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Abstract—Average consensus and gossip algorithms have re-
cently received significant attention, mainly because they con-
stitute simple and robust algorithms for distributed information
processing over networks. Inspired by heat diffusion, they com-
pute the average of sensor networks measurements by iterating
local averages until a desired level of convergence. Confronted
with the diversity of these algorithms, the engineer may be
puzzled in his choice for one of them. As an answer to his/her
need, we develop precise mathematical metrics, easy to use in
practice, to characterize the convergence speed and the cost
(time, message passing, energy...) of each of the algorithms. In
contrast to other works focusing on time-invariant scenarios, we
evaluate these metrics for ergodic time-varying networks. Our
study is based on Oseledec’s theorem, which gives an almost-
sure description of the convergence speed of the algorithms of
interest.

We further provide upper bounds on the convergence speed.
Finally, we use these tools to make some experimental obser-
vations illustrating the behavior of the convergence speed with
respect to network topology and reliability in both average
consensus and gossip algorithms.

I. INTRODUCTION

A. Problem statement.

We study two classes of iterative distributed algorithms,
which compute the average of measurements in a sensor
network: average consensus and gossip algorithms. The sen-
sors and the connections between them are unreliable in
general, thus the network structure varies over time. While
average consensus is a synchronized algorithm, where at each
iteration, all the nodes of the network update their current
estimate by computing a weighted average of the estimates
of their neighbors, gossip algorithms are asynchronous; at
each iteration, only one random node wakes up and randomly
chooses another node. The two nodes exchange their estimates
and update them to the average of the two. Both algorithms
are designed to deal with unstructured, unreliable networks,
and do not require any knowledge of the network structure or
size at the nodes.

In both algorithm classes, one can think of numerous
specific algorithms, with a number of design parameters, e.g.
weighing factors. A careful choice of the design parame-
ters is crucial, because they have a strong influence on the
performance of the algorithms. The goal of this paper is to
provide a precise framework to decide on which algorithm to
choose in order to obtain a given performance. The critical
features this framework requires are an accurate definition for
the algorithm’s cost and speed of convergence, as well as an

easy way to measure these quantities. The challenge here is
to harness the time-variability of the network. The ambition is
to provide performance and cost assessment metrics, which
are well-defined and well-behaved even in the presence of
randomness in the network.

In this paper, “network” refers to any kind of network, wired
or wireless, with static or mobile nodes, and especially to
networks with changing topology. These changes over time
may be due to interference, noise, node failures or sleep
modes, etc.

B. Related work.

Average consensus in static, time-invariant networks has
received considerable attention. In particular, optimizing the
convergence speed over the averaging weights is a well-
known problem called “fastest mixing chain” [1], [2]. In this
context, mixing chain theory [3], [4] states that the speed
of convergence is governed by the second largest eigenvalue
in magnitude λ2(W) of the weight matrix W (the matrix
gathering the averaging weights). The fastest mixing chain is
the matrix W which minimizes λ2(W). As shown in [1], the
optimal weights for a given fixed network can be computed
with a semidefinite program. This weight optimization can be
useful in reliable networks, and we explain in Section II-C
how to adapt the weights in case of link failures. However, the
studies cited above only considered synchronous algorithms in
the case where the network structure remains fixed over time.

When considering time-varying networks and/or random-
ized gossip algorithms however, the weight matrix W changes
over time and the mixing chain theory cannot be applied any-
more [5]. For gossip algorithms, a notion of convergence speed
called ε-averaging time has been introduced in [6], [7]. It is
defined for any ε > 0 as the earliest time at which the estimates
are ε-close (in 2-norm) to the true average with probability
greater than 1−ε. Although this probabilistic definition seems
to be well suited to study randomized algorithms, evaluating
probabilities numerically may be difficult in practice, as it
requires numerous samples and thus multiple experiments.

Further, Kashyap and al. [8] consider another type of ran-
domized averaging algorithms, in which the values exchanged
between the nodes are constrained to be integers. In this way,
the finite capacity of the transmission channels is taken into
account. Still further, Blondel and al. [9] studied the case of
delays in the transmission, i.e. the values exchanged between
nodes are evaluated only at later iterations. In both cases, only
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fundamental stability and convergence results are presented.
Overall, little work has been done for a quantitative study of
convergence speed, which would facilitate the comparison of
different averaging algorithms, especially in the application
relevant case of time-varying network topologies.

C. Contributions and outline of the paper

In Section II, we first describe the two classes of averaging
algorithms (average consensus and gossip), along with the
time-varying model of sensor network studied in this paper,
where random link failures and/or the node wake-up process
require us to use a sequence of randomly time-varying weight
matrix W(t). We assume this sequence to be stationary
and ergodic, but not necessarily independent and identically
distributed (i.i.d). We also summarize the conditions for con-
vergence of these algorithms in this section.

