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Abstract—Distance estimation and topological proximity in the
Internet have recently emerged as important problems for many
distributed applications [1], [10], [11], [19], [29], [31], [40], [41],
[44]. Besides deploying tracers and using virtual coordinates,
distance is often estimated using end-to-end methods such as
King [13] that rely on the existing DNS infrastructure. However,
the question of accuracy in such end-to-end estimation and its
ability to produce a large-scale map of Internet delays has never
been examined. We undertake this task below and show that
King suffers from non-negligible error when DNS zones employ
geographically diverse authoritative servers or utilize forwarders,
both of which are very common in the existing Internet. We
also show that King requires insertion of numerous unwanted
DNS records in caches of remote servers (which is called cache
pollution) and requires large traffic overhead when deployed in
large-scale. To overcome these limitations, we propose a new
framework we call Turbo King (T-King) that obtains end-to-end
delay samples without bias in the presence of distant authoritative
servers and forwarders, while consuming half the bandwidth
needed by King and reducing the impact of cache pollution by
several orders of magnitude. We finish the paper by evaluating
Turbo King in several experiments.

I. INTRODUCTION

Widespread interest in distance estimation in the Internet

has recently evolved into a large field [4], [6], [7], [10],

[11], [13], [14], [19], [21], [23], [30], [31], [32], [35], [40],

[41], [43], [44], [48], [50]. The purpose of this research is

to estimate or measure the latency between hosts, which can

then be leveraged to provide better service to end-users and

construct more efficient networks. Examples include increas-

ing the responsiveness of online games, efficiently locating

the closest server in a content distribution network, and

building topologically-aware P2P networks. While the existing

approaches are promising, obtaining a large-scale1 Internet

distance map for verification of virtual-coordinate approaches

[7], [10], [14], [15], [19], [23], [31], [40], [41], [44] and actual

use in deployed applications has proven to be a difficult task.

The aim of this paper is to introduce a first step in this direction

∗Supported by NSF grants CCR-0306246, ANI-0312461, CNS-0434940,
CNS-0519442, and CNS-0720571.

1The scale considered in this paper assumes building an all-to-all delay
matrix between approximately 220, 000 BGP prefixes advertised in the
Internet. This is in contrast to the frequently-used latency maps today [10],
[24], [31], [50] that rely on 100 − 400 nodes in PlanetLab or 1700 − 2500

nodes in the DNS tree.

and propose a framework that allows such a service to be

transparently enabled in the current Internet.

Due to the difficulty of deploying tracers [1], [11], [29],

[33], [42] in every possible network, we choose to build

upon an existing technique called King [13] that does not

require any changes to existing protocols or access to remote

computers. King approximates the distance between end-hosts

using the delay between DNS servers authoritative for IP

addresses of the hosts in question. While generally accepted as

a sound methodology for estimating delay and used in many

papers [2], [3], [5], [8], [9], [10], [12], [20], [22], [34], [36],

[37], [39], [43], [48], [49], King has not been analyzed for

accuracy and pitfalls since the original paper [13], nor has it

been involved in measurements larger than 2500×2500 nodes.

Furthermore, some of the advanced techniques suggested in

[13] have never been implemented and their feasibility in

practice has not been assessed in the literature.

We start the paper by identifying causes of King’s inac-

curacy and evaluating its suitability for large-scale measure-

ments. We first argue that King incorrectly estimates delay

when the target DNS zone contains multiple nameservers that

are not geographically close to each other (e.g., outside the

target domain and its BGP network). We also find that King

can estimate entirely wrong delays when the source DNS zone

uses forwarders, which are stand-alone servers that aggregate

queries from multiple domains. In such cases, King fails to

detect the presence and location of forwarders, in addition to

incorrectly measuring the forwarder’s query-processing delay

that must be subtracted from the final measurement. In regard

to overhead, King utilizes a complex multi-step process (see

below for the algorithm) that requires numerous queries for

each delay measurement and seeding of source DNS servers

with a large number of unwanted entries. As the scale of the

experiment increases, cache pollution becomes a non-trivial

issue.

To overcome these drawbacks, we propose a new system

called Turbo King (T-King) that streamlines the process of

making distance measurements using DNS, improves their

accuracy, reduces overhead, and almost entirely eliminates

cache pollution. The first component of T-King is a large

collection of nameservers distributed throughout the Internet,

from which the closest nameserver to each end-host A is

selected for use in the measurement. In the current imple-



mentation, we use periodic crawls of the DNS tree to find

nameservers that can be used in the measurement and maintain

this information in our server. The second component of

T-King is a new measurement algorithm based on several

improvements we have made to the advanced techniques in

[13] that mitigate problems caused by forwarders and zones

with multiple authoritative nameservers. Our approach not

only reduces the number of queries and bandwidth overhead of

King by more than 50%, but also achieves higher accuracy and

a factor of N reduction in the number of polluted cache entries

at each remote server for an N × N latency measurement.

