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Abstract— Peer-to-peer systems are becoming increasingly significant bias in two ways. The first cause of bias is the

popular, with millions of simultaneous users and a wide rang
of applications. Understanding existing systems and devigy
new peer-to-peer techniques relies on access to represeiita
models derived from empirical observations. Due to the larg
and dynamic nature of these systems, directly capturing gloal
behavior is often impractical. Sampling is a natural approah for
learning about these systems, and most previous studies yebn
it to collect data.

This paper addresses the common problem of selecting rep-

resentative samples of peer properties such as peer degrdimk
bandwidth, or the number of files shared. A good sampling tech
nique will select any of the peers present with equal probality.

highly dynamic nature of these systems. It is easy to imagine
the overlay as a static graph from which we want to collect a
set of peers. However, gathering a set of samples takes time,
and during that time the graph will change. In Section II-A,
we show how this often leads to bias towards short-livedgpeer
and explain how to overcome this difficulty.

The second significant cause of bias is the graph properties
of the P2P topology. A naive approach will be heavily biased
towards high-degree peers. As the sampling program exglore
the graph, each link it traverses is much more likely to lead

However, common sampling techniques introduce bias in two to a high-degree peer than a low-degree peer. We describe

ways. First, the dynamic nature of peers can bias results toards
short-lived peers, much as naively sampling flows in a routecan
lead to bias towards short-lived flows. Second, the heterogeous
overlay topology can lead to bias towards high-degree peer§Ve
present preliminary evidence suggesting that applying a dgee-
correction method to random walk-based peer selection leadto
unbiased sampling, at the expense of a loss of efficiency.

[. Introduction

different techniques for traversing the overlay to selegrp in
Section II-B and evaluate them in Section Ill via simulatitm

this preliminary work, we simulate using two types of graphs
ordinary random graphs and an actual snapshot of the Gautell
graph topology [22]. In our ongoing work, we are adding other
types of random graphs, such as certain power-law random
graphs and small-world graphs, to explore the robustnetsgeof
considered techniques to different types of graph strestBy

Peer-to-peer (P2P) systems are becoming increasingly P@Biparing and contrasting the performance of differertitec
ular, with millions of simultaneous users [1] and covering ﬁiques in different settings, we can gain a better undedatan

W.Ide range of applications, from file-sharing programs I'ka the most efficient techniques to consistently yield usbih
LimeWire and eMule to Internet telephony services such Il_;0n|y slightly biased) samples

Skype. Understanding existing systems and devising new P In summary, bias in sampling from P2P systems can be

:jeei?vrggl;resmrzlﬁsirci)cna|h$s|2?v:§gﬁ§thzxzsefi),:eSsenstfgwe ﬂoqﬁ%roduced along two axesi) temporal (due to differences in
P g systemanw eer lifetimes) andii) topological (due to differences in peer

ever, due to the large and dynamic nature of P2P syste - .
it is often difficult or impossible to directly capture gldbar.ﬁggree)' Our findings show that these factors cause heasy bia

behavior. Sampling is a natural approach for learning abo|ntcommonly used techniques su.ch. as brethh-first search .and

these sy'stems using light-weight data collection, relincy Fandom V\_/alks. We present prehmmary evidence suggesting
. ) ' that applying a degree-correction method to random waltidea

most previous studie€(g, [4], [19]). One challenge, however,to unbiased sampling, at the expense of a loss of efficiency.

is ensuring that the samples are representativeifbiased. Section IV discusses related work, and Section V concludes

This paper addresses the common problem of selectl{p% paper with a summary of our findings and plans for future
representative samples péer propertiesuch as peer degree,

link bandwidth, or the number of files shared [24]. To examine

peer properties, any sampling technique needs to locate alée Sampling Peer Properties
of peers in the overlay and gather data from them. Initially, o
the sampling program is aware of a handful of peers agg
leveraging them to learn about additional peers. Typicétlg
sampling program queries known peers to learn about th
neighbors, incrementally exploring a fraction of the oagrl
graph! A good sampling technique will select any of the pee

ur goal in this paper is to tackle the common problem of
mplingpeer properties which covers a wide range of in-
teresting aspects. Examples include products of user ®hav
dlich as the number of files shared and link bandwidth), local
I%raph properties (such as degree and clustering coefficient

nd dynamic properties (such as remaining uptime). Global
V\broperties, such as the graph diameter, cannot be detatmine
uggsily using sampling and tend to rely on heavy-weight
solutions, such as crawling the entire overlay [21].

