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On Performance of Event-to-Sink Transport in Transmit-Only Sensor
Networks

Barttomiej Btaszczyszynand Bozidar Radunovié

Abstract— We consider a hybrid wireless sensor network with
regular and transmit-only sensors. The transmit-only sengrs do
not have receiver circuit, hence are cheaper and less energgn-
suming, but their transmissions cannot be coordinated. Ragar
sensors, also called cluster-heads, are responsible forcegving
information from transmit-only sensors and forwarding it to
sinks. The main goal of such a hybrid network is to reduce the
cost of deployment while achieving some performance constints
(minimum coverage, sensing rate, etc).

In this paper we are interested in the communication between
transmit-only sensors and cluster-heads. We develop a délid
analytical model of the physical and MAC layer using tools
from queuing theory and stochastic geometry. (The MAC model
that we call Erlang’s loss model with interference, might be
of independent interest as adequate for any non-slotted; &.,
unsynchronized, wireless communication channel.) We givan
explicit formula for the frequency of successful packet reeption
by a cluster-head, given sensors’ locations. We further defe
packet admission policies at a cluster-head, and we calcu&
the optimal policies for different performance criteria. Finally
we show that the proposed hybrid network, using the optimal
policies, can achieve substantial cost savings as compared
conventional architectures.

I. INTRODUCTION

In this paper we analyze performance ohybrid sensor

In [1] the authors propose a simple heuristic of a packet
admission policy at a cluster-head in order to maximize the
total number of captured packet. In this paper, we define
a detail mathematical model of the hybrid network. Using
this model we prove that the heuristic from [1] is indeed
optimal. We also derive the optimal policy that maximizes th
coverage region of a hybrid network, which was previously
unknown. Finally, using our model, we are able to quantify
the substantial savings obtained with the hybrid architect

In addition, the MAC model that we develop and call
Erlang’s loss model with interference, might be of indepanrtd
interest as adequate for any non-slotted; i.e., unsyndedn
wireless communication channel.

Related work: The only work on transmit-only sensor
networks we are aware of is [1]. An analysis of the event-
to-sink performance of standard network is given in e.g- [2]
Several works show a significantly lower complexity and
power consumption of transmiter over receiver circuit [8],

[5].

Note that we arenot interested in this paper how to obtain
the sensor deployment that satisfies a correct monitoritigeof
domain. Several results on this subject were already phéalis
e.g. using the explicit formula for the volume fraction of
the stochastic geometry Boolean model (see eg. [6], [7]) or

network architectureproposed in [1]. The goal of this archi-asymptotic formula, which can be applied when the density
tecture is toreduce the cost of deployment while achievingf nodes is large while the sensing ranges are small; see [8],
some performance constrainfshese constraints concern thggj.

event-to-sink performance of the network [2], and thus i@ju  The remaining part of this paper is organized as follows.

a sufficient density of deploymetn correctly monitor the |5 Section[ we describe the system assumptions. Next,
sensing domain, andfficient transport solutions order to in Section[Ill we evaluate and optimize its performance.

prOVide the detected information to the central unit. Numerical examp|es are presented in Sen V. In Appendix

The idea proposed in [1] assure some fraction of sensia@ develop some details of the mathematical model used to
capabilities by thetransmit-only sensorswho do not have analyze the system.

receiver circuit, hence are less energy consuming, andehea
[Rabaey, ODonnell, Sheng]. The remaining part of the sgnsin
and the totality of the information transport task is asdurg Let us consider a network afensorsand cluster-heads
regular sensors, also called heslester-headsIn particular, Sensors are simple sensing devices that are equipped only
they are responsible for receiving information from traitsm with a single transmitter. They are supposed to sense and
only sensors, who send it blindly, and forwarding it to sinkseriodically send information to the cluster-heads. @ust

An immediate consequence of the assumption on theads are more powerful (and more expensive) sensors. They
transmit-only sensors is that the transmission traffic geed are equipped with a receiver and a transmitter, and thegiape
by them is completely random, and thus, we have to admit thale is to collect information from transmit-only sensorsda
some part of the detected information will be lost because fafrward it to a central server. The network consists of adarg
the collisions generated at the receiver of the cluster fieadumber of sensors and a much smaller number of cluster-
Note that arbitrarily increasing the density of the trartsmiheads. We want to analyze and optimize fregformance of
only sensors and/or their traffic intensity we may saturaée tthe information transport from sensors to cluster-heads
transport layer and thus make the situation even worse.

Il. SYSTEM ASSUMPTIONS

A. Events and traffic
d’'Ulm, 75005 Paris FRANCE, Bartek.Blaszczyszyn@ens.fr;

2 INRIA & ENS 45 rue d'Ulm. 75005 Paris FRANCE. Bozi- S€nsors randomly and independently of each other, with in-
dar.Radunovic@ens.fr tensity A.. Two scenarios are possible. In the first one, event
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is a time instants at which a sensor decides to transmit s ower i), St e
information about the actual state of the sensed envirohmen S ~___~
. : : i K powe dmitEacveek

There, ), is a system variable controlled by the designer. In ~ —— m'?"fle/e p:; .rd t‘ noda M \ele power _
the second scenario, event is a time instant at which a sensor ‘9. % >ain due fo admission poliey.
senses some random excitation in its proximity and trassmihe MAC layer, given the link fading valule and the received
areporton it. A local character of random excitations fiesti jnterference power procesd; }.
the assumption of indgpendencg between transmissions ofommonly used fading model is Rayleigh fading where
different sensors. In this case. is an external parameterjink fading 4 is represented with a circular complex Gaussian
depending on type of events we measure. ~random variable. In this cagé|? can be seen as a realization

Our analysis applies also to a situation when the excitatigf some exponential random variable (see e.g. [10, p. 50 and
of the medium is not local and persists for some time (lik§p1y).
in an intrusion detection problem). Then, the time and space c|yster-head communication’We also assume that
scale of our spatial throughput analysis corresponds to t@ster-heads have a reliable communication of a higher rat

duration of the excitation and the region from which thgy a central server, which does not interfere with the sensor
sensors report about this excitation. A random, Aloha-typghannel (e.g. can be wired, but not necessary).

