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Abstract— We introduce the notion of Temporal Corre-
lations (TC) ordering as a way to compare strength of
temporal correlations in streams of requests. This notion is
based on the supermodular ordering, a concept of positive
dependence used for comparing dependence structures in
sequences of rvs. We explore how the TC ordering captures
the strength of temporal correlations in several Web
request models, namely, the higher-order Markov chain
model (HOMM), the partial Markov chain model (PMM)
and the Least-Recently-Used stack model (LRUSM). We
also show how the comparison in the TC ordering is
compatible with comparisons of some well-known locality
of reference metrics, namely, the working set size and
the inter-reference time. We establish a folk theorem to
the effect that the stronger the temporal correlations,
the smaller the miss rate for the PMM. Conjectures and
simulations are offered regarding this folk theorem under
the HOMM and under the LRUSM. The validity of this
folk theorem is also discussed for general input streams
under the Working Set algorithm.

Keywords: Locality of reference in request streams, Tem-
poral correlations, Positive dependence, Folk theorem for miss
rates.

I. INTRODUCTION

The notion of locality of reference and its importance for
caching were first recognized by Belady [8] in the context of
computer memory. Subsequently, a number of studies have
shown that request streams for Web objects exhibit strong
locality of reference1 [19, 20, 21]. Attempts at characterization
were made early on by Denning through the working set
model [15, 16]. Yet, like the notion of burstiness used in traffic
modeling, locality of reference, while endowed with a clear
intuitive content, admits no simple definition. Not surprisingly,
in spite of numerous efforts, no consensus has been reached
on how to formalize the notion, let alone compare streams of
requests on the basis of their locality of reference. However,
it is by now widely accepted that the two main components in
locality of reference are temporal correlations in the streams
of requests and the popularity distribution of requested objects.

1At least in the short timescales

To describe these two sources of locality, and to frame the
subsequent discussion, we assume the following generic setup:
We consider a universe of N cacheable items or documents,
labeled i = 1, . . . , N , and we write N = {1, . . . , N}. The
successive requests arriving at the cache are modeled by a
sequence R = {Rt, t = 0, 1, . . .} of N -valued rvs. For
simplicity, we say that request Rt occurs at time t = 0, 1, . . ..

1. The popularity of the sequence of requests {R t, t =
0, 1, . . .} is defined as the pmf p = (p(i), . . . , p(N)) on N
given by

p(i) := lim
t→∞

1
t

t−1∑
τ=0

1 [Rτ = i] a.s., i = 1, . . . , N, (1)

whenever these limits exist (and they do in most models treated
in the literature). Popularity represents a long-term expression
of locality through the likelihood that a document will be
requested in the future relative to other documents. Throughout
we assume for the request stream R that the limits (1) exist and
are constants. To avoid uninteresting situations, it is always the
case that2

p(i) > 0, i = 1, . . . , N. (2)

2. Temporal correlations are more delicate to define. Indeed,
it is somewhat meaningless to use the covariance function

γ(s, t) := Cov[Rs, Rt], s, t = 0, 1, . . .

as a way to capture these temporal correlations as is tradi-
tionally done in other contexts. This is due to the categorical
nature of the rvs {Rt, t = 0, 1, . . .} – they identify objects
as values in a discrete set but their actual values are of no
consequence. The focus should instead be on the recurrence
patterns displayed by requests for particular documents over
time.

The question naturally arises as to whether the popularity
pmf and temporal correlations in streams of requests can be
compared formally on the basis of some notions that simulta-
neously capture the intuitive content of locality of reference,
and lead to useful implications for cache management. To

2A pmf p on {1, . . . , N} satisfying (2) is said to be admissible. Under
this non-triviality condition (2), every document will eventually be requested
by virtue of (1).



clarify this point, consider the following folk theorem which
is widely expected to hold: For good caching policies, the
stronger locality of reference, the smaller the miss rate. A
natural step consists in relating locality of reference in a stream
of requests to the skewness of its popularity pmf with the
understanding that the more skewed the popularity pmf, the
greater locality of reference. For instance, the notion of en-
tropy [18] and the concept of majorization [22, 32, 33, 35, 36]
have been used with some success precisely for that purpose.
In [22, 33, 35] the authors then established a version of the folk
theorem by showing (via majorization and Schur-concavity)
that the more skewed the popularity pmf (thus, the stronger
locality of reference), the smaller the miss rate of the cache.
This was done for various cache replacement policies under
the standard Independent Reference Model (IRM) according to
which the requests {Rt, t = 0, 1, . . .} are i.i.d. rvs distributed
according to the pmf p.

When it comes to how temporal correlations contribute to
locality of reference, the picture is far from complete: Several
metrics have been proposed to capture the impact of temporal
correlations, e.g., the inter-reference time [18, 19, 27], the
working set size [15, 16] and the stack distance [1, 24].
However, none has been found appropriate for formalizing a
folk theorem on miss rates. To make progress, we recall that
the locality of reference present in a stream of requests is often
coined as the property that “bursts of references are made in
the near future to objects referenced in the recent past.” Thus,
if locality of reference is present in a stream of requests, it
is not unreasonable to expect that it would manifest itself
through positive temporal correlations of some form. Here,
with this in mind, we turn to concepts of positive dependence
as a way to model temporal correlations exhibited by Web
request streams. These notions have been used previously in
many contexts, e.g., traffic engineering [6, 7, 34] and reliability
theory [4, 30]. The main contributions can be summarized as
follows:

1. Temporal correlations and positive dependence –
We make a connection between the concepts of positive
dependence in sequence of rvs [Section II] and temporal
correlations in the stream of requests [Section III]. Specifically,
relying on the notion of supermodular ordering [Definition
2.3], we introduce the TC ordering [Definition 3.1] as a way of
comparing two streams of requests on the basis of the strength
of their temporal correlations.

2. Temporal correlations in Web request models – We
make use of the TC ordering to investigate the existence
of temporal correlations in several Web request models that
are believed to exhibit such correlations, namely, the higher-
order Markov chain model (HOMM), the partial Markov
chain model (PMM) and the Least-Recently-Used stack model
(LRUSM). For the HOMM [Section IV] and the LRUSM [Sec-
tion VI], we demonstrate that both models exhibit temporal
correlations in the sense that they have stronger strength of
temporal correlations than the IRM with the same popularity
pmf in the TC ordering. For the PMM [Section V], we show
that its correlation parameter indeed captures the strength of

temporal correlations, as expected.
3. Temporal correlations and some locality of refer-

ence metrics – We show in what sense the comparison of
two request streams in the TC ordering is compatible with
comparisons of some well-established locality of reference
metrics, namely, the working set size [Section VII] and the
inter-reference time [Section VIII].

4. Temporal correlations and miss rate – Regarding the
aforementioned folk theorem for the miss rate [Section IX],
we establish the statement to the effect that “the stronger
the strength of temporal correlations, the smaller the miss
rate” when the input to the cache is the PMM [Section X-
A]. Conjectures and simulations are offered as to when this
folk theorem should hold under the HOMM [Section X-B] and
under the LRUSM [Section X-C]. Lastly, we consider the miss
rate of general input streams under the Working Set algorithm
[Section XI]. The results indicate that the folk theorem does
hold when the cache holds one document, but may fail to hold
in some other situations where counterexamples are given.

We conclude in Section XII by explaining in what sense the
news are indeed mixed! Many proofs have been omitted due
to space limitations, but can be found in the thesis [33].

A word on the notation in use: Equivalence in law or in
distribution between rvs (and stochastic processes) is denoted
by =st. Convergence in law or in distribution (as t → ∞) is
denoted by =⇒t.

II. MODELING POSITIVE DEPENDENCE

A. Conditionally increasing in sequence

Positive dependence in a collection of rvs can be captured
in several ways. We begin with the following strong notion.

Definition 2.1: The R
n-valued rv X = (X1, . . . , Xn) is

said to be conditionally increasing in sequence (CIS) if for each
k = 1, 2, . . . , n − 1, the family of conditional distributions
{[Xk+1|X1 = x1, . . . , Xk = xk]} is stochastically increasing
in x = (x1, . . . , xk).