Collecting a sample of a property is a two-step process.

commonly used sampling techniques can easily introd
1other sampling programs rely on passive monitoring or gogryfor

popular files, but such approaches are fundamentally bitmsedrds peers

generating more traffic or with those files. We do not consttiem further.



First, the selection process explores part of the P2P gwverlg at a particular instant This means we must view; ; and
and selects a peer. Second, a property-specific measurementas distinct samples even though they come from the same
tool gathers the sample. For example, sampling the clasterpeer.The key difference is that it must be possible to sample
coefficient requires gathering the neighbor informationtfe from the same peer more than once, at different points in.time
selected peer and all of its neighbors. Sampling the remai¥e may accomplish this goal by sampling selectirandv; ;
ing uptime requires monitoring the peer until it departs theniformly from the sets:
network. This paper is concerned with the first step, selgcti tet,to+ Al vy €Vi
a peer, which is the common aspect for sampling any p
property.

The goal is to select annbiasedsample, meaning selecting
the sample uniformly at random. Additionally, the samplin

process should also befficient meaning that the sampling Returning to our simple example, this approach will cor-

pracess should not have to explore a large portion of thehgre\‘%ctly select long-lived peers half the time and shortdive

tq select an unbiased sample. As we described in Secnog)é,ers half the time. When the samples are examined, they will
bias can be caused by the dynamic nature of P2P syst

d by thei h struct In the followind t " fBw that half of the peers in the system at any given moment
and by their graph structure. in the 1olowing tWo SECUores W, 5 o many files while half of the peers have few files, which

introduce mechanisms to cope with these problems. is exactly correct.

A. Coping with dynamics We can now divide the sampling process into two pdjjs:

We develop a formal and general model of a P2P systemsaeéectlng times uniformly at random arqm)_ selecting peers
uglformly at random from all peers available at that time.

follows. If we take an instantaneous snapshot of the systemS lecting i formlv at q b | hieved
time ¢, we can view the overlay as a grapi{V, E) with the electing umes untiormly at rahdom can be easily achieve

peers as vertices and connections between the peers as e(? etgﬁnﬁratlngt t|mes t;]etweertl. samples us;ng I?n texponen?al
Extending this notion, we incorporate the dynamic aspect r tlrj]'on' each ¢ ?setnthlrr:et,. we mt:}s hco %C a s?m[f[)he
viewing the system as an infinite series of time-indexedlgsap om the peers present at that ime, which reduces 1o ine
G: = G(Vi, E;). The most common approach for samplin roblem of selecting a vertex ur_1|formly at random_ from a

from this series of graphs is to define a measurement wind rf';\ph. We address this problem in the next subsection.

[to,to + A], and select peers uniformly at random from th8. Coping with graph structure

