
1

Traffic Sensitive Active Queue Management
Mark Claypool, Robert Kinicki, and Abhishek Kumar

{claypool|rek}@cs.wpi.edu
Computer Science Dept at Worcester Polytechnic Institute

100 Institute Road, Worcester, MA 01609, USA

Abstract— Delay sensitive applications, such as voice over IP and net-
work games, often sacrifice throughput for lower delay to obtain better
quality. Unfortunately, the Internet does not allow an application to choose
the amount of delay or throughput it receives and instead packets from all
applications receive the same best-effort service. This paper presents a new
QoS mechanism called the Traffic Sensitive Quality of Service controller
(TSQ) that provides better delay performance for delay sensitive applica-
tions and higher throughput for throughput sensitive applications. Also
contributed are quality metrics for some typical Internet applications that
can be used by an application to adapt its delay hints and evaluate QoS
based on current Internet traffic conditions. Experiments suggest TSQ’s
benefits to performance along with retention of the current best-effort In-
ternet environment without complicated traffic monitoring or policing.

I. I NTRODUCTION

Emerging applications such as IP telephony, video conferenc-
ing and networked games, unlike traditional applications,have
more stringent delay constraints than loss constraints. More-
over, with the use of repair techniques [1], [21], [17] packet
losses can be partially or fully concealed, enabling multimedia
applications to operate over a wide range of losses and leav-
ing end-to-end delays as the major impediment to acceptable
quality. Unfortunately, the current Internet does not support per
application Quality of Service (QoS).

ABE [13] provides a queue management mechanism for low
delay traffic. ABE allows delay-sensitive applications to sacri-
fice throughput for lower delays by rigidly classifying all appli-
cations as either delay-sensitive or throughput-sensitive. Thus
applications cannot choose relative degrees of sensitivity to
throughput and delay. Approaches such as CBT [20] and [18]
provide class-based and bitrate guarantees for different classes.
However, these fixed and pre-determined classes are not suf-
ficient for representing the varying QoS requirements of ap-
plications within one particular class. Similarly, DCBT with
ChIPS [2], which extends CBT by providing dynamic thresholds
and lower jitter for multimedia traffic, still limits all multimedia
traffic to the same QoS.

DiffServ approaches, such as Assured Forwarding (AF) [11]
and Expedited Forward (EF) [15], give differentiated service to
traffic aggregates. Unfortunately, the DiffServ architecture is
very complicated and requires traffic monitors, markers, classi-
fiers, traffic shapers and droppers to provide QoS. IntServ [23]
provides per flow QoS guarantees, but requires complex signal-
ing and reservations by all routers along a connection on a per-
flow basis, making scalability difficult for global deployment.
Liao and Campbell[16] propose a related approach using appli-
cation utility functions and apriori adaptation scripts whereby
wireless applications can adapt to network capacity changes re-
ported via network layer probes. However, this scheme does not
consider the delay-sensitivity demands that are importantfor the
quality of interactive applications.

This paper introduces a new Internet QoS mechanism, the

Traffic Sensitive QoS Controller (TSQ), that provides a con-
gested Internet router with per packet QoS support based on
an application’s delay sensitivity. Unlike approaches that pro-
vide fixed service classes, with TSQ each application chooses
a customized delay-throughput trade-off based on its own re-
quirements and correspondingly marks each packet with adelay
hint indicating the relative importance of delay versus through-
put. On receipt of each packet, the TSQ router examines the
delay hint and calculates an appropriate queue position where
the packet is to be inserted. A packet with a low delay hint is
allowed to “cut-in-line” towards the front of the queue, while
a packet from an application with a high delay hint is inserted
towards the end of the queue. To prevent delay-sensitive ap-
plications from gaining an unfair advantage over throughput-
sensitive applications, TSQ proportionately increases the drop
probability of the packets inserted into the queue. The morea
packet attempts to cut-in-line, the more the packet’s drop proba-
bility is increased. Since throughput-sensitive applications mark
their packets with high delay hints, they are not cut-in-line and
so do they not have their drop probability increased. TSQ still
allows Internet service to be best-effort in that it requires no per-
flow state information, additional policing mechanisms, charg-
ing mechanisms or usage control.