This definition requires that for each k = 1, 2, . . . , n − 1,
for x and y in R

k with x ≤ y componentwise, it holds that

[Xk+1|(X1, . . . , Xk) = x] ≤st [Xk+1|(X1, . . . , Xk) = y]

where [Xk+1|(X1, . . . , Xk) = x] denotes any rv dis-
tributed according to the conditional distribution of X k+1

given (X1, . . . , Xk) = x (with a similar interpretation for
[Xk+1|(X1, . . . , Xk) = y]). In other words, we require

E [g(Xk+1)|(X1, . . . , Xk) = x]
≤ E [g(Xk+1)|(X1, . . . , Xk) = y]

for all increasing function g : R → R provided the expecta-
tions exist.

The property in Definition 2.1 is sometimes called stochastic
increasingness in sequence (SIS).

B. Supermodular ordering

The supermodular ordering has been found well suited for
comparing the dependence structures of random vectors, e.g.,
see [6, 7, 30, 34] for recent applications in queueing and



reliability. The underlying class of functions associated with
this ordering is first introduced.

Definition 2.2: A function ϕ : R
n → R is said to be

supermodular (sm) if

ϕ(x ∨ y) + ϕ(x ∧ y) ≥ ϕ(x) + ϕ(y), x,y ∈ R
n

where we set x ∨ y = (x1 ∨ y1, . . . , xn ∨ yn) and x ∧ y =
(x1 ∧ y1, . . . , xn ∧ yn).

The supermodular ordering is the integral ordering associ-
ated with the class of supermodular functions.

Definition 2.3: For R
n-valued rvs X and Y , we say that

X is smaller than Y in the supermodular ordering, written
X ≤sm Y , if E [ϕ(X)] ≤ E [ϕ(Y )] for all supermodular
Borel measurable functions ϕ : R

n → R provided the expecta-
tions exist.

It is a simple matter to check [6] that for any R
n-valued

rvs X and Y , the comparison X ≤sm Y necessarily implies
the distributional equalities

Xi =st Yi, i = 1, . . . , n, (3)

as well as the covariance comparisons

Cov[Xi, Xj ] ≤ Cov[Yi, Yj ], i, j = 1, . . . , n (4)

whenever these quantities are well defined. Thus, the com-
parison X ≤sm Y represents a possible formalization of
the statement that “Y is more correlated than X” under the
constraint that X and Y have the same marginals. Before
stating a key comparison related to the supermodular ordering,
we need the following definition.

Definition 2.4: For R
n-valued rvs X and X̂ , we say that

X̂ = (X̂1, . . . , X̂n) is an independent version of X =
(X1, . . . , Xn) if the rvs X̂1, X̂2, . . . , X̂n are mutually indepen-
dent with X̂i =st Xi for each i = 1, . . . , n.

Positive dependence between the components X1, . . . , Xn

of the R
n-valued rv X can also be expressed by requiring

that the rv X be larger in the supermodular ordering than its
independent version X̂ [26].

Definition 2.5: The R
n-valued rv X = (X1, . . . , Xn) is

said to be positive supermodular dependent (PSMD) if X̂ ≤sm

X where X̂ is the independent version of X .
The next proposition is due to Meester and Shanthikumar

[25, Thm. 3.8], and explores the relationships between the two
notions of positive dependence introduced thus far.

Theorem 2.6: If the R
n-valued rv X = (X1, . . . , Xn) is

CIS, then X is PSMD.
The definitions above readily extend to infinite length se-

quences of rvs by requiring that each of the definitions holds
for each finite section of the sequences.

III. MODELING TEMPORAL CORRELATIONS IN WEB

REQUEST STREAMS

Given a stream of requests R = {Rt, t = 0, 1, . . .}, we set

Vt(i) = 1 [Rt = i] , t = 0, 1, . . . , (5)

for each i = 1, . . . , N , i.e., the rv Vt(i) is the indicator
function of the event that the request at time t is made to

document i. If the sequence of requests {R t, t = 0, 1, . . .}
were to exhibit locality of reference through some form of
temporal correlations, a request to document i would likely
be followed by a burst of references to document i in the
near future. This corresponds to the presence of positive
dependence in the sequence {Vt(i), t = 0, 1, . . .} and leads to
the following notion of Temporal Correlations (TC) ordering.

Definition 3.1: The request stream R1 = {R1
t , t =

0, 1, . . .} is said to have weaker temporal correlations than the
request stream R2 = {R2

t , t = 0, 1, . . .}, written R1 ≤TC R2,
if for each i = 1, . . . , N , the comparison

{V 1
t (i), t = 0, 1, . . .} ≤sm {V 2

t (i), t = 0, 1, . . .}
holds where for each k = 1, 2, the rvs {V k

t (i), t = 0, 1, . . .}
denote the indicator process associated with Rk via (5).

In this paper we use the comparison R1 ≤TC R2 to
formalize the fact that the stream R1 has less locality of ref-
erence than the stream R2. The difficulty associated with the
“categorical” nature of streams of requests has been bypassed
by focusing instead on the (numerical) indicator processes
(5). The covariance comparison (4) might in principle have
provided a natural way to compare the strength of positive
dependencies between each pair of sequences {V 1

t (i), t =
0, 1, . . .} and {V 2

t (i), t = 0, 1, . . .}, i = 1, . . . , N . However,
this second-order notion is too weak to establish the desired
folk theorem for miss rates.

Now fix i = 1, . . . , N . Whenever R1 ≤TC R2, the equi-
marginal property (3) of the supermodular ordering yields
P

[
V 1

t (i) = 1
]

= P
[
V 2

t (i) = 1
]

for all t = 0, 1, . . ., or
equivalently,

P
[
R1

t = i
]

= P
[
R2

t = i
]
, t = 0, 1, . . . . (6)

Under the assumption that for each k = 1, 2, the limits (1)
exist as constants for the request stream Rk, we have

pk(i) = E

[
lim

t→∞
1
t

t∑
τ=1

1
[
Rk

τ = i
]]

= lim
t→∞

1
t

t∑
τ=1

P
[
Rk

τ = i
]

by the Bounded Convergence Theorem. Combining this last
equation with (6) immediately leads to p1 = p2, i.e., the
comparison R1 ≤TC R2 requires that the request streams
R1 and R2 have the same popularity profile. Thus, the TC
ordering can capture only the contributions from temporal
correlations to locality of reference.

Proposition 3.2: If for each i = 1, . . . , N , the indicator
process {Vt(i), t = 0, 1, . . .} associated with a request stream
R is PSMD, then R̂ ≤TC R where R̂ is the independent
version of R.

When the request stream R is a stationary sequence, its
independent version R̂ is simply the IRM whose popularity
pmf is the common marginal of the request stream R.

Proof. Fix i = 1, . . . , N . Under the enforced assumptions, the
sequence {Vt(i), t = 0, 1, . . .} associated with R is PSMD.



This amounts to {V̂t(i), t = 0, 1, . . .} ≤sm {Vt(i), t =
0, 1, . . .}, where the sequence {V̂t(i), t = 0, 1, . . .} is the
independent version of the indicator sequence {V t(i), t =
0, 1, . . .}. With R̂ = {R̂t, t = 0, 1, . . .} being the independent
version of the request stream R, it is plain that

{V̂t(i), t = 0, 1, . . .} =st {1
[
R̂(t) = i

]
, t = 0, 1, . . .}

for each i = 1, . . . , N and the proof is completed.

In the next three sections, we investigate whether various
request models of interest display temporal correlations in the
sense of the TC ordering. These models include the higher-
order Markov chain model, the partial Markov chain model
and the Least-Recently-Used stack model.

IV. HIGHER-ORDER MARKOV CHAIN MODEL

Several higher-order Markov chain models have been pro-
posed to characterize Web request streams (e.g., see [13, 17,
28] and references therein) due to their ability to capture
some of the observed temporal correlations. In this section
we present a model, recently proposed by Psounis et al. [28],
which captures both the long-term popularity and short term
temporal correlations of Web request streams.

The model can be described as follows: Let N -valued
rvs {R0, . . . , Rh−1} be the initial requests and let {Yt, t =
0, 1, . . .} be a sequence of i.i.d. N -valued rvs with
P [Yt = i] = p(i) for each i = 1, . . . , N . The pmf p =
(p(1), . . . , p(N)) is assumed to be admissible (2). Next, with
0 ≤ α1, . . . , αh < 1 and

∑h
k=1 αk < 1, let {Zt, t = 0, 1, . . .}

be another sequence of i.i.d. {0, 1, . . . , h}-valued rvs with

P [Zt = k] = αk, k = 1, . . . , h

and

P [Zt = 0] = β = 1 −
h∑

k=1

αk > 0

for all t = 0, 1, . . ., i.e., the rv Zt is distributed according
to the pmf α = (β, α1, . . . , αh). The collections of rvs
{R0, . . . , Rh−1}, {Yt, t = 0, 1, . . .} and {Zt, t = 0, 1, . . .} are
mutually independent. For each t = h, h+ 1, . . ., the request
Rt is described by the evolution

Rt = 1 [Zt = 0]Yt +
h∑

k=1

1 [Zt = k]Rt−k. (7)

In words, the request Rt is made to the same document
requested at time t − k, namely Rt−k, with probability αk,
for some k = 1, . . . , h; otherwise Rt is chosen independently
of the past according to the popularity pmf p and R t = Yt.