Next, we study the convergence speed of these algorithms in
Section III. In the decrease of an error term over the iterations
of the averaging algorithm, we distinguish a steady-state or
stationary phase from an initial transient phase. Applying Os-
eledec’s theorem, we prove that the error decreases exponen-
tially fast to zero in the steady-state phase, at a contraction rate
γ that is almost surely (a.s.) a deterministic constant, despite
the randomness of the sequence of weight matrices. Moreover,
this rate does not depend on the norm used to measure the
error, and furthermore, characterizes similarly the speeds of
convergence in mean, in mean square and with probability 1.
A third appealing feature is that γ can be easily measured for
finite sized networks using a single run of the algorithm, unlike
the notion of ε-averaging times described in [6], [7]. Finally,
other metrics such as energy, power consumption, amount of
transmitted messages are directly related to the contraction rate
and enjoy therefore the same four properties. We gather these
metrics under a general notion of consensus cost, defined as
the cost (i.e. time, energy, etc) spent to divide the error by a
factor e in the stationary regime.

In Section IV, we compute two upper bounds on the
contraction rate γ, in the case of an i.i.d. sequence of weight
matrices W(t).

We give some practical guidelines to measure consensus
cost and apply them to real data in Section V. We use data
gathered on SensorScope [10], [11], a wireless sensor network
deployed in the Communication Systems building at EPFL, to
compute the consensus cost (time) in a real world time-varying
network. The results show that the Sensorscope network fairly
accurately matches the ergodic model, and therefore illustrate
the practical applicability of our analysis.

How to choose the best strategy for a given network is
explained in Section VI, where we treat several representative
scenarios. This comparison is not exhaustive, but shows how
the results of Sections III and IV can be used as methodolog-
ical tools to evaluate, in practice, the performance of different
distributed averaging algorithms in sensor networks.

II. AVERAGE CONSENSUS AND GOSSIP MODEL SETUP.

A. Set up and notations.

We consider a time-varying network of n nodes, whose goal
is to make available to each node the average value of the
measurements of all nodes in the network, or at least a good
approximation of it. To this end, at time slot t (t is discrete),
the nodes can communicate with each other over all currently
active graph edges, or communication links.

We will restrict the exchanged messages to contain only a
current estimate xi(t) of the sending node i, and in some cases
limited information about the degree of the sending node and
its neighbors. At each time step t, every node i may perform
an update operation of its estimate xi(t) of the overall average.
This operation is linear, and relies only on the current average
estimates from node i and from its neighbors. The update
equation for node i at time t then reads, for 1 ≤ i ≤ n,

xi(t + 1) = wii(t)xi(t) +
∑

j∈Ni(t)

wij(t)xj(t), (1)

where wij(t) are the weighing factors gathered in a weight
matrix W(t) such that x(t + 1) = W(t)x(t), where x(t) =
[x1(t); . . . ;xn(t)]T . The weights values are set according to
averaging algorithms described later on, and Ni(t) is the
current active neighborhood of node i, i.e. the set of nodes
which have an active link to node i at time t. xi(0) is the initial
measurement at node i and xave := 1T x(0)/n = 1T x(t)/n
denotes the true average, where 1 = [1; . . . ; 1]T is the vector
with all ones.

B. Conditions for convergence to true average.

We denote by Jn the n × n averaging matrix with all
elements Jk,l = 1/n, and by ‖ ·‖2 the spectral norm. It is also
useful to define the matrix A(t) = W(t)−Jn and the vector
of the estimation errors ε(t) = x(t) − xave1. The algorithm
converges almost surely (a.s.) if P[limt→∞ ε(t) = 0] = 1.
There are two necessary conditions for convergence:

1T W(t) = 1T

W(t)1 = 1,
(2)

which respectively ensure that the average is preserved at
every iterations, and that 1 is a fixed point. Conditions
for convergence in expectation and in mean square can be
found in [6]. We present here sufficient conditions for a.s.
convergence and convergence in second moment, in the case
where {W(t)}t≥0 is stationary and ergodic:

• Conservation properties: conditions (2).
• Contraction property: ‖W(t)‖2 ≤ 1.
• Connectivity property: E[Tη] < ∞ , where Tη :=

inft{t ≥ 1 :
∏t

p=0 W(t − p) ≥ η > 0} is a stopping
time. In other words, there can be isolated nodes at any
iteration, but every node has to eventually connect to the
network, which has to be jointly connected.

This result was recently proved in [12].
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C. Different averaging strategies.

There are two main classes of distributed averaging algo-
rithms:

1) Synchronous algorithms or average consensus. All the
nodes activate at each time slot t, communicate with
their neighbors and update their current state. There are
three main average consensus strategies for the choice
of the weights.
a) Uniform weights: [5]

wij(t) =




α if j ∈ Ni(t)
1 − α |Ni(t)| if i = j

0 otherwise.

(3)

where α is a constant small enough for the scheme to
be stable, and |·| denotes cardinality.
b) Metropolis weights: [5]

wij(t) =




1
1+max{|Ni(t)|,|Nj(t)|} if j ∈ Ni(t)

1 −∑k∈Ni(t)
wik(t) if i = j

0 otherwise.