We finish the paper by showing how to build the current

database of DNS servers in Turbo King, examining how likely

King is to experience its drawbacks in practice, and assessing

the effect of these drawbacks on King’s delay estimation. We

first perform a reverse DNS crawl to discover a set of 216, 843

nameservers, out of which we find 117, 817 to be recursive and

accepting queries from outside networks.2 These servers reside

in 174 countries, cover over 31, 000 BGP prefixes, and are

responsible for approximately 50% of IP addresses (i.e., 828

million) advertised in BGP [38]. Further analyzing the data, we

find that 33% of reverse DNS zones utilize a nameserver that

neither belongs to the same BGP prefix nor the same domain as

the other servers. Additionally, over 32% of recursive servers

found in this study use a hidden forwarder, which suggests

that a large fraction of King’s measurements may be affected

by the drawbacks identified in this work. We finish the paper

by quantifying the effect of this bias using a small 50 × 50

delay matrix and comparing the estimates of King to those of

Turbo King. Our results show that 15% of the measurements

are different by more than 10% and 8% by more than 20%,

which suggests that the magnitude of bias in King is generally

mild, but nevertheless non-negligible.

The rest of the paper is organized as follows. Section II

studies previous work. Sections III and IV outline issues with

King. Section V introduces T-King and Section VI evaluates

our method, comparing it to King. Section VII concludes the

paper.

II. BACKGROUND

The Domain Name System (DNS) [27], [28] is a distributed

tree-based database that allows for the resolution of domain

names to various types of data, most notably IP addresses. The

DNS standard [28] also provides for reverse lookup of IP ad-

dresses, which is accomplished through the IN-ADDR.ARPA

domain tree. There are several types of servers and clients

that operate on DNS and to avoid confusion we introduce

the following terminology. In this paper, a recursive resolver

is a server that queries the DNS and returns answers to end-

hosts. Nameservers are DNS servers that maintain authoritative

data about a subset (i.e., zone) of the domain space. Recursive

nameservers act as both a recursive resolver and a nameserver

2Other techniques (such as those in [26]) can significantly expand this
database. It is believed that there are between 580, 000 [46] and 975, 000

[25] open recursive DNS servers in the Internet.
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Fig. 1. King estimates the latency from host A to B.

simultaneously. An open resolver is either a recursive name-

server or a recursive resolver that responds to recursive queries

for arbitrary zones from hosts outside its local network.

King [13] uses existing DNS infrastructure to measure the

latency between two hosts on the Internet. The method relies

on the fact that open recursive nameservers on the Internet

will attempt to resolve any valid request, which forces them to

query remote nameservers for the proper response. The time

that these queries take to be processed can be measured to

determine the distance between the two nameservers. In order

for the measurements to apply to arbitrary hosts, Gummadi

et al. assume that end-hosts on the Internet are within close

proximity to the authoritative DNS nameserver that maintains

DNS information about their IP address. Given this assump-

tion, King approximates the delay between hosts A and B

using the latency between their authoritative servers X and

Y as shown in Fig. 1. Heuristics are used to choose which

authoritative nameserver to include in the measurements, the

details of which can be found in [13].

III. UNDERSTANDING ORIGINAL KING

We refer to the main technique proposed by Gummadi et

al. in [13] as Original King (O-King). O-King has been used

extensively in the literature [2], [3], [5], [8], [9], [10], [12],

[20], [22], [34], [36], [37], [39], [43], [48], [49] as a way to

easily collect latency information from the Internet; however,

no formal or detailed analysis of its pitfalls exists to date.

We first describe the measurement algorithm used by O-King,

which is necessary for understanding its limitations and our

proposed system later in the paper.

A. Measurement Algorithm

We start by defining terminology. Throughout the rest of

the paper, a query is defined as a single DNS request sent

to a remote server and an answer is the response to a query.

Queries are either recursive or iterative as defined by the DNS

specification [27]. Given time ts when a query is sent and

tr when the answer is received for that query, we define a

sample s to be tr − ts. We are now ready to detail the O-King

algorithm that measures delay between two nameservers.

The O-King process is illustrated in Fig. 2, where

ns.example.com is a recursive nameserver chosen by O-

King as “close” to the desired IP. In the figure, each query

is labeled as either RQ for recursive query or IQ for iterative

query. Answers are labeled with A. A seed recursive query,

which is represented by message numbers 1–4, is sent to
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2-IQ:target.com

3-A:IP of target.com

O-King

4-A:IP of target.com

King 

Client

ns.example.com

1-RQ:target.com

5-IQ:a.example.com

6-A:NXDOMAIN

7-RQ:b.target.com

10-A:NXDOMAIN

9-A:NXDOMAIN

Nameservers for

target.com

8-IQ:b.target.com

Fig. 2. O-King query sequence.

ns.example.com for the target.com domain to ensure

direct contact between the two for subsequent measurements.