The requests {Rt, t = 0, 1, . . .} form an hth-order Markov
chain since the value of Rt depends only on the rvs
Rt−1, . . . , Rt−h. In fact, for t = h, h + 1, . . ., we have from

(7) that for any (i0, . . . , it−1) in N t,

P [Rt = i|Rτ = iτ , τ = 0, . . . , t− 1]

= βp(i) +
h∑

k=1

αk1 [it−k = i] (8)

= P [Rt = i|Rτ = iτ , τ = t− h, . . . , t− 1] . (9)

With β > 0, this hth-order Markov chain is irreducible and
aperiodic on its finite state space; its stationary distribution
exists and is unique. It can be shown [28] that

lim
t→∞P [Rt = i] = lim

t→∞
1
t

t∑
s=1

1 [Rs = i] = p(i) a.s. (10)

for each i = 1, . . . , N , and it is therefore warranted to call
the pmf p the long-term popularity pmf of this request model.
Moreover, there exists a unique stationary version, still denoted
thereafter by {Rt, t = 0, 1, . . .}.

The parameters of the model are the history window size
h, the pmf α and the popularity pmf p, and we shall refer
to this model by HOMM(h,α,p). That the HOMM(h,α,p)
exhibits temporal correlations is formalized in the next result;
its proof is available in Appendix I.

Theorem 4.1: Assume the request stream R = {Rt, t =
0, 1, . . .} to be modeled according to the stationary
HOMM(h,α,p) with β > 0. Then, it holds that R̂ ≤TC R
where R̂ is the IRM with popularity pmf p.

V. THE PARTIAL MARKOV CHAIN MODEL

The partial Markov chain model was introduced as a refer-
ence model for computer memory paging [2]. It is a subclass
of higher-order Markov chain models and corresponds to
HOMM(h,α,p) with parameter h = 1. In that case, we have
α = (β, α1) where α1 = 1− β and we refer to this model as
PMM(β,p).

Under this model, with probability 1 − β, Rt = Rt−1,
otherwise with probability β, Rt = Yt, i.e., Rt is drawn
independently of the past according to the popularity pmf p.
Therefore, for a given popularity pmf p, it is natural to expect
that the smaller the value of the correlation parameter β, the
greater the temporal correlations exhibited by the PMM(β,p).
In the extreme cases, as β ↑ 1, the PMM(β,p) becomes
the IRM with popularity pmf p and there are no temporal
correlations. On the other hand, as β ↓ 0, all the requests are
made to the same document, hence displaying the strongest
possible form of temporal correlations. The following result,
which contains Theorem 4.1 when h = 1, formalizes these
statements with the help of the TC ordering, thereby confirm-
ing the intuition that the parameter β of PMM(β,p) indeed
constitutes a measure of the strength of temporal correlations.

Theorem 5.1: Assume for each k = 1, 2 that the request
stream Rβk = {Rβk

t , t = 0, 1, . . .} is modeled according to the
stationary PMM(βk,p) for some pmf p on N . If 0 < β2 < β1,
then Rβ1 ≤TC Rβ2 .

The proof of this theorem relies on the following compar-
ison of Markov chains under the supermodular ordering due
to Bäuerle [6].



Theorem 5.2: Let X = {Xt, t = 0, 1, . . .} and X ′ =
{X ′

t, t = 0, 1, . . .} be two stationary Markov chains on
{0, 1, . . . , n} with transition matrices P and P ′, respectively.
For γ0, . . . , γn ≥ 0 with 0 <

∑n
j=0 γj ≤ 1, define the

(n+ 1) × (n+ 1) matrix Q(γ0, . . . , γn) by⎡
⎢⎢⎢⎣

1 − ∑
j �=0 γj γ1 · · · γn

γ0 1 − ∑
j �=1 γj · · · γn

...
...

...
γ0 γ1 · · · 1 − ∑

j �=n γj

⎤
⎥⎥⎥⎦ . (11)

With P = Q(γ0, . . . , γn) and P ′ = Q(cγ0, . . . , cγn) for some
0 ≤ c ≤ 1, it holds that X ≤sm X ′.

A proof of Theorem 5.1. Fix i = 1, . . . , N . Given a
sequence Rβ = {Rβ

t , t = 0, 1, . . .} modeled according to
the stationary PMM(β,p), it follows from (47) (in Appendix)
that the indicator sequence {V β

t (i), t = 0, 1, . . .} associated
with Rβ is a Markov chain on {0, 1} with

P
[
V β

t (i) = 1|V β
0 (i) = x0, . . . , V

β
t−1(i) = xt−1

]
= βp(i) + (1 − β)xt−1, t = 1, 2, . . .

for any (x0, . . . , xt−1) in {0, 1}t. Its transition matrix P β(i)
is simply given by

P β(i) =
[

1 − βp(i) βp(i)
β(1 − p(i)) 1 − β(1 − p(i))

]
,

or equivalently, in the notation (11), by P β(i) = Q(γ0, γ1)
where γ0 = β(1 − p(i)) and γ1 = βp(i) with 0 < γ0 + γ1 =
β ≤ 1.

For two stationary PMM request streams Rβ1 and Rβ2

with 0 < β2 ≤ β1, we can always write β2 = cβ1 with
0 < c = β2

β1
≤ 1. Thus, the Markov chains {V β1

t (i), t =
0, 1, . . .} and {V β2

t (i), t = 0, 1, . . .} have transition
matrices P β1(i) = Q(γ0, γ1) and P β2(i) = Q(cγ0, cγ1),
respectively, with γ0 = β1(1 − p(i)), γ1 = β1p(i) and
c = β2

β1
. By applying Theorem 5.2, we obtain the comparison

{V β1
t (i), t = 0, 1, . . .} ≤sm {V β2

t (i), t = 0, 1, . . .} for each
i = 1, . . . , N , whence Rβ1 ≤TC Rβ2 .

VI. LEAST-RECENTLY-USED STACK MODEL

The Least-Recently-Used stack model (LRUSM) has long
been known to be a good model for generating sequences of
requests whose statistical properties match those of observed
reference streams [14, 31].

A. LRU stack and stack distance

With Λ(N ) denoting the set of all permutations of the N
distinct documents {1, . . . , N}, an element of Λ(N ) can be
viewed as an ordered sequence of N distinct elements drawn
from the set {1, . . . , N}. It is convenient to picture such an
element Ω = (Ω(1), . . . ,Ω(N)) of Λ(N ) as a stack with Ω(1)
in the top position, followed by Ω(2), . . . ,Ω(N), in that order.

Given an initial stack Ω0, with any stream of requests
R = {Rt, t = 0, 1, . . .}, we can associate a stack sequence

{Ωt, t = 0, 1, . . .} through the following recursive mecha-
nism: For each t = 0, 1, . . ., the stack Ωt+1 is given by

Ωt+1(k) =

⎧⎨
⎩

Ωt(Dt) if k = 1
Ωt(k − 1) if k = 2, . . . , Dt

Ωt(k) if k = Dt + 1, . . . , N
(12)

where Dt denotes the position of the document Rt in the stack
Ωt, i.e., the rv Dt is the unique element of {1, . . . , N} such
that

Ωt(Dt) = Rt. (13)

In words, the stack Ωt+1 at time t+ 1 is obtained by moving
the document Ωt(Dt) = Rt up to the highest position (i.e.,
position 1) and shifting the documents Ω t(1), . . . ,Ωt(Dt − 1)
down by one position while the positions of the documents
Ωt(Dt +1), . . . ,Ωt(N) remain unchanged. We refer to the rvs
{Dt, t = 0, 1, . . .} so defined as the stack distance sequence
associated with the request stream R.