TSQ can be used in conjunction with most AQMs that provide
an aggregate drop probability, for example RED [8], Blue [7],
PI [12], and SFC [10]. Performance of TSQ used in conjunc-
tion with the Proportional Integral (PI) controller AQM [12]
has been evaluated with varying mixes of delay-sensitive and
throughput-sensitive flows. To quantify an application’s QoS, a
QoS metric is proposed based on the minimum of an applica-
tion’s delay quality and throughput quality. Another contribu-
tion of this work is quality metrics, based on recommended ap-
plication performance requirements, that cover a range of QoS
and throughput sensitivities: interactive audio, interactive video
and file transfer. Using TSQ, applications apply knowledge of
their QoS requirements to dynamically choose their delay hints
to maximize their Quality of Service. Evaluation results suggest
that TSQ with PI provides better quality for all applications than
PI by itself.

Section II presents quality metrics devised for fundamental
Internet applications; Section III discusses the TSQ mechanism;
Section IV describes experiments and analyzes the performance
of TSQ; and Section V summarizes our work

II. A PPLICATION QUALITY METRICS

Utilizing previous work [6], [9], [14], [25], we have devised
quality functions for several1 applications in terms of their net-

1Because of space constraints, quality functions for video conferences are
omitted here, but can be found in [3].



2

work delay and the network throughput called thedelay quality
(Qd) andthroughput quality(Qt), respectively. Overall applica-
tion quality is defined as the minimum of these two metrics:

Q(d, T ) = min(Qd(d), Qt(T )) (1)

Q(d, T ) is a normalized metric such that a value of 1 repre-
sents the maximum quality that the application can receive and
a quality of 0 represents performance that is of no use to the
application.

A. Audio Conference Quality

Audio conferences are relatively sensitive to increased delays
but less sensitive to reduced throughput. [9] suggests thatau-
dio conference quality is effectively impacted by three ranges
of delay: one-way delays of 150 ms or less means excellent
quality; one-way delays of 150-400 ms means good quality; and
one-way delays in excess of 400 ms means poor quality. Mean
Opinion Score (MOS) testing of audio conference conversations
in [14] suggests one-way delays above 525 ms means unaccept-
able quality.

Figure 1 (left) utilizes these results to graph the delay qual-
ity of an audio conference versus one-way delays. The highest
quality of 1 (equivalent to a MOS of 5) occurs when there is
no delay. The audio application has excellent quality when the
one way delay is 150 ms or smaller. As delay increases, the
initial decrease in quality is not significant, and a delay of150
ms provides the application with a quality of 0.98. However,as
the delay increases above 150 ms, the drop in quality is steep,
with a delay of 300 ms reducing quality to 0.7 (equivalent to a
MOS score of 3.5) and to 0.5 (equivalent to a MOS score of 3)
when the delay is 400 ms. When the delay is higher than 400
ms, we propose that the degradation slope is about twice the
degradation slope in quality from 150 to 400 ms delay. Thus,
the graph visually represents the three broad quality ranges de-
scribed in [9] and corresponding to MOS scores in [14], while
also providing quantitative quality metrics for intermediate one-
way delays. The set of equations governing the delay qualityof
an audio conference is as follows:

Qd(d) = −0.00133 × d + 1 d ≤ 150

Qd(d) = −0.00192 × d + 1.268 150 ≤ d ≤ 400

Qd(d) = −0.004 × d + 2.1 400 ≤ d ≤ 525

Qd(d) = 0 525 ≤ d

0

0.2

0.4

0.6

0.8

1

0 150 300 400 525

D
el

ay
 Q

ua
lit

y

One Way Delay (ms)

0

0.2

0.4

0.6

0.8

1

4 16 32 64 128

T
hr

ou
gh

pu
t Q

ua
lit

y

Throughput (Kbps)