(4)

c) Adapted optimal weights: Suppose that, when fully
working, the network is a known graph G. If, at time
t, link failures occur in G, then our network at time
t is only a subgraph of G. According to the fastest
mixing chain theory, we can compute the optimal weight
matrix ΩG for the graph G: ΩG performs with optimal
speed on the time-invariant graph G. Since link failures
change over time, our network is time-varying, and we
cannot use these weights as such; however, we want our
time-varying weights to be inspired by the optimal time-
invariant weights. An easy way to take advantage of our
knowledge of the optimal time-invariant weights is given
here, and we show in Section VI-B that this strategy can
considerably speed up the averaging process in reliable
networks. We adapt the weights ωG

ij (the coefficients of
the weight matrix ΩG) so that they respect the link
failures and yet fulfill conditions (2). More precisely,
for all working links (ij), we take wij = ωG

ij . If link
(kl), existing in G, fails, then wkl = 0 instead of
wkl = ωG

kl, because node k and node l cannot exchange
their estimates anymore. To keep the overall sum of
estimates unchanged, we adapt wkk and wll such that
the weights at each node always sum to 1. This can
be achieved locally at each node, and adapted optimal
weights are thus a distributed averaging strategy.

wij(t) =




ωG
ij if j ∈ Ni(t)

1 −∑k∈Ni(t)
wik(t) if i = j

0 otherwise.

(5)

2) Asynchronous algorithms or gossip algorithms. At each
time slot t, one node only activates. It performs an
averaging scheme with one other node. In the most
common gossip algorithm [13], the currently active node

i chooses one of its neighbors j and they both update
their estimates xi and xj with their average (xi +xj)/2:

wij(t) = wji(t) = wii(t) = wjj(t) = 1/2
wkk(t) = 1 if k �= i, j

wkl(t) = 0 on all other edges.

(6)

In geographic gossip, the information is routed through
the network to allow also non-neighboring nodes to
average their values [14]. A possible extension could
allow three or more nodes to average their values at
each step [15]. Another variation would be to choose
weights other than 1/2 in pairwise gossip for example.
See Section VI-C for further details.

D. Stationary and ergodic networks

It is important to notice that all described strategies present
time-varying averaging weights. Moreover, these changes are
random. That is, we can see the sequence of averaging
matrices as the realization of a random process {W(t)}t≥0.
From there, it might seem difficult to define a deterministic
convergence speed, which is observed not only in a particular
run, but repeatedly in almost every1 realization of the process
{W(t)}t≥0. We show in Section III that this is in fact possible,
when this process satisfies two conditions: stationarity and
ergodicity. Stationarity means invariance under time shifts.
Ergodicity usually comes with stationarity, but is a little bit
more subtle. Refer to the book of Walters [16] for a precise
definition. These conditions are actually very broad, and easily
satisfied by most network models.

In particular, let us see how they translate when using the
considered averaging algorithms:

1) Synchronous algorithms: The algorithms try to perform
the same operation at every iteration. The only source of time-
variability, and therefore of randomness, is in the variations of
the network topology. These variations are due to a number of
factors, e.g. node failures, transmission channel quality, node
sleeping modes, etc. Thus, the combination of all these effects
should be stationary and ergodic over time.

2) Asynchronous algorithms: Here, randomness is addition-
ally introduced by the algorithm itself. But this process can
easily be controlled to be stationary and ergodic, for example
if nodes wake up and choose their neighbor in an i.i.d. manner.

Whether {W(t)}t≥0 is actually stationary and ergodic in
real life is the object of Section V-B, where we run gossip
on actual wireless sensor data. In the simulations, we use a
model where links fail independently with probability p at
each iteration t. Thus, the W(t) are all i.i.d., and this is a
special case of a stationary and ergodic process.

As a conclusion, unlike previous work, this paper embraces
two different sources of randomness, the network topology
variations and the randomized algorithm itself, which we
aggregate into a single stochastic process {W(t)}t≥0. Our
analysis is valid as long as this process is stationary and
ergodic, a condition satisfied by most natural network and
algorithm definitions.

1That is, with probability 1.
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III. CONSENSUS COST AND CONSENSUS TIME.

In Section II-B we recalled the conditions for a consensus
algorithm to converge, i.e. for the error ε(t) = x(t) − xave1
to become arbitrarily small when the number of iterations
t is taken large enough. From now on, we assume the a.s.
convergence conditions to be satisfied, and we study the cost
of convergence itself, in terms of number of iterations, energy,
power, etc., as we will see in Section VI-A. Let C(t) be
the total cost of the algorithm up to iteration t. We assume
the increments of C(t) at each iteration to be a nonnegative
function of W(t), so that the iteration costs are also stationary
and ergodic. We want to express the error ε(t) as a function
of C(t), independently of the initial measurement x(0) and of
the particular realizations of the network and algorithm. In this
section, we prove that, if {W(t)}t≥0 is stationary and ergodic,
then, for large t, there is a deterministic constant Cc, called
consensus cost, such that the error ‖ε(t)‖ ≈ exp(−C(t)/Cc).
Cc only depends on the algorithm considered and on the
network’s statistics.