back-off mechanism has to be implemented at sensors, in o )
order to avoid systematic packet collisions from other sens C: Synchronization and decoding
sensing the same excitation. The vent is a time instant attwhi A cluster-head needs to synchronize to a packet sent by a
the back-off mechanism of a sensor makes it transmit; thas, sensor before receiving it. In order to synchronize to a pack
find the first scenario in this interpretation. When the et the cluster-head has to receive it with some minimum reoapti
is over, the sensors may go to a sleep mode, or sense at spaeer 3. If the packet reception power is higher than this,
smaller rate. cluster-head starts receiving and it continues receivintjl u
A canonical exampleconsidered in this paper, is this of athe end of the transmissiot.the transmission is lost because
channel with the throughput of 1 MB/s at the physical layeof the collision with another packet emission (interfeenc
which is shared by sensors homogeneously distributed witte error will be detected only at the end of the reception
the density of\, = 10 sensors/rh We consider the periods Moreoverthis interfering packet will be lost as wedince the
when the channel is actively used by all the sensors which emluster head was not idle at its arrival epoch; cf. Fiddre 1.
with the temporal intensity. = 1 kbps. Such arelatively high  In order to improve the efficiency, we introducepacket
intensity may be reasonable to perform correctly duringesoradmission policyOnce the cluster-head is synchronized to a
periods of persistent excitations. packet, itmay decide to receive or ignore the detected packet
according to some packet admission poli@sed, for example,
i . _ . onthe value of the received power. This policy allows to igno
Since sensors are transmit-only, they cannot sense oolisi o me weak packets so that the cluster-head is more often
and send packets blindly. The goal of cluster-heads is f9ailable for stronger packets. The choice of a particubdicyp

receive these packets. We suppose that a packet is Co”eﬁg}ﬁends on system design goals, described in Sdcfion II-E.
received if the SINR, empirically averaged over the reepti

duration, is higher than some threshold. Otherwise, thkqiacD- Sensor placement

is lost. We consider a slow fading Gaussian channel channeBensors in a given network realization are fixed. We show
model with repetition coding with interleavingRepetition how to evaluate the performance of a given fixed configuration
coding corresponds to CDMA or UWB spreading. Interleavingf sensors served by one cluster head applying some admissio
means, that each bit is sent through many symbols uniforngglicy. For performance optimization, we adopt a stockasti
distributed over the duration of the packet size. Supposgproach. Namely, we optimize the system parameters with
that the receive is equipped with a matched filter (coheremispect to the average performance, taken over all possible
maximal ratio combiner). Then, the standard analysis (segatio-temporal configurations of packet emissions, whigh
e.g. [10, Section 3.2.1]) says, that there is a threshadd the driven by some spatio-temporal Poisson point process. We
SINR that should be respected in order to maintain the lijall this model aPoisson-rain process of eventd/e argue

B. Reception

quality; , in Appendix[A=B1 that this model — which corresponds to
|h[*Prec > (2.1) the situation where each event is associated with one sensor
W+1/M Z;‘il L= that activates only once, when the event occurs, and leaves

where W and I, is, respectively, the noise power and th éhe system afterward — is a reasonable approximation of the

power received from interferers during thie symbol, Py, packet traffic generated be an arbitrary (also determi)isti

: . : repartition of sensors on the plane, provided the density is
is the received power averaged over fading effects that I o ) . :
. ._._large. However, it is important to keep in mind that this
supposed to depend only on the emitted power and the distanc o ST . .
. . N model is just an approximation, that in reality the sensoes a
between the emitter and the receiver. Remark, that intériga ) : .
. . : . persistent, and that we can collect and keep some informatio
allows for the empirical averaging of the interferedda 1) bout each one
over the packet duration. We will interpréf{R.1) as the SINR '
condition identifying the successful reception of the paa  3e.g. needed to have symbol-error rate during the preamble%f
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We consider several design goals, related to the transport o [ admissible [0 ‘3

the information from sensors to cluster-heads. Our praicip :
performance metric is thepatio-temporal density(x) of the
received informationWe define it as the mean number o
packets received from sensors, per second, from the surf?l
area d.

In order to obtain some desired densjy-) the system
designer can influence the placement of nodes (at least
density), transmission power, and frequency of transonssi

. . 0
However, while the density of nodes can depend on th

. o . x)As(x)dz x A dt.
location, the transmission power and frequency is the sam . -
. nspired be the channel description of Secfionlll-B, we as-
for all the sensors as we suppose we cannot reconfigure eac

L . gume that a given admissible packet, arriving when theetust
sensor separa_\tely once it is placed_. The main parameter théaad is idle, is correctly received if some SINR, empirigall
can be tuned in order to shape the information transport from ' . o X

veraged over the reception peridt] is higher than some

;Bﬁgasbt; Cﬁtztg:u;;zzzeads is the packet admission poﬁqygsholdy; cf: Z3). The in_terferencel is created by all other
In general, the network. designer may be interestatidni- emissions taking place at this time period and by some exttern
. ' ) . . X noisel. A detailed mathematical analysis of the performance

mizing the coveragef some sensing domain or increasing of the cluster-head modeled by sogang’s loss system with

thterferenceand SINR condition[{AlL) is done in SectibnA-B
under the assumption dRayleigh fading In what follows

e summarize the results of this analysis. First, we remind

E. Design goals and performance metrics

385
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reception

Fig. 2. Three terms of interferencg:, L2, L.

eeciﬁcally, the cluster head applies some admission yolic

é), which is the probability that it tries, given it is idle,

to receive a given packet emitted froms 8. We assume that

me admission decisions are taken independently of ea@r oth
e . .

and of anything else, and thus the spatio-temporal process

f admissiblepackets is the Poisson process with intensity

the policies respectively callatdax-minandglobally optimal
which are defined in SectioiSTIB afdIII-C;
Finally, the goal of this paper is to propose a hybrid networ
that wiI?lminir%ize the ccl)ostpof the r?etv?/ork degloymeWb \ggenerall fact that follows frpm the Campbel! formula}. .
N Proposition 3.1: The density of received information is
thus want to show how much money can a designer save b _ .
. . . . . eé(ual top(z) = AeAs(2)d(Z)Dfree Prec(x), Wherepy . is
combining wireless tranceiver sensors with the cheapinans the probability that a typicai admissible packet finds the
only ones. To that respect we study g@nomic optimization P Y P P

problemin Section(IIED, which finds the right proportion of cluster head idle when it arrives apg..(x) is the conditional

the two types of devices that minimizes the cost of a networrl)<r0bablllty that the ty.plcal gdm|SS|bIe packet a”""”g.”'. dv
can be correctly received, given the cluster head starg/iage

under the constraint of some desired level transport—awaltre

effective coverage. Suppose that the cluster-head is located at the origin. Beno

I1l. ANALYSIS by P is the emission power used be all sensors/ify) the
I_power attenuation function (path-loss) of the distancenfro