Fig. 1. Delay Quality (Left) and Throughput Quality (Right)for an Audio
Conference

Figure 1 (right) shows a quality curve for an audio conference
as a function of the throughput that it receives (thethroughput
quality). The audio conference throughput is given a quality of 1
when the throughput is 128 Kbps since this data rate can provide

CD quality audio. The throughput quality decreases linearly as
the throughput is halved since every time one fewer bit is used
for audio encoding, the throughput of the audio codec is reduced
by half. Hence audio quality versus throughput follows a loga-
rithmic curve, where a reduction in throughput above 64 Kbps
does not greatly reduce quality, while a reduction in throughput
below 64 Kbps does. The throughput quality is 1 for 128 Kbps
throughput, decreases to 0.83 for 64 Kbps and falls to 0 when
the throughput is 2 Kbps. This is appropriate because 4 Kbps is
the lowest codec rate available for typical audio applications [5].
The set of equations for the throughput quality of an audio con-
ference is as follows:

Qt(T ) = 1 128 ≤ T

Qt(T ) = 0.24045 × log(T ) − 0.17 4 ≤ T ≤ 128

Qt(T ) = 0 T ≤ 4

B. File Transfer Quality

File transfer applications, unlike the audio and video confer-
ences, are not delay sensitive (relative to router queuing delays).
Instead, the quality of these applications is almost entirely de-
pendent on their throughput. A file transfer application’s quality
will degrade only if the delay increases on the order of tens of
seconds, which is well beyond the scope of router queuing de-
lays. Thus, the delay quality of a file transfer application is as
follows:

Qd(d) = 1 d ≤ 10000

Since, in our experiments, delays are all less than 1000 ms,
the quality of file transfer application is unaffected by router
queuing delays.

The quality of a file transfer application depends almost en-
tirely on the throughput that it can get from the network. In
our quality metrics, the quality requirements of a file transfer
are dependent upon the size of the file that it is transferring. A
small file will require a lower throughput to attain good quality
as compared to a very large file. We propose that a file trans-
fer application has maximum quality if it can finish transferring
a file in 1 second. Thus for a 10 Mb file, a quality of 1 is at-
tained from a throughput of 10 Mbps. If the throughput ob-
tained is greater than 10 Mbps, the quality does not improve,
while a decrease in quality is directly proportional to a decrease
in throughput. For a smaller file of 10 Kb, the required through-
put for a quality of 1 is only 10 Kbps. We derive the following
equation for throughput quality of file transfer applications:

Qt(T, S) =
T

S

whereS is the size of the file transferred.

III. T RAFFIC SENSITIVE QOS CONTROLLER

The Traffic Sensitive QoS controller (TSQ) provides Quality
of Service when used in conjunction with most existing Active
Queue Management (AQM) mechanisms. TSQ accommodates
delay-sensitive applications, such as interactive multimedia, by
providing a low queuing delay, while at the same time not penal-
izing the throughput of traditional throughput-sensitiveapplica-
tions, such as file transfers. TSQ achieves this per-application



3

QoS by providing a trade-off between queuing delays and drop
probabilities. Applications inform TSQ about their delay sen-
sitivity by providing adelay hint(see Section III-A). A TSQ-
enabled router then provides packets with a low delay hint a
lower delay by using a “cut-in-line” mechanism (see SectionIII-
B). In order to avoid penalizing throughput-sensitive appli-
cations, TSQ adjusts the drop probability of a delay-sensitive
packets based on the reduction in delay it provides to the packet
(Section III-C). Figure 2 summarizes the TSQ algorithm at the
end of this section.

A. Delay Hints

Applications wanting to use the benefits of TSQ need to pro-
vide the router with a measure of their sensitivity to delay.This
is done by providing adelay hint(d) in the header of each IP
packet, where a low delay hint means that the application re-
quires a low network delay for good quality and a high delay
hint means that the application is more throughput-sensitive and
does not require a low delay for good quality. Applications such
as interactive multimedia and network games will typicallypro-
vide low delay hints, while applications such as file transfer will
typically provide the highest delay hints.