Definition 1: Consensus cost Let

Cc = lim
t→∞−C(t)/ log ‖ε(t)‖ , (7)

where ‖.‖ denotes any norm equivalent to a p-norm, p ∈
[1,∞]. Whenever this limit exists, we call consensus cost its
value Cc.
The particular case where the consensus cost is time (C(t) =
t) leads to the following definition:

Definition 2: Consensus time Whenever the limit:

Tc = lim
t→∞−t/ log ‖ε(t)‖ . (8)

exists, it is called consensus time.
Theorem 1: If {W(t)}t≥0 is stationary and ergodic, then

the limits (7) and (8) exist. Moreover, Cc and Tc are a.s. non-
random, independent of the norm ‖·‖, and Cc = E[C(1)]Tc.

This theorem is illustrated by simple observations on Fig. 1.
The residual error ε(t) in a logarithmic scale (solid line) slowly
decreases linearly after a faster transient phase. Moreover, we
notice that the averaging matrix residual Mt :=

∏t
k=1 W(t−

k) − Jn =
∏t

k=1 A(t − k) decreases in expectation with the
same rate, which suggests the decreasing rate is deterministic
and does not depend on the initial measurement x(0). Showing
this and defining a contraction rate γ as the slope of this linear
stationary regime is the object of the next two theorems, which
will be used to prove Theorem 1.

A. Contraction rate of the averaging matrix.

It is well known [17, page 299] that for any submulti-
plicative matrix norm ‖ · ‖ (for all A,B, ‖AB‖ � ‖A‖‖B‖),
limt→∞ ‖At‖1/t = ρ(A). If ρ(A) �= 0, we can rewrite this as
limt→∞ 1

t log ‖At‖ = log ρ(A). How does this extend to the
case where A(t) varies over time? Is there any way to specify
or to compute an asymptotic contraction rate of matrices

lim
t→∞

1
t

log

∥∥∥∥∥
t∏

k=1

A(t − k)

∥∥∥∥∥ , (9)
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Fig. 1. Residual error for Metropolis average consensus on a random
geometric graph with 200 nodes and link probability failure p = 0.9. The
figure represents in a logarithmic scale the residual error of the estimates as
well as the residual error of the averaging matrix in norm 2 and Frobenius
norm.

and when is this quantity well-defined in the first place?
Theorem 2: (Fuerstenberg and Kesten’s Theorem. [18] ) Let

{A(t)}t≥0 be a stationary and ergodic sequence of n × n
matrices, and let ‖·‖ be any submultiplicative matrix norm. If

E [max(0, log ‖A(0)‖)] < ∞, (10)

then, if Mt :=
∏t

k=1 A(t − k) for any t, the limit

lim
t→∞

1
t

log ‖Mt‖
exists, and, is equal with probability 1 to

γ := lim
t→∞

1
t
E [log ‖Mt‖] . (11)

Fuerstenberg and Kesten’s theorem shows that, as we as-
sume {A(t)}t≥0 to be stationary and ergodic, the asymp-
totic contraction rate γ is well-defined and is a constant
with probability 1. Note that in our case, {W(t)}t≥0 are
contracting matrices because of converging conditions (II-B),
which implies that {A(t)}t≥0 are bounded matrices, and hence
condition (10) is fulfilled.

B. Contraction rate of the average estimates.

It is now legitimate to ask how the estimation error signal
‖ε(t)‖ = ‖Mtx(0)‖ behaves. The next theorem [19], [16],
[20], [21] states that the error contracts with the same rate γ
as in Theorem 2 for almost every initial measurement x(0).
In other words, Theorem 2 can be extended from matrices to
signals.

Theorem 3: (Oseledec’s Theorem. [19], [21]) Let ‖·‖ be a
norm on R

n equivalent to a p-norm, with p ∈ [1,∞], let
{A(t)}t≥0 be a stationary and ergodic sequence of matrices
satisfying condition (10), and Mt :=

∏t
k=1 A(t − k). Then,

with probability 1, there is a proper subspace V of R
n such

that, for all x ∈ R
n \ V ,

lim
t→∞

1
t

log ‖Mtx‖ = γ, (12)

where γ is defined by (11) in Theorem 2.
Theorem 3 shows therefore that (log ‖ε(t)‖)/t → γ. In the

introductory statement, “almost every” starting point x means
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all x ∈ R
n \ V , i.e. all x outside a proper linear subspace

of R
n. Note that if A(t) = A is a constant (i.e. degenerate

random variable), then eγ is the absolute value of the largest
eigenvalue of A in magnitude. It is also interesting to see that
γ does not depend on the norm ‖.‖, and that the subspace V
is random. In this paper, we work only with one coefficient γ,
which characterizes the speed of the slowest component of the
signal, but a full version of the theorem states the existence of
other smaller coefficients, called Lyapunov exponents, which
affect the transient phase.

