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Abstract—It is well known that a packet loss in 802.11 can
happen either due to collision or an insufficiently strong signal.
However, discerning the exact cause of a packet loss, once it
occurs, is known to be quite difficult. In this paper we take
a fresh look at this problem of wireless packet loss diagnosis
for 802.11-based communication and propose a promising tech-
nique called COLLIE. COLLIE performs loss diagnosis by using
newly designed metrics that examine error patterns within a
physical-layer symbol in order to expose statistical differences
between collision and weak signal based losses. We implement
COLLIE through custom driver-level modifications in Linux and
evaluate its performance experimentally. Our results demonstrate
that it has an accuracy ranging between 60-95% while allowing
a false positive rate of upto 2%. We also demonstrate the use
of COLLIE in subsequent link adaptations in both static and
mobile wireless usage scenarios through measurements on regular
laptops and the Netgear SPH101 Voice-over-WiFi phone. In these
experiments,COLLIE led to throughput improvements of 20-60%
and reduced retransmission related costs by 40% depending upon
the channel conditions.

I. I NTRODUCTION

Carrier-Sense Multiple Access or CSMA which evolved
from the slotted-Aloha protocol in the early 1970s, has become
the de-facto mechanism for implementing distributed access
to shared communication medium. It is commonly used by
the Ethernet class of link technologies for both wired (802.3)
and wireless (802.11) media. An important facet to the proper
implementation of the CSMA method is being able to detect
concurrent access of the media by two or more entities that
usually leads to a collision.

In the case of a wired Ethernet, transmitting stations con-
tinue to listen for incoming signals (collisions) and emit a
jamming signal to notify all other stations if a collision is
detected[1]. This provides accurate and timely feedback to the
CSMA protocol which triggers a backoff in order to resolve
the concurrent access. For wireless media, such detection is
hard to realize due to the fact that the strongest signal (or
the closest source), always dominates the receiver circuity.
Thus, a receiver close to the transmitter (or possibly co-located
with it) would not be able to receive any other concurrent
transmissions thereby being unable to detect collisions. As a
result 802.11 implements CSMA with Collision Avoidance :
the receipt of a data packet is confirmed through an explicit
acknowledgement (ack) from the receiver; the lack of which
upon timeout gives an indirect indication of a collision.

A packet loss could also be due to weak signal – that
is, the signal at the receiver was insufficient given the data-
rate that the packet was modulated at. This can happen

frequently as aggressive data-rate adaptation algorithms (such
as SampleRate [2]) attempt to operate a wireless link at the
highest rate possible in order to maximize throughput and
overall system capacity. Attributing the correct cause for a
packet loss is important for wireless media, as they trigger
different choice for link parameters and thus affect the overall
performance of the wireless link. We call this problem of
determining the cause of a packet loss to collision versus weak
signal, asloss diagnosis.

Loss diagnosis in 802.11 can be challenging since by design,
the receiver provides binary (i.e. whether the packet was
correctly received or was lost) feedback on the reception
properties of a packet. Suppose, for the purposes of our
study, we had a receiver that could provide detailed diagnostic
information on the reception properties of a packet. Then,
could we do better than the current mechanisms used in
802.11? More systematically, we pose the following question
in this paper :By analyzing the bit-level error patterns in
received data and other physical layer metrics (e.g. at the
symbol-level) can we determine the cause of a packet loss
between collision and weak signal? Further, can we do this
based on a single (or a few) packet loss(es) in real-time?

Implications of loss diagnosis:Determining the cause of a
packet loss is significant as this dictates the corresponding
action to be taken at the link layer – for collisions, the
transmitting station would perform an exponential backoff,
while for weak signal the rate-adaptation algorithm would be
invoked. Figure 1 illustrates what must beideally done in
the event of a packet loss. Depending on the specific reason
for packet loss, different actions should be taken at the link
layer, each corresponding to adjusting different transmission
parameters of the wireless interface as follows:

• Collision: In case of a collision related loss, the Con-
gestion Window (CW) parameter should be double as
determined by the Binary-Exponential Backoff (BEB)
algorithm used in 802.11.

• Weak signal: For packet loss due to a weak signal, adap-
tation of data-rate and transmit power parameters must
be performed as dictated by a specific data-rate/power
adaptation algorithm.

Unfortunately the inability to determine the cause of a
packet loss in real-time, has forced a rather conservative design
for 802.11 – to start with, the cause is ‘blindly’ attributed to
collision (thereby invoking exponential backoff) for a certain
fixed number of re-transmission attempts. Further, continued
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Fig. 1. What link parameters to adapt and how depends on the cause for a
packet loss.

failure of the re-transmissions is taken as an indication of
weak signal thereby triggering rate-adaptation. For example,
on experiencing a packet loss the transmitting station doubles
the CW parameter using the BEB algorithm performs a re-
transmission of the packet after appropriate backoffs (given by
the new CW). If a certain number of re-transmissions fail, as
determined by the tunableShort/Long Retry Countparameters,
the station then decides to attribute the cause for packet loss to
weak signal, thereby triggering a rate/transmit power change
by using appropriate rate adaptation algorithms such as Auto-
rate Fallback (ARF) [3] or SampleRate.