set. In this section, we discuss several techniques for sefpctin
to+A . .
v _ U v vertices randomly from a_grap_h. When sampling from a P2P
to,fo+4 o K system, we typically begin with knowledge of at least one
- peer and a method to query known peers for a list of their
This formulation is appropriate if peer session lengths afrighbors. The goal is to explore a small fraction of the
exponentially distributedi€., memoryless). However, exist-graph yet return a peer (vertex) uniformly at random. In
ing measurement studies [10], [17], [19], [22] show sessidection I, we will evaluate the techniques discussedelo
lengths are heavily skewed, with many peers being preseging simulation.
for just a short time (a few minutes) while other peers remain Two classical ways to explore a graph are via breadth-first
in the system for a very long time.€., longer thanA). As  (BFS) and depth-first search (DFS), often used by sampling
a consequence, as increases, the sét;, ., +a includes an techniques that crawl a portion of the overlay topology (as
increasingly large fraction of short-lived peers. in [19]). These techniques add newly discovered peers to a
A simple example may be illustrative. Suppose we wish ueue and choose new peers to explore by removing them
observe the number of files shared by peers. In this examfiiem the queue. They differ only in that BFS uses a FIFO
system, half the peers are up all the time and have many filggeue while DFS uses a LIFO queue. Neither of these tech-
while the other peers remain for around 1 minute and amjues allows duplicates, automatically causing bias tdea
immediately replaced by new short-lived peers, who have fesort-lived peers as described in the previous subsedtien.
files. The technique used by most studies would observe #h@vertheless include BFS in our simulations, to demorestrat
system for a long time4) and incorrectly conclude that mostthat it performs poorly even in a static system.
of the peers in the system have very few files. Moreover, theirAnother family of techniques are based on conducting a
results will depend on how long they observe the system. Thendom walk. The simplest approach is to perform a random
longer they watch, the larger the fraction of observed peexalk of lengthr, select the ending peer as a sample, then
with few files. perform another walk of lengthr to get the next sample.
One fundamental problem of this approach is that it focus@ghile this technique offers low bias for some types of graphs
on samplingpeersinstead ofpeer propertieslt selects each its efficiency is somewhat low1). Graph theory [8], [15]
sampled vertex at most once. However, the property at theggests that a good choiceris> log |V|.
vertex may change with time. Our goal should not be to selectA more efficient technique performs a random walk of

a vertexv; € Ui":toA V4, but rather to sample the property atength », returns that peer as a sample, then continues to

s sampling technique will not be biased by the dynamics of
peer behavior, because the sample set is decoupled from peer
session lengths. To our knowledge, no prior P2P measurement
Yiudies relying on sampling use this approach.
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Fig. 1. Bias of different sampling techniques; after cdlleg & - |V'| samples, the figures show how many peersXis) were selected times
Oracle RWDC RSDC RW RS BFS Oracle RWDC RSDC RW RS BFS
Std. Deviation 32 32 32 206 207 210| | Std. Deviation 32 65 32 865 866 806
Skew 0.03 0.03 0.03 0.21 0.21 0.22 Skew 0.03 -4.28 0.03 47 47.92 17
Kurtosis -0.01 -0.01 0.00 0.04 0.03 0.08 Kurtosis -0.01 30 0.00 3084 3087 703
Efficiency 100% 2% 4% 8% 99%  99% Efficiency 100% 2% 4% 8% 99%  99%
(@ Random Graph () Gnutella
TABLE |

BIAS OF DIFFERENT SAMPLING TECHNIQUESSTATISTICS CORRESPONDING WITHFIGURE 1

walk and return every additional peer along the walk as ae Correlation: Selecting related peers
sample [8]. However, by not walking steps between every . Efficiency: How much work is done to collect samples
sample, the samples may be correlated due to the inherif, this preliminary work, we examine the behavior of
relationship between_adjacem peers. We call this tecleniqghmpling techniques over two types of graplis:ordinary
a “random stroll”. This technique is similar to DFS, exceptazndom graphs angii) a Gnutella ultrapeer topology snapshot
it allows duplicates. Since we prefer algorithms that alloyom February 2005, examined in detail in our previous work
duplicates, we omit DFS from our evaluations. on characterizing the Gnutella topology [22]. To make uisefu
One problem with random walk techniques is that theyomparisons, the random graphs have the same number of
are biased towards high-degree peers. It is well-known thattices (161,680) and edges (1,946,596) as the Gnutella
they visit peers with frequency proportional to the peergpology. To generate edges for the random graphs, we select
degree [15]. One way to compensate for this problem is to a”ﬁ‘airs of nodes at random until we have the desired num-
the sample-selection criteria slightly. If a peer is a cdath per of edges, skipping duplicate edges and self-edigas.
for sampling, select it with probability, whered is the peer's chose to use these random graphs because they have simple
degree, otherwise continue the walk and consider the N&¥bperties and are easy to understand, making them a good
peer? . . . baseline for comparisons. We chose the Gnutella topology to
For comparison purposes, we can define an ideal sampligéhmine how the sampling techniques would behave on a real
technique that uses an oracle to select a peer unif_ormlysgn,tstem_ Compared to a random graph, the Gnutella topology’s
random from all peers that are currently present. Whilerofi§iegree distribution is significantly more skewed, and it has
impractical on real P2P networks, we can easily select pegfgnificantly more clustering. In our ongoing work, we are

uniformly at random in a simulator. There is no bias becauggp|oring the robustness of these sampling techniques aver
the selection is not correlated witny other peer properties. yige variety of common types of graphs.