Proof: (Theorem 1) Theorems 2 and 3 prove that every
average consensus or gossip algorithm converges with some
characteristic, deterministic contraction rate γ, asymptotically
in time, if the underlying sequence of weights matrices form
a stationary and ergodic stochastic process. To define properly
consensus time, it suffices to notice that, under these condi-
tions, (8 becomes Tc = −1/γ. Moreover,

Cc = lim
t→∞−C(t)/ log ‖ε(t)‖

= lim
t→∞

C(t)
t

. lim
t→∞

−t

log ‖ε(t)‖
= E[C(1)]Tc.

The last equality comes from the ergodicity of the network,
which implies the ergodicity of the cost at each iteration.

IV. UPPER BOUNDS ON CONTRACTION RATE.

Theorems 2 and 3 prove the existence of deterministic
contraction rate γ, consensus cost and consensus time but do
not provide any method to compute them, other than evaluating
the limit (11) or (12). In this section, we present upper bounds
on γ = −1/Tc, under the stronger condition that the sequence
of weight matrices is i.i.d.

A. A first bound B1 := log(ρ(E[A ⊗ A]))/2.

Theorem 4: Let {A(t)}t≥0 be a sequence of i.i.d. random
matrices in R

n×n satisfying condition (10), and γ its contrac-
tion rate. Then, γ is bounded from above

γ ≤ B1 :=
1
2

log ρ (E[A(0) ⊗ A(0)]) ,

where ρ denotes the spectral radius, and ⊗ the Kronecker
product.

The proof is given in Appendix.

B. A looser but simpler bound B2 := log(λ1(E[AT A]))/2.

This bound is strongly inspired by previous work [6].
Theorem 5: Let {A(t)}t≥0 be a sequence of i.i.d. random

matrices in R
n×n satisfying condition (10), and γ its contrac-

tion rate. Then, γ is bounded from above

γ ≤ B2 :=
1
2

log λ1

(
E[AT (0)A(0)]

)
,

where λ1 denotes the largest eigenvalue.
The proof is given in Appendix. As we can see in Fig. 2,

this bound is very loose, except for very well connected
networks. The proof of Theorem 4 requires two inequalities,
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Fig. 2. Impact of the network’s connectivity on the behavior of B1 :=
log(ρ(E[A⊗A]))/2, B2 := log(λ1(E[AT A]))/2 and C3 := log λ2E[W].
Pairwise gossip was run on a random geometric network of 30 nodes and
increasing connecting radius, and thus number of edges.

one of which we expect to be an equality, whereas the proof
of Theorem 5 uses an infinite number of inequalities. This
explains why B1 is much tighter.

In most gossip algorithms, the matrix W is a projection
matrix: WW = W. Indeed, if the same pair of nodes
successively average their estimates twice, the second aver-
aging round is useless. In that case, Theorem 5 becomes
γ ≤ 1

2 log λ1 (E[A]) = 1
2 log λ2 (E[W]). This enables us to

adapt previous results based on the estimation of λ2 (E[W]).
These results bound ε-averaging time in gossip algorithms
running on random geometric graphs of increasing size n,
constructed by placing the n nodes uniformly on a unit square,
and by connecting any pair of nodes if their distance is smaller
than r(n) =

√
α log n/n, for some constant α large enough

to ensure graph connectivity. In this setting, for any function
f , if Tave(ε) = O(f(n) log(ε−1)), then Tc = O(f(n)). Con-
sequently, if we consider the number of exchanged messages
as the cost function C, pairwise gossip with direct neighbors
behaves in Cc = O(n2/ log n) messages [22]; geographic
gossip, which averages any pair of nodes at the expense
of routing their estimates, runs with Cc = O(n1.5/

√
log n)

messages [14]; and finally geographic gossip with averaging
along the routing path achieves Cc = O(n) messages [15].
Unfortunately, in general, λ2 (E[W]) is not a bound on γ.

V. EXPERIMENTAL OBSERVATIONS

A. Practical guidelines to measure contraction rate γ, con-
sensus time Tc and consensus cost Cc.

The method to measure γ, Tc and Cc comes directly from
their definitions: γ = limt→∞ log ‖ε(t)‖ /t, Tc = −1/γ
and Cc = limt→∞ −C(t)/ log ‖ε(t)‖. One should run the
algorithm with a known initial signal x(0), stop the algo-
rithm at some large tf and measure the error ε(tf ). Then
one can compute log ‖ε(tf )‖ /tf to get an estimate of γ,
and consequently of Tc, or measure C(tf ) and calculate
−C(tf )/ log ‖ε(tf )‖ as an approximation of Cc. There are
two sources of error when estimating these quantities at a
finite time tf : the deviation induced by the transient phase, and
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Fig. 3. Geographic gossip with path averaging on a random geometric graph.
Links fail i.i.d. in time and space. Fig. (a) represents log ‖ε(t)‖ from t = 500
to 1900. We reproduced the experiment 15 times and averaged the 15 results
to get Fig (b) . In this case we prefer to measure γ on this averaged figure.

noisy excursions from the linear trend of the curve (Fig. 3(a))
introduced by the randomness of the sequences of time-varying
matrices, especially when there are relatively isolated nodes in
the network which do not participate often in the averaging
process. Two tricks, which can be combined, improve the
accuracy of the measurements:

1) Erase the transient phase: Take an extra measurement at
an intermediate iteration ti after the transient phase, and
estimate the slope of log ‖ε(t)‖ only in the stationary
regime: γ � (log ‖ε(tf )‖− log ‖ε(ti)‖)/(tf − ti). Simi-
larly, Cc � (C(tf )−C(ti))/(log ‖ε(tf )‖− log ‖ε(ti)‖).