Conversely, given an initial stack Ω0 in Λ(N ), with any
sequence of {1, . . . , N}-valued rvs {Dt, t = 0, 1, . . .}, the
stack operation (12) can be used to recursively generate a
sequence of Λ(N )-valued rvs {Ωt, t = 0, 1, . . .}. A request
stream R is now readily extracted from this stack sequence
via (13), i.e., we have

Rt = Ωt(Dt) = Ωt+1(1), t = 0, 1, . . . . (14)

It is plain that the rvs {Dt, t = 0, 1, . . .} constitute the
stack distance sequence associated with the request stream R
defined at (14).

The stack and distance introduced above are often referred
to as LRU stack and distance, respectively, in reference to the
popular Least-Recently-Used (LRU) policy according to which
the document to be evicted from the cache is the one which has
been requested the least recently at the time of replacement.
The dynamics of the LRU policy are best described through
the notion of LRU stack and distance, with the resulting stack
implementation of LRU being one of the factors behind its
popularity.

B. The LRU stack model

The duality between streams of requests and stack distances
embedded in (12)-(14) can be exploited to define corre-
lated sequences of requests. We present one of the simplest
ways to do just that: The Least-Recently-Used stack model
(LRUSM) with pmf a on N is defined as the request stream
Ra = {Ra

t , t = 0, 1, . . .} whose stack distance sequence
{Dt, t = 0, 1, . . .} is a collection of i.i.d. {1, . . . , N}-valued
rvs distributed according to the pmf a, i.e.,

P [Dt = k] = ak, k = 1, . . . , N ; t = 0, 1, . . . ,

given some arbitrary initial stack Ω0 in Λ(N ).
Throughout we assume that the rv Ω0 is independent of the

stack distances {Dt, t = 1, 2, . . .}, and uniformly distributed
over Λ(N ). In that case, the stack rvs {Ωt, t = 0, 1, . . .} form
a stationary sequence, and so do the request rvs {Ra

t , t =
0, 1, . . .}. This request model is denoted by LRUSM(a).



The popularity pmf of the LRUSM is discussed in Propo-
sition 6.1; a proof can be found in [37].

Proposition 6.1: Assume the request stream Ra =
{Ra

t , t = 0, 1, . . .} to be modeled according to the stationary
LRUSM(a). If aN > 0, then for each i = 1, . . . , N , it holds
that

pa(i) = lim
t→∞

1
t

t∑
τ=1

1 [Ra
τ = i] =

1
N

a.s.

Under LRUSM, as every document is equally popular, locality
of reference is expressed solely through temporal correlations
with no contribution from the popularity of documents. This
was found to be a drawback of the LRUSM for characterizing
Web request streams, and several variants of this model have
been proposed to accommodate this shortcoming [3, 10].

C. Temporal correlations in LRUSM

The temporal correlations exhibited by the LRUSM are
captured through the TC ordering as indicated by the next
result.

Theorem 6.2: Assume the request stream Ra = {Ra
t , t =

0, 1, . . .} to be modeled according to the stationary LRUSM(a)
with stack distance pmf a satisfying

a1 ≥ a2 ≥ . . . ≥ aN > 0. (15)

Then, it holds that R̂a ≤TC Ra where R̂a is the independent
version of Ra.

The proof of Theorem 6.2 is rather lengthy and is available
in [37]. By virtue of Proposition 6.1, the independent version
R̂a of the stationary LRUSM(a) is simply the IRM with
uniform popularity pmf u = ( 1

N , . . . ,
1
N ). Moreover, it is not

hard to see that the stationary LRUSM(u) indeed coincides
with the IRM with uniform popularity pmf u. Thus, under
(15) we have

Ru ≤TC Ra.

VII. WORKING SET SIZE

In the following two sections, we show how comparison
in the TC ordering translates into comparisons of some well-
established locality of reference metrics, namely, the working
set size and the inter-reference time.

The working set model was introduced by Denning [15] and
some of its properties are discussed in [16]. It can be defined
as follows: Consider a request stream R = {Rt, t = 0, 1, . . .}.
Fix t = 0, 1, . . .. For each τ = 1, 2, . . ., the working set
W (t, τ ; R) of length τ at time t is the set of distinct documents
which have occurred amongst the past τ consecutive requests
R(t−τ+1)+ , . . . , Rt.3 The size of the working set W (t, τ ; R)
is denoted by S(t, τ ; R).

A basic quantity of interest associated with the working set
size is its long-run average defined by

Ŝ(τ ; R) = lim
T→∞

1
T

T−1∑
t=0

S(t, τ ; R) a.s. (16)

3For any x in R, we set x+ = max(0, x).

for each τ = 1, 2, . . .. The next lemma identifies conditions
on the request stream R for the limits (16) to exist; its proof
can be found in [33].

Lemma 7.1: Assume that the request stream R = {Rt, t =
0, 1, . . .} couples with a stationary sequence of N -valued rvs
R̃ = {R̃t, t = 0, 1, . . .}. Then, there exists an {1, . . . , τ}-
valued rv S(τ ; R) such that

S(t, τ ; R) =⇒t S(τ ; R), τ = 1, 2, . . . . (17)

and the a.s. limits (16) exist. If the stationary sequence R̃ is also
ergodic, then

Ŝ(τ ; R) = E [S(τ ; R)] , τ = 1, 2, . . . . (18)

The rv S(τ ; R) at (17) can be viewed as the number of
distinct documents in τ consecutive requests in the steady
state. We expect that the stronger the strength of temporal
correlations in the stream of requests, the smaller the working
set size. The next result shows that such comparisons can
indeed be formalized with the help of the TC ordering.

Theorem 7.2: For request streams R1 = {R1
t , t =

0, 1, . . .} and R2 = {R2
t , t = 0, 1, . . .} such that R1 ≤TC R2,

it holds that

E
[
S(t, τ ; R2)

] ≤ E
[
S(t, τ ; R1)

]
, t, τ = 1, 2, . . . (19)

In addition, if for each k = 1, 2, the request stream Rk couples
with a stationary and ergodic sequence of N -valued rvs R̃

k
=

{R̃k
t , t = 0, 1, . . .}, then

Ŝ(τ ; R2) ≤ Ŝ(τ ; R1), τ = 1, 2, . . . (20)

where for each k = 1, 2, Ŝ(τ ; Rk) is the average working set
size of the request stream Rk.

A proof of Theorem 7.2 is given in Appendix II.

VIII. INTER-REFERENCE TIME

The notion of inter-reference time in the stream of requests
has recently received some attention as a way of characterizing
locality of reference [18, 19, 27].

First a definition. Given a request stream R = {Rt, t =
0, 1, . . .}, for each t = 0, 1, . . ., we define the inter-reference
time T (t; R) as the rv given by

T (t; R) := inf{τ = 1, 2, . . . , t : Rt = Rt−τ} (21)

with the convention that T (t; R) = t+1 if Rt−τ �= Rt for all
τ = 1, . . . , t.

Lemma 8.1: Assume the request stream R = {Rt, t =
0, 1, . . .} to be asymptotically stationary, i.e., {Rt+�, t =
0, 1, . . .} =⇒� {R̃t, t = 0, 1, . . .} with R̃ = {R̃t, t =
0, 1, . . .} being a stationary sequence of N -valued rvs. Then,
there exists an {1, 2, . . .}-valued rv T (R) such that

T (t; R) =⇒t T (R). (22)

The steady state inter-reference time T (R) describes the
time between two consecutive requests for the same document.



Our main comparison result for inter-reference times in the
steady state is given in terms of the convex ordering 4 [29]:

Theorem 8.2: Assume that for each k = 1, 2, the request
stream Rk is asymptotically stationary, i.e., {Rk

t+�, t =

0, 1, . . .} =⇒� {R̃k
t , t = 0, 1, . . .} where R̃

k
= {R̃k

t , t =
0, 1, . . .} is a stationary sequence of N -valued rvs. If R1 ≤TC

R2, then it holds that

T (R1) ≤cx T (R2). (23)
A proof of Lemma 8.1 is available in [33] while a proof

of Theorem 8.2 is given in Appendix III. Theorem 8.2 states
that the stronger the temporal correlations, the more variable
the inter-reference time!