Such a biased approach of assuming collision as the default
cause for packet loss works well for the dominant laptop-
based usage scenarios where a user is static most of time
while using the network. However, such usage patterns are
increasingly changing [4] [5] as certain emerging class of
applications such Voice or Video over WiFi allow a user to
be mobile while communicating with network. This creates
new scenarios where constant adaptation of link parameters
becomes necessary in order to operate the link at the ‘best’
setting. In such high mobility usage scenarios, packet losses
are more likely to occur due overly optimistic settings for data-
rate/transmit power parameters rather than due to collision.
Therefore, the biased approach used by 802.11 could incur
severe performance penalties by incorrectly attributing initial
packet losses to collision.

As we move to a diverse class of applications and usage
scenarios for 802.11, it is becoming increasingly important
to be able to diagnose the cause of a packet loss at the link
layer and trigger the correct method of adaptation in real-
time. Attempts to address this problem in an indirect manner,
have been observed in the design of recent approaches for
rate-adaptation such as RRAA [6]. In RRAA, the station
does not immediately conclude that a packet loss is due to
collision or weak signal. In particular, the station performs an
‘RTS test’ to identify whether a certain packet loss was due
to a hidden terminal, and if so, adaptively enables the RTS
option to guard against future possibility of collisions from
such hidden terminals. (CARA [7] also uses this approach to
handle a slightly different problem.) However, the philosophy
employed in RRAA and also mimicked in 802.11 is to conduct
active tests or experiments (by retransmitting or sending an
RRTS) to estimate collision probabilities. Being indirect, these
approaches require multiple transmissions and observations to
discern the channel conditions, thereby taking a long time to
converge to the correct transmission parameters. In contrast,
we employ a direct approach; we immediately determine
the cause of a packet loss without requiring any additional
transmissions from the wireless client, but by conducting

an empirical post-factumanalysis of the explicit feedback
obtained from the receiver.

A. Key Contributions

The following are the major contributions of this work.
• Mechanism for diagnosing wireless packet losses:In

this paper, we present the first empirical study based on failure
bit patterns of received data for loss diagnosis in 802.11,
specifically between collision and a weak signal. The key
component of our design is theCollision InferencingEngine
- COLLIE 1. COLLIE immediately determines the cause of a
packet losswithout requiring any additional transmission from
the wireless client, but by using explicit feedback from the
receiver.COLLIE performs intelligent analysis on received data
through a combination of various metrics such as bit-level
and symbol-levelerror patterns and received signal strength.
Our design consists of two components: (i) algorithms which
separate the cases of collision from weak signal through
empirical analysis; (ii) a protocol which capitalizes on the
judgement from the algorithms by aptly adjusting the correct
link-level parameters for 802.11 (backoff for collision versus
data-rate for signal). This results in significant throughput and
capacity improvements for high mobility usage scenarios.

• Design of ’symbol level’ metrics to study wireless
errors: ThroughCOLLIE, we explore new metrics that study
error properties at the level of a physical layer symbol.
For example, in Orthogonal Frequency Division Multiplexing
(OFDM) employed by 802.11a/g standards, a symbol refers
to the collection of bits modulated in single unit of time syn-
chronously across 48 sub-carriers which constitute a channel.
We find that error patterns appear differently for collision
versus weak signal when isolated to within a single symbol.
We explore the design and realization of these new metrics
such as Symbol Error Rate (SER), Error Per Symbol (EPS)
further in Section II. We believe that these metrics could
be employed in other areas such as when estimating link
bandwidth, quality or capacity.

• Demonstrating applications of COLLIE by enhancing
existing link adaptation mechanisms:Mechanisms proposed
in COLLIE can be used toenhanceexisting link adaptation
mechanisms, enabling them to differentiate between the losses
due to collision and weak signal, and thus make more intelli-
gent selection of the transmission parameters. We demonstrate
this by enhancing the Auto Rate Fallback (ARF) [3] rate adap-
tation mechanism with our collision inferencing component.
The observed throughput gains ranged from 20-60% based on
the channel conditions, level of contention, etc.

• In-kernel Implementation: Through custom driver-level
modifications, we implementCOLLIE on a standard Linux
laptop platform using an Atheros based wireless card and the
Openhal port of the Madwifi driver.

It is important to note that the issue of loss diagno-
sis does not arise in the case of cellular networks which
use a wide-variety ofcentralizedtechniques such as Time-
division, Code-division or Frequency-division multiplexing

1Apart from refering to helper dogs for shepherds, COLLIE is an Anglo-
Saxon term for “something very useful.”
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(TDMA/CDMA/FDMA) to allow sharing among multiple
users. This avoids the problem of collisions altogether, thus
eliminating the need for any link-level inferencing and at-
tributing any bit-level errors to weak signal (thereby taking
the correct action).