. . . to 0, and byLy the Laplace transform of the powé&¥ of
mance of the sensors-to-cluster-heads information tamh8p " ormal (white) noiseLw (€) = e~ ¢ if this power is

transmit only sensor network, whose system assumptions AL stant
described in Sectionlll. We assume that the density of sensore . given admissible packet received by the cluster-head

e oL £ £, b el apiace ransioms of ne erierece
sufficient resolution r%1\/aéraged over the reception periodenerated respectively,

' by: admissible packets arriving when it is being received
A. Density of information admissible packets that are being sent at its arrival epoch
all non-admissible packetsf. Figure[2. These Laplace trans-
forms are explicitly given by formulag (AL 1Y (AN 2] (AL
Svith \ = Ae [d(r) Xs(x) dz begin the total intensity of the
Lé{wnissible packets (the integral is taken over the wholeaiiom
of the network deployment). Denote, = ~/(PL(x)). By
&orollarylm, we have the following result.

X Proposition 3.2: The Erlang acceptance probability is equal
whereA,(dz) = A;(z)dz and A, are, respectively, the mean prree = 1/(1 + AB) and the conditional reception proba-
number of sensors placed at,dand the temporal intensity bi ity is equal to (@) = Lov (7)1 (2) Lo (1) L (72)
of packet traffic sent by each sensor. This Poisson rain o Prec W Ve ) 2102 )52 Ve ) T Ve )
. . Lets denote
events (packets) is supposed to be received by one cluster- 1
head, whose behavior is described in Sectibns] [-BHI-@(¢) = exp<—)\eB/(1 ~ L) log(14+¢PL(x)) As(dx))> ,
T

4We explain in SectiofA=BI1 that this model, called there Boésson rain (3.1)
of eventsis a reasonable approximation of the process of packetsritted
be an arbitrary pattern of sensors (not necessarily Poissrsely distributed 5The cluster-head does not need to know the location of thevest it can
on the plane. apply some admission policy depending on the received power

In this section we will analyze and optimize the perfo

First, we study the density of information received by
single cluster heag(x). Remind that we define it as as th
mean number of packets received by the cluster-head per
of time from the area«l We will model the traffic described
in SectionI[-A by a spatio-temporal Poisson point process
eventd (packet transmissions) with intensity, (dz) x \.dt,



Corollary[A1 gives two more explicit bounds gn..(z). Proof: We consider the lower bound. The proof for the

Proposition 3.3:We havep = (z) < prec(z) < Drec(z), upper bound is analogous. Suppose that< co. Note that
wherep (z) = Lw(7.)L? (%) Dree(T) = Lw(72)L(y.) the function given by the right-hand-side €I {3.2) in positi
andz is glven by [31). and not larger than 1. Thug,,,...(-, D) is a policy. Note
Denote byp(z), 5(z), respectively, the lower and the upperlso that forzg = arg max ., D(z)/(As(x)p, __(x)) we have
bound of p(x) obtained wherp,..(z) in Proposition[3N is d,,qum (0, D) = 1. Assume now that for some polic¥f(x)
replaced by, respectively,...(z) andp (z). Note that the the respective ratip’(x) > D(x)1/(BL+M/).) and that the
bothp,..(x) andp _ (x) do notdepend ord( ) which makes inequality is strict on some non-null sexdit easy to show
the analysis op(z), () easier (for the quality of the boundsthat then/|d’||x. > ||d,azm|[x. @nd thus' (zo) < p(xo). This
see Figurdl3, (left)). shows that,, ., iS max-min fair.

Before describing some optimal policies, we definesive Suppose now that! = co. Take any policyd(-). Note that
policy dnaive(z) = 1(2z € Do), where the sely is fixed such p(z)/D(x) cannot be constant under this policy (there is no
that mean received power is large enough to receive coyreclich policy). Thus, there exist, z, such thatp(x1) > p(x2).
the packet, given only external noi$€ (no interferencef; Note that we can slightly increas#z;) and decreasé(z)
i.e.,Dg = {x: PL(x)/W >~}. is such a manner thafd||,. remains constant. This increases
p(x2) without changing(x) for 2 # 1, 22. Thus,d(:) is not
a max-min fair. The remaining part of the result follows from

Knowing that the attenuation functio(z) (and thus PropositiorZ3B. m
prec(x)) typically decreases with the distanag to the cluster-
head, one has to compensate it with an increasing densityRgfmark: Suppose the cluster-head is to collect information
sensors\, () and/or a spatial admission polig(x). sent by sensors in a given compact donfaiwith some min-

In this paper we suppose now that the sensors are alreéiipl densityp(z) > D(x). The problem might be infeasible.
deployed 7 with some given with density,(z) > 0 on some However, if it is, policyd,,q..m(z, D) satisfies the constraint.
sensing domairD. We look for an admission policyi(z), Example 3.5:Consider auniform coverageD(z) = D x
such thatany increase of the ratip(x)/D(x) on some set 1(z € D) witght function. We might be interested in maxi-
dz of positive Lebesgue’s measure would be at the expensenifing the constant densit§p given the domairD. This is
decreasing of some already smaller rati¢y)/D(y) on some achieved usingl,,..n. Alternatively, we might be interested
non-null set ¢ € D. The policy dyazm(z, D) realizing the in maximizing the area of domaiB while providing some
above principle is calledveighted max-min fair policywith minimal densityD. For example, for a homogeneous repar-
weightsl/D(z). It is known that ifd,,,....(-, D) exists then it tition of sensorA;(z) = A, and distance-dependent path-loss
is unique. For brevity we will denote by,,q.m (z) the max- L(z) = L(|z|) model, we maximize the radiu8 of the disk
min policy with equal weights)(x) = D) (the policy does D = B(0, R) centered at 0, under the contrapitr) > D
not depend on the value @b). for x € D. Using Propositiof—3]14 one can find the solution

We cannot exactly characterize the max-min fair polic = R,,,.., such that policyd,, ..., onD = B(0, R,,.2m)
for p(z), however, we can do this for some bounds. Denosgatisfiesp(z) > p(z) = D for all 2 € D. We illustrate this

= fDD(x)/QTeC(:v) dz. Assume that the sensing domairproblem in Sectiof V.