Messages 5 and 6 show the local latency sample Li be-

tween the O-King client and ns.example.com, which is

accomplished by a simple iterative query that can be repeated

to improve accuracy. Illustrated by messages 7–10 is the

remote latency sample Ri, which uses a recursive query to

measure the delay from the O-King client to target.com

(via ns.example.com) and also can be repeated. The

resulting latency estimate between ns.example.com and

target.com produced by O-King is min {Ri}−min {Li}.

One of the features that makes O-King so attractive is its ease

of use; however, it has certain drawbacks that we discuss in

the remainder of this section.

B. Zones with Multiple Authoritative Nameservers

In the original specification for DNS [27], [28], it is

recommended that authoritative nameservers be placed in

geographically diverse locations on separate networks. Thus,

if connectivity is interrupted at one of the sites, the remaining

nameservers would maintain availability for the zone. Queries

for a particular zone are sent to one address in the group of

nameservers, but the decision about which nameserver to query

is left up to the individual resolver implementation. As O-King

requires at least four [13] samples to converge to an accurate

measurement, different nameservers are potentially used for

each sample. While this is of little consequence if all name-

servers for a zone are on the same network, in cases where

the DNS specification is strictly followed the samples could

be very different, leading to inaccuracy in the final latency

estimation. This issue is illustrated in Fig. 3(a) for three sam-

ples taken by the O-King client, where the authoritative name-

servers for the target.com zone are ns1.target.com,

ns2.target.com, and ns1.alt.us.

C. DNS Forwarders

Another potential issue for O-King measurements is the

use of forwarders on the Internet by system administra-

tors. A forwarder serves as an aggregation point for DNS

queries initiated from within a network that target external

destinations. If a recursive nameserver that is configured to

forward messages receives a recursive query for a zone it

has no authority over, it sends the query to the forwarder

without notifying the end-user. The forwarder then resolves

the query instead of the recursive nameserver. This process

ns1.alt.us

3.target.com

O-King Client

ns.example.com

ns1.target.com

ns2.target.com

1.target.com

0.target.com

(a) multiple nameservers

Desired

forwarder ns1.target.com

Actual

Actual

O-King Client

ns.example.com

(b) use of forwarder

Fig. 3. O-King query sequence for two different server configurations.

is illustrated in Fig. 3(b), where direct contact is intended

between ns.example.com and ns1.target.com, but

the query is routed through the forwarder instead. The pres-

ence of forwarders is undetectable by O-King and compro-

mises the assumption that there is direct contact between

ns.example.com and ns1.target.com, leading to an

invalid latency estimate.

D. Cache Pollution

The final concern that arises from the use of O-King is the

impact it has on the nameservers used for latency estimates.

While the purpose of an authoritative DNS nameserver is to

provide accurate information about the data under its control

to the global Internet, the purpose of a DNS cache is to reduce

latency strictly for local users, those end-hosts that principally

rely on the nameserver to resolve queries on their behalf. Given

that DNS caches are intended to benefit these users, we define

cache pollution to be the insertion of DNS zone data that

has not been requested by a local user into the cache of a

nameserver.

O-King uses a seed query to force the recursive nameserver

to cache the NS (nameserver) and A (IP address) records of

all target authoritative nameservers. While this is unlikely

to cause performance problems on a small scale, initiating

billions of O-King queries could lead to a large proportion of

the cache containing information that was not requested by

local users. Furthermore, local administrators are unlikely to

view this intrusion as benign and may take preventative steps,

jeopardizing future measurements using O-King.

IV. UNDERSTANDING DIRECT KING

We refer to the second technique proposed in [13] as

Direct King (D-King), which involves a modification of the O-

King measurement algorithm that allows for specification of a

single nameserver from the target zone. While not mentioned

explicitly in the original paper, all other aspects of D-King

(i.e., nameserver selection, end-to-end estimation assumptions)

we assume to be equivalent to O-King. To our knowledge, only

Ballani et al. [3] have partially implemented D-King, which

was required for their study of IP Anycast as deployed by

DNS root servers. There was no study or analysis of D-King

in [13]. We start by describing the D-King algorithm and later

discuss some of its drawbacks.
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D-King

King 

Client

10-A:SERVER FAIL

ns1.target.com

10.0.0.1

3-A:IP of ns.target.com

9-A:SERVER FAIL

ns.king.com

4-A:IP of ns.target.com
1-RQ:10-0-0-1.king.com

5-IQ:a.example.com
6-A:NXDOMAIN

ns.example.com

2-IQ:10-0-0-1.king.com

7-RQ:a.10-0-0-1.king.com

8-IQ:a.10-0-0-1.king.com

Fig. 4. D-King query sequence.