Based on the discussion in [24], there are 4 to 17 bits avail-
able in the IP header that can be used to carry delay hints. In our
current implementation of TSQ, we use a 4 bit delay hint,2 pro-
viding a range of delay hints from 1 to 16. Thus, an application
which is extremely delay-sensitive will choose a delay hintof 1,
in contrast to an application which can tolerate some delay that
chooses the maximum delay hint of 16.

B. Cut-in-Line

Typically routers use a FIFO queue to hold packets. Since all
packets are enqueued at the end of the queue, all packets, and
therefore all applications, receive the same queuing delay. The
queuing delay obtained by each packet depends upon the current
queue length (q) and the outgoing link capacity. TSQ provides
delay-sensitive packets with a lower queuing delay by “cutting”
packets in line according to their delay hints. A packet from
a delay-sensitive application with a low delay hint will gener-
ally be queued towards the front of the queue leading to a lower
queuing delay for that packet. A packet from a throughput-
sensitive application having a high delay hint will generally be
enqueued towards the end of the queue. However queue inser-
tion based solely on delay-hints may cause starvation of packets
with high delay hints. For example, a packet with a high delay-
hint at the end of the queue can be starved in the face of a large
number of low delay-hint packets cutting in line at (or above)
the link capacity in front of this packet.

To avoid starvation, the TSQ cut-in-line mechanism is imple-
mented by using a weighted insertion into the queue. At the
arrival time of a packet (ta), TSQ calculates the queuing delay
that the packet would experience if it was inserted at the endof
the queue; we call this queuing delay thedrain time(td) of the
queue. TSQ calculates the packet weight (w) according to its
delay hint, drain time and time of arrival at the queue:

2The optimal number of bits that should be used for delay hintsis left as future
work.

w =
d × td

2n
+ ta (2)

wheren is the number of bits used to represent the delay hint (4
in our current implementation). The packets in the queue arein-
serted in order sorted by their weights, with lower weight pack-
ets inserted towards the front of the queue and higher weight
packets inserted towards the end of the queue. The new posi-
tion of the packet in the queue is referred to asq′. Thus, a high
delay-hint will cause a packet to have a higher weight and hence
a higher value ofq′ (a delay hint of 16 will cause a packet to
have aq′ = q).3 Newly arriving packets have their weights
slightly increased due to the effect of the time of arrival ontheir
weight, thus preventing starvation of older packets. Note,too,
that since the weight of the current packet includes the drain
time of the queue, packets arriving after the current packetthat
have the same weight will always be placed behind the current
packet.

This cut-in-line requires a weighted insertion that can be
implemented using a probabilistic data structure such as skip
lists [22], giving complexityO(log(q)), whereq is the number
of packets in the queue.

C. Drop Probability

During congestion, many AQM techniques produce an aggre-
gate drop probability (p)) which is applied to packets arriving
at the router. All arriving packets are subject to the same drop
probability, with packets that are randomly dropped not being
inserted in the queue. However, in the case of TSQ, a uniform
drop probability for all packets will potentially result ina higher
throughput for the delay-sensitive applications, since TSQ pro-
vides a lower delay to its packets. Hence, TSQ increases the
drop probability for packets with delay hints lower than the
maximum (2n, or 16 in our implementation). The increase in
drop probability is related to the reduction in queuing delay that
the packet would otherwise experience if it were inserted inthe
queue in the position calculated by the cut-in-line mechanism.
Thus, for a packet from a throughput-sensitiveapplicationwhich
would otherwise be inserted at the end of the queue, the drop
probability from the AQM technique is not increased, hence the
application benefits from any throughput advantage provided by
the underlying AQM.