D is compact,D(z) continuous onD and denoteM =

maxyep D(x)/(As (7). (x)). We define in the similar man- ¢ optimizing the total throughput
nerl, M replacingp (z) in the above formulas byrec( ).

B. Optimizing the transport-aware coverage

For a given po|icw() = [, d(z)\s(z) dz Consider now the problem of the maximization of the
the total spatial intensity of admissible packets urm(e)r. total Weighted intensity of received informatiol/ =
Proposition 3.4: « The  max-min  fair  policy Jpr(z)/D(z)dz, where D(z) > 0 are some arbitrary
donawm (D) for p(zx) on D exists if and only if Welghts o
M < oo, it is equal to Denote byU, U, respectively, the lower and the upper bound
D(x) of the total weighted intensity of information obtained whe
Qrngem (T, D) = ey @) (3:2) p(x) is replaced byp(x) and p(x). As previously, we can

) solve this global optimization problem for the bounpis:)
andrealizep  (z,D)= D(x)/(BL+M/Xc). More- and 5(z), and in this way approximate the solution of the
over, unded,,,,,,, (-, D) we havep(z) > p  (z,D). original problem.

« The max-min fair policyd,,azm (-, D) for p(x)/D(x) on penote the following water-filling regio®(¢) = {z € D :
D exist if and only if M < oo, it is given by [32) with ) ()p (z)/D(z) > 6} and the constant
M,p replaced, respectively, by/,p,.., and realizes Tree
z, D) = D(z)/(BI+DM/\.). Moreover, there is Joeo) (50)/ (z) dz
0" = arg max—
1 + /\ B fD (x) dz

ﬁmawm(
no policy d(-) for which p(x) > §,,00m (2, D), with the
strict inequality on some non-null set:d

6This may correspond to the successful synchronization ecpticket We define in the Sﬂmlar mannér, 9 replacmggrec(a:) in the
7leving the the optimal deployment problem for future work above formulas b, (z).



Proposition 3.6: « The policy d*(z) = 1(z € D(8") on)\.; in reality, a packete that is lost by a cluster-head, may

maximizesU. Under this policy still be captured by another cluster-head. However, thggeup
Xe fpipo) As(@)p  (x)/D(x) dx bound is sufficient to numerically demonstrate large saving
U=U"= D(E’) —ree (3.3) of the hybrid approach.

I+AB f@(ﬁ*) As(z) do Consider the following problemminimize the cost of the
Moreover, undeil*(-) we haveU > U*. network by unit areaC’ = A\;C + A.C. given some minimal
« The policyd (z) = 1(z € D(0") maximizesU. Under intensity of received informatiold\,\. + p(Rumax) > D,
this policy U = U’ it is given by [ZB) withD,§* where \.\. is the density of information captured directly
replaced, respectively, b, 9", Moreover, there is no by the cluster-heads angl Ria.x) is the lowest density of
policy (-) under whichU > [ information that can by obtained from the sensors given max-
Proof:  We consider the lower bound problemmin (maximizing coverage) admission policy.
(proof for the upper bound is analogous): maximize In order to solve this problem, giveld and A., A5, we take
I Asd(z)p  (x)/D(x)dz/(1—A.BA) under the constraints: the max-min policyd, , ., B32) with D(z) = 1(|z] < R)
A =[5 As(z)d(z) dz, 0 < d(z) < 0. We write the Lagrangian and find the maximal radiug,,,,,.,,, such that the constant
p obtained by the policyD(z) = 1(|z|] < R
L(d, 0, o, ) = A + /D () do onHlo. R

—mamm)

Note by Propositio 314 that for alk, p(z) > p(z) >
As( x)/D(x . L=
+/ d(x)( ( iﬂrei\( liil (z) 0+ po(x) — Ml(x)) de. 2.0 (Boazm) = D—AeAe. This means that takingna, =
D T Ae B C Ropawm: 1€ A = 4/(R2,.3\/3) is sufficient for A\, +
By the strong duality and the KKT conditions the optimal, () )) > D. Having calculated. = \.()\;) we express
policy has the form of the indicator functiod"(z) = the cost of the networks — C(M\./\s) as the function

1(As(2)p, . (2)/(D(x)(1+A\BA*)) < 6*) for somed*, A*.  the proportion between the intensity of cluster-heads aed t
The values of these constants are found by the standardwatignsors. Finally, we look for its maximal value.

filling policy. The remaining part of the result follows from
Propositio .3 B. [ | IV. NUMERICAL RESULTS

Example 3.7:Consider equal weight®(z) = D, homoge- e will give now some numerical examples. We consider
neous repartition of sensors and and distance-dependiht pihe canonical traffic scenario described in SecAamlil-Ahwit

loss model. The(¢") = B(0, B") is a dics of radiusk” ® SINR thresholdy = 1, path-loss modeL(z) = L(|z|) =
We illustrate this finding numerically in SectignllV. K|z~ with & = 10755, 5 = 3.3

mazm)

is equal toD — A\ ). (cf. Example[3b).