A. Measurement Algorithm

The D-King latency estimation process is illustrated in Fig.

4, where ns.example.com is again a recursive nameserver.

In contrast to O-King, where the query is sent to one or more

nameservers responsible for the target.com domain, D-

King allows the user to pick a single authoritative nameserver,

which in this case is ns1.target.com. To accomplish this,

D-King requires that a domain name be registered and a name-

server set up to resolve queries for said domain. In the figure,

king.com is the example domain and ns.king.com is its

authoritative nameserver.

D-King first requires a seed query to guarantee direct con-

tact between ns.example.com and ns1.target.com,

which is illustrated in the figure by messages 1–4. To do

this, D-King initiates a recursive query to ns.example.com

for 10-0-0-1.king.com, which encodes the IP address

of ns1.target.com into the query. As ns.king.com

is authoritative for the king.com domain, it receives

the query and uses the encoded address to respond that

ns1.target.com is authoritative for the query, which

is then cached at ns.example.com. By doing so,

ns.example.com will now automatically forward queries

for 10-0-0-1.king.com directly to ns1.target.com.

Once the cache is seeded, the actual latency measure-

ments can be taken. Local sample Li, represented as mes-

sages 5 and 6 in the figure, is taken in the same fash-

ion as O-King. Remote sample Ri, illustrated by mes-

sages 7–10, is recorded by sending queries for random sub-

domains of 10-0-0-1.king.com to ns.example.com,

which directly queries ns1.target.com as a result. Since

ns1.target.com is not actually authoritative for the zone,

it responds with an error indication, which is then echoed back

to the D-King client. The final latency estimate produced by

D-King is calculated in the same manner as that in O-King.

B. Additional Complexity

While D-King indeed eliminates the issue of zones with

multiple authoritative nameservers affecting the latency esti-

mate, the cost of this improvement is that the D-King client

must explicitly specify the target nameserver, which is not

required by O-King. It is not mentioned in [13] exactly how

this should be accomplished, but the same heuristic approach

for discovering a close recursive nameserver applies in this

case as well. Furthermore, a domain must be registered and

a nameserver set up to respond to queries in the way D-King

requires. One of the major benefits of O-King is that latency

estimates can be obtained from any machine with an Internet

connection, whereas D-King requires this extra infrastructure.

The individual must decide whether the additional complexity

is worth the improved accuracy.

C. DNS Forwarders

Along with O-King, the use of forwarders on the Inter-

net affects D-King latency estimates as well. The D-King

client and authoritative nameserver for the measurement (e.g.,

ns.king.com in Fig. 3(b)) are separate entities that only

communicate through the query encoded with the IP address of

the target nameserver. It is inconsequential to ns.king.com

that a different nameserver (i.e., the forwarder) than the one

intended by the D-King client sends it the query and caches

the response. Because of this lack of communication between

the components of the D-King latency estimates, forwarders

remain undetected and affect the results in the same manner

as discussed in the O-King case.

D. Cache Pollution

The seed query required by D-King plants authoritative data

for the registered domain (e.g., king.com) at the recursive

nameserver in a similar fashion to that required by O-King.

However, there are differences in the impact on local DNS

caches. The O-King seed query forces the caching of data

for all authoritative nameservers of the target zone, whereas

D-King caches data for a single nameserver. In contrast to O-

King, where the cached entries might have some future use to

the local users, the D-King entry is only useful to the latency

estimate. At the scale of billions of queries, if D-King is used

the nameserver’s cache would contain fewer entries than O-

King, but those entries would be entirely useless to local users.

V. TURBO KING

In this section we propose Turbo King (T-King) to address

the drawbacks previously highlighted. We start by giving a

high-level overview of the system then finish the section with

detailed descriptions of the various components.

A. Design

Turbo King is a stand-alone service that accepts as argu-

ments the IP addresses of end-hosts A and B from the Internet

and returns the estimated latency from host A to B. It is

currently implemented to resolve single estimate requests for

end-host pairs. Further information on the deployment of T-

King can be found in [45].

To accomplish this goal, Turbo King maintains a large

list S of N nameservers positioned throughout the Internet,

which includes both recursive nameservers and non-recursive

authoritative nameservers found in the DNS hierarchy. This list

allows us to discover the closest nameserver without relying

strictly on heuristic methods or assuming that the authoritative

nameserver responsible for A’s IP address is the closest

nameserver to A. Turbo King first uses BGP data [38] to match

the IP address of A to a recursive nameserver. If a match
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is found, the two are likely to reside in the same network.

