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Abstract

We study a pricing game in multi-hop relay networks whereasogrice their services and route their traffic
selfishly and strategically. In this game, each node (1) ances pricing functions which specify the payments it
demands from its respective customers depending on the ranoburaffic they route to it and (2) allocates the
total traffic it receives to its service providers. The profita node is the difference between the revenue earned
from servicing others and the cost of using others’ servivés show that the socially optimal routing of such a
game can always be induced by an equilibrium where no nodenca@ase its profit by unilaterally changing its
pricing functions or routing decision. On the other han@yréhmay also exist inefficient equilibria. We characterize
the loss of efficiency by deriving the price of anarchy at ficednt equilibria. We show that the price of anarchy
is finite for oligopolies with concave marginal cost funats while it is infinite for general topologies and cost

functions.

arXiv:0709.2721v1 [cs.GT] 17 Sep 2007

. INTRODUCTION

It has been widely recognized that cooperation in netwooksé&éd by autonomous and selfish nodes
cannot be achieved unless sufficient incentives are prdvidehe nodes. Such incentives normally take
the form of payment or reward to the nodes if they help forwattter nodes’ traffic [1]-[4]. A node is
usually willing to participate in routing only if it can chge more than the cost of servicing the transit
traffic. While a selfish node always prices its service with tiftimate aim of maximizing its profit, it has
to do so strategically since the customers it courts maynpi@léy buy services from other nodes. Thus,
there exists a trade-off in each node’s pricing decisioratT$, higher charges yield larger profit margins

but risk losing market share to its competitors.
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In this work, we study the game that arises from the selfish strategic pricing behavior of relay
nodes in a unicast multi-hop relay network consisting of soerce and one destination. A node is selfish
in the sense that maximizing its own profit is its sole objextBeing strategic means that a node is able
to optimally design its pricing based on the anticipationitefcompetitors’ best response to its action.
Specifically, in this game each node is a service provider gooap of nodes (its customers), and when
it needs to forward the traffic received from its customens, node itself becomes a customer that uses
the services of some other group of nodes. As a service @ouide node announces pricing functions
which specify the payments it demands from its respectigtorners depending on the amount of traffic
the customers route to the node. As a customer, the nodexbthe total traffic it receives to its service
providers in a way that minimizes the sum of its own transiisgosts and the payments made to the
service providers. Such a game can exist in both wirelineveineless networks, where communications
consume resources and nodes are often selfish agents. Whewarky especially a wireless network,
is formed in an ad hoc manner, a node is typically aware of éighbors only. A rational node thus
always bases its pricing and routing decisions on the sfiegeadopted by its neighbors. We will show
that such a game always has equilibria where no node caraseties profit by unilaterally changing its
pricing functions or routing decision. Furthermore, dagirg on the network topology and the nodes’
response strategy, the global routing configuration at arliequm may or may not be socially efficient.
We characterize the loss of efficiency by deriving the pritar@archy at inefficient equilibria. It is found
that the price of anarchy is finite for some link cost func@md topologies, while it is infinite for others.

Pricing schemes were introduced into network resourcecatilon problems first as a means of de-
composing a global optimization into sub-problems solvednaividual agents [5]. In addition to being
a facilitating device, pricing serves as an essential nashafor inducing social efficiency when users
(source nodes) selfishly choose their routes [6]. It is walbwn that without appropriate pricing, e.g.
marginal cost pricing, selfish routing inevitably resultsloss of efficiency, which in general can be
arbitrarily large [7], [8].

When service providers are also mindful of their self insgreney will use pricing to their own advantage
rather than to heed any social mission. With both users andcseproviders behaving selfishly, the
network increasingly approximates a free market, whereeprcan assume a variety of functions and lead
to direct or indirect competition among service provid&a. example, pricing network services according
to their quality helps to match each type of service with thstemers that value it the most [9], [10]. By

modelling the interaction between the service provider tredusers as a Stackelberg game, [11] shows



that when the service provider always adopts the profit-meng price, its revenue per unit bandwidth
and the net utility of each user both improve with the numidensers. When multiple service providers
are present in a network, price competition inevitably esqi2]-[14]. It is demonstrated in [12], [13] that
cooperation in pricing is in the best interest of servicevigters who jointly serve the same customers. The
dire consequence of non-cooperation is explicitly analyre[14], which shows that price competition
in parallel-serial networks can result in arbitrarily largfficiency loss.