In summary, we consider the following techniques:

o Uniformly random (Oracle) A. Measuring Bias

« Breadth-first search (BFS)
« Random walk (RW)
« Random stroll (RS)

« Random walk with degree correction (RWDC)
« Random stroll with degree correction (RSDC)

[1l. Evaluation

Uniformly random sampling €.g, using an oracle) will
select each peer with equal probability. A poor sampling
technique will select some peers with much greater proiabil
than others. In a simulator, we can compare other sampling
techniques to the ideal as follows. For some gréfifv, E),
we use each sampling technidue select a very large number
of samples,k - |V| (for example,k 1000). We record

In Section 11-B we defined several techniques for samplifgpw many times each node is selected. The typical node
peers from a P2P system. In this section, we use simulatigould be selected times, with other nodes being selected
to explore the performance of these techniques according terhis process is not guaranteed to generate a connected, guatphill do

three criteria:

« Bias: Selecting some peers over others

2We would like to thank Christos Gkantsidis of Microsoft Ressh for

suggesting this technique.

so with high probability.

4Since BFS does not allow duplicates, it cannot sanipldV| peers in
one execution. To simulate realistic usage, we initiallyfgren one random
walk to reach a random starting point, then perform a BFS teaiol,000
samples. We reinitialize the search and repeat until we kaJé&’| samples.
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Fig. 2. Correlation of different sampling techniques; &ftellecting 1000 - |V| samples, the figures show for a pair of peers (A, B) what péagenof the
time (z-axis) did B appear whenever A appeared, as a CCDF over lomifiairs of (A, B).

close tok times approximately following a normal distributionTable | provides further evidence. For random graphs, tee/sk
with variancek.® A good sampling technique must produce and kurtosis for these techniques is close to zero, suggesti
similar distribution close to selecting uniformly at ramdo normality. For Gnutella, the skew and kurtosis are quitgdar
If the variance is higher, the technique is biased, unfairlyhe bias in these techniques is caused primarily by setgctin
selecting some peers more than others. peers with higher degree, which explains why the results are
If a candidate technique produces a distribution similar fwormally distributed for ordinary random graphs (which éav
the ideal, this is evidence that the technique is unbiased approximately normally degree distribution) but nottfue
Although it may be possible to deliberately construct a bddnutella topology (which does not).
sampling technique that would pass this test, in practice aFinally, we see that BFS behaves similarly to RW and RS
sampling technigque with aystematic biawill have signif- for ordinary random graphs but not for the Gnutella topology
icantly more variance than the ideal. Some techniques mAgain, this is a result of the graphs’ degree distributidriese
not even produce a normal distribution, resulting in higbvek techniques respond the same way to normally distribute@ nod
and kurtosis (statistics which are very close to zero fordam degrees, but respond differently to a more skewed distabut
from a normal distribution). Specifically, the RW and RS techniques are very prone to
The results for each of our candidate techniques are shotepeatedly selecting the few high-degree peers in Gnutella
in Figure 1 usingc = 1000. Additionally, Table | presents the Because BFS maintains a short history and will not select the
standard deviation, skew, and kurtosis. In cases wherépteult same high-degree nodes during the same sampling session, it
lines were visually indistinguishable, we have plottedyanie  is somewhat more balanced, thus leading to a somewhat lower
of the lines for clarity. Specifically, RSDC performs just askew and kurtosis (as shown in Table I(b)).
well as selecting peers uniformly at random using an oracle.ln summary, BFS, RW, and RS exhibit significant bias.
On the other hand, without degree correction both randdbegree correction for random walk and random stroll cause
walk (RW) and random stroll (RS) perform poorly, exhibitinghese techniques to perform well, with RSDC exhibiting no
significantly higher standard deviation than the ideal. BI$® bias on either graph type.
exhibits significant bias. The bias of these techniquesss al . .
evidenced by large standard deviations, as shown in TableH: Measuring Correlation