If no matching nameserver is found in the same network as

the end-host, we simply find the recursive nameserver that

has the longest matching prefix to A or select the default

nameserver authoritative for A’s IP address. Turbo King then

repeats the same process for B but expands the set of possible

nameservers to include those that are not recursive. This is

done because the target nameserver need not resolve recursive

queries for the estimate to succeed.

Given the two nameservers, Turbo King then generates a

latency estimate between them (the algorithm is described

below) and returns the result. T-King operates in one of two

modes. The default is passive, whereby T-King waits for

requests before generating latency estimates. Estimates are

cached for a configurable amount of time (e.g., 30 minutes)

such that subsequent requests using the same two nameservers

do not trigger a new measurement. This mode puts the least

strain on resources as it only visits popular destinations. The

optional mode we call active, in which Turbo King preemp-

tively takes latency estimates between nameservers on the list

so as to eventually obtain an entire N × N delay matrix.3

This mode consumes more resources and possibly produces

estimates that are never used, but it reduces the user-perceived

delay and allows the matrix to be directly downloaded for use

in applications and other research studies.

B. Discovering Nameservers

Turbo King is most effective when its list S of nameservers

is large, such that at least one nameserver is “close” to

every IP address that is currently in use on the Internet. The

current version of T-King compiles its list of nameservers by

performing exhaustive crawls4 of the IN-ADDR.ARPA reverse

DNS tree using the techniques introduced in [18]. In contrast

to [18], which accepts cached (i.e., non-authoritative) entries to

queries because they are only interested in the number of hosts

represented in the tree, our crawler probes the entire depth of

the reverse tree by accepting only authoritative answers, which

maximizes the number of nameservers found. Results from

this crawl are presented in the next section, but we should

note that significantly larger datasets can be built using other

techniques (e.g., N = 333, 963 in [26] and over 580, 000 using

port-53 scanning [46]). We are considering the intrusiveness

and overhead of these approaches for later augmenting set S.

C. Measurement Algorithm

Our proposed algorithm is illustrated in Fig. 5, where

Turbo King operates as a multi-threaded application with

both the client and server operations communicating seam-

lessly. This allows timestamps to be taken for every packet

sent or received by our software, which reduces the number

of queries required to complete an estimate. During step

3For N = 117, 863 used in the current version and one query per
22 seconds per DNS server, the entire matrix consisting of 13.8 billion
measurements can be built in 30 days.

4Analysis shows that 85% of nameservers found by T-King in Nov. 2006
were active in Dec. 2007, which suggests that monthly or even annual re-
scanning of the tree should keep the DNS server set relatively fresh.

4-IQ:a.irl-tamu.us

5-A:ERROR

T-King

6-A:ERROR
DNSClient

DNSServer

ns.example.com ns1.target.com

1-RQ:a.irl-tamu.us

3-Referral:ns2

2-IQ:a.irl-tamu.us

Fig. 5. Turbo King query sequence.

1, DNSClient takes a timestamp and initiates a query

to ns.example.com for the domain we control, namely

irl-tamu.us. Since DNSServer is listed with the .us

registrar as the authoritative nameserver for this domain,

host ns.example.com recursively queries DNSServer

in step 2. At step 3, our software takes another timestamp

and answers with a referral saying that ns1.target.com

is authoritative for the query, but sets the TTL for this

information to zero, meaning that it should not be cached

[28].5 Nameserver ns.example.com then directly queries

ns1.target.com, which answers with some form of error

indication (steps 4–5). That error indication is forwarded back

to DNSClient in step 6, which then takes the third and

final timestamp, allowing us to estimate the latency between

nameservers ns.example.com and ns1.target.com as

d36 − d12 where dij is the delay between steps i and j.

Thus, Turbo King is able to determine the latency between

ns.example.com and ns1.target.com without seed-

ing the cache of ns.example.com by judiciously tak-

ing timestamps at every point of communication between

ns.example.com and the T-King software.

D. Detection and Avoidance of Forwarders

While both O-King and D-King are unable to detect for-

warders, they are simple to detect with Turbo King due to

its integrated infrastructure and can be eliminated from the

measurement. Because T-King acts as both the client and the

server application for the latency estimate, it simply compares

the IP addresses that are used to contact DNSClient and

DNSServer respectively for a particular query. If differ-

ent IP addresses are used, T-King excludes the original IP

from the list of recursive nameservers and determines if

the forwarder allows for recursion, adding it to the list of

possible nameservers if so. A new closest server to the IP is

retrieved from the list of recursive nameservers and the latency

estimate restarts. While there is some small additional delay in

returning an answer to the end-user when in passive mode, the

resulting estimate is not tainted by the presence of a forwarder.