The rest of this paper is organized as follows. First, we
present a detailed overview ofCOLLIE, with an emphasis on
the design choices made and various components involved in
the system. In Section II, we identify an appropriate set of
metrics used for loss diagnosis through targeted experiments
designed to understand collisions and a subsequent empirical
analysis. Based on these metrics, we design a basic collision
inferencing scheme and evaluate its accuracy through rigorous
experimentation. Further in Section II-B, we propose enhance-
ments to our basic approach using feedback from multiple
APs. In Section III, we modify an existing link adaptation
mechanism using theCOLLIE framework and evaluate its per-
formance through experiments over various static and mobile
scenarios. In Section IV we discuss the related work and
finally conclude in Section V.

B. An Overview ofCOLLIE

The ideas inCOLLIE are motivated from the collision
detection mechanism employed by the Ethernet. An Ethernet
station easily detects a collision by comparing the transmitted
data with the simultaneously received data. We show that, even
in 802.11 systems, given a copy of the originally transmitted
packet and the received error packet, it is possible to make
an educated inference about the cause of transmission failure
based on the error bit-patterns of this single packet. A number
of different metrics are used to discern this cause, the most
unique among them are the ones derived out of the constituent
PHY-layer symbols of the packet. Once the cause of a packet
loss is identified, this information is fed into link adaptation
algorithms (such as transmit power, data rate adaptation etc.)
enabling them to more intelligently select the right set of
transmission parameters for all subsequent communication.

Our design (Figure 2) involves three components: a client
module which resides on a handheld or a wireless laptop, an
AP module which resides on an access point, and anoptional
backendCOLLIE server which implements some additional
algorithms.COLLIE places most of the optimization logic on
the client device, and requires only a minimal support from
the APs.

Client module: The client-sideCOLLIE module resides at
the link-layer and interacts with the link adaptation algorithms.
It has access to the physical layer and MAC layer parameters
and metrics such as signal strength, packet receptions, etc.
Our implementation ofCOLLIE client module was done in
a standard Linux 2.6 kernel that resides within the wireless
driver as a separate kernel module. This module implements
logic to discern the cause of a packet loss to either a collision
or a weak signal. This process in the client is facilitated
through specific feedback from the receiver, i.e., the AP, when
the latter receives a packet in error. In particular, the AP relays
the entire packet, received in error, back to the client for
analysis. (Of course, this is only possible if the AP manages

Fig. 2. Design of ourCOLLIE system which consists of three modules —
the client which implements a majority of the logic, the AP which performs
minimal packet relaying and an optional backend server (for some specific
multi-AP extensions).

to correctly decode the source MAC address of the packet in
error, which is actually quite typical.) Even though it appears
wasteful, this unique and somewhat simple, type of feedback,
in combination with the collision inferencing logic at the
client, provides surprisingly good performance as shown by
our experiments in section III.

The collision inferencing algorithm analyzes the data packet
that was received in error and makes an educated inference as
to the cause of the packet loss. It uses a set of metrics such
as received signal strength (communicated as a part of the
feedback process), patterns in bit-errors and their distribution,
patterns in symbol errors and their distribution, etc. One
interesting observation in our work is thatsymbol-level errors
were quite useful in discerning cause of packet losses.Section
II studies this in detail through an empirical analysis.

AP module: As shown in Figure 2, the AP-side imple-
mentation ofCOLLIE includes a module, that implements the
component to provide the kind of client feedback described
above (and in further detail in Section II). Finally, it optionally
implements constructs that allow a centralCOLLIE server to
more accurately determine the cause of a packet loss.

COLLIE server (optional): This is an optional component in
our design. TheCOLLIE server implements a simple collision
inferencing algorithm that utilizes feedback from multiple
access points in the network. We show (in Section II-B) that
the accuracy of our basic collision detection mechanisms can
be greatly improved by using aCOLLIE server in additional
to the above two modules.

II. FEEDBACK-BASED COLLISION INFERENCE

A critical component inCOLLIE is the client side component
which takes advantage of feedback from the receiver such as
an AP in WLAN (or a peer if in ad-hoc mode) in order to
infer the cause of a packet loss (weak signal versus collision).
COLLIE implements most of the logic on the client device
requiring minimal support from the receivers. We describe
two versions of this inferencing algorithm. (i) A basic version
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Fig. 3. Experiment setup designed to study various metrics for inferring
collisions.

(Single-AP), which requires minimal support from the AP to
which the client is associated to. This applies to environments
where a single AP provides wireless access to the entire
establishment, such as in hotspots – coffee shops, apartments,
etc. (ii) An enhanced version (Multi-AP) which builds on top
of the basic version, by leveraging input from two or more
APs to provide very high accuracy in detecting collisions.
This approach applies to enterprise WLANs where multiple
APs belong to the same administrative domain. As with the
basic case, APs here also implement a very minimal relaying
of information that assists in collision inferencing.

We evaluate our algorithm quantitatively by considering the
following (i) the probability of false positives – that is, the
cases where our algorithm outputs a collision while the actual
cause was weak signal, and (ii) the accuracy – that is, the
number of cases our algorithm identifies as collision over
the total number of cases. Our design of metrics, discussed
later in this section, allows the link management algorithms to
specifya certain false positive rate, making the exact accuracy
a function of this rate. This choice is by design, thereby
leaving a significant control to the actual link management
algorithms in the client. However, to provide a sense of the
strong performance of our algorithms we observe that, given a
desired false positive rate of 2%, our basic algorithms achieve
an accuracy of about 60% on average, while the multi-AP
enhacements achieve an accuracy of 95% on average.