2) Reduce noise: Run the algorithm several times and
estimate γ as the slope of the average of the errors:
γ �< log ‖ε(tf )‖ > /tf , where <> denotes averaging
over runs. See Fig. 3 for an example. Then Cc �
(−1/γ) < C(tf ) > /tf .

B. Confronting theory with data from SensorScope.

We used data from SensorScope [10], which is a sensor
network of approximately 20 static motes, to validate the
theoretical results provided in section III. As explained in
the description of SensorScope provided in [11], basic tinyOS
multihop routing is used to gather at the sink a picture of
the network’s connectivity. Every 15 minutes, every node
sends the list of its current neighbors. Because this reporting
procedure is not reliable, we could only use the data from 16
nodes. Using these statistics from SensorScope, we perform
pairwise gossip: when a node i communicates its neighbor
list to the sink, we uniformly choose one node j in the list,
and update nodes i and j’s states to (xi + xj)/2.

The results are shown in Fig. 4 and are very encouraging.
As shown in Fig. 4(b), log ‖ε(t)‖ does decrease linearly on
average. Realizations taken one by one are more noisy for 2
reasons. First, some nodes have less neighbors than others,
so their participation to the algorithm is unevenly allocated,
creating some noisy excursion effects, as mentioned in V-A.
Second, Fig. 4(a) represents a day where data reliably reached
the sink, but on other days, we do not receive the entire data.
Besides amplifying the previously cited noise phenomenon,
this also introduces distortion from one day to the other,
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Fig. 4. Pairwise gossip on SensorScope. In (a), (b): the error ε(t) = ‖x(t)−
xave‖2 in a log scale , and in (c): consensus time. Pairwise gossip was run
on preexistent data measured on a wireless sensor network of 16 nodes at
EPFL. Each of the 32 realizations were run with different initial measurements
chosen randomly according to a normal distribution.

and the measured consensus times Tc spread out (Fig. 4(c)).
Despite that, consensus time concentrates between 28 and 32
iterations, for most of our experiments. We thus conclude that
our analysis reasonably holds on SensorScope data and that, in
such a network, gossip algorithm divides the error by a factor
e every ≈ 30 iterations. In further work, we will implement
pairwise gossip directly in the network, in order to study
precisely its ergodicity without distortions due to incomplete
data.

VI. CHOICE OF STRATEGY

A. Choice of cost function.

Choosing the strategy will depend on the choice of the
cost function C because one should choose the strategy that
minimizes the consensus cost Cc.

The absolute time of convergence, in contrast with the
number of iterations, depends on the clock model used in the
network for the algorithm. For example, the duration d of one
iteration may be shorter in pairwise gossiping than in average
consensus. Consequently, in order to compare strategies on a
time criterion, one should compare their absolute consensus
times T abs

c = E[d]Tc.
From an information processing point of view, it is interest-

ing to know how efficient the successful pairwise exchanges
of messages are, as if the network was wired. We call M(t)
their number after t iterations and Mc the consensus number
of message exchanges. Note that M(t) can be measured by
counting the total number of messages received by the nodes.

If we are interested in power consumption, we have to use
the broadcast model. In average consensus, one node emits the
same message to all its neighbors with only one transmission.
Let E(t) be the energy used by all nodes, taken here as
the number of messages broadcasted, up to iteration t. We
accordingly define consensus energy Ec, which can have a
behavior very different from that of Mc.

B. Examples of comparison between strategies.

a) Gossip or Metropolis?: We want to know whether we
should use pairwise gossip or Metropolis weights, depending
on the network reliability. We model our sensor network as a
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Fig. 5. These experiments have been run on a random geometric graph of
50 nodes on a unit square, with radius 0.18. Fig (a) shows Metropolis and
gossip consensus times, the latter being scaled by the number of nodes. In Fig
(b) we see that the pairwise communications in Metropolis are more efficient
if the network is less reliable. Fig (c) shows that gossip spends less energy
than Metropolis when the network is more reliable.

random geometric graph with n = 50 nodes and connection
radius r = 0.18, and the reliability of our network is indexed
by p, the probability of link failure. We assume the links
failures to be i.i.d. in time and in space. Simulations (Fig.
5) show that in reliable networks, it is better to use pairwise
gossiping whereas unreliable networks work better with the
Metropolis algorithm. Indeed, at each iteration, the Metropolis
algorithm takes advantage of all the existing links, whereas
the gossip algorithm bets on one link. If it is off, no averaging
occurs and there is a loss of time and energy. The weakness
of Metropolis weights in reliable networks is the redundancy
of its messages, an effect most visible when considering the
received messages (Fig. 5(b)).