D. Optimizing the network cost a) Single cluster-head scenaridn this part we consider
P g a scenario with a single cluster-head at 0. Fidlire 3 (lefijvsh

Suppose that one transmit-only sensor cdsfs while & ¢ the quality of approximations given in Proposition 3.3.
transport-reliable sensor (with the same sensing fungon oyt we compare maximum radii of different admission
ity) costs C.. Consider an architecture where the transpor,g—oncies_ In addition tod and d*. defined in Sec-

—maxrm

reliable sensors act as cluster-heads considered préyious Bl and Section[TI=C respectively, we introduce the

this paper; call them cluster-heads. Assume that i_r,‘fomaticoverage—optimal deterministic (COD) policy is defined as
obtained (sensed) directly by cluster-heads sensorsiisdad dcon(z) = 1(jz| < Reop) where Reop is the maximum

to the central unit with probability one, while the infornat | 4i,s such thap(Rcop) > D under policydcop.
obtained by a transmit-only sensor locatedzais delivered  \va can see from the results in Figide 4 (left) Ry, ~
there with probability,..(z—2"(z)) whereZ* is the location p “hence that a deterministic policy with a well-chosen
of the cluster-head n_earest;to ) radius provides almost as good coverage as the max-min fair
.In (_)rder to formahze_the problem of the economic Opt'policy. In addition, we see from Figuld 4 (right) that COD
mization of the proportion of the two types of devices, I&4qjicy is more efficient. A more detailed discussion on a
us assume a regular repartition of cluster heads on the plafgqeoff hetween efficiency and fairness is out of the scope.
A simple model consists in taking them to be repartitioned Figure[3 (right) shows the total intensity of information

on a regular, say, tri2angular grid W?th Some density This  opiained when the admission policy accepts all the packet
means thab,. = 4/(L*V/3), whereL is the distance between iin a given radius. Optimal policy radius (maximizing

two adjacent cluster-heads. Note that maximal distance tQa iotg throughput) can be deduced from this plot. Two
nearest cluster head is equal Bhax(Ac) = 4/V/Ac3v3. AS  marked radii correspond to policieg’, " .We see that the
as in the previous section we model the traffic of packets sejicies7*. d* well approximate the optimal. We also see on

be the sensors to the cluster-heads (who act independbmtly igure[@ (right) that maximizing capacity requires adnuasi
Poisson rain model of events that is assumed to be stationpégionR* that is much larger thaR andRcop, having

—maxm

both in time and on the whole pla®?. To further simplify significantly smallerp(z) < p ().
the model, we assume t_hat at each pmi_i'n space at least one b) Economic optimizaﬁcr)nr?\g;\% now look at the economic
cluster-head has to achieper) > D. This is an upper bound ggpects, described in Sectiballl-D. Figlile 5 (left) shoes t

8In other words, to maximize the total capacity it is optin@réceive only reqw_red density of c_:lusmr'heads_ in the hybrid nerork n
packets whose received power is larger than some threshold. function of the density of transmit-only sensors, given the



= —— 250 In this work we did not discuss implementation details of
o merbound! 00 ‘ the optimal policies. However, we note that these policas ¢
\ easily be implemented, based only on the knowledge of packet
received power (no need to know channel attenuation fumctio
sensor positions, etc). One implementation is discussgtl,in
and can easily be generalized to the policies proposed $n thi

0.6

0.4

Total throughput [kbps]

02 50 ! paper. We leave details for future work.
. . ! 1 Also, in this work we optimized only packet admission
O feeasaneem T 2% R~ policy and not the sensor density (z), transmitting power

' o S P(zx), coding v(z) nor the transmission frequency,(z),
Fig. 3. Exact value and approximationsfec (left). Maximization of the  \yhjch may depend on particular sensors. However, we showed
total intensity of information (right). . . ’ ..
that even constrainted on the optimization of the admission
777777777777777777777777 3 policy only, we can achieve large savings and maintaint
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. % | grchitecture simple. Optimizing other parameters is left f
] vaive | the future work.
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— s APPENDIX. MATHEMATICAL MODELING

In this section we present mathematical models that are
Fig. 4.  Radii of different admission policies (left). Theaex profiles of sed to ana|yze the sensor network described in SeEdion II.
p(z) for different admission policies (right) when applyingfdient admission .
policies explicitly found using the lower-boung(this explains why the max- In partICUIar’
min policy does not give exactly(x) = const for z within the admission
distance).

5 6 7 8 9 u 2 3 4
Minimal density D [kbps/mz] Sensor distance [m]
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A. An Erlang’s M/D/1/1 loss system with interference

Assume a time homogeneous, independently marked Pois-
son point proces® = {(Ty, (Pn, Hn))}>2 ., whereT,
are customer (packet) arrival epochs &it,, H,,) are inde-
pendent, identically distributed (i.i.d.) marks, whepg > 0,
H,, > 0 can be interpreted as, respectively, the average (over
fading effects) power with which theth packet arrives at
the receiver and the actual fading state of its channel. (The
randomness of P,, } reflects different locations of transmitters
a v and powers with which they emit packets, while the random-

ness of{H,} reflects the temporal variation of the channel

Fig. 5.  Constitution of the hybrid network (cluster-headd énd transmit- conditions given fixed location of the transmitter and eguitt

only sensors SN) with minimal cost, assuringin, p(z) = 0.75 (right). ; ; .
Network cost gain in function of the device cost per unitadtight). power.) Let?_denOte by& (0 <A < OO) the intensity of®;
i.e., T, are i.i.d. exponential r.v. with paramet&r

minimal valuemin, p(z) = p(Rmax) = 0.75. Figurelb (right) We consider the following modification of the Erlang’s loss
shows the network cost economization in function of theolicy. Suppose that each arrival (i.e., packet) is aduhitig
cluster-head/sensor unit cost ratio. We can see that even wH1€ Single server of the system (i.e., starts ,be'ng reclydte

a price of a cluster-head is only slightly higher than a pdte "€Ceiver) if this latter is idle at the packet's arrival epand

a transmit-only sensor, we can achive significant savings. ¢giected otherwise. Admitted packets are received dutieg t

a contrary, using the naive policy, cost savings are negliga duration time B. However, packets that are rejected by the
receiver interfere during their emission time with the petsk

that are being received. Inspired by inequalify12.1), with

H, P, = |h|*P,.., we will say that then th packet, given it is
In this paper, we analyzed hybrid sensor networks consitiggmitted by the receiver, is correctly received if the fofiog

of transceiving and transmit-only sensors. We presentedngquality holds

detailed mathematical model of a physical and MAC layer of P, H, (A1)

>
the network. Using this model we derived the optimal packet W +1/B fT"JFB I(t)dt — P,H, 7

admission policies for cluster-head that maximize coverag whereV is some nonnegative r.v. independentdafy > 0

total throughput. Also, using the model we demonstrated h Weome constant](¢) is the value of the following temporal
much the dollar-cost of a sensor network can be decreaged, <o process at tinte

while maintaining the same network coverage. The MAC o
model that we developed can also be used for any non-slotted I(t) = Z H;P1jo p)(t — T)) (A.2)
wireless communication channel. ’
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V. IMPLEMENTATION ISSUES AND CONCLUDING REMARKS