A. Basic Approach (Single AP)

The basic algorithm for collision inferencing presented here,
uses a simple relaying back of a data packet received in
error. This relaying is done by the intended recipient of the
packet which is the AP to which the client is associated to (in
the infrastructure mode of 802.11). Our observations indicate
that due to receiver-synchronization using the physical-layer
preamble, data that immediately follows the preamble is
seldom found in error — this includes critical fields in the
header such as the source and destination MAC addresses.
Thus, practically for all cases of packets received in error at
the AP, it was possible to relay it back to the correct associated
client. By analyzing these packets, we design a necessary and
sufficient set of metrics comprising of bit-error rates (BER),
symbol-error rates (SER), error-per-symbol (EPS), and joint
distributions of these, which can act as strong indicators for
packets suffering collision versus signal attenuation. We now
describe the experiments designed to understand collisions and
identify the set of metrics used for loss diagnosis.

Experiment Design for Detecting Collisions

Figure 3 shows the experiment setup designed to induce
collisions. T1 and T2 are two transmitters placed a certain

distance apart. ReceiversR1 and R2 are co-located with
respective transmitters. ReceiverR was placed in common
range of both transmitters and was modified to capture and
log all packets received (whether correctly or in error). The
chances of collision is greatly increased by disabling the MAC-
level backoffs at bothT1 and T2. The signal between the
transmittersT1, T2 and the receiverR was strong enough
so as to not cause any bit-level errors due to attenuation.
This was verified through rigorous testing. Both transmitters
send broadcast packets at a fixed data-rate, thus eliminating
any acknowledgments. All three receivers are opportunistically
synchronized usingcommontransmissions received thereby
maintaining a clock skew of less than 10µs.

To construct “ground truth,” we determined the actual set of
collision events by analyzing the synchronized packet logs at
the receivers, the data rates used for the packets, and the packet
size information and identifying packets that overlapped in
time.

Given that we know a certain collision occurred,R observes
one of the following: (1) A packet is received correctly, (2) a
packet is received in error, and (3) no packet is received. Case
1 occurs when signal from one of the transmitter dominates the
other resulting in a correct reception due to capture effect. Case
2 occurs when the respective signals interfere causing one of
the packets to be received but with errors. Case 3 occurs when
both the transmissions were perfectly synchronized, which
resulted in corruption at the physical-layer header/preamble
and resulting in a complete frame loss.

We performed various runs of this experiment with different
data-rates and packet sizes of 1400 and 200 bytes representing
long/short packets. The distance between the transmitters was
set so as to sustain a certain data-rate for the broadcast packets.
This ensured that no packets were received in error atR due
to weak signal.

Packets in-error due to weak signal were collected using a
simple process. An AP-client pair was used with unicast traffic
sent from the client to the AP. Rate adaptation was enabled.
Client mobility created a dynamically varying channel thereby
trig erring link adaptation at a packet loss. These packet losses
were recorded at the AP along with additional information
such as the Received Signal Strength (RSS), data-rate, etc.,
and used in our analysis. During the experiment, care was
taken to ensure no interfering transmitters were present, thus
avoiding the possibility of packet losses due to collisions.

Empirical Analysis

We present an empirical analysis of a set of metrics over
the data collected through targeted experiments designed in
the previous subsection.
1. Received signal strength (RSS):The received signal
strength (RSS) refers to the aggregate signal plus interference
(S + I) measured indBm. This is reported by most device
drivers including theMadwifi driver that we used for our ex-
periments. The intuition behind using RSS is the following: for
packets suffering a collision, their RSS is usually higher than
that of packets suffering signal attenuation for the same data-
rate. This observation directly follows from the observation
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that packets suffering signal attenuation should have a low
RSS.

Figure 4 plots a cumulative distribution function (CDF) for
the distribution of RSS values for packets lost due to collision
and weak signal. The RSS distributions are further sorted
based on their data-rates; for purposes of clarity we only show
data-rates of 24, 36 and 48 Mbps. In all the following plots,
the legend ’C’ indicates packets in error due to collision and
’S’ indicates the packets in error due to weak signal. From
the plot in Figure 4 one can observe a clear distinction in the
distribution of RSS for the two categories given the same data-
rate. For example, in this experiment, 98% of packets in error
due to weak signal have an RSS of about -73 dBm or less,
while only 10% of packets suffering collision have RSS of -73
dBm or less. Thus, by using a ‘cutoff’ value of -73 dBm, and
it would be possible to capture about 90 % of collision cases
while incurring a false-positive rate of 2%. Thus, RSS can act
as a good metric for inferring the cause of packet loss.