To determine the appropriate drop probability of packets that
have cut in line, TSQ starts with the approximate steady state
throughputT of a TCP flow in which throughput is inversely
proportional to the queuing delay and the square root of the loss
rate [19]:

T =
K

r ×√
p

(3)

wherer is the round-trip time,p is the loss rate andK is a con-
stant for all flows based on the network conditions. The round
trip delayr is the sum of the queuing delay and the round-trip
propagation delay. Since some packets can have a decreased
queuing delay by cutting in line, TSQ compensates by increas-
ing the drop probability for those packets. Let the new queuing

3To support legacy applications and incremental deployment, TSQ assumes
any packet that does not provide a delay hint implicitly requests the maximum
delay hint, 16.



4

delay after TSQ beq′, the new drop probability bep′, and the
round-trip propagation delay bel. The throughput obtained by
the flow will now beT ′:

T ′ =
K

(l + q′) ×
√

p′
(4)

To prevent the new throughputT ′ from being greater than
the throughput obtained without TSQ, (T ′ ≤ T ), the new drop
probabilityp′ is calculated as:

p′ =
(l + q)2 × p

(l + q′)2
(5)

The value ofp′ depends on the new queue position value
q′ and the queue positionq if TSQ were not present (in other
words, the instantaneous queue length when the packet arrived).
p′ also depends on the one-way propagation delayl of the net-
work. Since it is difficult for the router to determine the one-
way propagation delay of every flow, the value ofl is kept as a
constant, but is typically between 40-100 ms for many Internet
links [4]. Network administrators settingl to lower values in
this range will result in a more aggressive increase in drop prob-
ability, while settingl to higher values in this range will result
in less aggressive increase in drop probability. For our experi-
ments, the one-way propagation delay constant is fixed for the
router at 40 ms.4

Constants:
C - capacity of outgoing link, l - network latency
n - number of bits used for delay hints
Variables:
d - packet delay hint, p - AQM drop probability
p’ - drop probability after TSQ, q - current length of queue
q’ - position to inserted packet, ta - packet arrival time
td - packet drain time, w - packet weight

on receiving packetpkt:

td = q

C
// Calculate queue drain time

w =
d×td

2n + ta // Calculate packet weight

q′ = weightedInsert(w,pkt) // Calculate position in queue

p′ =
(l+q)2×p

(l+q′)2
// Calculate drop probability

if (uniform[0,1]≤ p′) then drop(pkt)
elseinsertPacket(q′ , pkt)

Fig. 2. TSQ Algorithm

IV. EXPERIMENTS

We implemented TSQ over an existing Active Queue Man-
agement (AQM) technique, the PI-controller [12] (or just PIfor
short). PI attempts to provide a steady queuing delay by keep-
ing the queue size stable around a target queue length, adjusting
the drop probability in response to the rate of incoming packets
in order to meet that target. Like many AQMs, PI provides an
explicit aggregate drop probability required for TSQ.

All implementation and experiments were done in the Net-
work Simulator (NS-2).5 Figure 3 shows the generic network

4Note that this value is fixed for the TSQ router for all experiments although
the flows may have different propagation delays.

5http://www.isi.edu/nsnam/ns/

Fig. 3. Network Topology.

topology for all experiments. There are N sources S1...SN and
N destinations D1...DN. The N flows are connected to a single
common link giving rise to a bottleneck at router R1. Each of the
connections between the sources and the bottleneck router have
a link capacity of 50 Mbps and a propagation delay of 50 ms.
Similar connections exist between the egress router (R2) and
the destinations. The bottleneck link capacity is B Mbps. The
one-way propagation delay of the network is D ms. The bot-
tleneck router runs PI [12] plus our implementation of the TSQ
algorithm in Figure 2. PI is configured with the values recom-
mended in [12]:α = 0.00001822, β = 0.00001816, ω = 170,
qref = 200 packets andqmax = 800 packets. The packet size is
1000 bytes.

A. Audio Quality Evaluation

In this experiment the performance of a single interactive
audio flow sharing the network with other TCP based bulk
file transfer flows is evaluated. Details on the performance of
a videoconference flow, an application that is both delay and
throughput sensitive, are omitted here due to lack of space,but
can be found in [3].