IX. THE MISS RATE AND ITS FOLK THEOREM

The miss rate of a caching policy is defined as the long-
term frequency of the event that the requested document is not
found in the cache; it provides a measure of the effectiveness
of the caching policy. It is a commonly held belief that good
caching takes advantage of locality of reference in that the
stronger the strength of temporal correlations (i.e., the stronger
locality of reference) in the stream of requests to the cache, the
smaller the miss rate. We explore this “folk theorem” in the
context of demand-driven caching which is briefly introduced
in this section. Specific results and conjectures are provided in
Section X under PMM, HOMM and LRUSM, and in Section
XI under general Web request models exhibiting temporal
correlations.

The system is composed of a server where a copy of each
of the N cacheable documents is available, and of a cache of
size M (1 ≤M < N ). Documents are first requested at the
cache: If the requested document has a copy already in cache
(i.e., a hit), this copy is downloaded from the cache by the
user. If the requested document is not in cache (i.e., a miss),
a copy is requested instead from the server to be put in the
cache. If the cache is already full, then a document already in
cache is evicted to make place for the copy of the document
just requested.

Let St denote the collection of documents in cache just
before time t so that St is a subset of N , and let Ut denote the
decision to be performed according to the cache replacement
policy π in force. Demand-driven caching is characterized by
the dynamics

St+1 =

⎧⎨
⎩

St if Rt ∈ St

St +Rt if Rt �∈ St, |St| < M
St − Ut +Rt if Rt �∈ St, |St| = M

(24)

where |St| denotes the cardinality of the set St, and St −
Ut + Rt denotes the subset of {1, . . . , N} obtained from St

by removing Ut and then adding Rt to it, in that order. These
dynamics reflect the following operational assumptions: (i)
actions are taken only at the time requests are made, hence the
terminology demand-driven caching; (ii) a requested document
not in cache is always added to the cache if the cache is not

4Recall that for R-valued rvs X and Y , Y is greater than X in the convex
ordering, written X ≤cx Y if E [ϕ(X)] ≤ E [ϕ(Y )] for any convex mapping
ϕ : R → R for which the expectations exist.

full; and (iii) eviction is mandatory if the request R t is not in
cache St and the cache St is full.

The decisions {Ut, t = 0, 1, . . .} are determined through an
eviction policy π. In most policies of interest, the dynamics of
the cache can be characterized through the evolution of suit-
ably defined variables {Ωt, t = 0, 1, . . .} where Ωt is known
as the state of the cache at time t. The cache state is specific
to the eviction policy and is selected with the following in
mind: (i) The set St of documents in the cache at time t
can be recovered from Ωt; (ii) the cache state Ωt+1 is fully
determined through the knowledge of the triple (Ω t, Rt, Ut) in
a way that is compatible with the dynamics (24); and (iii) the
eviction decision Ut at time t can be expressed as a function of
the past (Ω0, R0, U0, . . . ,Ωt−1, Rt−1, Ut−1,Ωt, Rt) (possibly
through suitable randomization), i.e., for each t = 0, 1, . . .,
there exists a mapping πt such that

Ut = πt(Ω0, R0, U0, . . . ,Ωt−1, Rt−1, Ut−1,Ωt, Rt; Ξt)

where the rv Ξt is taken independent of the past
(Ω0, R0, . . . , Ut−1,Ωt, Rt). Collectively the mappings
{πt, t = 0, 1, . . .} define the eviction policy π.

For example, under the random policy 5, we can take the
cache state Ωt to be the (unordered) set St of documents in
the cache while under the LRU policy, the cache state Ω t is
is a permutation of the elements in St for all t = 0, 1, . . ..

Under the cache replacement policy π, the miss rate Mπ(R)
when the input to the cache is the request stream R is defined
as the limiting constant

Mπ(R) = lim
t→∞

1
t

t∑
τ=1

1 [Rτ /∈ Sτ ] a.s. (25)

whenever the limit exists. Almost sure convergence in (25)
(and elsewhere) is taken under the probability measure on the
sequence of rvs {Ωt, Rt, Ut, t = 0, 1, . . .} induced by the
request stream R through the eviction policy π.

X. FOLK THEOREMS ON VARIOUS REQUEST MODELS

A. PMM

The miss rates of demand-driven cache replacement policies
under PMM have been previously considered in [2]. For
particular caching policies such as LRU and FIFO, the miss
rate under PMM(β,p) is shown to be proportional to the miss
rate of the IRM with the same popularity pmf p. We first
demonstrate this fact in some generality and then use it to
compare the miss rates of two PMM streams with different
strength of temporal correlations.

As we seek to evaluate the limit (25) for the PMM(β,p)
under the cache replacement policy π, we shall need the
following definitions: For each T = 1, 2, . . ., define

λ(T ) =
T∑

t=1

1 [Zt = 0]

5Under the random policy, when the cache is full, the document to
be evicted from the cache is selected randomly according to the uniform
distribution.



as the number of times from time 1 up to time T that the
requests are chosen independently of the past according to the
popularity pmf p. Also, for each k = 1, 2, . . ., let γ(k) =
inf{t = 1, 2, . . . : λ(t) = k}. Under demand-driven caching
with the PMM input, a miss can only occur at the time epochs
γ(k) (k = 1, 2, . . .) at which point we have Rβ

γ(k) = Yγ(k).
Therefore, from the definition of the rvs {γ(k), k = 1, 2, . . .}
it follows that

T∑
t=1

1
[
Rβ

t /∈ St

]
=

λ(T )∑
k=1

1
[
Rβ

γ(k) /∈ Sγ(k)

]

=
λ(T )∑
k=1

1
[
Yγ(k) /∈ Sγ(k)

]
(26)

for all T = 1, 2, . . ., and the miss rate under PMM(β,p) is
given by

Mπ(Rβ) (27)

= lim
T→∞

(
λ(T )
T

) ⎛
⎝ 1
λ(T )

λ(T )∑
k=1

1
[
Yγ(k) /∈ Sγ(k)

]⎞⎠ .

By the Strong Law of Large Numbers, we get

lim
T→∞

λ(T )
T

= lim
T→∞

1
T

T∑
t=1

1 [Zt = 0] = β a.s. (28)

The limit of the second factor in (27) in general does not
necessarily have a closed-form expression. However, It does
admit a simple expression in the special case when the cache
replacement policy π satisfies the following condition:
(�) For all t = 1, 2, . . ., if Rt = Rt−1, then the cache state

and eviction rule at time t + 1 are the same as those at
time t, i.e., Ωt+1 = Ωt and Ut+1 = Ut.

Under this condition, we can write the second limit as

lim
T→∞

1
λ(T )

λ(T )∑
k=1

1
[
Yγ(k) /∈ Sγ(k)

]

= lim
K→∞

1
K

K∑
k=1

1
[
Yγ(k) /∈ Sγ(k)

]
= M̂π(p) (29)

where M̂π(p) is the miss rate of the IRM with popularity
pmf p under the policy π. The last equality follows from
the fact that the rvs {Yγ(k), k = 1, 2, . . .} form an IRM with
popularity pmf p and that by Condition (�), the cache sets
{Sγ(k), k = 1, 2, . . .} are similar to the cache sets under the
policy π when the input is the IRM sequence {Yγ(k), k =
1, 2, . . .}. Combining (27), (28) and (29) yields the expression
for the miss rate of PMM(β,p) as

Mπ(Rβ) = β · M̂π(p). (30)

Condition (�) is satisfied by many cache replacement policies
of interest, e.g., the policy A0, the LRU, FIFO and random
policies, but not by the CLIMB policy [33]. Equipped with
the expression (30), we can now conclude to the following
monotonicity result.

Theorem 10.1: Assume that the cache replacement policy
π satisfies Condition (�) and that for each k = 1, 2, the request
stream Rβk = {Rβk

t , t = 0, 1, . . .} is modeled according
to the stationary PMM(βk,p) for some pmf p on N . Then,
Mπ(Rβ2) ≤Mπ(Rβ1) whenever 0 < β2 < β1.

In view of Theorem 5.1, we conclude that the folk theorem
on the miss rate indeed holds for stationary PMMs under any
cache replacement policy which satisfies Condition (�).