Comparing the data for ordinary random graphs (Fig. 1(a), A technique that has an equal probability of selecting each
Tab. I(a)) and the Gnutella topology (Fig. 1(b), Tab. I(b)beer may still tend to select peers in groups. That is, thetees
several things become apparent. First, we see that Oraglay becorrelated BFS is an obvious example of a technique
and RSDC perform the same on both types of topologiagith correlation; if a peer is selected, it becomes verylikes
evidence that RSDC is unbiased and not adversely affectedigighbors will also be selected in the same sampling session
graph structure. Second, RWDC performs the same as Oradleewise, random stroll may exhibit correlation since itests
and RSDC on the random graph but is slightly skewed ateighboring peers.
the Gnutella topology. We are unsure what introduces thisone method of measuring correlation is to examine the
bias in RWDC, but not RSDC, and plan to study this igjistribution of the percentage of sampling sessions in khic
our ongoing work by looking for patterns across the ovepode A is selected that also include node B, for all nodes A and
sampled and under-sampled peers from RWDC. Third, v&e We define a sampling sessions as a set of 1,000 consecutive
see that the results for RW, RS, and BFS appear normadimples. A good sampling technique will show a very low
distributed for ordinary random graphs but not for the Ghaite percentage for every possible pair. A sampling techniqul wi
topology. In addition to drawing this conclusion based &l8u  sjgnificant correlation will contain some pairs of peersttha
on the presence or absence, respectively, of the bell-dhap@quently appear together. If we plot the distribution as a
curve centered around the meah & 1000), the data in CCDF, this poor behavior will manifest as a long tail. How-

5Based on the normal approximation of a binomial distributisith p —  €V€T, this method requiregg(n”) memory, which is somewhat

ﬁ andn = k|V| prohibitive forn = 161, 680. To overcome this difficulty, we



randomly select a large subset (1 million) of the possibiespawith good properties. Our work is quite different; instead
of nodes and examine the correlation between only those.paaf sampling a graph from a class of graplesir concern is
The results are shown in Figure 2. As expected, breadgampling peers from a particular graph
first search (BFS) exhibits significantly more correlatian ( Others use sampling to extract information from graphs,
longer tail) than any of the other techniques, followed bg.g, sampling a representative subgraph from a large, in-
RS. Interestingly, RSDC appears to perform just as well &®ctable graph, while maintaining properties of the origi
Oracle. The degree correction causes the random strolkéo taal [12], [13], [20]. Others use sampling as a component of
extra steps between selections, greatly decreasing tharamefficient, randomized algorithms [23]. However, these i&sid
of correlation. RWDC also performs well. rely on having knowledge of the graph in advance. Our prob-
Random walk without degree correction performs well ovdem is quite different because we have imperfect informmatio
the ordinary random graphs but exhibits slight correlatver A closely related problem to ours is sampling Internet
the Gnutella topology. This is again a case where the degreeters by running traceroute from a few hosts to many ad-
distribution affects the performance of the sampling téghe. dresses. Using simulation [14] and analysis [2], resedrolvs
Over the Gnutella topology, the sampling process for RW tbhat traceroute samples can lead to the appearance of a-power
so heavily biased (as shown in the previous subsection) layv degree distribution regardless of the true distributidke
the degree distribution that it causes correlations to odou our study, they evaluate sampling when there is imperfect
other words, a sampling session often returns a similar fsetimformation. Our study differs in its basic operation foagh-
high-degree peers. In the ordinary random graph, the biaseigploration. In their study, the basic operation is “Whathis
not strong enough to cause significant correlation sinceengpath to this address?”. In our study, the basic operation is
of the peers are of exceptional degree. “What are the neighbors of this peer?”.
Another closely related problem is selecting web pages uni-
formly at random from the set of all web pages [3], [9], [18].
Aside from bias, another important metric for evaluating\/eb pages natura”y form a graph' with hyper-"nks forming
the usefulness of a Sampling teChnique is its eﬁ:iCiency. O@gges between pages. Unlike peer-to-peer networkS, tlpm gra
reason for sampling is to reduce the amount of work requirggldirectedand only outgoing links are easily discovered. Much
to collect useful data. If the Sampling technique is inedit] of the work on Samp"ng web pages therefore focuses on
it does not achieve that goal as well as an efficient techniqé&timating the number of incoming links, to facilitate degr
Initially, any sampling technique begins with knowledgeaof correction. Unlike peers in peer-to-peer systems, webgare
small set of peers in the system. It iteratively queries pé&r generally regarded as relatively stable, and temporalesaof
a list of their neighbors and returns a subset of these désedv sampling bias have not been considered in the web context.