2. Bit-error rate (BER): Much like RSS, bit-error rates
(BER) for weak signal versus collision can act as a metric to
distinguish with. Figure 5 plots the CDF of BERs for packets
in error. As before, the data is sorted depending on the data-
rates of 24, 36 and 48 Mbps. It follows from this plot that
packets received in error due to collision have much wider
distribution of BER values. For example much like RSS, 98%
of packets in error due to signal have a BER of 12% or less,
while only 24% of packets in error due to collision have BERs
of 12% or less.

3. Metrics for capturing ‘symbol-level’ errors: A ‘symbol’
refers to a sequence of bits which are transmitted concurrently
through a joint encoding and modulation method at the phys-
ical layer. For example, at 6 Mbps, the Orthogonal Frequency
Division Multiplexing scheme (OFDM) uses a set of 48 sub-
carriers each modulating 1 bit of information. This results in
the encoding of a sequence of 48 bits in a single time-unit,
which defines a symbol. Studying the patterns of symbols in
error as opposed to just bits received in error can provide
valuable information about the cause of a packet loss. We
define a symbol to be in error if any of the bits received as
a part of that symbol are in error. We studied three different
metrics which exhibit certain interesting properties which we
leverage in our collision inference algorithm. Note that each
of these metrics are computed over every single error packet:

(i) Symbol-error rate (SER):Like the BER, this is the
ratio of the total number of symbols received in error to
the total number of symbols in the data packet. The symbol
error rate indicates the actual ‘amount’ if error present in

the packet. We have studied SER for packets in error due to
collision and weak signal and we found significant overlap in
its distributions. An analysis of this metric and its distributions
lead us to the design of other interesting metrics which show
strong results in inferring collision, described next.

(ii) Error-per symbol (EPS):This metric refers to the
average number of bits in error among all the symbols which
are in error. This is indicative of the ‘amount’ of error per
symbol — unlike bits which have only one possible way of
being in error, a 48-bit symbol received in error could have
varying ‘amounts’ of error represented by the number of bits
in error. We observe that packets in error due to collision have
a larger amount of error per symbol. This is shown in Figure
6 which plots the CDF of EPS for both collision and weak
signal. For example, 98% of packets in error due to weak
signal have an EPS of 28% or less, while 45% packets in
error due to collision have the same EPS of 28% or less.

(iii) Symbol error score (S-Score):From our study of the
distributions of the symbols in error, we found that packets
in collision had larger bursts of contiguous symbols in error.
We designed a metric which uses ‘symbol burst lengths’ and
computes a ‘score’ which we call theS-Scorethat amplifies
such ambient patterns in symbol error burst lengths. We
compute S-Score as=

∑n
i=1 |Bi|2, where|Bi| represents the

length of the symbol-error bursts for burst numberi. Figure 7
plots the CDF of the S-Score values for packets in error due to
collision versus weak signal. We find that, for example, 98%
of the packets in error due to weak signal have an S-Score of
500 or less, while 26% packets in error due to collision have
an S-Score of 500 or less. Thus, by using a cutoff of 500, we
would be able to detect 74% of collision cases while incurring
a false positive rate of 2%.

(iv) Joint distribution of SER and EPS:By considering
the joint distribution of these two metrics it is possible to
distinguish error packets in collision. The intuition follows
from the observation that error packets in collision suffer
higher symbol-error rates and correspondingly higher errors-
per symbol as a function of the symbol-error rates. From the
scatter plot shown in Figure 8, we can observe that for higher
values of SER, the values of EPS get streamlined into a high
yet narrow range allowing for a more accurate prediction of
collision versus signal as to the cause of a packet loss.

Collision Inferencing Algorithm – Metric-Vote Scheme

Our basic collision inferencing algorithm is fairly simple.
It computes the metrics discussed above on the single data
packet that was received in error (relayed back by the AP). If
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TABLE I
COLLISION DETECTION ACCURACY AND FALSE POSITIVE RATES

BER EPS S-Score Metric-Vote
Accuracy 0.550 0.524 0.441 0.597

False Positives 0.0057 0.022 0.0126 0.024

TABLE II
CORRELATION BETWEEN THEMETRICS

BER/EPS S-Score/EPS BER/S-Score
Collision 0.840 0.963 0.854

Weak Signal 0.981 0.993 0.975

any of the metrics indicate (vote for) a collision, the algorithm
outputs collision as its inference. Even with such an aggressive
approach, over the experiments performed in this section, we
find that for a false positive rate of 2% (a tunable parameter),
our basic approach yields a reasonable accuracy. Table I shows
the results for the metrics BER, EPS, S-Score and Metric-
Vote. For the cases of collision, we see that Metric-Vote has
an accuracy of about 60% on an average. Later in Section III,
we show that even a 60% accuracy in collision prediction can
translate to significant gains in terms of throughput and energy.
Next in section II-B, we also study further enhancements to
this basic scheme using support from multiple APs that can
improve the accuracy to about 95% on average. For each of
the metrics and the Metric-Vote scheme, Table I also shows the
false positive rate — the percentage of error packets (caused
due to weak signal) which the algorithms incorrectly identify
as the cases of collision. We see that Metric-Vote scheme
also has a low false positive rate of 2.4%. It is important
to understand that the collision detection algorithms should
maintain a low false positive rate. While it is beneficial to be
able to decide if the packet was in error due to weak signal or
collision, it would be rather costly in terms of retransmissions
if we incorrectly identify a packet to be in error because of
collision, when in reality it was due to a weak signal. Table
II shows the correlation between the metrics – the percentage
of cases where the metrics agree on their decision about the
cause of the packet loss. For the cases of weak signal, the
correlation between the metrics is extremely high (around
98%) evident from the fact thatall the metrics have a very
low false positive ratio. For the cases of collision, we see
that the correlation drops down a little to around 85%, which
improves the accuracy of Metric-Vote scheme.

