient condition for grid deployment is

Dp + ξDp2

= log A + 2k log log A + 2
√
−2π log A log(1 − p) + c(A). (6)

Since Dp2 ∼ (log A)p → ∞ and (log A) log(1 − p) ∼
(log A)p → ∞, ξDp2 >> 2

√−2π log A log(1 − p). There-
fore, the density requirement in grid deployment is again less
than that in the uniform random distribution.

III. POISSON DISTRIBUTION

In this model, the nodes form a Poisson point process
with density D and each node is active independently with
probability p. By the property of Poisson point process, the
active nodes form a Poisson point process with density λ =
Dp. Therefore in this section, we simply consider a sensor
network deployed as a Poisson point process with density
λ and every node is active. In the following we establish a
sufficient and a necessary condition for k-coverage in such a
network. We denote P (k-coverage) as the probability that the
monitored square region R is k-covered.

A. Sufficient condition

Theorem 1 Let Dp = λ = log A+2k log log A+c(A), where
A is the area of the monitored square region. If c(A) → ∞
as A → ∞, then P (k-coverage) → 1.

Before we delve into the proof, we want to emphasize that
we don’t require how fast c(A) should converge to infinity.
The theorem is proved under the assumption that c(A) =
o(log log A) as A → ∞. However, if it converges faster,
the theorem still holds because P (k-coverage) is clearly an
increasing function of λ and c(A).

Proof. Let’s first divide the area into small grids with side
length s =

√
2ur where u = 1/(logA). The area of each

grid is s2 and the number of grids is A/s2. Denote Xi as
the indicator function of whether grid i is NOT completely
k-covered (i.e., Xi = 1 if grid i is NOT completely k-covered
and 0 otherwise). Denote X as the number of grids that are not
completely k-covered. Therefore X =

∑
i Xi. The key idea

below is to show that as A → ∞, E[X ] → 0, and therefore
by Markov inequality, P (X > 0) = P (X ≥ 1) ≤ E[X ] → 0,
and P (k-coverage) = P (X = 0) = 1 − P (X > 0) → 1 as
A → ∞.

In order for a grid i to be completely k-covered, it is
sufficient that there are at least k sensor nodes within a disk
centered at the center of the grid and with radius r −

√
2

2 s =
(1 − u)r, denoted as Bi((1 − u)r). Equivalently, if a grid i
is not k-covered, then there are less than k nodes in the disk
Bi((1−u)r). Note that we assume there are sensor nodes only
inside the monitored square region R, and thus we shall only
be interested in the region of Bi((1− u)r)∩R and the nodes
inside it. The area of the disk Bi((1 − u)r) is (1 − u)2.

We consider three types of grids: inner grids, side grids
and corner grids, where inner grids are at least r(= 1/

√
π)

distance away from any side of the square, side grids are at
most r distance away from one side of the square and at least
r distance away from any other three sides, corner grids are
at most r distance away from two adjacent sides.

For an inner grid i, Bi((1 − u)r) (the area of which is
(1 − u)2) is completely contained in the monitored square
region, therefore,

E[Xi] = P (grid i is not k-covered)
≤ P (there are less than k nodes inside Bi((1 − u)r))

= e−λ(1−u)2
k−1∑
i=0

(λ(1 − u)2)i

i!

= e−λ(1−u)2 (λ(1 − u)2)k−1

(k − 1)!
· (1 + o(1)), (7)

where the last equality holds because λ → ∞ and i < k
is assumed to be bounded, and thus the last term in the
summation dominates all other (finitely many) terms.

Since there are at most A/s2 inner grids, the expectation of
total number, X I , of un-k-covered inner grids, is

E[XI ] ≤ A

s2
EXi

=
A

2u2r2
e−λ(1−u)2 (λ(1 − u)2)k−1

(k − 1)!
· (1 + o(1))

=
πA

2u2
e−λ(1−u)2 (λ(1 − u)2)k−1

(k − 1)!
· (1 + o(1)),

where the last equality holds because πr2 = 1. We take the
logarithm (with natural bases) on both sides, and obtain

log E[XI ] ≤ log A + log (π/2) − 2 logu − λ(1 − u)2+
(k − 1)(log λ + 2 log(1 − u)) − log(k − 1)! + o(1).(8)

Since u = 1/ logA → 0 as A → ∞, log(1 − u) ∼ −u → 0.
By the assumption, λ = log A + 2k log log A + c(A). Based
on the discussion before the proof, we can assume c(A) =
o(log log A), so log λ = log log A + o(1). Plugging these
results into Eq. (8), we obtain

log E[XI ] ≤ (2u − u2) log A + (k + 1 − 2k(1 − u)2) log log A
−(1 − u)2c(A) + log(π/2) − log((k − 1)!) + o(1).

So if c(A) → ∞ (actually a weaker condition is OK in this
case), log E[XI ] → −∞ and E[XI ] → 0.

For a side grid, part of the disk that is centered at the grid
center and with radius (1−u)r is out of the monitored region.
We need to estimate how much of the disk area is contained
in the monitored square region. We assign each side grid a
row index according to its distance to the side of the square
region. The row closest to the side has index 0.

For a side grid g at row j, the distance from its center to
the closest side is x = (j + 1/2)s. Denote Bg(t) as the disk
centered at the center of the grid g and with radius t. Let v
denote the area of the part of the disk Bg(t) that is contained
in the monitored square region (assuming the disk Bg(t) only
intersects one side of the square). The bound of v is given in
the following lemma.

Lemma 1 (πt2 + πxt)/2 ≤ v ≤ πt2, and v ≤ πt2/2 + 2xt.
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The first inequality follows from the result on the area of B2−
B1 in [10], where B1 and B2 are two intersecting disks. The
second inequality is because partial disk area is certainly not
larger than the area of the whole disk, πt2. The third inequality
can be obtained by simple geometric analysis: if we draw a
rectangle with side length 2r and x, it will clearly contain the
intersection of R and the half disk that intersects with one
side of the region R. We point out that a less stringent result
v ≥ (πt2 + 2xt)/2 (for the first inequality) also suffices for
the following proof. Since we are considering a disk centered
at the center of a grid at row j with radius r(1 − u), the area
of the part of the disk that is inside the square region is

v ≥ πr2(1 − u)2 + πr(1 − u)(j + 1/2)s
2

≥ (1 − u)2 + j
√

2u(1 − u)
2

(9)

since s =
√

2ur and πr2 = 1. If a side grid g at row j is not k-
covered, then there are fewer than k nodes in Bg(r(1−u))∩R

Therefore (note
∑k−1

i=0 e−x xi

i! is a decreasing function of x),

P (a side grid at row j is not k-covered)

≤
k−1∑
i=0

e−λ (1−u)2+j
√

2u(1−u)
2

(λ((1 − u)2 + j
√

2u(1 − u))/2)i

i!