B. HOMM

Let R be HOMM(h,α,p) for some pmf vectors p on N
and α on {0, . . . , h}, respectively. For some 0 < c < 1,
let Rc denote HOMM(h,αc,p) where αc is obtained from
α by taking αc

k = cαk for each k = 1, . . . , h, and βc =
1 − c(1 − β) = β + (1 − c)(1 − β). Obviously, βc ≥ β
while αc

k ≤ αk for each k = 1, . . . , h. In other words, under
HOMM(h,α,p), there is a smaller probability to generate
a new request independently of past requests than under
HOMM(h,αc,p). Therefore, in an attempt to generalize Theo-
rem 4.1, it is reasonable to think that HOMM(h,αc,p) has less
temporal correlations than HOMM(h,α,p) according to the
TC ordering, i.e., Rc ≤TC R. Taking our cue from Theorem
10.1, we would then expect the inequality Mπ(R) ≤Mπ(Rc)
to hold for some good caching policies. We summarize these
expectations as the following conjecture:

Conjecture 10.2: Assume the request stream R to be mod-
eled according to HOMM(h,α,p). For some 0 < c < 1,
if Rc is modeled according to HOMM(h,αc,p) with αc =
(1− c(1− β), cα1, . . . , cαh), then the comparison Rc ≤TC R
holds. Furthermore, under some appropriate cache replacement
policy π, it holds that Mπ(R) ≤Mπ(Rc).

Establishing this conjecture appears to be much more dif-
ficult than for the PMM, and requires further investigation.
However, in support of this conjecture, we have carried out
several experiments under the LRU policy when the input to
the cache is modeled according to the HOMM. Throughout,
we fix N = 1000 and let the input popularity pmf be the
Zipf-like distribution pα with parameter α = 0.8, i.e., for
each i = 1, . . . , N ,

p(i) = pα(i) =
i−α

Cα(N)
with Cα(N) :=

N∑
i=1

i−α. (31)

The Zipf-like distribution has been found appropriate for
modeling the popularity distributions of observed reference
streams in several data sets [12]. We consider six differ-
ent classes of HOMM, each with different history window
size h = 1, 5, 10, 50, 100 and 500. In each class, the input
stream Rβ (with 0 ≤ β ≤ 1), is generated according to
HOMM(h,αh(β),pα) with αh(β) = (β, 1−β

h , . . . , 1−β
h ). The

validity of Conjecture 10.2 would require that the mapping
β →MLRU(Rβ) be increasing.

From Figure 1, the miss rate is indeed found to be increasing
as the parameter β increases for all cases and for all cache
sizes.6 When h = 1, HOMM reduces to PMM and the

6Although parameters used in this simulation may not be representative of
realistic situations, this simple example serves to establish the trend expected
in Conjecture 10.2.
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Fig. 1. LRU miss rates for various cache sizes when the input to the cache
is the HOMM(h, αh(β), p0.8) with αh(β) = (β, 1−β

h
, . . . , 1−β

h
)

results here confirm the validity of the expression (30) and
of Theorem 10.1. It is interesting to note that for a given
cache size M , the miss rates of all HOMM input streams
with h ≤M are the same as the miss rate of the PMM. This
suggests some form of insensitivity of the LRU miss rate under
the HOMM to the history window size h and to the pmf α.

C. LRUSM

According to Theorem 6.2, the stationary LRUSM(a)
with stack distance pmf a satisfying condition (15) has
stronger strength of temporal correlations than the stationary
LRUSM(u). In the vein of Theorem 5.1, it is then natural
to wonder when does the LRUSM(b) have weaker temporal
correlations than the LRUSM(a) for pmf b not necessarily
uniform. Theorem 6.2 suggests that this could happen when
the pmf a is more skewed toward the smaller values of stack
distance than the pmf b, or equivalently, that the components
of b are more balanced than the components of a. The
skewness in pmfs is naturally captured through the notion of
majorization [23]: For vectors x and y in R

N , we say that x
is majorized by y, and write x ≺ y, whenever the conditions

n∑
i=1

x[i] ≤
n∑

i=1

y[i], n = 1, . . . , N − 1,
N∑

i=1

xi =
N∑

i=1

yi (32)

hold with x[1] ≥ x[2] ≥ . . . ≥ x[N ] and y[1] ≥ y[2] ≥
. . . ≥ y[N ] denoting the components of x and y arranged
in decreasing order, respectively. It is well known that u ≺ a
for any pmf a on N . With this notion, we can now state the
following conjecture.

Conjecture 10.3: Consider request streams Ra and Rb

which are modeled according to the stationary LRUSM(a) and
LRUSM(b), respectively. If both pmfs a and b satisfy (15) with
b ≺ a, then the comparison Rb ≤TC Ra holds.

When both pmfs a and b satisfy (15), the conditions (32) for
the majorization comparison b ≺ a to hold reduce to

n∑
i=1

bi ≤
n∑

i=1

ai, n = 1, . . . , N − 1. (33)

This condition is a formalization of the statement that the pmf
a is more skewed toward the smaller values of stack distance
than the pmf b.7

To glean evidence in favor of Conjecture 10.3, consider
the LRU policy. The miss rate of the LRU policy under
LRUSM(a) is given [14, p. 277] by

MLRU(Ra) = P [Dt > M ] =
N∑

k=M+1

ak (34)

when the cache size is M . Combining (33) and (34), we con-
clude that MLRU(Ra) ≤MLRU(Rb) for two LRUSM request
streams Ra and Rb satisfying the conditions of Conjecture
10.3. This is of course the desired inequality expressing the
folk theorem for miss rates under the LRU policy which would
be expected if Conjecture 10.3 were to hold.

XI. THE WORKING SET (WS) ALGORITHM

Fix τ = 1, 2, . . .. The Working Set (WS) algorithm with
length τ is the algorithm that maintains the previous τ consec-
utive requested documents R(t−τ)+ , . . . , Rt−1 in the cache St

at time t. In other words, the cache St is simply the working
set W (t − 1, τ ; R) with the convention W (−1, τ ; R) = φ.
The number of documents in the cache at time t under the
WS algorithm is the number of distinct documents in W (t−
1, τ ; R) which is the working set size S(t − 1, τ ; R). This
algorithm differs from other demand-driven caching policies
in that the number of documents in the cache may change over
time while demand-driven caching policies have a fixed cache
size M (as soon as each document has been called at least
once).

The operation of the WS algorithm can be described as
follows: For each t = 0, 1, . . ., let Ωt be the state of the cache
at time t defined by Ωt = (R(t−τ)+ , . . . , Rt−1). It is easy to
see from this definition that the cache state Ωt+1 is completely
determined by the previous cache state Ωt and the current
request Rt. Furthermore, the cache set St can be recovered
from Ωt by taking

St = {i = 1, . . . , N : i ∈ Ωt} = W (t− 1, τ ; R)

for t = 0, 1, . . .. For t ≥ τ , regardless of a cache miss, the WS
algorithm will evict the document Rt−τ if Rt−τ /∈W (t, τ ; R)
and does not evict any document, otherwise.

A. The miss rate under the WS algorithm

The miss rate of the WS algorithm with length τ is defined
as in the case of demand-driven caching. For the input stream
R = {Rt, t = 0, 1, . . .}, it is given by the a.s. limit

MWS(R; τ) = lim
T→∞

1
T

T∑
t=1

1 [Rt /∈ St]

7The condition (33) is equivalent to the usual stochastic ordering a ≤st b
between the pmfs a and b [29].



whenever this limit exists. Observe that a miss occurs at time t
when the documentRt is not in the working set W (t−1, τ ; R).
Therefore, with {Vt(i), t = 0, 1, . . .}, i = 1, . . . , N , denoting
the indicator sequences (5) associated with R, whenever τ ≤ t,
we find

1 [Rt /∈ St] = 1 [Rt /∈ W (t− 1, τ ; R)]
= 1 [Rt /∈ {Rt−τ , . . . , Rt−1}]

=
N∑

i=1

1 [Rt = i]
τ∏

�=1

1 [Rt−� �= i]

=
N∑

i=1

Vt(i)
τ∏

�=1

(1 − Vt−�(i))

=
N∑

i=1

g(Vt−τ (i), . . . , Vt(i)) (35)

where for (x0, . . . , xτ ) ∈ R
τ+1, we have set

g(x0, . . . , xτ ) = xτ

τ−1∏
�=0

(1 − x�). (36)

Consequently,

MWS(R; τ) (37)

= lim
T→∞

1
T − τ + 1

T∑
t=τ

N∑
i=1

g(Vt−τ (i), . . . , Vt(i)) a.s.

provided the limit exists. The next lemma gives conditions for
the existence of the limit (37); a proof is available in [33].

Lemma 11.1: Fix τ = 1, 2, . . .. If the request stream R =
{Rt, t = 0, 1, . . .} couples with a stationary and ergodic
sequence of N -valued rvs R̃ = {R̃t, t = 0, 1, . . .}, then the
a.s. limit (37) exists and is given by

MWS(R; τ) = lim
t→∞

N∑
i=1

E [g(Vt−τ (i), . . . , Vt(i))] a.s.