b) Metropolis or adapted optimal weights?: Choosing
between two synchronous strategies is easier, because they
have the same clocks and their message passing schemes are
very similar. In our simulations, we compare their contraction
rates γ. If the network is reliable (low failure probability p),
it is worth computing the optimized weights and adapt them
when links fail, as in (5). On the contrary, if p is large, the
adapted weights are too low, considering the smaller number
of active links, and Metropolis weights perform better. An
example is given in Fig. 6, which shows that the threshold
probability separating the best alternatives heavily depends on
network topology.
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Fig. 6. These two experiments were run on trees with 31 nodes. The root of
tree (a) has 3 children that have 9 children each, whereas the root of tree (b)
has 10 children that have 2 children each. The root is a much bigger bottleneck
in tree (a) than in tree (b). This bottleneck in tree (a) is well taken care of by
the weight optimization, whereas Metropolis weights already perform well on
tree (b). Therefore the threshold probability is much larger in (a) than in (b).

C. Choice of pairwise gossip weights.

In previous work, pairwise gossip assumed the weight
α = 0.5 as mentioned in (6). Here, we show that this weight
choice is not the best strategy for regular graphs and random
geometric graphs, although it is the best strategy for fully
connected graphs. We propose to extend pairwise gossip in
the following way. If node i wakes up and calls node j,

wij(t) = wji(t) = α

wii(t) = wjj(t) = 1 − α

wkk(t) = 1 if k �= i, j

wkl(t) = 0 on all other edges.

(13)

As shown in Fig. 7, except some special cases including the
full graph, it is better to have α = α0 > 0.5. The explanation
is intuitive. In a general graph, some nodes are more isolated
than others. Even though the nodes wake up the same amount
of times in average, they are not called by other nodes on a
fair basis. This implies that relatively isolated nodes participate
to the algorithm less often than well connected nodes. So
capturing a proportion α > 0.5 of the value of one’s neighbor
enables the “slow” nodes to catch up by giving a large part of
their value to the “fast” nodes. However, there is a trade off
to be found. If α is too large, the algorithm looses efficiency.
In our experiment, we consider graphs with 60 nodes. In this
case, the optimal weight for regular graphs of degree d = 6
is α0 = 0.65, and α0 = 0.87 for random geometric graphs
with radius r = 0.3. Finding how the optimal α behaves with
the number of nodes and more generally with the topology of
graphs is yet to be explored.

VII. SUMMARY AND OPEN PROBLEMS

In this paper, we first provide novel tools that allow to com-
pare performance of different averaging strategies in arbitrary,
ergodic time-varying networks. The principal parameter used
is the contraction rate γ, which can be related to a Lyapunov
exponent governing the decay rate of the error vector norm.

A first advantage of this metric is that it can be computed
very easily in practice, with a few simulation runs only
and using a random initial measurement vector. Theorem 3
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Fig. 7. Search for optimal weights in pair-wise gossip (Eq. (13)). These
curves were obtained by averaging the results over 500 graphs of each type.
All the graphs have 60 nodes.

proves that the contraction rate γ is a deterministic constant
with probability one with respect to realizations of the time-
varying network, and for almost any starting point (i.e. initial
measurement vector).

More importantly, contraction rate γ is the key parameter
to compute consensus cost. The natural definition of γ is with
respect to time, or the number of algorithm iterations. But it
can readily be modified in order to consider e.g. the number
of sent messages or the energy spent. Thus, depending on the
cost function to optimize, we consider either a time constant
Tc or a cost Cc, respectively characterizing the amount of time
or any other resource needed to achieve a certain “consensus”
between the nodes in the network. The values Tc and Ec may
then be used to compare averaging costs of different averaging
strategies.

Furthermore, we derive upper bounds on the contraction rate
for the case of link failure patterns i.i.d. in time. Although
being either loose (B2) or strenuous to compute numerically
(B1), these bounds have the advantage to require the analysis
of a single matrix only, instead of an infinite sequence of
matrices. Consequently, they may help to get more insight in
averaging dynamics from an analytical point of view, rather
than by simulations. According to empirical observations, B1

seems to be fairly tight in many cases. Still, proving whether
and under which conditions this bound is asymptotically tight
for large networks remains an open problem.

Finally, we showed a few examples where we used the
newly derived tools to analyze different network setups and
averaging strategies. We compared pairwise gossiping with
synchronized averaging using Metropolis weights, considering
different cost functions such as time, the number of transmitted
messages, and the number of received messages. Finally, we
highlighted the fact that efficiency of pairwise gossip may
be improved significantly by putting more weight on the
exchanged values than on one’s own.

All these observations can help optimizing and improving
existing averaging algorithms, and are only examples on how
the presented performance measures may be used. We are
convinced they will prove very useful in evaluating future

averaging algorithms, and comparing them to existing ones.
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VIII. APPENDIX.