= e−λ (1−u)2+j
√

2u(1−u)
2

(λ((1 − u)2 + j
√

2u(1 − u))/2)k−1

(k − 1)!
·(1 + o(1))

≤ e−λ (1−u)2+j
√

2u(1−u)
2

(λ(1 − u)2)k−1

(k − 1)!
· (1 + o(1)) (10)

Since there are four side regions in the square and at most
r/s rows in each side region and at most

√
A/s grids in each

row of a side region, the expectation of the number X S of the
side grids that are not k-covered can be written as

E[XS ]

=
4
√

A

s

r/s∑
j=0

P (a grid at row j is not k-covered)

≤ 4
√

A

s

r/s∑
j=0

e−λ (1−u)2+j
√

2u(1−u)
2

(λ(1 − u)2)k−1

(k − 1)!
· (1 + o(1))

≤ 4
√

A

s
e−λ

(1−u)2

2
(λ(1 − u)2)k−1

(k − 1)!
· 1 + o(1)
1 − e−λ

√
2u(1−u)/2

Again, we take the logarithm on both sides, and obtain (notice
s =

√
2ur =

√
2/π/ logA)

log E[XS ]≤ log 4 +
1
2

log A +
1
2

log(π/2) + log log A

−λ
(1 − u)2

2
+ (k − 1)(log λ + 2 log(1 − u))

− log((k − 1)!) − log(1 − e−λ
√

2u(1−u)/2) + o(1)

Since λ = log A + 2k log log A + c(A)) and c(A) =
o(log log A), log λ = log log A + o(1). Therefore,

log E[XS ]≤ 2u − u2

2
(log A + 2k log log A) − (1 − u)2

2
c(A)

+
1
2

log(8π) + 2(k − 1) log(1 − u)

− log((k − 1)!) − log(1 − e−λ
√

2u(1−u)/2) + o(1).

Since k is assumed to be a fixed integer and u = 1/ logA,
as A → ∞, most of the terms converge to a finite value except
− (1−u)2

2 c(A) which converges to −∞. Therefore, E[X S] → 0
as A → ∞.

For a corner grid, if we draw a disk centered at the center
of the grid and with radius r(1 − u), at least a quarter of the
disk is inside the monitored square region. Therefore,

P (a corner grid is not k-covered)

≤
k−1∑
i=0

e−λ(1−u)2/4(λ(1 − u)2/4)i

i!

=
e−λ(1−u)2/4(λ(1 − u)2/4)k−1

(k − 1)!
(1 + o(1)) (11)

The number of corner grids is 4 r2

s2 = 2
u2 . Hence, the ex-

pectation of the number X C of the corner grids that are not
k-covered is

E[XC ] ≤ 2
u2

e−λ(1−u)2/4 (λ(1 − u)2/4)k−1

(k − 1)!
(1 + o(1)). (12)

Since 1/u = log A is in the same order of λ, E[XC ] → 0 as
long as λ → ∞.

Therefore, the expectation of the total number of un-k-
covered grids X = X I + XS + XC converges to 0 as the
area A → ∞ if λ is given as in the theorem. This is all we
needed for the proof of the theorem. �

B. Necessary condition

Let the k-vacancy Vk denote the area of the region that is
covered by less than k nodes, and χk(Z) denote the indicator
function of whether a point Z is covered by less than k nodes,
i.e.,

χk(Z) =

{
1, if less than k nodes cover the point Z;
0, otherwise.

(13)

To derive the necessary condition for k-coverage, we first
derive the bounds on E[Vk] and E[V 2

k ].

Proposition 1 If Dp = λ = log A + 2k log log A + C, where
C is a constant, then

E[Vk](log A)2 ≥
√

π

eC/22k−2(k − 1)!
,

as A → ∞.

Proof. Since we are interested in deriving a lower bound, we
only consider the k-vacancy in the side area of the square, i.e.,
those locations which are at most r distance away from one
side and at least r distance away from all other sides. Without
loss of generality, we consider a point Z in the side area with
coordinate (x, y), where 0 ≤ x ≤ r, r ≤ y ≤ √

A − r. Now
the expectation of the k-vacancy indicator function χ k((x, y))
is

E[χk((x, y))]
= P ((x, y) is not k-covered)
= P (B(x,y)(r) ∩ R contains less than k nodes ),(14)
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where B(x,y)(r) denotes the disk centered at (x, y) with radius
r. Since the area of B(x,y)(r) ∩ R is not larger than 1

2 + 2xr
by Lemma 1,

E[χk((x, y))] ≥ e−λ(1/2+2xr)
k−1∑
i=0

(λ(1/2 + 2xr))i

i!

≥ e−λ(1/2+2xr)
k−1∑
i=0

(λ/2)i

i!
(15)

Since there are four side regions in the square,

E[Vk] ≥ 4
∫ r

0

∫ √
A−r

r

E[χk(x, y)]dydx (16)

≥ 4
∫ r

0

∫ √
A−r

r

e−λ(1/2+2xr)
k−1∑
i=0

(λ/2)i

i!

= 4(
√

A − 2r)
k−1∑
i=0

(λ/2)i

i!
e−λ/2 1 − e−2λr2

2λr

≥ 4(
√

A − 2r)
(λ/2)k−1

(k − 1)!
e−λ/2 1 − e−2λ/π

2λr
(17)

We take logarithm on both sides. Since log(
√

A − 2r) =
1
2 log A + o(1), λ = log A + 2k log log A + C, and log λ =
log log A + o(1), we have

log E[Vk]

≥ log 4 +
1
2

log A + (k − 1) log(λ/2) − log((k − 1)!)

−λ

2
+ log(1 − e−2λ/π) − log λ − log(2r) + o(1)

= −2 log log A − C

2
− log((k − 1)!) − (k − 2) log 2

+ log
√

π + log(1 − e−2λ/π) + o(1). (18)

As A → ∞, λ → ∞, so log(1 − e−2λ/π) → 0. Therefore,

E[Vk](log A)2 ≥
√

π

eC/22k−2(k − 1)!
(19)

as A → ∞. �

Proposition 2 If λ = log A + 2k log log A + C, where C is a
constant, then

E[V 2
k ]

E[Vk]2
≤ 1 +

32k(k + 1)
λ2E[Vk]

, (20)

as A → ∞.

Proof. A few results derived in [10] will be utilized here and
we summarize them in the following lemmas.

Lemma 2

E[V 2
k ] ≤ E[Vk]2 +

∫ ∫
R2∩{|Z1−Z2|≤2r}

E[χk(Z1)χk(Z2)]dZ1dZ2 (21)

Lemma 3 Let B1 and B2 denote the disks with radius r,
centered at Z1 and Z2, respectively. If |Z1 − Z2| = x ≤ 2r,
then the area of B2 − B1 is

||B2 − B1|| ≥ x/(2r). (22)

Lemma 4∫ ∞

0

e−λu
k−1∑
i=0

(λu)i

i!
· udu =

1
2
k(k + 1)λ−2 (23)

Lemma 2 follows from the fact that if the distance of Z1 and
Z2 is greater than 2r, χk(Z1) and χk(Z2) (i.e., the indicator
functions of whether Z1 and Z2 are covered by less than
k nodes, respectively) are independent random variables. By
Lemma 2, we only need to evaluate the second term in Eq.
(21).