VI. EVALUATION

In this section we evaluate the effectiveness of Turbo King

for providing accurate latency measurements and its suitability

for large-scale studies compared to O-King and D-King. We

start by discussing our efforts to discover a large number of

nameservers, then perform several real-world measurements to

compare the three algorithms.

5We found that 35 of the 117, 817 discovered recursive nameservers were
either misconfigured or non-compliant with [28] and ignored zero TTL.
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TABLE I
RESULTS OF REVERSE DNS CRAWL (3.8 GHZ PENTIUM 4)

T-King ISC [18]

Month run Nov. 2006 Jul. 2006

Duration (hours) 33.8 240

Queries/Sec 5, 300 (2.3 mb/s) 751 (0.3 mb/s)
Queries Completed 649, 270, 000 N/A
IPs Discovered 439, 431, 355 439, 286, 364

Nameservers 216, 843 89, 592

Recursive Nameservers 117, 817 N/A

A. Results from Reverse DNS Crawl

Because of the large number of queries required to complete

the IN-ADDR.ARPA crawl, we designed and implemented a

multi-threaded DNS resolver to collect a list of nameservers

and authority data for all zones in the reverse lookup tree. The

results of one particular crawl executed in November 2006 are

summarized in Table I, where both Turbo King and ISC [18]

found roughly the same number of IP addresses in the tree;

however, our crawler was approximately seven times faster

and discovered 2.4 times more nameservers. Examination of

the nameservers we discovered revealed that 117, 817 of them

support recursive queries. Using the T-King client, we profiled

each of the recursive nameservers in our list and found that

32% use a forwarder to resolve queries for zones not under

their control.

We next study the coverage of the Internet by all discovered

nameservers and the subset of nameservers that are recursive,

which is illustrated in Table II. This data shows that Turbo

King contains a nameserver in 190 countries, covering over

13 thousand ASes, 48 thousand BGP prefixes [38], and 1.03

billion IP addresses out of 1.6 billion advertised by BGP [38].

We performed further analysis of how well the discovered

BGP prefixes cover 3.5 million Gnutella peers found in prior

work [47] and 3.6 million web servers (hosting over 6.3 billion

webpages) found by our unrelated web-crawling project. These

numbers show that 49% of peers and 88% of web servers

reside in BGP prefixes that contain at least one nameserver

discovered by T-King.

For the subset of nameservers that are recursive, Turbo King

found nameservers in 174 countries, representing nearly 11

thousand ASes, 31 thousand BGP prefixes, and 828 million

IP addresses. This resulted in a coverage of 37% of Gnutella

peers and 73% of webservers. While T-King is able to find a

nameserver in the same network for a large percentage of end-

hosts (especially web servers), the relatively low percentage

of Gnutella peers covered indicates that we should aim to

discover more recursive resolvers used by home-based Internet

connections in the future.

1) Analyzing zone authority data: Of further interest is the

percentage of zones in the reverse lookup tree that contain

multiple authoritative nameservers, which we examined by

recording the set of nameservers authoritative for every zone

during the IN-ADDR.ARPA crawl. The accuracy of O-King

estimates is only significantly affected if one or more of the

nameservers for a zone is in a different network, making it

TABLE II
COVERAGE OF THE INTERNET WITH DISCOVERED SERVERS

All Recursive Total

Countries 190 174 232 [17]
AS 13, 017 10, 895 23, 773 [16]
BGP Prefixes 48, 196 31, 059 219, 110 [38]
IPs covered 1, 031, 736, 562 828, 675, 500 1, 642, 441, 178

Web servers 3, 192, 918 2, 659, 379 3, 638, 433

Gnutella peers 1, 734, 483 1, 338, 217 3, 534, 300

likely for O-King to produce conflicting results over multiple

samples. We downloaded 219, 110 BGP prefixes from Route-

Views [38] and matched each nameserver’s IP to one or more

prefixes, then examined the nameserver set for every zone in

the reverse lookup tree. We found that 49% of reverse lookup

zones contain at least one nameserver in their set that is in a

different network. While this is a striking result, it is possible

that the unmatched nameserver could be in another network

under the same administrative control that is well-connected

to the rest of the nameservers in the set.

Accurately determining administrative control for a large

number of networks is difficult, but it stands to reason that if

all nameservers for a zone share a single domain name, they

are more likely to be under one organization’s administrative

control. While the process is easy for generic top-level do-

mains (gTLDs), it is significantly more complex for country-

coded TLDs (ccTLDs) as most countries created sub-domains

from which people could purchase their own domains (e.g.,

.com.es). We compiled a comprehensive list of these sub-

domains for each ccTLD and hereby refer to this list and the

set of gTLDs as pay-level domains (PLDs). We again evaluated

the nameserver set for each zone and found that 33% have at

least one nameserver in their authority set that both resides in

a different network and has a different PLD than the other

nameservers. It is very likely that the accuracy of O-King

queries for these zones will be negatively impacted.