peers as the samples. As the basic operation is the neighborgeveral properties of random walks have been extensively

C. Measuring Efficiency

query, we measure the efficiency as follows: studied analytically [15], such as the access time, covee,ti
efficiency— number of samples produced and mixing time. While these properties have many useful
number of peers queried applications,to our knowledge the application of randortkea

A technique that is 100% efficient returns a sample sat a method of selecting nodes uniformly at random from
containing every peer that it queried. The efficiency dogs nan unknown graph has not been well studied. Additionally,
reveal anything about the quality of the samples; it is simphnalytical techniques are only useful for examining classe
a measure of how easily the samples are collected. graphs which can be expressed mathematically, while in our

The efficiencies of the various techniques we examine am@rk we also examine a graph (the Gnutella topology) that
shown in the bottom row of Table I. BFS and RS are both vewyas captured empirically.
close to 100% efficient. However, as the previous subsextion A number of papers [6], [8], [16] have made use of random
have shown, they are also heavily biased. RW, in additiavalks as a basis for searching unstructured P2P networks.
to being biased, is only 8% efficient. RWDC and RSDC andowever, searching simply requires locating a certain giec
unbiased but are only 2% and 4% efficient, respectively. Nodé dataanywherealong the walk, and is not particularly con-
that the efficiency of the degree correction techniquesmigpe cerned if some nodes are preferred over others. Gkantsidis
on the degree distribution of the graph. They will be moral. additionally use random walks as a component of their
efficient on low-degree graphs and less efficient on highrekeg overlay-construction algorithm.

graphs. V. Conclusions and Future Work

IV. Related Work In this paper we have explored several techniques for
Sampling from a class of graphs has been well studied sampling from P2P systems. One of our contributions is to

the graph theory literature [5], [11], where they define &slashow that unbiased sampling must allow the same peer to

of graphs sharing some propertg.d, degree distribution) be selected multiple times to avoid bias correlated withr pee

and prove that a particular random algorithm can generaessions lengths.

all graphs in the class. Coopet al. [7] use this approach to We simulated each technique over ordinary random graphs

show their algorithm for overlay construction generategpps as well as a real Gnutella topology and evaluated how much



bias and correlation they introduce as well as their effigjen Methods for Sampling Pages Uniformly from the World Wide Weéb
We found that the commonly used BFS technique, while effi- AAAI Fall Symposium on Using Uncertainty Within Computatio
cient, '_erdUC?S §|.gn|f|cant. samphng bmg._Condqctmgqu [19] S. Saroiu, P. K. Gummadi, and S. D. Gribble. Measurind an
walks is also significantly biased and additionally is ireét. Analyzing the Characteristics of Napster and Gnutella slost

The random stroll technique corrects the inefficiency, byt —Multimedia Systems Journa8(2), 2003.

. ianifi v bi d. Each of th hni éZOé M. P. H. Stumpf, C. Wiuf, and R. M. May. Subnets of scaleef
re_malns signi 'CantY lased. Each of these Fec_ ”'ques F'€ networks are not scale-free: Sampling properties of ndtsvor
biased due to the influence of the degree distribution. We Proceedings of the National Academy of Sciend@2(12), 2005.
describe a “degree correction” modification to the randofll D- Stutzbach and R. Rejaie. Capturing Accurate Snapsbibthe

. . Gnutella Network. InGlobal Internet Symposiun2005.
walk and random stroll techniques that corrects the b|a}§2] D. Stutzbach, R. Rejaie, and S. Sen. Characterizingrutsred

resulting in samples that appear just as accurate as using an Overlay Topologies in Modern P2P File-Sharing Systemsintarnet

oracle. However, there is a significant decrease in effigienc_Measurement Conferenc2005. _

h . h hni [23] A. A. Tsay, W. S. Lovejoy, and D. R. Karger. Random Samgplin
when using these techniques. Cut, Flow, and Network Design Problemilathematics of Operations
In our ongoing work, we are extending our study to include Research24(2), 1999.