The challenger when we consider the boundary conditions
is that now the area of (B2 − B1) ∩ R may be zero if
B2 is close to the boundary. We overcome this difficulty by
exploiting the symmetric relation between Z1 and Z2. Let
Z1 = (x1, y1), Z2 = (x2, y2), and define the ∞-norm distance
d∞(Z1, Z2) of the two points Z1, Z2 as

d∞(Z1, Z2) = max(|x1 − x2|, |y1 − y2|). (24)

Denote the center of the square region as O. Consider the
event Q = {d∞(Z1, O) ≥ d∞(Z2, O)}. Intuitively, if we draw
a square centered at O and the boundary of the square goes
through Z1, then Q is the event that Z2 is inside this square.
For each pair of points (Z1, Z2) /∈ Q, there is a unique pair of
symmetric points (Z ′

1, Z
′
2)(= (Z2, Z1)) ∈ Q, and these two

pairs of points contribute exactly the same to the integral in
Eq. (21). Therefore, the second term in Eq. (21), denoted as
I0, can be written as

I0 �
∫ ∫

R2∩{|Z1−Z2|≤2r}
E[χk(Z1)χk(Z2)]dZ1dZ2

= 2
∫ ∫

R2∩{|Z1−Z2|≤2r}∩Q

E[χk(Z1)χk(Z2)]dZ1dZ2(25)

We define the central, side, corner regions similar to those in
Section III-A. We further define the extended corner region
CE as those points which are within distance r from one side
and within distance 3r from another side. We consider two
possible cases: (i) Z1 ∈ CE and (ii) Z1 /∈ CE .

Case (i): Z1 ∈ CE:∫ ∫
R2∩{|Z1−Z2|≤2r}∩Q∩{Z1∈CE}

E[χk(Z1)χk(Z2)]dZ1dZ2

≤
∫ ∫

R2∩{|Z1−Z2|≤2r}∩Q∩{Z1∈CE}
E[χk(Z1)]dZ1dZ2

≤ 20r2 · π(2r)2 · e−λ/4
k−1∑
i=0

(λ/4)i

i!

=
80
π

e−λ/4
k−1∑
i=0

(λ/4)i

i!
, (26)

where in the third equation, 20r2 is the total area of CE ,
π(2r)2 is the maximum possible area of Z2 for a given point
Z1, and the last factor is an upper bound of E[χk(Z1)], since
at least a quarter of the disk BZ1(r) is inside the monitored
region R.

Case (ii): Z1 /∈ CE: If Z1 is not in the extended corner,
Z2 is within distance 2r from Z1, and Z2 is inside the square
centered at O whose boundary passes through Z1, then Z2

cannot be in the corner area, and moreover, at least half of the
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area B2 − B1 is inside the region R. This is the key to the
proof! Now for any given Z1 /∈ CE , let Z2 ∈ R2∩{|Z1−Z2| ≤
2r} ∩ Q, and x = |Z1 − Z2| ≤ 2r. By lemma 3, the area of
(B2 − B1) ∩ R is at least x/(4r). Therefore,

E[χk(Z1)χk(Z2)]
= P (there are less than k nodes in B1 ∩ R

and there are less than k nodes in B2 ∩ R)
≤ P (there are less than k nodes in B1 ∩ R

and there are less than k nodes in (B2 − B1) ∩ R)
≤ P (there are less than k nodes in B1 ∩ R)

·P (there are less than k nodes in (B2 − B1) ∩ R)

≤ E(χk(Z1)) · e−λx/(4r)
k−1∑
i=0

(λx/(4r))i

i!
, (27)

where the third equation is because the number of nodes in
B1 ∩ R and that in B2 − B1 ∩ R are independent. So,∫ ∫

R2∩{|Z1−Z2|≤2r}∩Q∩{Z1 /∈CE}
E[χk(Z1)χk(Z2)]dZ1dZ2

≤
∫

R

E[χk(Z1)]dZ1

∫ 2r

0

e−λx/(4r)
k−1∑
i=0

(λx/(4r))i

i!
2πxdx,

=
∫

R

E[χk(Z1)]dZ1

∫ 1/2

0

e−λu
k−1∑
i=0

(λu)i

i!
32udu,

≤ E[Vk] ·
∫ ∞

0

e−λu
k−1∑
i=0

(λu)i

i!
32udu,

= E[Vk] · 16k(k + 1)λ−2 (28)

where the factor 2πx in the second equation comes from
the conversion from a Cartesian coordinate system to a polar
coordinate system, the third equation is obtained by changing
variable u = x/(4r), and the last equation comes from Lemma
4.

Note that the value in case (i), which converges to 0 in the
exponential rate of λ, is dominated by the value in case (ii),
which converges to 0 in the polynomial rate of λ (since E[Vk]
is in the same order of λ−2 from Proposition 1). Combining
the results in the above two cases, as well as Eqs. (21) and
(25), we obtain Eq. (20). �

It has been proved in [10] using Cauchy-Schwartz inequal-
ity,

P (Vk > 0) ≥ E[Vk]2

E[V 2
k ]

. (29)

By Proposition 2, we have

P (Vk > 0) ≥ 1
1 + 32k(k + 1)/(λ2E[Vk])

. (30)

By Proposition 1,

E[Vk](log A)2 ≥
√

π

eC/22k−2(k − 1)!
, (31)

and λ = (1 + o(1)) log A,

P (Vk > 0) ≥ 1
1 + 32eC/22k−2(k + 1)!/

√
π

(32)

as A → ∞.

Based on the above derivations, we can establish the fol-
lowing necessary condition for k-coverage, which also leads
to a sufficient condition on un-k-coverage.

Theorem 2 Let λ = log A+2k log log A+c(A). If c(A) ≤ C,
where C is a constant, then, as A → ∞,

P (the monitored square region R is k-covered)

≤ 1 − 1
1 + 32eC/22k−2(k + 1)!/

√
π

< 1. (33)

In addition, if c(A) → −∞, P (the monitored square region
is k-covered) tends to 0.

Proof. The proof follows by two observations. First, that the
region is k-covered implies Vk = 0. Therefore, P (the region is
k-covered) ≤ P (Vk = 0) = 1 − P (Vk > 0). Second, P (Vk >
0) is a non-increasing function of λ. Since we have proved the
conclusion holds for c(A) = C, it also holds for c(A) ≤ C.
The second part of the theorem is obtained by letting C →
−∞. �

IV. UNIFORM DISTRIBUTION

In this model, we assume there are n nodes in the square
region R with area A and each node’s location is identically,
independently distributed with uniform distribution. Each node
has an independent probability p to be active. In the following
we establish a sufficient and a necessary condition for k-
coverage under such a model.

A. Sufficient condition

Theorem 3 Under the uniform distribution model, let
np/A = log A + 2k log log A + c(A), where A is the area of
the deployment square region R. If c(A) → ∞, as A → ∞,
then P (the region R is k-covered) → 1.