B. Causes of Inaccuracy

In this section we compare O-King and D-King to Turbo

King using latency estimates they produce from the Internet.

To remove variability caused by differences in architecture,

we implemented all three algorithms using the same timing

and socket mechanisms and ran all of the tests from a single

Windows 2003 x64 machine. To highlight the differences

in accuracy, we focus only on the actual latency estimate

between nameservers and note that T-King should perform no

worse than O-King or D-King in selecting a “close” recursive

nameserver. In many cases it will perform better, but we leave

such analysis for future work.

1) Zones with Multiple Authoritative Nameservers: To il-

lustrate the impact of authoritative nameservers in different

networks on O-King estimates, we chose a zone with two

authoritative nameservers and used O-King to generate 100

latency estimates to a target IP in the zone. We then used D-

King to estimate the latency to the two individual authoritative

nameservers for the zone. In Fig. 6(a) the sequence of O-King

estimates are individual points and the two D-King estimates
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Fig. 6. Comparison of O-King to D-King for zone with two nameservers.
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Fig. 7. Convergence of O-King estimate for zone with two nameservers.

are represented as lines. O-King performs as expected and

vacillates between the two nameservers arbitrarily. This is

further demonstrated in Fig. 6(b), where roughly 60% of

the time O-King chose NS 1 as the preferred server. We

confirmed that this behavior also occurs in zones with more

than two nameservers, but omit these examples for brevity.

We next analyze the convergence properties of O-King mea-

surements for zones with multiple authoritative nameservers.

To determine exactly what happens to the latency estimate

when the number of samples increases, we use the measure-

ment data from above and plot in Fig. 7(a) the CDF of latency

estimates for sample sizes one through five. From inspecting

the figure, it quickly becomes apparent that the higher latency

samples are ignored and are effectively removed from the

overall estimate as the sample size increases. This is further

illustrated in Fig. 7(b), where the latency estimated by O-

King using four samples is plotted with D-King measurements

using one sample. As the figure clearly shows, the O-King

measurement is nearly identical to the measurement given by

D-King to NS 1.

There are two insights that can be gained from this behavior.

The first is that the requirement of at least four samples per

measurement proposed in [13] for O-King is at least partially

due to the natural differences in latency between multiple

authoritative nameservers for a particular zone. In contrast,

D-King provides the same latency estimate with one sample

in this case. The second issue is that O-King always biases

its estimates towards the lowest latency nameserver of a zone.
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Fig. 8. Forwarder affect on O-King and D-King (single nameserver zone).

While in some cases this might be the server located closest

to the target end-host, there is no evidence that this happens

in the general case.

2) DNS Forwarders: The impact of forwarders on both O-

King and D-King latency estimates largely depends on the

proximity of the forwarder to the original recursive name-

server. If the two servers are on the same local network,

any additional latency should be rather small. To quantify

the likelihood of this event, we matched both the forwarder

and the original recursive nameserver to their advertised BGP

prefixes from RouteViews [38] and discovered that 45% of

the time the two servers did not reside on the same network.

To demonstrate the inaccuracy introduced by the presence

of forwarders, we took 100 latency estimates using all three

algorithms from a recursive nameserver known to use a

forwarder to a zone with a single authoritative nameserver

(this rules out effects from multiple authoritative nameservers

on O-King). The resulting latency estimates are illustrated in

Fig. 8(a), which compares O-King to T-King, and in Fig. 8(b),

which compares D-King to T-King. In both figures O-King

and D-King overestimate latency due to the presence of the

forwarder, whereas T-King does not. The D-King estimate is

larger than O-King due to multiple attempts to resolve the

query by the forwarder, a problem that is mentioned in [13]

and accounted for in T-King.

C. Measurement-based Comparison

To study Turbo King in more depth, we performed 2, 450

latency estimates on the Internet using 50 recursive name-

servers from the previously discovered set for both T-King

and O-King over various measurement sample sizes. From this

data we show that T-King measurements are indeed different

from those produced by O-King. We then show that Turbo

King converges to a consistent latency estimate in two samples

instead of the four suggested in [13]. D-King is omitted

from this section due to space constraints, but the results are

consistent with those found in the previous section. D-King is

more accurate than O-King, but less so than T-King due to its

inability to detect forwarders.