Proof: (Theorem 4) Theorem 2 gives us the choice of the
submultiplicative matrix norm and we choose the Frobenius
norm. We denote by mij the i-th row, j-th column element of
Mt. Then, by Jensen’s inequality (15),

γ = lim
t→∞

1
t
E

[
1
2

log ‖Mt‖2
F

]
(14)

≤ lim
t→∞

1
2t

log E
[
‖Mt‖2

F

]
(15)

= lim
t→∞

1
2t

log E


 n∑

i=1

n∑
j=1

m2
ij(t)


 . (16)

We now express ‖Mt‖2
F as a function f(·) of another matrix,

namely Mt ⊗ Mt. Formally, f is thus defined as

f : R
n2×n2 → R : B �→

n∑
i=1

n∑
j=1

bi+n(i−1),j+n(j−1) (17)

where bk,l is the k-th row, l-th column element of B. In other
words, f(B) sums n2 specially chosen elements of the n2×n2

matrix B. Besides the equality

f(M ⊗ M) = ‖M‖2
F , (18)

this function has the desirable property of being linear:

f (αA + βB) = αf(A) + βf(B). (19)

Going back to equation (15), replace ‖M‖2
F according to (18).

Then, using property (19), invoke linearity of expectation to
interchange f(·) and E[·]:

γ ≤ lim
t→∞

1
2t

log E [f(Mt ⊗ Mt)]

= lim
t→∞

1
2t

log f (E [Mt ⊗ Mt])

= lim
t→∞

1
2t

log f

(
E

[
t∏

p=1

A(t − p) ⊗
t∏

p=1

A(t − p)

])

= lim
t→∞

1
2t

log f

(
E

[
t∏

p=1

(
A(t − p) ⊗ A(t − p)

)])
.

Note that we used the distributive property of the Kronecker
product, (AC) ⊗ (BD) = (A ⊗ B)(C ⊗ D). Now use the
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i.i.d. property of the matrices A(t) to interchange the matrix
product and expectation

γ ≤ lim
t→∞

1
2t

log f

(
t∏

p=1

E
[
A(t − p) ⊗ A(t − p)

])

= lim
t→∞

1
2t

log f
(
Et [A(0) ⊗ A(0)]

)
.

To simplify the notation in the following, we define B :=
E[A(0) ⊗ A(0)]. Using linearity of f once again, we have

γ ≤ lim
t→∞

1
2t

log f
(
Bt
)

= lim
t→∞

1
2t

(
log
∥∥Bt

∥∥+ log f

(
Bt

‖Bt‖
))

= lim
t→∞

(
1
2

log
∥∥Bt

∥∥ 1
t +

1
2t

log f

(
Bt

‖Bt‖
))

.

It is a well known fact (Gelfand’s formula, see e.g. [17]) that
for any p-norm, p ∈ {1, 2, . . . ,∞},

lim
t→∞

∥∥Bt
∥∥ 1

t

p
= ρ(B) := max{|λ| : λ ∈ λ(B)}.

To bound the last term, we choose p = ∞, which yields to
f
(

Bt

‖Bt‖∞

)
≤ n2. We can now conclude:

γ ≤ lim
t→∞

(
1
2

log
∥∥Bt

∥∥ 1
t +

1
2t

log n2

)

=
1
2

log lim
t→∞

∥∥Bt
∥∥ 1

t + 0

=
1
2

log ρ(B).

Proof: (Theorem 5) Let y(t) = x(t) − xave1. For any
nonrandom choice of y(0) ∈ R

n \ {0},

E
[
yT (t)y(t)

]
= E

[
E
[
yT (t − 1)AT (t − 1)A(t − 1)y(t − 1)|y(t − 1)

]]
= E

[
yT (t − 1)E

[
AT (t − 1)A(t − 1)

]
y(t − 1)

]
≤ λt

1

(
E
[
AT (0)A(0)

])
yT (0)y(0).

Then, by Jensen’s inequality,

E
1
2t

[
log
(

yT (t)y(t)
yT (0)y(0)

)]
≤ 1

2t
log

(
E
[
yT (t)y(t)

]
yT (0)y(0)

)

≤ 1
2

log λ1

(
E
[
AT (0)A(0)

])
.

Now, we choose y(0) = ŷ(0) such that P (ŷ(0) ∈ R
n \ V ) =

1, with V defined as in Theorem 3. For such a ŷ(0),
limt→∞ 1

t log ‖ŷ(t)‖2
‖ŷ(0)‖2

= γ with probability 1. Consequently,

there is a bounded C such that 1
t log ‖ŷ(t)‖2

‖ŷ(0)‖2
< C for all t.

Then, by dominated convergence,

γ = E lim
t→∞

1
t

log
‖ŷ(t)‖2

‖ŷ(0)‖2

= lim
t→∞E

1
t

log
‖ŷ(t)‖2

‖ŷ(0)‖2

≤ 1
2

log λ1

(
E[AT (0)A(0)]

)
.
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