Some observations:From our empirical study in the previ-
ous subsection, we found that there were a certain set of cases
where inferring collision was becoming a challenge. We now

explain these issues in detail:
(i) Using RSS as a metric:Although in general RSS acted

as a good indicator of the cause of a frame loss, in some of the
cases it was not able to distinguish well between the cases of
collision and weak signal. This can be mainly attributed to the
observed temporal variation in RSS [8]. Estimating a ’cut-off’
value also becomes harder because the delivery probability
is actually a function of (i) signal-to-noise ratioS/(I + N)
rather than(S + I) which is reported by most wireless cards
and (ii) receiver sensitivity [8]. However, we feel that RSS is
a promising metric and could act very well when used with
additional information such as RF profile of the receivers.

(ii) Impact of physical-layer capture:We found that there
were cases of collision where the average BER for the error
packet was very low due to whats known as thecapture effect.
Capture effect refers to the phenomenon that during a collision
the packet with stronger signal is received with almost no
errors or a few bits in error. This experiment set up used to
measure the impact of capture effect was very similar to that
shown in Figure 3 except that now the receiverR is very close
to the transmitterT1 which resulted in a strong capture. By
carefully searching for the packets received in error fromT1

(due to a collision from a concurrent transmission fromT2),
we found that about 80% of packets in collision experiencing
capture effect, were received with about 12% or less bits in
error. This falls within our target margin of 2% false positives
for the signal case thereby impacting accuracy. The accuracy
of Metric-Vote scheme for strong capture effect cases was
found to be around 28%.

(iii) Effect of colliding packet size:Using the set up in
Figure 3, we also measured the bit error rates in collision
cases for varying packet sizes. Figure 9 shows a scatter
plot of RSS and BER for the cases of (i) weak signal (ii)
collision between a 1400-byte packet and a 200-byte packet
(iii) collision between two 1400-byte packets. While it is clear
that using RSS in this case clearly distinguishes between the
cases of collision and weak signal, using BER does not provide
the same level of accuracy. In particular, we see that it becomes
difficult to distinguish between cases (i) and (ii) using BER
because a smaller colliding packet (200-byte in this case)
would cause fewer bits in error. On the other hand, as shown
in Figure 8, the joint distribution of SER and EPS is useful in
distinguishing these cases.

B. Multi-AP assisted enhancements

The accuracy of our basic approach can be greatly improved
if feedback from multiple APs on the packet loss could
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Fig. 10. Improvements in collision detection accuracy using the Multi-AP
approach.

taken into consideration. This is feasible in an enterprise
WLAN where APs operate in a coordinated fashion as a
part of a single network. First, we present an algorithm that
uses feedback from multiple APs to improve the accuracy of
collision inferencing. Next, through experiments, we show that
such an approach can yield good results in a practical setting.

By leveraging feedback from two or more APs, we present
an algorithm that can detect such cases and improve the
accuracy of collision inferencing. Our algorithm works by
aggregating such feedback at a centralCOLLIE server, shown
earlier in Figure 2. The APs implement two functionalities :
(i) they synchronize among each other much like the receivers
R1 andR2 did for our experiments earlier in this section. This
synchronization is done using opportunistic common packets
received by the two APs on either the wired or the wireless
segment. (ii) for any packet received in error, or for physical-
layer error indications, the APs send a message to theCOL-
LIE server with the time the packet (or error indication) was
received, the source/destination MAC addresses and data-rate
information for the packet received in error. It is possible that
in certain cases only a subset of this information is available,
and we evaluate such possibilities through experiments later
in this section.

The COLLIE server implements a simple collision infer-
encing algorithm that uses time-of-receipt information about
packets received in error at the APs, and combines this with
information about the data-rate of the packet received to
make an inference as to whether the packets did experience
a collision. As a part of this algorithm theCOLLIE server
compares input from pairs (or a set) of APs that are known to
be within range of each other. Detection of APs that are within
range of each other is implemented through passive monitoring
of beacons. Scenarios where APs are within each other’s range
are becoming fairly common in todays WLANs. In fact, dense
deployment of APs is promoted as an architecture for next-
generation WLANs [9].

We have implemented this approach over standard Linux
based APs and clients. The collision inference algorithm
was implemented over a centralCOLLIE server. Through
experiments over a simple testbed consisting of two APs and
two clients we study the accuracy of our approach of using
feedback from multiple APs.