. _ S. Zhao, D. Stutzbach, and R. Rejaie. Characterizingskn the
additional types of random graphs, such as power law rand&ﬂ Modern Gnutella Network: A Measurement Study. Ntultimedia

graphs and small-world graphs. By comparing and contm@stin - computing and Networking2006.
the performance of different techniques in different sesi

we can gain a better understanding of the most efficient

techniques to yield unbiased samples. Additionally, we are

exploring techniques for estimating global propertieshsas

the number of peers in a P2P system or the diameter of an

overlay network by exploring only a fraction of the graph.

References

[1] slyck.com.htt p://wwmv. sl yck. com 2005.

[2] D. Achlioptas, A. Clauset, D. Kempe, and C. Moore. On thasBof
Traceroute Sampling; or, Power-law Degree Distributian®kegular
Graphs. InSymposium on Theory of Computirgp05.

[3] Z. Bar-Yossef, A. Berg, S. Chien, J. Fakcharoenphol, Bnd\Veitz.
Approximating Aggregate Queries about Web Pages via Random
Walks. InInternational Conference on Very Large Databas2@00.

[4] R. Bhagwan, S. Savage, and G. Voelker. Understandinglafibity.

In International Workshop on Peer-to-Peer Syste@G03.

[5] B. Bollobas. A probabilistic proof of an asymptotic foula for the
number of labelled regular graphEuropean Journal of
Combinatorics 1, 1980.

[6] Y. Chawathe, S. Ratnasamy, and L. Breslau. Making Glatidle P2P
Systems Scalable. IBIGCOMM 2003.

[7] C. Cooper, M. Dyer, and C. Greenhill. Sampling regulaaprs and a
peer-to-peer network. I8ymposium on Discrete Algorithp2005.

[8] C. Gkantsidis, M. Mihail, and A. Saberi. Random Walks in
Peer-to-Peer Networks. IINFOCOM, 2004.

[9] M. Henzinger, A. Heydon, M. Mitzenmacher, and M. Najo®n
Near-Uniform URL Sampling. Irnnternational World Wide Web
Conference 2001.

[10] M. Izal, G. Urvoy-Keller, E. W. Biersack, P. A. Felber,. A. Hamra,
and L. Garces-Erice. Dissecting BitTorrent: Five Monthaiforrent’s
Lifetime. In PAM, 2004.

[11] M. Jerrum and A. Sinclair. Fast uniform generation gjular graphs.
Theoretical Computer Sciencé3, 1990.

[12] V. Krishnamurthy, M. Faloutsos, M. Chrobak, L. Lao,H.-Cui, and
A. G. Percus. Reducing Large Internet Topologies for Faster
Simulations. InIFIP Networking 2005.

[13] V. Krishnamurthy, J. Sun, M. Faloutsos, and S. Tauranflang
Internet Topologies: How Small Can We Go? lhternational
Conference on Internet Computing003.

[14] A. Lakhina, J. W. Byers, M. Crovella, and P. Xie. SamgliBiases in
IP Topology Measurements. INFOCOM 2003.

[15] L. Lovasz. Random walks on graphs: A survé&ombinatorics: Paul
Erdos is Eighty 2, 1993.

[16] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and
Replication in Unstructured Peer-to-Peer NetworksIniternational
Conference on Supercomputjrg002.

[17] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips. TherBiit P2P
File-sharing System: Measurements and Analysisintarnational
Workshop on Peer-to-Peer Systems (IPTRBD5.

[18] P. Rusmevichientong, D. M. Pennock, S. Lawrence, ant.Giles.