1=—00



describing the total power received at timé&om all packets Section 1.3.2]),

that are being sent (including the power of the packet that 0 o _ po

is being received; this is why we substraetH,, from I(t) PHTO) ? wX(0)=0} = PHTO)zu}

in @&). = E? U 1T (t) > u)®(dt)|, (A5)
Our goal is to calculate the frequency of 1+AB (0,77]

the correct reception of packets; i.e.,r = whereE? corresponds to the Palm probability, given a packet

limy_,00 #{packets received among packetshr..., N}/N, arriving at time 0 is accepted by the receivéf, is the next
where # denotes the number. Denote B§(¢) the indicator arrival time after 0 of a packet accepted by the receiver, and
of the event that the receiver is busy at tinteand the integral with respect t@(dt) denotes the sum over all
X(—-0) = limyo X(t). Denote byd, the indicator of the arrival times of the proces®. It is easy to see that under
event that the inequality {A.1) holds. LB denote the Palm E° we haveT'(t) = 0 for ¢t € (0, B] andT(t) = t — B for
probability given there is a customer arrival at tifigand ¢ € (B,Ty]. In the interval(B,T{] point processb has just
let EY denote the corresponding expectation. By Slivnyakine point, namely7, and thus the integral ifi{A.5) reduces
theorem, underP® arrivals form the original stationaryto 1(T(7T¢) > u) = 1(T{ — B > u). The distribution of the
Poisson point process with an extra arriv@l, (P, Hp)) points of @ in (0, c0) is not influenced by the condition that
added at time7, = 0 whose mark is independent andhe server is idle just beforé and that there was an arrival
originally distributed. Denote byP,E, respectively, the at0. Thus, unde®?, as well as undeE, it is equal to the
stationary probability ofp and its corresponding expectationdistribution of points of the the original Poisson point gess.
The following results is a consequence of the ergodic thmor&hus, due to the lack of memory of the exponential inter-

(see e.g. [11, Theorem 1.6.1]). arrival r.v., the variabldy — B is exponential with parameter
Proposition A.1: The limit defining 7 exists P° almost ), which completes this part of the proof.
surely andr = E°[(1 — X (—0))do]. Note now, that the packets which contribute ft) =

In order to calculater we will first characterize unddP® the 1(t) — PyH, for t € [0, B), givenT(0) = T and T, = 0,
distribution of the shot noise procegdt) = I(t) — PyHy arrive only during the time intervals-B, —T")U(0, B). (Note
for t € [0, B) given the server is idle just before time 0 (i.e.that P°( there is an arrival at-7') = 0 if 7' > 0.) Note also,
X (—0) = 0). It will be given in terms of the conditional that this set is disjoint with the se&& = [T, —B — T'(0)] U

joint Laplace transforrnﬂ‘},(tl)wp(tn)‘X(_O):O(fl, &) = [-T(0),0], whereT* = sup{T,, : T,, < T(0) — B, Tj41 <
E0[e Xi I'(t)& | X (—0) = 0] evaluated fo; > 0 and any T(O)_—B,Tnﬂ—_Tn > B}. ThIS latter setisa random stopping
finite collection of time instants, , ..., ¢, € [0, B), n > 1. set (|..e.: for agiven realizatiop of the pom_t_propesé, the se_t
Proposition A.2: Consider the Erlang’s M/D/1/1 loss SyS_S(qS) is invariant with respect to any modification of the points
tem with interference. Then of ¢ in R\S(¢); see e.g. [13]). AlsoX (—0) and7'(0) depend
1 only on the configuration of points @f in S(¢). Thus, by the
PY{X(-0) =0} = (A.3) strong Markov property of the Poisson point process (sep,[13

L+AB given X(—0) = 0,7 = T(0), the distribution of arrivals in
and forty,....tn €[0,B), n21, &1, 60 20 (=B, —T)uU(0, B) is equal to the original distribution of points
L)1t % (—0y=0 (1 -+ 1 €n) (A.4) of the independently marked Poisson point procesaken on
o0 B this region, and henc&€{A.4) holds. This completes the proof
= / e M exp {—/\/ (1 — 1(_t70](s)) [ ]
0 -B Before we give an explicit formula for the frequenay
x (1 —Ele™ 2= &fliPilon (ti=s)) g | dt . of the correct reception of packets for our loss system with
Note by the form of the above Laplace transform, thafterference in the case of Rayleigh fading, we will caltala
underP? and given the server is idle just before the arrivgdhe conditional Laplace transform of the integrated shase
of the customer ab, the shot-noise process of interferencéz = 1/B fOB I'(t)dt given P° and X(-0) = 0; i.e.,
{I'(t) : 0 <t < B} is driven by a non-homogeneous, doubleé(}élx(_o)zo(g) = E%[e~¢5|X (—0) = 0] for ¢ > 0.
stochastic Poisson process with intensity equal ém the sum Proposition A.3:Suppose {H,,} are exponentially dis-
of the intervals(—B, 77U (0, B) and 0 elsewhere, whefe tributed with mean 1 andP,} are independent of H,,}.

is exponential random variable With. parameker Then L‘}%‘X(_O):O(g) = L1(£)Ls(€), where

Proof: Note that [[AB) follows directly from the Erlang’s ]
loss formula (see e.g. [12,. equgtion (81), p._71]). In consg; (¢) = exp(_,\B(1 — E{_P log(1 +§P)D) , (A.6)
quence,\/(1 + AB) is the intensity of the point process of 3
arrivals of packets that are accepted by the receiver. lardad £2(§) = exp(—AB) (A7)
prove the remaining part of the proposition, lets defing1jy) ! 1
the time that elapsed form the last moment befowehen the ol 0 exp )‘BE[g_P log(1 + gPt)} d
receiver was busy; i.eT'(t) =t —sup{s: s < t,X(s) = 1}. Proof:  Note first, that the integrated shot noise

We will first show that undeP® and givenX (—0) = 0, the is also a shot noise type variable. Indeed; =
variableT = T'(0) is exponential with parameteY. Indeed, 1/B fOB 2izo HiPilp py(t=T;) = >, o Hi PV (T;), where
for v > 0, by the Neveu exchange formula (see e.g. [11/(¢) is equal to B — |t| for |[¢{| < B and O elsewhere.