The bottleneck link capacityB = 15 Mbps and the one-way
propagation delayD = 50 ms providing one-way propagation
delays between each of the sources and their respective destina-
tions at 150 ms. The number of flowsN = 100, with 99 TCP
based FTP bulk transfer flows that are not delay sensitive andso
provide the maximum delay hint of 16, and 1 audio conference
flow simulated as a TCP-friendly6 source sending data at a rate
of 128 Kbps. The experiment is run for 100 seconds of simula-
tion time, whereupon the delay hint of the audio flow is changed
for the next run in order to evaluate the performance of the audio
flow over a range of delay hints.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

20 40 60 80 100 120 140

C
um

ul
at

iv
e 

D
en

si
ty

Queueing Delay (ms)

Hint 1
Hint 6

Hint 16

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 100 150 200 250 300

C
um

ul
at

iv
e 

D
en

si
ty

Throughput (Kbps)

Hint 1
Hint 6

Hint 16

Fig. 4. CDF of Queuing Delay (left) and Throughput (right) Audio Conference
Flow with Delay Hints of 1, 6 and 16.

Figure 4 (left) depicts a cumulative density function (CDF)

6A flow is TCP-Friendlyif its data rate does not exceed the maximum data
rate from a conformant TCP connection under equivalent network conditions.



5

of the queuing delay experienced by the audio flow for 3 differ-
ent delay hints. The CDF is plotted for a delay hint 1, which
gives the minimum delay, a delay hint 6, which gives the au-
dio flow its optimal quality, and a delay hint 16, which gives
the maximum delay. The median queuing delay is lower for
the lower delay hints, and the CDF curves for hints 1 and 6 are
steeper than for hint 16, which implies that there is less varia-
tion in the per-packet queuing delay with lower hints. Hence,
for delay sensitive applications an AQM with TSQ can provide
a lower average queuing delay with less variation than can an
AQM alone.

Figure 4 (right) shows a CDF plot for the throughput (calcu-
lated every 300 ms, about the round-trip time) obtained by the
audio flow for delay hints of 1, 6 and 16. The throughput distri-
butions of the file transfer flows are similar to the distributions
obtained with delay hints of 16. If TSQ were not used then the
throughput distribution would be similar to that of a flow with
delay hint 16. As is evident from the figure, the median through-
put decreases as the delay hint decreases.

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

2 4 6 8 10 12 14 16

Q
ua

lit
y

Delay Hint

Thrput Quality
Delay Quality

0.98
1

1.02
1.04
1.06
1.08

1.1
1.12
1.14
1.16
1.18

0 10 20 30 40 50 60 70 80

Q
ua

lit
y

Percentage of Audio Flows

Audio Qual
FTP Qual

Fig. 5. (Left) Throughput and Delay Quality for Audio Conference Flow versus
Delay Hint. (Right) Normalized Quality of Audio ConferenceFlows and
File Transfer Flows for Varying Traffic Mixes.

Using the quality model described in Section II and the
throughput and total delay (queuing delay plus propagationde-
lay), the quality of the audio flow for different delay hints is
computed. Figure 5 (left) shows the delay quality and through-
put quality of the audio flow with different delay hints. The
delay quality of the audio application improves with a decrease
in delay hint, while its throughput quality decreases. In other
words, as the application indicates its preference for lower de-
lay, TSQ enables it to “cut” in line more, hence getting a lower
average queuing delay which improves its delay quality. How-
ever, correspondingly the audio flow gets dropped with a higher
probability, hence achieving a lower throughput and causing a
decrease in the throughput quality. The overall quality of an ap-
plication is the minimum of the delay quality and the throughput
quality. Thus, the audio conference gets its best overall quality
(a 0.90) at a delay hint of 6. When TSQ is not used, the delay
obtained by all applications is similar to that obtained by an ap-
plication with delay hint 16, and the audio conference gets an
overall quality of 0.73.