In this paper, we analyze the pricing game in multi-hop relayworks where a node can compete for
traffic from multiple nodes and can allocate its receiveffitrédo multiple nodes. Thus, in general, a node
is both a service provider and a customer. Another distiadeature of the game we consider is that the
bid from each service provider to a targeted customer is asfply nonlinear)pricing function which
specifies the price contingent on the amount of service gealiPrevious work on pricing games almost
exclusively assume a constant unit price from every semiogider, which in our terms means restricting
pricing functions to be linear. It turns out that the geneedion from linear to nonlinear pricing allows
for a much richer set of possibilities in pricing games. Eirerconomics literature, the issue of nonlinear
pricing is quite new and challenging []B]Equilibria derived from such a general framework represent
the most fundamental outcomes of pricing games in multi-hefpvorks.

We show that the socially optimal routing can always be irdugy an equilibrium of the routing/pricing
game where no node can increase its profit by unilaterallynging its pricing functions or routing
decision. On the other hand, there also exist inefficientliégia. In particular, we show that in an
oligopoly routing/pricing game, inefficient equilibriasaalways monopolistic, i.e., a dominant relay carries
all the flow from the source. We prove that the price of anamthguch inefficient equilibria is equal to the
number of relays in an oligopoly if marginal cost functiome aoncave. In this case, the worst inefficient
equilibria arise with linear marginal cost functions. Whaarginal cost functions are convex, however, the
price of anarchy can be arbitrarily large. Unlike the caselajopolies, inefficiency in general multi-hop
relay networks stems not only from dominant relays exergishonopolistic pricing power, but also from
the myopia of dominant relays. We demonstrate that the libalif a node to gauge the impact of its
pricing beyond its local neighborhood can lead to an infipitarge price of anarchy.

1The nonlinear pricing game we study can be seen as a gemeraliznu auction [16] where each bidder offers a continuumptibios

along with their prices.



II. NETWORK MODEL AND PROBLEM FORMULATION
A. Network Traffic and Multi-hop Routing

We consider a relay network represented by a directed gfaph(N, £) with one sources and one
destinationw, and a set ofelayswhich can be used to forward traffic in a multi-hop fashiomire to
w. The sources needs to send traffic of a fixed ratg to wH which can be carried through links &

We assume that there is no direct link betweeandw. That is, traffic froms has to be routed ta
via relays in a multi-hop fashion. To make matters simple,assumej contains only nodes and links
which are on the paths fromto w. Since route discovery is not a main concern of this work, sgime
such ag is given a priori, and is loop-free. Each node, however, saady to be aware of its neighbors
(predecessors, siblings, and offsprings) as specifiedibelo

For nodes, h is apredecessoif (h,i) € £. Denote the set ofs predecessors bf;. For anyh € P,
defineS! £ {j # i : h € P;}. That is,S! is the set of nodes which share the common predecéssith
1. These are the nodes who compete wifior /’s traffic in the pricing game to be introduced later. We
will refer to them assiblingsof ¢ with respect toh. Finally, i is said to be amffspringof & if (h,i) € £.

Let the set ofh’s offsprings be denoted b§),,. The above notation is illustrated in Figlre 1. We make a

Fig. 1. lllustration of predecessors, siblings and ofisgsi

simplifying yet plausible assumption thgy, . SN P; =0, i.e., no node can be both a sibling and a
predecessor of any other node.

By our assumption o, s is the only node without any predecessor whilés the only node without
any offspring. Since the pricing game to be studied can anigy if there are multiple relays competing
for the traffic from their common predecessor, we assum@ that every node exceptw has multiple
offsprings unlessv € O,.