By the Propositio_AlR2, it suffices to calculate the Laplaceith the term1/B fT:“LB J(t)dt added to the denominator.

transform of I; driven by independently marked doubleDenote byd’ the indicator of this event. and’ = E°[(1 —
stochastic Poisson process with intensitgn the sum of the X (—0))s)]. Denote byJp = j;JB J(t)dt and its Laplace

intervals (—B, —T] U (0, B) whereT is exponential random transform by £;,(¢) = E[e~¢/2]. We have the following

variable with parametek. Denote straightforward extension of the PropositianlA.4.

L = ZHiPiV(Ti)l(O 5 (T)), (A.8) Corollary A.5: Consider the Erlang’s M/D/1/1 loss system

o " with the external interferencé(t). Under the same assump-
tions as in Propositiod_Al4 the frequency of the correct
2 _ P _ _

Ip = ZHleV(TZ)l(_B,_T] (7). (A.9) reception of packets exisB® almost surely and is equal to
17#0
! s _ B[Lw(y/Po)Lr(v/Po)La(v/Po) Ly (v/ Po)]

Applying the general formula of the Laplace transform of the =" =
independently marked Poisson point process (see e.g.) [1@)
we get '

1+AB
Sensors on the plane

B In this section we assume that the packets are emitted from
E%[e 75| X (—0) = 0] = exp (—)/ (1—E{e‘5HPV(t)D dt |, different locations of the plan®? and, assuming some form
0 (A.10) of the attenuation function, we will obtain a particular rfor
of the distribution of the power§P,} received at the origin,

hwhere the receiver is supposed to be located. (Note that this
distribution was not specified in the previous section.) Vile w

whereH, P are independent, generic r.v's foH,, } and{ P, }.
Integrating with respect t¢ and evaluating expectation wit

respect to the exponential r.i we obtainE[e /5] = £, (). o :
In order to calculateE°[e—¢/5|X (—0) = 0], we condition also assume some packet admission policy. :
on T — T(0) and we use similar argume,nts with integral Attenuation function:Suppose that the signal transmitted

B . -7 o > “with some powelP at the locatione is attenuated on the path
fO n ®.I0) replgcgd bef—B (nc1>te that this mtggral 'S to the receiver located at 0 (on average over fading effégts)
r}uII if ,T > B). Similarly as for I and th.en by mteg_ra— the factorL(z) > 0.; i.e., the average received power is equal
tion W|t2h respect to the law of egponentlél’ we obtain to PL(z).

E%[e™¢5|X (=0) = 0] = £,(€). Obviously I, = Iy, + I, Spatial policy of packet admissionSuppose that packets
and variabled;, Ij; are independent, because they are drivefg emitted from different locations of the plaR8. Suppose

by disjoint regions of the underlying Poisson point procesg,greqver, that the receiver located at the origin adopts the
Thus L3, (€) = £1(£)£2(€), which completes the proof. B f4160ing spatial admission policyDepending on emission

Now we are able to give the main result of this Section —pcation «, it accepts the packet, independently of everything
an Erlang’s type formula. else, with probabilityd(x) (and starts receiving it, provided it

Proposition A.4: Consider the Erlang’s M/D/1/1 loss sys-ig idle), where0 < d(z) < 1 is a given function of location:.
tem with interference. Suppose tHdt,,} are exponential rv's 1) ppisson rain model of eventsConsider a spatio-
independent of P, } and lets denote byw (¢) the Laplace temporal Poisson proces§X,,7,)} where X, € D C

transform ofW. Then R?, T,, € R, with intensity measure\,(dz) x \.dt. The
T=——E|Lw(v/Po)L1(v/Po)L2(v/Po)| coor(_jinates of the poir_1(X_n,Tn) denot_e, r(_espectively, the
1+AB L . location of a packet emission and the time it starts. (One can
wh(_ere the expectation is taken with respect to the randqRink of emitters being born at locatiods, and timeT, just
variable P . - _ to emit one packet at this moment; after the transmission of
Proof: By PropositiorfAllr is equal to this packet the emitter disappears.) We assume that théspoin
E°[(1 — X(—0))do] {(Xn»,T,)} are independently marked by i.i.d. exponential
= P°{ X(=0) = 0} E°[65| X (—0) = 0] (with mean 1) random variable#l,, modeling the fading

0 0 , conditions during the transmission. Moreover, assuming

=PH{X(-0)} P {HO > AW W + IB)/PO‘X(_O) = 0} some admission policyl(-) we suppose that the points are

_ po _ 0 / _ further marked by i.i.d Bernoulli variableg/,, describing

=PHAX(-0)=0}E [GXP(_V(W + IB)/PO) ‘X(_O) - O} the admission status of the packets; iB{U, = 1} =

becauseH, is exponential with mean 1 and independent-P{U, =0} = d(X,,), wherelU,, = 1 marks an admissible

of everything else. Conditioning o, noting thatW is packet.

independent off; and using Propositions 4.2 add_A.3 we We call the marked Poisson point proces= U, =

obtain the result. B {((Xn,Tn),(Hn,Uy))},, the Poisson rain of events with a
Lets introduce now to the Erlang’s loss model an additionglven spatial admission policyi(-). We consider¥ as the

(external) stationary, ergodic proceggt) of interference, inputto the Erlang’s loss system with interference desctiin

independent ofV” and®. (For example, one can think ofit)  Section§ZA=A. Specifically, we defin@, = P L(X,,) and take

as of the interference created by emitters transmittinggtac the admissible packet transmissiofts= {(T,,, (P, H,,)) :

that are not supposed to be received by our receiver dueltp = 1}, as the input to the system, whereas the total received

some random, independent admission policy; cf. SeEfian) A-Bower from non-admissible packet transmissions

Lets say that the.th packet of®, given it is admitted by the J(t) = Z UnHo PL(X,) 10,5 (t — T0) (A.14)

receiver, is correctly received if to the inequalify{A.19lths -



d(x)
¢PL()

L1(§) = exp (—/\B + )\eB/ log(1 + ¢PL(w)) As(d:c)) , (A.11)