B. Mixed Traffic Evaluation

The setup for this experiment is similar to the first set of ex-
periments (B=15, D=50, N=100). Within the 100 flows, the rel-
ative number of delay-sensitive (audio) flows is changed with re-
spect to the number of throughput-sensitive (file transfer)flows.
The traffic mixes ran include: 1 audio conference flow, 99 file

transfer flows; 25 audio, 75 file transfer; 50 audio, 50 file trans-
fer; and 75 audio, 25 file transfer.7 The audio conference flows
were a TCP-friendly sources sending data at a constant bitrate
of 128 Kbps and using a delay hint of 6 (the optimum delay
hint from Section IV-A), while the file transfer flows used the
maximum delay hint of 16.

The average quality obtained by the file transfer flows and the
audio conference flows for the various traffic configurationsis
calculated. This quality is then normalized against the quality
that the application obtained when TSQ was not enabled (the
bottleneck router ran only PI without TSQ). In other words, the
normalized quality of an application when TSQ is switched off
is 1. If an application receives better QoS when TSQ is enabled,
then its normalized quality is greater than 1. Conversely, if an
application receives lower quality when TSQ is enabled, then its
normalized quality is less than 1.

Figure 5 (right) shows that as the percentage of audio confer-
ence flows in the network increases, the average gain in quality
of the audio conference decreases. As the number of delay sen-
sitive flows increases in the network, the delay sensitive flows
will “cut” in line less than they would when there are more
throughput sensitive flows, reducing the quality gains. How-
ever, notice at all times the normalized quality is greater than 1,
hence, the QoS obtained using TSQ is always higher than the
QoS without TSQ even with an increasing proportion of audio
conference flows.

For the file transfer flows, the normalized quality increases
initially with an increase in the number of audio conference
flows. However, as the number of audio conference flows in-
creases beyond 25 percent, the normalized file transfer quality
starts gradually decreasing. Again, for all traffic mixes, the nor-
malized file transfer quality is greater or equal to 1. Thus, TSQ
provides better or equal quality for both audio conference and
file transfer applications than does the underlying AQM (PI,in
our experiments) without TSQ.

V. SUMMARY AND FUTURE WORK

This paper presents TSQ, a Traffic Sensitive QoS controller,
that responds to varying QoS requirements from diverse Internet
applications without employing complicated policing, pricing or
per-flow accounting mechanisms. Our evaluation of TSQ using
novel QoS metrics demonstrates that TSQ can significantly im-
prove the average quality of all applications over the quality ob-
tained by using an AQM without TSQ. One potential research
area is developing quality metrics for more Internet applications
and exploring alternative QoS metrics such as taking the aver-
age, sum or the product of the throughput and delay qualities.
Future work could also include building applications to take ad-
vantage of TSQ by dynamically changing their delay hints.

7The extreme case of 99 audio conference flows and 1 file transfer flow was
not evaluated, as this configuration did not cause sufficientcongestion or queu-
ing delay build-up and hence was not useful for comparative evaluation.



6

REFERENCES

[1] J.-C. Bolot, S. Fosse-Parisis, and D. Towsley. AdaptiveFEC-Based Error
Control for Internet Telephony. InProceedings of IEEE INFOCOM, New
York, NY, Mar. 1999.

[2] J. Chung and M. Claypool. Dynamic-CBT and ChIPS - Router Support
for Improved Multimedia Performance on the Internet. InProceedings of
the ACM Multimedia Conference, Nov. 2000.

[3] M. Claypool, R. Kinicki, and A. Kumar. Traffic Sensitive Active Queue
Management. Technical Report WPI-CS-TR-04-10, CS Department,
Worcester Polytechnic Institute, Apr. 04.

[4] A. Corlett, D. I. Pullin, and S. Sargood. Statistics of One-Way Internet
Packet Delays. InProceedings of 53rd Internet Engineering Task Force,
Mar. 2002.

[5] R. N. Corporation. Real Networks Guide for Audio Production, 1998.
[6] S. Dimolitsas, F. L. Corcoran, and J. G. P. Jr. Impact of Transmission De-

lay on ISDN Videotelephony. InProceedings of Globecom ’93 – IEEE
Telecommunications Conference, pages 376 – 379, Houston, TX, Nov.
1993.