(38)

B. On the folk theorem under the WS algorithm

The folk theorem to the effect that the stronger the temporal
correlations, the smaller the miss rate, holds if we can show
that

MWS(R2; τ) ≤MWS(R1; τ) if R1 ≤TC R2. (39)

From the definitions of the TC and sm orderings, we see
from (38) that establishing (39) can be achieved by showing
that the mapping g given in (36) is submodular. 8 We discuss
these issues by first showing a positive result when τ = 1,
and then providing counterexamples when τ > 1.

When τ = 1, we note that S(t − 1, τ ; R) = 1 for all t =
1, 2, . . ., and the WS algorithm coincides with any demand-
driven caching policy having cache size M = 1. In that case,
the only document in the cache at time t is the document R t−1

8A function ϕ : R
n → R is said to be submodular if −ϕ is supermodular.

and a miss occurs when Rt �= Rt−1. The folk theorem holds
in this special case for all demand-driven caching policies.

Theorem 11.2: Consider an arbitrary demand-driven re-
placement policy π with M = 1. If the request streams R1

and R2 satisfy the relation R1 ≤TC R2, then it holds that

P
[
R2

t /∈ S2
t

] ≤ P
[
R1

t /∈ S1
t

]
, t = 1, 2, . . . . (40)

Proof. Fix k = 1, 2. For each t = 1, 2, . . ., we have from
(35)-(36) that

1
[
Rk

t /∈ Sk
t

]
= 1

[
Rk

t �= Rk
t−1

]
=

N∑
i=1

g(V k
t−1(i), V

k
t (i)) (41)

with the mapping g : R
2 → R being given by (36).

Because the mapping (x0, x1) → x0x1 is supermodular, the
mapping (x0, x1) → −x0x1 is submodular. The mapping
(x0, x1) → x1 being submodular, the mapping g is therefore
submodular since the sum of two submodular functions is still
a submodular function.

The assumption R1 ≤TC R2 implies the comparisons
{V 1

t (i), t = 0, 1, . . .} ≤sm {V 2
t (i), t = 0, 1, . . .} for each

i = 1, . . . , N . The submodularity of g readily yields

N∑
i=1

E
[
g(V 2

t−1(i), V
2
t (i))

] ≤ N∑
i=1

E
[
g(V 1

t−1(i), V
1
t (i))

]
(42)

for each t = 1, 2, . . ., and the comparisons (40) follow from
(41) and (42).

Thus, combining Lemma 11.1 and Theorem 11.2 we find
that the folk theorem (39) indeed holds for τ = 1 whenever
the request streams R1 and R2 couple with stationary and
ergodic sequences.

When τ > 1, the folk theorem (39) does not necessarily
hold. To construct a counterexample, we consider the situation
where the PMM is taken to be the input to the cache. Then, the
miss rate of the WS algorithm with length τ for PMM(β,p)
[2] is given by

MWS(β,p; τ) = β

N∑
i=1

p(i)(1 − p(i))(1 − βp(i))τ−1. (43)

From Section V, we expect that as the strength of temporal
correlations increases, i.e., the value of the parameter β
decreases, the miss rate MWS(β,p; τ) should decrease. To
put it differently, the mapping β → MWS(β,p; τ) should be
increasing when the popularity pmf p is held fixed. That this
may not always be so becomes clear when considering the
uniform popularity pmf u = ( 1

N , . . . ,
1
N ).

Theorem 11.3: Assume the input stream to be modeled ac-
cording to PMM(β,u). Under the WS algorithm with length τ ,
the miss rate functionMWS(β,u; τ) given in (43) is increasing
in β when β ≤ N

τ and decreasing in β when β > N
τ .



Proof. When the PMM has the uniform popularity pmf u,
the expression (43) becomes

MWS(β,u; τ) = β

(
1 − 1

N

) (
1 − β

N

)τ−1

.

Differentiating this expression with respect to β yields

d

dβ
MWS(β,u; τ) =

(
1 − 1

N

) (
1 − β

N

)τ−2 (
1 − τβ

N

)
.

Thus, the miss rate function MWS(β,u; τ) is increasing when
1 − τβ

N ≥ 0, or equivalently, β ≤ N
τ , and is decreasing when

1 − τβ
N < 0, or equivalently, β > N

τ .

Thus, under the PMM, the folk theorem always holds when
the length τ of the WS algorithm is smaller than the number
of documents N but may fail to hold otherwise.

XII. CONCLUDING REMARKS

Here, we have attempted to model the (positive) temporal
correlations present in streams of requests with the help of the
TC ordering, an approach based on the concept of positive
dependence called supermodular ordering. On the positive
side, we show that (i) the comparison under the TC ordering
is compatible with comparisons of some well-known metrics
of locality of reference, namely, the working set size and
the inter-reference time; (ii) this TC ordering captures to a
certain extent the strength of temporal correlations present in
Web request models which are expected to exhibit temporal
correlations, e.g., the HOMM, PMM and LRUSM; and (iii)
the folk theorem on miss rates holds under PMM input to
the cache for a large class of replacement policies. These
preliminary results suggest that the TC ordering might indeed
provide a useful way to compare streams of requests in terms
of their locality of reference, especially when correlations are
present.

However, the folk theorem fails to hold as evidenced by
the counterexample found for the Working Set algorithm.
This state of affairs is certainly disappointing and provides
yet another confirmation that locality of reference, while an
extensively studied (and allegedly understood) notion, still
remains elusive in some of its characteristics. That locality
of reference is about positive correlations, there is little doubt
about it! The TC ordering captures only some aspects of the
notion but undoubtedly there is more to it!
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APPENDIX I
A PROOF OF THEOREM 4.1

By Proposition 3.2, it suffices to show for each i =
1, . . . , N , that the indicator sequence {Vt(i), t = 0, 1, . . .}
associated with the request stream R is PSMD. To do so, we
construct another sequence of N -valued rvs R̃ = {R̃t, t =
0, 1, . . .} as follows: The rvs {R̃0, . . . , R̃h−1} are i.i.d. rvs
distributed according to the pmf p and the rvs {R̃t, t = h, h+
1, . . .} are generated through the evolution (7) with the help of
mutually independent sequences of i.i.d. rvs { Ỹt, t = 0, 1, . . .}
and {Z̃t, t = 0, 1, . . .} distributed according to the pmfs p and
α, respectively. The collections of rvs {Ỹt, t = 0, 1, . . .} and
{Z̃t, t = 0, 1, . . .} are taken to be independent of the rvs
{R̃0, . . . , R̃h−1}. By construction, the process R̃ = {R̃t, t =
0, 1, . . .} is an hth-order Markov chain and with β > 0, we
get

{R̃t+τ , t = 0, 1, . . .} =⇒τ {Rt, t = 0, 1, . . .}. (44)

Fix i = 1, . . . , N . Let {Ṽt(i) = 1
[
R̃t = i

]
, t = 0, 1, . . .}

be the indicator sequence associated with the sequence R̃
defined earlier. We will show that this sequence {Ṽt(i), t =
0, 1, . . .} is CIS. For each t = 0, 1, . . ., set Ṽ

t
(i) =

(Ṽ0(i), . . . , Ṽt(i)). Because the sequence {Ṽt(i), t = 0, 1, . . .}
is a sequence of {0, 1}-valued rvs, it is CIS [29] if for each
t = 0, 1, . . ., the inequality

P
[
Ṽt+1(i) = 1|Ṽ t

(i) = xt
]

≤ P
[
Ṽt+1(i) = 1|Ṽ t

(i) = yt
]

(45)

holds for all vectors xt = (x0, . . . , xt) and yt = (y0, . . . , yt)
in {0, 1}t+1 with xt ≤ yt componentwise.