Proof. We still divide the area into small grids with side
length s =

√
2ur where u = 1/ logA. Still denote Xi as the

indicator function of whether a grid is NOT k-covered and X
as the total number of the un-k-covered grids (a grid is un-k-
covered if it is not completely k-covered). Again we proceed
to compute the expectation of the number of grids that are not
k-covered in the three types of regions: inner, side and corner,
respectively.

For an inner grid i to be k-covered, it is sufficient that there
are k active nodes inside the disk Bi((1 − u)r) (since the
whole disk is in the region R). Let p1 denote the probability
of a node to be inside Bi((1−u)r) and to be active, i.e., p1 =
pπ((1−u)r)2/A = p(1−u)2/A. The number of active nodes
inside the disk Bi((1 − u)r) follows a binomial distribution
with parameter n and p1. If an inner grid i is not k-covered,
the number of active nodes inside the disk B i((1 − u)r) is
less than k. Hence,

E[Xi] = P (grid i is not k-covered)

≤
k−1∑
i=0

(
n

i

)
pi
1(1 − p1)n−i
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Again, since n/A → ∞ as A → ∞, the term with i = k − 1
dominates all others. Also since

(
n
i

) ≤ ni/i! and (1−p1)n−i ≤
e−p1(n−i),

E[Xi]

≤
(

n

k − 1

)
pk−1
1 (1 − p1)n−k+1(1 + o(1))

≤ (np1)k−1

(k − 1)!
e−p1(n−k+1)(1 + o(1))

=
(np(1 − u)2/A)k−1

(k − 1)!
e−(n−k+1)p(1−u)2/A(1 + o(1))

If we replace np/A with λ, the above equation is identical to
Eq. (7) except for a factor e(k−1)p(1−u)2/A), which converges
to 1 as A → ∞. Therefore, follow the same derivation in
Section III-A, we can obtain the expectation of the number
XI of the un-k-covered inner grids converges to 0 as A → ∞
and c(A) → ∞.

For a corner grid, if we draw a disk centered at the center
of the grid, and with radius (1 − u)r, at least a quarter of
the disk is inside the region R. If the corner grid is not k-
covered, then it is necessary that the quarter of the disk that
is inside the region R has less than k active nodes. Again,
the number of the active nodes inside the quarter of the disk
is a binomial random variable with parameter n and p2 =
p(1

4πr2(1 − u)2)/A = p(1 − u)2/(4A). Therefore,

P (a corner grid is not k-covered)

≤
k−1∑
i=0

(
n

i

)
pi
2(1 − p2)n−i

= (1 + o(1))
(

n

k − 1

)
pk−1
2 (1 − p2)n−k+1

≤ (1 + o(1))
(np2)k−1

(k − 1)!
e−p2(n−k+1)

The number of corner grids is at most 4r2/s2 = 2/u2 since
there are 4 corners. Therefore, the expectation of the number
XC of the corner grids that are not k-covered, is

E[XC ] ≤ 2
u2

(np2)k−1

(k − 1)!
e−p2(n−k+1)(1 + o(1)) (34)

Since u = 1/ logA, and np2 = np(1 − u)2/(4A) → ∞, it is
not hard to verify that E[X C ] → 0 as A → ∞ and c(A) → ∞.

Now consider a side grid at row j (row zero is the one
closest to the boundary of the square region). Again, if we
draw a disk centered at the center of the grid and with radius
r(1 − u)2, the area of the disk that falls in the square region
R is at least ((1 − u)2 + j

√
2u(1 − u))/2 by Eq. (9). The

probability that a node falls in this area and is active is
p3 = p((1−u)2 + j

√
2u(1−u))/(2A), and the number of the

active nodes in this area follows a binomial distribution with
parameter n and p3. Therefore, we have

P (a side grid at row j is not k-covered)

≤
∑

i

(
n

i

)
pi
3(1 − p3)n−i

≤
(

n

k − 1

)
pk−1
3 (1 − p3)n−k+1(1 + o(1))

≤ nk−1

(k − 1)!

(
p((1 − u)2 + j

√
2u(1 − u))

2A

)k−1

·e−(n−k+1)p((1−u)2+j
√

2u(1−u))/(2A)(1 + o(1))

≤ (np(1 − u)2/A)k−1

(k − 1)!
e−np((1−u)2+j

√
2u(1−u))/(2A)

·e(k−1)p((1−u)2+j
√

2u(1−u))/(2A)(1 + o(1)) (35)

Since e(k−1)p((1−u)2+j
√

2u(1−u))/(2A) converges to 1 as A →
∞, the remaining factors are identical to Eq. (10) if we replace
np/A with λ. Since we have chosen the same value of np/A
as that of λ in Section III-A, we have obtained the same
upper bound of P (a grid at row j is not k-covered) as that in
Eq. (10). Therefore, following the same derivation as that in
Section III-A, we can obtain E[X S ] → 0 (where XS is the
number of un-k-covered side grids) as A → ∞ and c(A) →
∞. Therefore, the expectation of the total number of un-k-
covered grids tends to 0 and P (the region R is k-covered) →
1 as A → ∞. �

B. Necessary condition

The necessary condition in the uniform distribution is ob-
tained by approximating the uniform random node distribution
with a Poisson point process. In this section, we use EU [Y ]
and EP [Y ] to denote the expectation of the quantity Y in a
uniform random node distribution and that in a Poisson point
process. In particular, we shall show EU [Vk] ∼ EP [Vk] and
EU [V 2

k ] ∼ EP [V 2
k ] with appropriately chosen n, A, p in the

uniform random node distribution and the node density λ in
the Poisson point process.

Proposition 3 If np/A = λ = log A+2k log log A+C, where
C is a constant, then

EU [Vk](log A)2 ≥
√

π

eC/22k−2(k − 1)!
(36)

Proof. Still use χk((x, y)) to denote the indicator function of
whether a point (x, y) is covered by less than k nodes. Again,
we only consider the case that (x, y) is in the side area of the
square to obtain a lower bound. Without loss of generality, we
assume 0 ≤ x ≤ r, r ≤ y ≤ √

A − r. Thus the disk B(x,y)(r)
has at most area 1

2 + 2xr inside the square region R. Denote
p1 � p(1

2 + 2xr)/A as the probability that one node falls in
a region with area 1

2 + 2xr and is active. Therefore,

EU [χk((x, y))]
= P ((x, y) is not k-covered)
= P (B(x,y)(r) ∩ R contains less than k active nodes)

≥
k−1∑
i=0

(
n

i

)
pi
1(1 − p1)n−i

∼
k−1∑
i=0

ni

i!