[7] W. Feng, D. Kandlur, D. Saha, and K. Shin. Blue: An Alternative Ap-
proach To Active Queue Management. InProceedings of the Workshop
on Network and Operating Systems Support for Digital Audio and Video
(NOSSDAV), June 2001.

[8] S. Floyd and V. Jacobson. Random Early Detection Gateways for Conges-
tion Avoidance.IEEE/ACM Transactions on Networking, Aug. 1993.

[9] Implementation Architecture Specification for the Premium IP Ser-
vice, 2002. http://archive.dante.net/geant/public-deliverables/GEA-02-
079v2.pdf.

[10] Y. Gao and J. Hou. A State Feedback Control Approach to Stabilizing
Queues for ECN-Enabled TCP Connections. InProceedings of IEEE IN-
FOCOM, San Francisco, CA, USA, Apr. 2003.

[11] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski. Assured Forwarding
PHB Group.IETF Request for Comments (RFC) 2597, June 1999.

[12] C. Hollot, V. Misra, D. Towsley, and W. Gong. On Designing Improved
Controllers for AQM Routers Supporting TCP Flows. InProceedings of
IEEE Infocom, Anchorage, AK, USA, Apr. 2001.

[13] P. Hurley, M. Kara, J. L. Boudec, and P. Thiran. ABE: Providing a Low
Delay within Best Effort.IEEE Network Magazine, May/June 2001.

[14] S. Iai, T. Kurita, and N. Kitawaki. Quality Requirements for Multimedia
Communcation Services and Terminals – Interaction of Speech and Video
Delays. InProceedings of Globecom – IEEE Telecommunications Confer-
ence, pages 394 – 398, Houston, TX, Nov. 1993.

[15] V. Jacobson, K. Nichols, and K. Poduri. Expedited Forwarding PHB
Group. IETF Request for Comments (RFC) 2598, June 1999.

[16] R. Liao and A. Campbell. A Utility-Based Approach for Quantitative
Adaptation in Wireless Packet Networks.ACM Journal on Wireless Net-
works (WINET), 7(5), Sept. 2001.

[17] Y. Liu and M. Claypool. Using Redundancy to Repair VideoDamaged
by Network Data Loss. InProceedings of IS&T/SPIE/ACM Multimedia
Computing and Networking (MMCN), Jan. 2000.

[18] W. Noureddine and F. Tobagi. Improving the Performanceof Interactive
TCP Applications using Service Differentiation. InProceedings of IEEE
Infocom, New York, NY, June 2002.

[19] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP Through-
put: A Simple Model and Its Empirical Validation. InProceedings of ACM
SIGCOMM, Vancouver, Brisish Columbia, Candada, 1998.

[20] M. Parris, K. Jeffay, and F. Smith. Lightweight Active Router-Queue Man-
agement for Multimedia Networking. InProceedings of Multimedia Com-
puting and Networking (MMCN), SPIE Proceedings Series, Jan. 1999.

[21] C. Perkins, O. Hodson, and V. Hardman. A Survey of Packet-Loss Recov-
ery Techniques for Streaming Audio.IEEE Network Magazine, Sep/Oct
1998.

[22] W. Pugh. Skip Lists: A Probabilistic Alternative to Balalnced Trees.Com-
munications of the ACM, 33(6):668–676, June 1990.

[23] S. Shenker, R. Braden, and D. Clark. Integrated Services in the Internet
Architecture: An Overview. IETF Request for Comments (RFC) 1633,
June 1994.

[24] I. Stoica and H. Zhang. Providing Guaranteed Service Without Per Flow
Management. InACM SIGCOMM Computer Communication Review ,
Proceedings of the conference on Applications, technologies, architec-
tures, and protocols for computer communication, Aug. 1999.

[25] J. Zebarth. Let Me Be Me. InProceedings of Globecom – IEEE Telecom-
munications Conference, pages 389 – 393, Houston, TX, Nov. 1993.