For t = 0, 1, . . . , h − 2, it holds for all xt = (x0, . . . , xt)
in {0, 1}t+1 that

P
[
Ṽt+1(i) = 1|Ṽ t

(i) = xt
]

= P
[
Ṽt+1(i) = 1

]
= P

[
R̃t+1 = i

]
= p(i)

by independence of the rvs R̃0, . . . , R̃h−1, and the inequality
(45) is obtained for each t = 0, 1, . . . , h − 2. Next, for t =

h−1, h, . . ., and xt = (x0, . . . , xt) in {0, 1}t+1, let (i0, . . . , it)
be an element in N t+1 with the property that for each k =
0, . . . , t, ik = i if xk = 1 and ik �= i if xk = 0. With such an
element, we obtain from (8) that

P
[
Ṽt+1(i) = 1|(R̃0, . . . , R̃t) = (i0, . . . , it)

]
= P

[
R̃t+1 = i|(R̃0, . . . , R̃t) = (i0, . . . , it)

]

= βp(i) +
h∑

k=1

αk1 [it+1−k = i]

= βp(i) +
h∑

k=1

αkxt+1−k. (46)

Since (46) holds for any (i0, . . . , it) in N t+1 satisfying the
property above, a standard preconditioning argument readily
yields

P
[
Ṽt+1(i) = 1|Ṽ t

(i) = xt
]

= βp(i)+
h∑

k=1

αkxt+1−k. (47)

This last expression being monotone increasing in x t =
(x0, . . . , xt), we obtain the inequality (45) for each t =
h, h+ 1, . . ..

Thus, the inequalities (45) hold for all t = 0, 1, . . .. This
implies that the sequence {Ṽt(i), t = 0, 1, . . .} is CIS, whence
indeed PSMD by Theorem 2.6, i.e.,

{ ˆ̃V t(i), t = 0, 1, . . .} ≤sm {Ṽt(i), t = 0, 1, . . .} (48)

where { ˆ̃V t(i), t = 0, 1, . . .} is the independent version of
{Ṽt(i), t = 0, 1, . . .}. Now, recalling (44), it is plain that

{ ˆ̃V t+τ (i), t = 0, 1, . . .} =⇒τ {V̂t(i), t = 0, 1, . . .} (49)

where {V̂t(i), t = 0, 1, . . .} is a sequence of i.i.d. {0, 1}-

valued rvs with P
[
V̂0(i) = 1

]
= p(i) and is exactly the

independent version of {Vt(i), t = 0, 1, . . .}. By invoking the
fact that the sm ordering is closed under weak convergence
[26, Thm. 3.9.8, p. 116], we conclude from (44), (48) and
(49) that

{V̂t(i), t = 0, 1, . . .} ≤sm {Vt(i), t = 0, 1, . . .}.

Therefore, the sequence {Vt(i), t = 0, 1, . . .} is PSMD for
each i = 1, . . . , N , and the proof is completed.

APPENDIX II
A PROOF OF THEOREM 7.2

Fix t = 0, 1, . . . and τ = 1, . . . , t + 1. The working set
size S(t, τ ; R) of length τ at time t for the request stream
R can be expressed in terms of the corresponding indicator
sequences {Vt(i), t = 0, 1, . . .}, i = 1, . . . , N , as follows:



From the definition of S(t, τ ; R), we can write

S(t, τ ; R) =
N∑

i=1

1 [i ∈ {Rt−τ+1, . . . , Rt}]

=
N∑

i=1

(1 − 1 [i /∈ {Rt−τ+1, . . . , Rt}])

=
N∑

i=1

(1 −
τ−1∏
�=0

1 [Rt−� �= i])

=
N∑

i=1

(1 −
τ−1∏
�=0

(1 − Vt−�(i))).

=
N∑

i=1

(1 − ψ(Vt−τ+1(i), . . . , Vt(i))) (50)

where the mapping ψ : R
τ → R given by

ψ(x) =
τ∏

i=1

(1 − xi), x = (x1, . . . , xτ ) ∈ R
τ , (51)

is a supermodular function [5, Lemma 2.1].
Recall that for any two request streams R1 and R2 such

that R1 ≤TC R2, we have the comparison {V 1
t (i), t =

0, 1, . . .} ≤sm {V 2
t (i), t = 0, 1, . . .} for each i = 1, . . . , N .

From the supermodularity of ψ and the definition of the sm
ordering, the inequality

E
[
ψ(V 1

t−τ+1(i), . . . , V
1
t (i))

]
≤ E

[
ψ(V 2

t−τ+1(i), . . . , V
2
t (i))

]
(52)

follows for all i = 1, . . . , N . Combining inequalities (52) with
(50) yields the comparison (19) for each τ = 1, . . . , t+1. Upon
noting that for all τ > t+ 1,

S(t, τ ; Rk) = S(t, t+ 1; Rk), k = 1, 2,

we get the comparisons (19) for all τ = 1, 2, . . ..
Next, fix τ = 1, 2, . . . and k = 1, 2. Under the assumptions

that the request stream Rk couples with a stationary and
ergodic sequence of N -valued rvs R̃

k
, Lemma 7.1 already

yields the convergence

S(t, τ ; Rk) =⇒t S(τ ; Rk). (53)

Next, because S(t, τ ; Rk) ≤ N for every t = 0, 1, . . ., the
sequence {S(t, τ ; Rk), t = 0, 1, . . .} is uniformly integrable.
Combining this fact with (53), it follows from [9, Thm. 5.4,
p. 32] that

lim
t→∞E

[
S(t, τ ; Rk)

]
= E

[
S(τ ; Rk)

]
= Ŝ(τ ; Rk) (54)

where the last equality is due to (18). Invoking (19) and (54),
we obtain the comparisons (20) for each τ = 1, 2, . . ..

APPENDIX III
A PROOF OF THEOREM 8.2

To establish Theorem 8.2, we shall rely on the following
lemma whose proof is available in [33].
Lemma C.1 Assume that the request stream R = {Rt, t =
0, 1, . . .} is asymptotically stationary, i.e., {Rt+�, t =
0, 1, . . .} =⇒� {R̃t, t = 0, 1, . . .} where R̃ = {R̃t, t =
0, 1, . . .} is a stationary sequence of N -valued rvs, and has
admissible popularity pmf p. Then, it holds that

∞∑
τ=n

P [T (R) > τ ] =
N∑

i=1

P
[
R̃� �= i, � = 0, . . . , n− 1

]
(55)

for n = 1, 2, . . . and E [T (R)] =
∑∞

τ=0 P [T (R) > τ ] = N.

Proof of Theorem 8.2. It is well known [29, Thm. 2.A.1,
p. 57] that the comparison (23) between the {1, 2, . . .}-valued
rvs T (R1) and T (R2) is equivalent to

∞∑
τ=n

P
[
T (R1) > τ

] ≤ ∞∑
τ=n

P
[
T (R2) > τ

]
(56)

for all n = 1, 2, . . ., with

E
[
T (R1)

]
= E

[
T (R2)

]
. (57)

Fix k = 1, 2. For each i = 1, . . . , N , let {V k
t (i), t =

0, 1, . . .} and {Ṽ k
t (i), t = 0, 1, . . .} be the indicator sequences

(5) associated with Rk and R̃
k
, respectively. From Lemma

C.1, the expression (55) for n = 1, 2, . . ., can be rewritten as
∞∑

τ=n

P
[
T (Rk) > τ

]

=
N∑

i=1

E
[
1

[
R̃k

� �= i, � = 0, . . . , n− 1
]]

=
N∑

i=1

E

[
n−1∏
�=0

(1 − Ṽ k
� (i))

]

=
N∑

i=1

E
[
ψ(Ṽ k

0 (i), . . . , Ṽ k
n−1(i))

]
(58)

where the mapping ψ : R
n → R of the form (51) is a

supermodular function.
For each k = 1, 2, the assumption {Rk

t+�, t =
0, 1, . . .} =⇒� {R̃k

t , t = 0, 1, . . .} yields

{V k
t+�(i), t = 0, 1, . . .} =⇒� {Ṽ k

t (i), t = 0, 1, . . .}, (59)

for each i = 1, . . . , N . But R1 ≤TC R2 implies the
comparison {V 1

t (i), t = 0, 1, . . .} ≤sm {V 2
t (i), t = 0, 1, . . .}

for each i = 1, . . . , N, and the sm comparison being closed
under weak convergence [26, Thm. 3.9.8, p. 116], it is now
plain from (59) that

{Ṽ 1
t (i), t = 0, 1, . . .} ≤sm {Ṽ 2

t (i), t = 0, 1, . . .}, (60)

for each i = 1, . . . , N . In short, R̃
1 ≤TC R̃

2
and the required

condition (56) follows upon combining (60) with (58). Lastly,
under the assumptions of the theorem, we recall from Lemma
C.1 that E

[
T (R1)

]
= E

[
T (R2)

]
= N , and (57) holds.