(
p(1

2 + 2xr)
A

)i

e(n−i) log(1−p1)

=
k−1∑
i=0

(λ(1
2 + 2xr))i

i!
e(n−i) log(1−p1) (37)

Since i < k is bounded, np/A = λ, np1 = λ(1
2 +2xr), and

p1 = p(1
2 + 2xr)/A < 2/A → 0 as A → ∞, we have

(n − i) log(1 − p1)



8

= (n − i)(−p1 + O(p2
1))

= −np1 + O(np2
1) + i(p1 − O(p2

1)). (38)

As A → ∞, np2
1 = λ(1

2 +2xr)p1 � (1
2 +2xr)(log A)2/A →

0, and i(p1 − O(p2
1)) → 0. Therefore, by Eq. (38),

e(n−i) log(1−p1) ∼ e−np1 = e−λ( 1
2+2xr). (39)

Putting this back to Eq. (37), we obtain

EU [χk((x, y))]

≥
k−1∑
i=0

(λ(1
2 + 2xr))i

i!
e−λ( 1

2+2xr)(1 + o(1))

≥ e−λ( 1
2+2xr)

k−1∑
i=0

(λ/2)i

i!
(1 + o(1)) (40)

Comparing with Eqs. (15) and (16), we can easily obtain

EU [Vk](log A)2 ≥
√

π

eC/22k−2(k − 1)!
(41)

as A → ∞. �

Proposition 4 If np/A = λ = log A+2k log log A+C, where
C is a constant, then

E[V 2
k ]

(E[Vk])2
≤ 1 +

32k(k + 1)
λ2E[Vk]

, (42)

as A → ∞.

Proof. Still use χk(Z1) to denote the indicator function
of whether a point Z1 is not k-covered. We have Vk =∫

R χk(Z1)dZ1. Therefore,

EU [V 2
k ] = EU

[∫
R

∫
R

χk(Z1)χk(Z2)dZ1dZ2

]
=

∫
R

∫
R

E[χk(Z1)χk(Z2)]dZ1dZ2 (43)

We still consider two cases in the integration. In the first case,
|Z1 − Z2| > 2r,

EU [χk(Z1)χk(Z2)] =

k−1�
i=0

k−1�
j=0

�
n

i, j

�
pi
1p

j
2(1 − p1 − p2)

n−i−j , (44)

where p1 and p2 are the probability that a node is active and
falls in an area within range r from Z1 and Z2, respectively.
Notice

EU [χk(Z1)]EU [χk(Z2)]

=
k−1∑
i=0

(
n

i

)
pi
1(1 − p1)n−i

k−1∑
j=0

(
n

j

)
pj
2(1 − p2)n−j

=
k−1∑
i=0

k−1∑
j=0

(
n

i

)(
n

j

)
pi
1p

j
2(1 − p1)n−i(1 − p2)n−j .(45)

Since 1/(4A) ≤ p1, p2 ≤ 1/A, np ∼ A log A, and i, j < k is
bounded,

(1 − p1 − p2)n−i−j ∼ (1 − p1)n−i(1 − p2)n−j , (46)

and�
n

i, j

�
=

n!

i!j!(n − i − j)!
∼ n!n!

i!(n − i)!j!(n − j)!
=

�
n

i

��
n

j

�
.

Hence, in the case of |Z1 − Z2| > 2r,

EU [χk(Z1)χk(Z2)] ∼ EU [χk(Z1)]EU [χk(Z2)] (47)

Therefore, by Eq. (43),

EU [V 2
k ] = EU [Vk]2(1 + o(1))

+
∫ ∫

R2∩{|Z1−Z2|≤2r}
E[χk(Z1)χk(Z2)]dZ1dZ2(48)

In the second case: |Z1 −Z2| ≤ 2r, we follow the derivations
similar to those in Section III-B. First,∫ ∫

R2∩{|Z1−Z2|≤2r}
E[χk(Z1)χk(Z2)]dZ1dZ2

= 2
∫ ∫

R2∩{|Z1−Z2|≤2r}∩Q

E[χk(Z1)χk(Z2)]dZ1dZ2, (49)

where Q is the event that Z2 is inside the square centered at
the center of region and whose boundary goes through Z 1.
Second, we only consider the dominating subcase when Z 1 is
not in the extended corner region CE . Still denote B1, B2 as
the unit-area disks centered at Z1, Z2, respectively. Under all
the above conditions (R2 ∩ {|Z1 − Z2| ≤ 2r} ∩ Q),

E[χk(Z1)χk(Z2)]
= P (there are less than k active nodes in B1 ∩ R and

there are less than k active nodes in B2 ∩ R)
≤ P (there are less than k active nodes in B1 ∩ R and

there are less than k active nodes in (B2 − B1) ∩ R)

As have been proved in Section III-B, the area of (B2−B1)∩R
is at least x/(4r) where x = |Z1 − Z2| and r = 1/

√
π is the

radius of the disk B1, B2. Denote p1 as the probability that a
node falls in B1 ∩ R and is active, p2 as the probability that
a node falls in (B2 − B1) ∩ R and is active. Therefore,

EU [χk(Z1)χk(Z2)]

=
k−1∑
i=0

k−1∑
j=0

(
n

i, j

)
pi
1p

j
2(1 − p1 − p2)n−i−j

∼
k−1∑
i=0

(
n

i

)
pi
1(1 − p1)n−i

k−1∑
j=0

(
n

j

)
pj
2(1 − p2)n−j

= EU [χk(Z1)]
k−1∑
j=0

(
n

j

)
pj
2(1 − p2)n−j

≤ EU [χk(Z1)]
k−1∑
j=0

(np2)j

j!
e−(n−j)p2

∼ EU [χk(Z1)]e−np2

k−1∑
j=0

(np2)j

j!

≤ EU [χk(Z1)]e−λx/(4r)
k−1∑
j=0

(λx/(4r))j

j!
(50)

where the second equation follows from the derivations to
those in the case of |Z1 − Z2| > 2r, and the last equation
is because np2 ≥ np(x/(4r))/A = λx/(4r), and the function∑k−1

j=0
xj

j! e
−x is monotonically decreasing.

Now comparing Eqs. (50) and (27), and by Eq. (28), we
can obtain,∫ ∫

R2∩{|Z1−Z2|≤2r}∩Q

EU [χk(Z1)χk(Z2)
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≤ EU [Vk] · 16k(k + 1)λ−2(1 + o(1)) (51)

Combining Eqs. (48) (49)and (51), we have

EU [V 2
k ] = EU [Vk]2(1 + o(1))

+32k(k + 1)λ−2EU [Vk](1 + o(1)). (52)

Eq. (42) follows by taking A → ∞.
The following theorem follows immediately from Proposi-

tions 3 and 4. The proof is identical to that of Theorem 2.

Theorem 4 Let np/A = log A + 2k log log A + c(A). If
c(A) ≤ C, where C is a constant value, then, as A → ∞,

P (the monitored square region is k-covered)

≤ 1 − 1
1 + 32eC/22k−2(k + 1)!/

√
π

(53)

In addition, if c(A) → −∞, P(the monitored square region
is k-covered) tends to 0 as A → ∞. �

V. GRID DEPLOYMENT

In this section, we consider the deployment of grid distri-
butions where n = k2 nodes form regular square grids inside
the square region R with area A. Each node has probability
p to be active. We use D = n/A to denote the node density.
We show a lemma first.