1
Lo(&) = exp(—AB) <1 —|—)\B/ exp<)\eB/ fl(x) log(1 + ¢PL(x)t) As(d:c)) dt> , (A.12)
0 {PL(z)
1 _
Ly, (6) = (Mp(—2&i%&l—wﬂx»(l—-gﬁz&ﬁlqﬂ1+§fUXxD)A4dﬂ). (A.13)
as the external interference. Denote by Proof: Note first that£,(¢) > £1(€). This can be
verified directly comparing formulag{A.6) anE_{A.7), but a
A= /\e/d(fﬂ) As(dz) (A.15)  simple probabilistic argument can be used as well; remind

. P
the (temporal) arrival intensity of Poisson process of thtgalt thatZ, (¢) is the Laplace transform of, given by [A.8),

o . : Whereasl, (€) is the Laplace transform df3 given by [AB).
packets admissible according to the spatial poli€y). The . X
following consequence of CorollafizA.5 gives the Erlang,Than, the lower bound of CorollafyA.7 follows immediately

: . from (A1) and[[AIRB). In order to get the upper bound, it is
type formula for the P_0|sson rain model. , enough to observe thal, < 1 and to takel;, with factor2
Corollary A.6: Consider the Erlang’s loss syste

Mn the exponent of [[AJ3) replaced by 1 [ |
M/D/1/1 driven by the Poisson rain of evenis on some : i e .
domainD with spatial admission policyl(-). Assume that Note that the upper bound in Corolldry .7 consists in taking

: e R no interfering arrivals before reception of a given packet,
A given by [AI}) is finite. Then, the fraction’ = 7'(xo) whereas the lower bound consists in assuming the uncondi-

of admissible packets correctly received from a Iocatioqional Poisson process of such arrivals£ 0 in the proof of
xo € R?, given there is an emitter located there, is given blxropositiorm)

Corollary[A8, with constanPy = PL(zo), and L1, L2, L,
given, respectively, by[TAJ1)[1A12)[TAL3), where is REFERENCES

given by M) and the integra!s a_‘re t_aken oler ) [1] B.Radunovic, H. L. Truong, and M. Weisenhorn, “Receigechitectures
Proof: Note that the distribution of the received for transmit-only, UWB-based sensor networks,” 2005.

i < _ D < [2] A. Akyildiz, “ESRT: Event-to-sink reliable transporhiwireless sensor
power is equal tOP{ pPo< a} f d(a:)l(PL(:c) — networks,” inProc. of ACM Mobihog2003.

a) As(dz)/ [ d(y) As(dy), which is correctly defined since 3 g otis, v. Chee, and J. Rabaey, “A 400uW-RX, 1.6mW-TX stp
we assume\ < oo. Then, formulas[[AJ1),[{AJ2) follow, regenerative transceiver for wireless sensor networksProc. of IEEE

respectively, from m)’mn Next, note that and J(t) International Solid-State Circuit Conferenc2005.

. . . 4] 1. O'Donnell, “UWB transceiver project update,” ifProc. of BWRC
are independent; this is a consequence of the mdependér]t Summer Retreatiune 2003, postepr Sjessior?.

thinning of the Poisson process of all packet emissiongs] S.Sheng, L.Lynn, J. Peroulas, K. Stone, and I. O’Donriéllowpower

Moreover, the integrated interferendg, given by the formula CMOS chipset for spread-spectrum communicationspiac. of IEEE
9 8.9 y International Solid-State Circuit Conferenc&996, pp. 346-347.

Jp = Zn(l — Upn))Ho PL(X )V (Ty) is.a shot-noise type [6] B. Liu and D. Towsley, “On the coverage and detectabitifywireless
random variable (cf. the proof of PropositonA.3). Its Laga sensor networks,” ifProc. of WiOpt 2003.

transform is known explicitly and given b}m3 m [7] O. Dousse, P. Mannersalo, and P. Thiran, “Latency of le@® sensor
EJB (5) P y 9 ) networks with uncoordinated power saving mechanisms,Piac. of

2) Fixed arbitrary locations of emittersSuppose emitters ACE Mobihog 2004, pp. 109-120.
are fixed and located atX;}. This case can be seen as al8] S. Janson, “Random coverings in several dimensiofsta Math, vol.

_ XS , : 156, pp. 83-118, 1986.
special case of the Poisson-rain of packets, with purelpito [9] H. Koskinen, “On the coverage of a random sensor networkhounded

spatial density measurks (D) = #{X; : X; € D}. Then the domain,” in Proc. of 16 ITC Sepecialist Seminaintwerp, Belgium,
integrals [ (... ) dz in formulas [AT1){{AIB) take form of the September 2004, pp. 11-18.

respective sumgx, (...). Moreover, if the spatial repartition [10] D. Tse and P. Viswanatifoundamentals of Wireless Communication
. .. i . Cambridge University Press, 2005.

of X; is sufficiently dense, then these atomic measures caf F. Baccelli and P. BremaudElements of Queueing Theorer. Série:

be reasonably “smoothed” leading to approximative integra Applications of Mathematics. ~ Springer Verlag, 2002, secedition.

formulas. In particular if the repartition is dense andfoim [12] R. Wolff, Stochastic Modeling and the Theory of Queu&sentice-Hall,
) ! 1989.

(in empirical sense) then the sums can be approximated [y s. zuyev, Strong Markov Property of Poisson Processes and Slivnyak
integrals with respect to the Lebesgue’s meashfdzr) = Formula, ser. Lecture Notes in Statistics. Springer, 2006, vol., 1856
: _ ‘ : 77-84.
As dz with A, = #{Xl}/lm Wher§|ID>|. is the Sur,face ob. 14] D. Stoyan, W. Kendall, and J. Meck&tochastic Geometry and its
3) Bounds:In this section we will give some simple bounds ~ applications Chichester: John Wiley and Sons, 1995.
for the frequencies of successful receptions of packetsofze
Yo =7/ (PL(x)).
Corollary A.7: Under the assumptions of Corolldry A.6, we
have

2
‘CW(PYIO)(E(FYIO)) < 77/(5170) < EW(’YIO)E(VIO) ’
1+ AB 1+ AB
where £ and X are given by[(311) and[A15), respectively.
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