Figure 10 shows the accuracy in collision inference using
our multi-AP implementation. For the two scenarios where
capture effect is dominant which were computed through
experimentation within our indoor network environment, the

COLLIE Module Summary of tasks
Client Collision inference, selective re-tx based onDiff

AP Return packet in error, re-construct packet onDiff
Server Facilitate multi-AP collision detection

TABLE III
COLLIE -BASED LINK ADAPTATION TASKS IN DIFFERENT MODULES

multi-AP approach improves the accuracy of collision de-
tection to about 95%. These two scenarios correspond to
configurations where packet transmission dominate from one
of the two clients respectively. For the two scenarios where
capture effect is weak, both approaches provide good levels
of accuracy.

III. U SING COLLIE FOR L INK ADAPTATION

In this section we present a simple, yet effective protocol
used to enhance link adaptation mechanisms based on the
COLLIE framework. The algorithm implemented in this simple
protocol is only to serve as a reference implementation of
COLLIE and is by no means is an optimal algorithm. The
goal of this description is to demonstrate howCOLLIE can be
effective in making more intelligent link adaptation decisions
leading to improvements in throughput.
COLLIE-based link adaptation protocol: The goal of this
link adaptation protocol is to utilize the collision inference
results available fromCOLLIE in deciding how to best react
to a packet loss and its consequent recovery. Consider a client
which transmits a packet to an AP, but the latter receives the
packet in error. Using feedback mechanisms, as outlined in
Section II and shown in Figure 2, the client can infer the
cause of the packet error. This knowledge is, then, fed into
the link adaptation decision at the client. If the packet loss is
due to a collision, then the correct adaptation mechanism is to
perform exponential backoff. On the other hand, if the packet
loss is determined to be due to a weak signal, then we allow an
existing rate adaptation algorithm to explore and find a better
data rate to transmit future packets. In general, any existing
rate adaptation algorithm, e.g., RRAA, SampleRate, AARF,
and ARF, can be used here to leverage such feedback from
COLLIE. We explain this in the context of one of the simplest
algorithm – Auto Rate Fallback (ARF). ARF uses the history
of previous transmission error rates to adaptively select the
data rates used for future transmissions. That is, after a number
of consecutive successful transmissions, the sender attempts
to transmit at a higher rate and if the delivery of this frame
is unsuccessful, it immediately falls back to the previously
supported mode. In our implementation, we augment the ARF
algorithm withCOLLIE to make it collision-aware.

In addition, the feedback on the erroneous packet provides
another opportunity of optimization during re-transmission
of a incorrectly received packet at the AP — selective re-
transmission of packet segments in error. By examining the
erroneous packet, the client knows exactly the set of bits that
were in error. If the number of bits in error is low (say, not
more than 20% of the entire packet), then it is advantageous
to create aDiff bitmap of these bits in error and to send only
this Diff bitmap to the AP piggybacked with the next packet
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Fig. 13. Setup for inducing collisions

transmission. If theDiff bitmap is correctly received, then
the AP can re-construct the original packet thereby reducing
the retransmission related costs associated with the client.
Table III summarizes the different implementation aspects
of this protocol. Note that our implementation has all the
overheads due to the AP’s transmission of the erroneous packet
feedback, which is therefore, reflected in our performance
evaluation presented next.

Experimental Results

We now present an evaluation ofCOLLIE-enhanced link
adaptations through experiments conducted in various static
and mobile scenarios:

Experiment #1: Static scenario –Figure 11 shows the
throughput of a static wireless client (with and withoutCOL-
LIE ) for increasing distance between the client and the AP. We
see that as the distance between the client and AP increases,
there is a corresponding drop in the throughput for both the
cases. However, usingCOLLIE results in throughput gains
of as high as 52%. On an average, we observed throughput
gains of around 30%. Note that, these results account for the
transmission overhead involved in the receiver feedback. We
see that after an initial increase, the throughput gains drop
with the increase in distance. This is because as the channel
becomes error-prone, it also becomes difficult for the AP
to successfully transmit the feedback. Figure 11 shows that
increase in throughput gains are almost negligible (2%) for
these cases. Figure 12 plots the throughput of the client at
a particular distance over time. As before, we see that using
COLLIE improves the throughput by around 30%.

Experiment #2: Additional collision sources – We re-
peated the above experiment in presence of additional collision
sources (Figure 13). Figure 14 shows the throughput improve-
ments with and withoutCOLLIE . We see that usingCOLLIE
results in throughput gains of as high as 60%.

Experiment #3: Mobile scenario – For this experiment,
the client position was continuously varied thereby inducing
dynamic channel conditions. Figure 15 plots the throughput
over time for both with and withoutCOLLIE . We observe that
throughput improvements usingCOLLIE range from around
15% to as high as 65% for the mobile scenarios. This is
becauseCOLLIE provides the rate adaptation mechanism with
the information about the cause of the packet loss, thereby
helping it choose the correct transmission parameters.