Lemma 5 for 0 ≤ p < 1,

p ≤ − log(1 − p) ≤ p

1 − p
(54)

Proof. Since 1− p ≤ e−p, taking logarithm, we have log(1 −
p) ≤ −p and hence the first inequality. To prove the second
inequality, let f(p) = p + (1 − p) log(1 − p). It is simple to
verify f(0) = 0 and f ′(p) ≥ 0 for 0 ≤ p < 1. So f(p) ≥ 0
for 0 ≤ p < 1. Rearranging the equation, we can obtain the
second inequality. �

A. Sufficient condition
Theorem 5 Assume p ≤ 1 − ε < 1 for some constant ε. Let

(− log(1 − p))n/A = −D log(1 − p)
= log A + 2k log log A + 2

�
−2π log A log(1 − p) + c(A) (55)

and c(A) → ∞ as A → ∞, then P (the region R is k-covered)
→ 1.

Proof. We still divide the square region into grids with side
length s =

√
2ur, where u = 1/ logA. We now calculate

the expected number of grids that are not k-covered. We shall
only consider the grids at side area of the region R since this
area contributes most un-k-covered grids. Again, consider a
side grid g at j rows away from the side (there are j other
rows between the grid and the side of the square region R).
Let mj denote the number of nodes that are contained in the
disk centered at the center of grid g with radius r − s/

√
2.

Therefore, any one of the mj nodes can completely cover the
grid g if it is active (notice a node has sensing range r).

We first estimate the value mj . If we draw a disk Sj with
radius t = r − s/

√
2 centered at the center of grid g, the

distance between the center of the disk and the closest side

of the square R is j(s + 1/2) ≥ js. The area of the part of
the disk Sj inside R is at least πt2/2 + πjst/2 by Lemma 1.
Therefore, the number mj of nodes inside the area is roughly
D(πt2/2 + πjst/2), but not exactly. To obtain a bound of
mj , we envision all nodes are at the centers of disjoint small
squares of side length d = 1/

√
D =

√
A/n. If we draw a

disk S′
j with radius t − d/

√
2, then any point in the disk S ′

j

must belong to some square whose center is covered by the
disk Sj . Hence, the area of S ′

j is less than the total area of
all the squares whose center is covered by the disk Sj , i.e.,
π(t − d/

√
2)2/2 + πjs(t − d/

√
2)/2 ≤ mjd

2. Therefore,

mj ≥ D(π(t − d/
√

2)2/2 + πjs(t − d/
√

2)/2)
=D(πt2/2 − πtd/

√
2 + πd2/4 + πjst/2 − πjsd/(2

√
2))

≥Dπt2/2 − πt
√

D/2 + Dπjst/2 − πjs
√

D/2/2)
≥D(1 − u)2/2 + D

√
πjs(1 − u)/2 −

√
2πD

� mj0 (56)

where the third equation is because D = 1/d2, and the fourth
equation is because t = r− s/

√
2 = r(1−u), πt2 = πr2(1−

u)2 = (1 − u)2, and js ≤ r = 1/
√

π. Notice that mj0 ≤
D(1 − u)2.

Let pj denote the probability that the grid g at row j is not
k-covered. Clearly, pj increase if mj decrease (because pj is
the probability that out of mj nodes, less than k of them are
active),

pj =
k−1∑
i=0

(
mj

i

)
pi(1 − p)mj−i

≤
k−1∑
i=0

(
mj0

i

)
pi(1 − p)mj0−i. (57)

Denote the ith item in the above summation as T i. We have

Ti+1

Ti
=

mj0 − i

i + 1
· p

1 − p
≥ (mj0 − k)p

k(1 − p)
. (58)

Since

(mj0 − k)p/(1 − p) ∼ mj0p/(1 − p)
≥ D(1 − u)2/2 · (− log(1 − p))

(where the second equation is from Lemma 5 and m j0 ≥
D(1 − u)2/2 by Eq. (56)) tends to infinity, Ti is dominated
by Ti+1 for i < k. Therefore,

pj �
(

mj0

k − 1

)
pk−1(1 − p)mj0−k+1

≤ (mj0p/(1 − p))k−1

(k − 1)!
(1 − p)mj0

≤ (Dp(1 − u)2/(1 − p))k−1

(k − 1)!
(1 − p)mj0 , (59)

where the last equation is because mj0 ≤ D(1 − u)2.
The expected number X S of un-k-covered side grids is

E[XS]

≤ 4
√

A

s

r/s∑
j=0

pj

�
4
√

A

s

r/s∑
j=0

(D(1 − u)2p/(1 − p))k−1

(k − 1)!
·
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(1 − p)
D(1−u)2

2 −√
2πD+j D

√
πs(1−u)

2

≤ 4
√

A

s

(D(1 − u)2p/(1 − p))k−1

(k − 1)!
·

(1 − p)
D(1−u)2

2 −√
2πD · 1

1 − (1 − p)D
√

πs(1−u)/2
(60)

The last factor 1
1−(1−p)D

√
πs(1−u)/2 in Eq. (60) converges to a

constant since D
√

πs(1−u)/2 ∼ 1/(− log(1−p)
√

2) by Eq.
(55), (1 − p)D

√
πs(1−u)/2 = (1− p)1/(− log(1−p)

√
2(1+o(1))) =

e−1/
√

2(1+o(1)).
Notice s =

√
2ur =

√
2/π/ logA. We take logarithm on

both sides, put all constant and o(1) terms into C1, and get

log E[XS ]

≤ 1
2

log A + log log A + (k − 1) log(
Dp(1 − u)2

1 − p
)

+(D
(1 − u)2

2
−
√

2πD) log(1 − p) + C1

=
1
2

log A + log log A + (k − 1) log(
Dp(1 − u)2

1 − p
)

− (1 − u)2

2
(log A + 2k log log A + 2

√
−2π log A log(1 − p)

+c(A)) −
√

2πD log(1 − p) + C1, (61)

where the second equation is obtained by plugging in Eq. (55).
Since log(1 − p) ≤ −p, Dp ≤ −D log(1 − p) ∼ log A, so
(k − 1) log Dp ≤ (k − 1) log log A + o(1). In addition, since
p < 1 − ε, log (1−u)2

1−p ≤ log 1
ε is bounded. Therefore,

log E[XS]

≤ (u − u2

2
)(log A + 2k log log A) − (1 − u)2

2
c(A) + C2

−(1 − u)2
√
−2π log A log(1 − p) −

√
2πD log(1 − p). (62)

Since

−
√

2πD log(1 − p) −
√
−2π log A log(1 − p)

=
√
−2π log(1 − p)(

√
−D log(1 − p) −

√
log A)

and√
−D log(1 − p) −

√
log A

=
−D log(1 − p) − log A√−D log(1 − p) +

√
log A

≤ 2k log log A + 2
√−2π log A log(1 − p) + c(A)√−D log(1 − p) +

√
log A

≤ constant,

the terms −(1−u)2
√−2π log A log(1 − p)−√

2πD log(1−p)
in Eq. (62) are bounded. Additionally, since u = 1/ logA,
(u − u2/2)(log A + 2k log log A) converges to 1. Therefore,
if c(A) → ∞, log E[XS] → −∞ and E[XS ] → 0. Since
the number of un-k-covered side grids dominates that of un-
k-covered grids in the inner and corner region, the expected
number X of total un-k-covered grids converges to 0 as A →
∞. By Markov inequality again, we obtain that P (the whole
region is completely k-covered) → 1 as A → ∞ if the number
of nodes is given as in Eq. (55). �

B. Necessary condition

The derivation of the necessary condition in the grid de-
ployment follows the procedure similar to that in uniform
node distributions and Poisson point process. Again we need
to estimate the bounds on E[Vk] and E[V 2

k ].