1) Turbo King versus O-King estimates: Before comparing

Turbo King to O-King in a general case, we first consider the

two algorithms for a target zone with a single authoritative
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Fig. 9. T-King vs. O-King to validate implementation and show differences.

nameserver using a recursive nameserver that we verified does

not use a forwarder. Because we eliminated all of the factors

that skew O-King estimates, the two should produce the same

value. The result is illustrated in Fig. 9(a), with the estimates

produced by O-King as data points and the average estimate

by T-King as a line to allow the reader to distinguish between

the two. The figure clearly shows that T-King produces latency

estimates that are equivalent to O-King in such idealized cases.

We next compare the 2, 450 latency estimates produced by

Turbo King to those by O-King, which is shown in Fig. 9(b).

To highlight differences between the two, we generated a ratio

of the estimates by dividing O-King’s value by T-King’s, so

that if O-King and T-King produced identical values, the CDF

would be a straight line at one on the x-axis. Note that in

this case we used four samples for each estimate as suggested

in [13]. From the data, 15% of O-King estimates are more

than 10% different from T-King measurements, and 8% of O-

King measurements are more than 20% different from those

generated by T-King.

2) Convergence of Estimates: Previously, we showed that

zones with multiple authoritative nameservers are one of the

reasons O-King requires at least four samples to produce a

latency estimate. In this section, we expand that study by

examining the convergence properties of both T-King and O-

King, showing that over a wide range of estimates Turbo

King converges to a consistent estimate with fewer samples

than required by O-King. To accomplish this, we repeated the

above 2, 450 latency estimates using sample sizes varying from

one to four for both algorithms. We collected two estimates

for each sample size and calculated the ratio of both O-King

to O-King and T-King to T-King. The goal is to provide

consistent estimates for latency, so we plotted the CDF of

the ratio in Fig. 10(a) for O-King and Fig. 10(b) for T-King,

with each line representing the number of samples used to

produce the estimate. In the O-King case, illustrated in Fig.

10(a), improvement in the consistency of estimates is apparent

as the number of samples increases to four, whereas in the

Turbo King case (Fig. 10(b)) the greatest improvement is from

one sample to two, with little afterward. From these graphs we

conclude that the recommendation of four samples in [13] is

sound for O-King and that T-King produces an accurate sample

using only two samples.
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Fig. 10. Convergence of measured latencies for O-King and T-King.

D. Overhead Analysis

In this section we study the resources required of DNS

nameservers and the Internet for all three algorithms. In

particular, we are interested in how the three compare for

large-scale estimates involving more than 100, 000 recursive

nameservers discovered by Turbo King. We start by examining

the number of queries sent to capture the network overhead,

then discuss cache pollution for large-scale measurements.

1) Network Overhead: To study network overhead, we

consider the number of queries required to perform all-to-

all latency estimates for the 100, 000 recursive nameservers,

which is 10 billion estimates. In this calculation, we included

every query initiated either by or on behalf of the measurement

client, and used the number of samples required to produce

consistent latency estimates: four for O-King and two for D-

King and T-King. Due to the lack of seeding, Turbo King

requires 70 billion queries to complete 10 billion latency esti-

mates. D-King needs 100 billion queries for the measurement,

which is 1.43 times more than required by T-King. Finally, O-

King uses 150 billion queries, or 2.14 times more than Turbo

King and 1.5 times more than D-King. Thus, designing T-King

to be more accurate and to avoid seeding led to a significant

reduction in bandwidth usage.

We next consider the impact each algorithm has on DNS

caches under the same measurement conditions.

2) Cache Pollution: We examine cache pollution by calcu-

lating the total number of DNS records inserted into the cache

of the 100, 000 recursive nameservers. Each entry includes

two records, an NS record and an A (IP address) record.

Since O-King causes recursive nameservers to seed the cache

with every authoritative nameserver for a zone, we used the

reverse crawl data to find an average of 2.4 nameservers

per zone. Thus, O-King would cause the insertion of 48

billion entries into cache for the nameservers used in the

measurement. D-King needs a single set of records for each

latency estimate, which means that 20 billion entries would

be saved in caches on its behalf. Turbo King only requires

that the local domain (e.g., irl-tamu.us) be cached at

each recursive nameserver, which implies merely 200, 000

total cache pollution entries. To compare, Turbo King requires

0.0004% of the total entries caused by O-King and 0.001% of
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those initiated by D-King, clearly making Turbo King much

more appropriate for large-scale measurement studies.

VII. CONCLUSION

In this paper we proposed the Turbo King latency estimation

framework and showed that it was more accurate than prior

methods while at the same time requiring fewer samples to

produce an accurate latency measurement and scaling signifi-

cantly better in terms of overhead and cache pollution. More

information on the deployment of Turbo King can be found

in [45].

Future work includes running T-King in active mode on the

Internet, locating more nameservers to increase coverage for

home-based end-users, verifying existing distance estimation

techniques, and creating a system that leverages both theoret-

ical approaches and actual latency estimates on the Internet.
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