Experiment #4: Emulating a voice call – In this exper-
iment, we wanted to emulate the behavior of voice traffic
on the wireless medium. To do this, we made a 4 minute

voice call using the Netgear SPH101 VoWiFi phone over
Skype. For the duration of the call, we collected the set of
packets that were sent, the time instants when they were sent,
the packet sizes etc. and then replayed the exact sequence
of transmissions between the wireless laptop and the access
point. We conducted this experiment for low, medium and
high mobility scenarios. The ‘Slow’ speed represents a sta-
tionary user with sporadic movement while the ‘High’ speed
corresponds to a walking user continuously moving with a
speed of about 0.5 ft/sec inside a building. Figure 16 shows the
number of wasted 802.11 transmissions — transmissions that
were not successfully received at the Access Point (AP). Under
relatively high mobility conditions the percentage of wasted
transmissions for 802.11 exceeded 80%. However, under the
same mobility patterns,COLLIE achieves a reduction in wasted
transmissions by a 40% for each of the mobility scenarios.
This would not only improve the voice quality but also result
in lesser energy costs on the battery constrained mobile device.

IV. RELATED WORK

The problem of loss diagnosis is a fairly difficult one, and
there has been a few prior efforts in the wireless domain that
have tried to address this problem. For example, Whitehouse
et. al. [10] showed that if two frames arrive at a receiver with
certain timing characteristics (the second message arrives after
the preamble and start bytes of the first message) and with
certain power levels (the second message has significantly
higher power level when compared to the first) then it was
possible for the receiver to conclude that collision had, indeed,
occurred. This mechanism was implemented on the Mica2
sensor mote platform using a 433 MHz Chipcon CC1000 radio
transceiver, and required low-level access to timing and signal
strength measurements that were available on that platform. In
comparison,COLLIE is implemented for off-the-shelf 802.11
wireless transceivers that do not provide such low-level access
to communication parameters. Hence, the mechanisms in [10]
could not be applied in this environment. In other work, Yun
and Seo [11] propose another related mechanism for collision
detection in 802.11 links by measuring the RF energy and its
changes during such an event. This work was done through
simulations alone, and based on our experimental evaluation
may not work well in practice.

Rate adaptation mechanisms like RRAA [6] and CARA [7]
have, also, tried to address the problem of collision detection
in an indirect manner. CARA tries to detect collisions by using
the RTS-CTS mechanism, but the proposed mechanism fails
in the presence of hidden terminals. CARA also suffers from
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channel variability induced through node mobility.

RTS oscillation [6] which RRAA solves using an adaptive RTS
filter. Unlike both RRAA and CARA which try to estimate
the collision probabilities by active probing (using an RTS),
COLLIE employs adirect approach by conducting an empirical
post-factum analysis based on the feedback from the receiver.

There is a growing interest in the wireless networking
community to integrate hints from the physical layer, e.g.,
symbol level information, to solve certain MAC level prob-
lems. One recent example is work by Jamieson et. al. [12]
for partial packet recovery and throughput improvement in
wireless networks. In this paper,COLLIE also uses information
derived from the physical layer symbols for diagnosing the
causeof a packet loss.

Receiver feedback (used in the design ofCOLLIE) has
been employed for other different purposes. For example,
RBAR [13] uses a feedback mechanism based on RTS-CTS
handshake to communicate the good choice of data rate to the
sender. The feedback inCOLLIE, is used to discern the cause
of packet loss, and use this information to make subsequent
adaptation choices.

The capture effect phenomenon has been previously studied
through analysis and experimentation [14] in the context how
of it affects the throughput and fairness in 802.11 networks.
In this paper, we study the impact of capture effect on the
collision detection mechanisms used inCOLLIE.

Use of multiple receivers has also been exploited previously
in the context of improving throughput in wireless networks,
e.g., the Multi-Radio Diversity (MRD) System [15]. More
specifically, mechanisms proposed in MRD use multiple re-
ceivers torecoverfrom bit errors and improve loss resilience,
whereasCOLLIE uses multiple receivers to determine the
cause of the packet lossand uses this information for adapting
link transmission parameters. Jigsaw [16] also uses informa-
tion from multiple receivers to provide a global cross-layer
viewpoint for enterprise wireless network management.

V. CONCLUSION

In this paper, we have tried to address the fundamental
issue of identifying the cause of an erroneous packet reception
in 802.11 systems. Unlike most of the previous approaches,
our proposed mechanism,COLLIE employs a direct approach
by using explicit feedback from the receiver to immediately
determine the cause of the packet loss. Through rigorous
evaluations conducted on regular laptops over a wide range
of experiments, we find that our collision inferencing mech-
anisms can provide upto 95% accuracy in detecting packets

in collision while allowing a configurable false positive rate
of 2% and lead to throughput improvements between 20-
60%. Through an emulation of voice call (made using the
Netgear SPH101 Voice-over-WiFi phone), we also showed
that COLLIE reduces retransmission related costs by 40% for
different mobility scenarios. Since all analysis performed in
this paper was based on actual experiments and implementa-
tion over contemporary 802.11 hardware, we expect that the
implications of our results and the various insights gained from
this study will be very useful in other problem domains such as
link adaptation, channel management, transmit power control
etc., where understanding the link behavior is critical.
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