Proposition 5 Assume p ≤ 1 − ε, where ε > 0. If

(− log(1 − p))n/A = −D log(1 − p)
= log A + 2(k − 1) log log A

−2
√
−2π log A log(1 − p) − c(A), (63)

where c(A) is slowly growing (i.e., c(A) → ∞ and c(A) =
o(log log A)) as A → ∞ and k is fixed, then

E[Vk](log A) ≥ C3e
c(A)/2, (64)

where C3 is a constant.

Proof. We still use χk((x, y)) to denote the indicator function
of whether a point (x, y) is covered by less than k nodes.
Again, we only consider the case that (x, y) is in the side
area of the square R to obtain a lower bound. Without loss
of generality, we assume 0 ≤ x ≤ r, r ≤ y ≤ √

A − r.
Thus the disk B(x,y)(r) has at most area 1

2 + 2xr inside the
square region R. The region B(x,y)(r) ∩ R contains at most
Mx = D(πr2/2 + 2xr + 2πrd/

√
2) = D(1

2 + 2xr) +
√

2πD
nodes. Therefore,

E[χk((x, y))]

≥
k−1∑
i=0

(
Mx

i

)
pi(1 − p)Mx−i

∼
k−1∑
i=0

(Mxp/(1 − p))i

i!
(1 − p)Mx

=
k−1∑
i=0

(Mxp/(1 − p))i

i!
eMx log(1−p). (65)

Since Mx ≥ D/2, and p/(1 − p) ≥ − log(1 − p), we have

E[χk((x, y))]

�
k−1∑
i=0

(−D
2 log(1 − p))i

i!
eMx log(1−p)

≥
k−1∑
i=0

(−D
2 log(1 − p))i

i!
e(D/2+2xrD+

√
2πD) log(1−p)

≥ (−D
2 log(1 − p))k−1

(k − 1)!
e(D/2+2xrD+

√
2πD) log(1−p).(66)

Therefore,

E[Vk]

≥ 4
∫ r

0

∫ √
A−r

r

E[χk((x, y))]dydx

� 4
∫ r

0

∫ √
A−r

r

(−D
2 log(1 − p))k−1

(k − 1)!
·e(D/2+2xrD+

√
2πD) log(1−p)dydx

≥ 4(
√

A − 2r)
(−D

2 log(1 − p))k−1

(k − 1)!

·e(D/2+
√

2πD) log(1−p) 1 − e2r2D log(1−p)

−2rD log(1 − p)
(67)
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Since −D log(1−p) ∼ log A and r2 = 1/π, e2r2D log(1−p) →
0 as A → ∞. We take logarithm on both sides, and obtain

log E[Vk]

≥ log A

2
+ (k − 1) log(−D

2
log(1 − p)) − log((k − 1)!)

+(
D

2
+
√

2πD) log(1 − p) − log(−2rD log(1 − p)) + o(1)
≥ −1 log log A + C4 + c(A)/2. (68)

where C4 contains all constant and o(1) terms. Therefore, we
conclude that

E[Vk](log A) ≥ C3e
c(A)/2. (69)

�

Proposition 6 Given the same conditions as in Proposition
(5),

E[V 2
k ]

E[Vk]2
≤ 1 +

C5(p + (log A)−1)
E[Vk] log A

(70)

Proof. Similar to the proofs in Section III-B,

E[V 2
k ] = E[

∫
R

∫
R

χk(Z1)χk(Z2)dZ1dZ2]

=
∫

R

∫
R

E[χk(Z1)χk(Z2)]dZ1dZ2 (71)

We still consider two cases in the integral: case (i) |Z1−Z2| >
2r; case (ii) |Z1 − Z2| ≤ 2r. In the first case, χk(Z1) and
χk(Z2) are independent. Therefore,∫ ∫

R2∩{|Z1−Z2|>2r}
E[χk(Z1)χk(Z2)]dZ1dZ2

≤
∫ ∫

R2
E[χk(Z1)]E[χk(Z2)]dZ1dZ2

= E[Vk]2 (72)

In the second case, |Z1−Z2| ≤ 2r, we follow the derivations
similar to those in Section III-B.∫ ∫

R2∩{|Z1−Z2|≤2r}
E[χk(Z1)χk(Z2)]dZ1dZ2

≤2
∫ ∫

R2∩{|Z1−Z2|≤2r}∩Q

E[χk(Z1)χk(Z2)]dZ1dZ2 (73)

where Q is the event that Z2 is inside the square centered
at the center of R and whose boundary crosses Z1. Again,
we only consider the dominating subcase when Z1 is not in
the extended corner region CE (the extended corner region is
the corner region and the side region that is at most 3r away
from a second side of the region R). Still denote B1, B2 as
the unit-area disks centered at Z1, Z2, respectively. Under the
above conditions (i.e., R2 ∩ {|Z1 − Z2| ≤ 2r} ∩ Q),

E[χk(Z1)χk(Z2)]
= P (there are less than k active nodes in B1 ∩ R and

there are less than k active nodes in B2 ∩ R)
≤ P (there are less than k active nodes in B1 ∩ R )

·P (there are less than k active nodes in (B2 − B1) ∩ R)

As has been proved in Section III-B, the area of (B2 −B1)∩
R is at least x/(4r) and its perimeter length is at most 2πr
(noticing the shape B2 −B1 has the same perimeter length as

B2 or B1), Therefore, the number of nodes inside (B2−B1)∩
R is at least mx = max(0, Dx/(4r) − √

2πD). Therefore,
conditioning on (R2 ∩ {|Z1 − Z2| ≤ 2r} ∩ Q),

E[χk(Z1)χk(Z2)]

≤ E[χk(Z1)]
k−1∑
j=0

(
mx

j

)
pj(1 − p)mx−j (74)

Now we integrate over the space (R2∩{|Z1 −Z2| ≤ 2r}∩
Q), and obtain� �

R2∩{|Z1−Z2|≤2r}∩Q

E[χk(Z1)χk(Z2)]dZ1dZ2

≤
�

R

E[χk(Z1)]

�
Z2:R∩{|Z1−Z2|≤2r}∩Q

k−1�
j=0

�
mx

j

�
pj(1 − p)mx−jdZ2dZ1

≤
�

R

E[χk(Z1)]dZ1

� 2r

0

k−1�
j=0

�
mx

j

�
pj(1 − p)mx−j2πxdx(75)

where the 2πx in the last equation comes from the conversion
from a Cartesian coordinate system to a polar coordinate
system. Notice a convention of

(
n
m

)
= 0 if n < m. Recall

r = 1/
√

π and 1/
√

D is the distance between two adjacent
nodes. If x ≤ 4

√
2/D, mx = 0. Therefore, the integration in

Eq. (75) can be divided into two parts.

∫ 2r

0

k−1∑
j=0

(
mx

j

)
pj(1 − p)mx−j2πxdx

≤
(∫ 4

√
2/D

0

+
∫ 2r

4
√

2/D

)
k−1∑
j=0

(
mx

j

)
pj(1 − p)mx−j2πxdx

=
∫ 4

√
2/D

0

2πxdx +
∫ 2r

4
√

2/D

k−1∑
j=0

(
mx

j

)
pj(1 − p)mx−j2πxdx

≤ 32π/D +
∫ 2r

4
√

2/D

k−1∑
j=0

(mxp/(1 − p))j

j!
(1 − p)mx2πxdx

= 32π/D +
∫ 2r

4
√

2/D

k−1∑
j=0

((Dx/(4r) −√
2πD)p/(1 − p))j

j!

·(1 − p)(Dx/(4r)−√
2πD)2πxdx

(let u = x/(4r) −
√

2π/D)

= 32π/D +
∫ 1/2−

√
2π/D

0

k−1∑
j=0

(uDp/(1 − p))j

j!

·(1 − p)uD2π4r(u +
√

2π/D)4rdu
(since p ≤ − log(1 − p))

≤ 32π/D + (1 − p)−k+1

∫ ∞

0

k−1∑
j=0

(−uD log(1 − p))j

j!

·euD log(1−p)32(u +
√

2π/D)du (76)

Treat −D log(1− p) as λ, by Lemma 4 we can obtain that

∫ ∞

0

k−1∑
j=0

(−uD log(1 − p))j

j!
euD log(1−p)32udu

= 16k(k + 1)(−D log(1 − p))−2, (77)
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and similarly

∫ ∞

0

k−1∑
j=0

(−uD log(1 − p))j

j!
euD log(1−p)32

√
2π/Ddu

= 32k
√

2π/D(−D log(1 − p))−1. (78)

Hence, combining Eqs. (76), (77) and (78),

∫ 2r

0

k−1∑
j=0

(
mx

j

)
pj(1 − p)mx−j2πxdx

≤ 32π/D + ε−k+1(16k(k + 1)(−D log(1 − p))−2

+32k
√

2π/D(−D log(1 − p))−1)
≤ (32πp + C5(log A)−1 + C6

√
p/ logA)(log A)−1

≤ C7(p + (log A)−1)(log A)−1, (79)

for some constant C7.
Plugging Eq. (79) into Eq. (75), we obtain∫ ∫

R2∩{|Z1−Z2|≤2r}∩Q

E[χk(Z1)χk(Z2)]dZ1dZ2

≤ E[Vk]C7(p + (log A)−1)(log A)−1 (80)

Combining this equation with Eqs. (71), (72), and (73), we
have

E[V 2
k ] ≤ E[Vk]2 + 2C7E[Vk](p + (log A)−1)(log A)−1 (81)

Therefore,

E[V 2
k ]

E[Vk]2
≤ 1 +

2C7(p + (log A)−1)
E[Vk](log A)

(82)

Choosing C5 = 2C7 completes the proof. �
We are now ready to show the following necessary condition

of complete k-coverage in the case of grid deployment. The
proof is almost identical to that of theorem 2 and is thus
omitted.

Theorem 6 Given the same conditions as in Proposition 5
except that c(A) need not be o(log log A) (it still needs to go
to ∞), P (the region R is not k-covered) → 1.

Comments: There is a gap between the necessary
condition and the sufficient condition on the density re-
quirement for k-coverage. However, the gap with the term
2
√−2π log A log(1 − p) is caused by the uncertainty of the

number of lattice points contained in a circle (called Gauss’s
circle problem [1]), which is most probably not closable.
We are not clear whether the gap with the term log log A
is closable or not. However, if p = O((log A)−1), the gaps
with both of the two terms diminish. The first gap diminishes
obviously. The second gap diminishes because the conclusion
in Proposition 6 reduces to

E[V 2
k ]

E[Vk]2
≤ 1 +

C5

E[Vk](log A)2
, (83)

which is essential to close the gap on the term log log A.

VI. RELATED WORK

Early research on density requirement for coverage focused
on 1-coverage. In [8], Philips showed that πr 2λ ∼ log A
is a necessary and sufficient condition for coverage and a
necessary condition for connectivity in a random network
where r(n) is the radius of sensing (communication), and
nodes are distributed according to a Poisson point process with
density λ in a region of area A. In [4], Hall showed if the nodes
are distributed as a Poisson point process with density λ in
a unit-area square, then 0.05 min{1, (1 + λ2πr2)e−λπr2} <
P (V1 > 0) < 3 min{1, (1 + λ2πr2)e−λπr2}, where r is the
sensing range and V1 denotes the 1-vacancy area. Both of the
above results are consistent with our results in the special case
of k = 1. In particular, for k = 1, boundary conditions do not
cause extra density requirement. However, for k > 1, adding
boundary conditions does require more density for complete
k-coverage.

Recently, Shakkottai [9] derived necessary and sufficient
conditions for 1-coverage and 1-connectivity when n sensors
are deployed in a

√
n × √

n grids and each sensor is active
with probability p.

Some more recent works studied the density requirement
for k-coverage. In particular, Zhang and Hou [10] derived the
density requirement for k-coverage. Assuming that (i) nodes
are distributed as a Poisson point process with density λ in a
square region with side length l, (ii) each node covers a unit-
area disk centered at itself, they proved that λ = log l2 +(k +
1) log log l2 + c(l) and c(l) → ∞ is necessary and sufficient
for k-coverage of the monitored region.

Kumar et al. studied the issue of k-coverage under three
different deployment strategies: grid deployment, uniform dis-
tribution, and Poisson point process. They also considered the
boundary issues. However, in their derivation for k-coverage,
they only showed their conclusion holds for the inner regions.
As a result, they obtained the same density requirement for
k-coverage as in [10] in the case that nodes are distributed as
a Poisson point process. We have corrected the mistake in this
paper, and moreover, we have proved much sharper bounds
on the density requirement in all cases.

VII. CONCLUSION

In this paper we have studied the problem of determining
the critical node density for maintaining k-coverage of a given
square region. We have considered three different deployment
strategies: Poisson point process, uniform random distribution,
and grid deployment. We have showed that the two random
strategies have identical density requirement for k-coverage,
and that grid deployment requires less node density than the
two random deployment strategies in order to achieve the
same level of coverage degree if the probability that a node
is active does not converge to 1 or 0. If the probability
that a node is active tends to 0, all strategies require the
same order of magnitude of node density to achieve a certain
coverage degree. Our results overrule a previous counter-
intuitive conclusion that grid deployment may require more
node density than random deployment strategies.
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