Denote the rate of flow oifi, j) € £ by f;;. A link flow vector f = (fij)u ee is arouting of the

session traffic if it satisfies the flow conservation constray", ., fon = Rs, D ep. frw = Rs, and for

2We will discuss the problem involving an elastic session éut®n[\.



each relayi,

thz:ZfijéT’i,

heP; J€0;

wherer; denotes the incoming flow rate at

B. Link Cost and Pricing Functions

Each link has a strictly increasing and strictly convex ¢osttion D;;( f;;), which isprivate information
to < andj only. For exampleD;;(f;;) can represent the queuing delay incurred(ori) with arrival rate
fij» €.0. the average occupancy functign/(c;; — fi;) of an M/M/1 queue with service rate;. As
another example, if the links are wireless;;(f;;) can measure the transmission power required for
achieving ratef;;. For example, if the link transmission rafg is determined by transmission powgy;
as f; = Wlog(1+ K P;) for some constants/, K > 08 thenP;; = £ (2/4/" — 1) £ D;;(f;;), which is
strictly increasing and convex ifi;. As suggested by the examples, the analytical frameworkepted
above applies to both wireline and wireless networks.

For analytical purposes, we further assume thaf(-) is continuously differentiable with derivative
d;;(-). By previous assumptiong,;(-) is positive and strictly increasing. Tts®cially optimalrouting is
the routing that minimizes the network cost; ;, D;;(fi;). Because link costs are strictly convex, the
socially optimal routing is uniquely characterized by thendition that every path froms to w with
positive f|OVQ has the minimum marginal cost among all paths. For otheyvwaise can reduce the total
cost by shifting an infinitesimal amount of flow from a path wihon-minimum marginal cost to a
minimum-marginal-cost path.

We model the source and relays as selfish agents who must p#yefeosts on their outgoing links.
While the source has to send all its traffic out, it strives ¢otlois with the minimum cost. On the other
hand, a relay has an incentive to forward traffic for its poes$sors only if it is adequately rewarded for
its service in the form of payment by its predecessors. Theuatof payment is determined as follows.

Suppose a nodg has incoming flow of rate;, > 0. Eachi € O, announces a pricing functioR"(-)
which specifies the paymeit( f,;) it demands should forward traffic of ratef;,; to itH For analytical

purposes, we assume th&f(t) is continuously differentiable with derivativg](t). Note that P(.)

3Assume that with proper time or frequency scheduling, trassion on different links are non-interfering.
“The flow rate of a path is the minimum of the flow rates of all tinkd on that path.
*The domain ofP}"(-) must contain the intervdD, 7,]. And as we will see, a selfish and strategic relaglways designs®(-) tailored

to the total trafficr,. However, for simplicity we do not express such dependendhe notation.
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providesh a continuumof options, namely the rate-price pairf.;, Pih(fhi))H After learning(P/(-))ico, ,

h decides on the allocation ef, and makes payments to its offsprings accordingly.

C. Pricing Game

We assume every node is selfish and stratédibe sources thus always allocates the total flo® to
the nodes inD, so as to minimize its total cost, which includes the coststsroutgoing links and the
payments to its offsprings. Specifically, given the pricfagctionsP?(+) of i € O, the optimal allocation
of R, from the perspective of is any

(f5)ico, € argmin > Dy(fu) + P (fe), 1)
(Fs)EFs(RS) o,
where F;(r) is defined ag{( fix)keo, > 0: >, fir =1}

A relay i is a predecessor to some nodes, and is an offspring to soraembes. As a predecessor,
it acts just likes. That is, it allocates the total incoming flow in the most cefficient way from its own
perspective. Thus, the traffic allocation adopted:lwhen it has incoming flow; is any

(fi)keo, € argmin > Dig(fix) + Pi(fu). 2)
(Fin)EFi(ri) fco,
Denote the minimum value i (2) by;(r;). Note that D;(r;) represents the minimum cost tofor
forwarding flow of rateriH It is easy to show thaD;(-) is continuous and increasing with piecewise
continuous derivative denoted lay(-).

As an offspring,i designsP/(-) for everyh € P; with the aim of maximizing its profit in competition
with its siblings (discussed in depth later). It does thithwhe assumption thdt always allocates in the
most cost efficient way, and thaf for eachh € P; stays constant at the current value irrespective of its
choice of P"*(-). While the first assumption is very reasonable, the secoedequires some justification.

Theoretically, sincer, of h € P; is the outcome of the optimal allocation Bys predecessors, it in
general cannot stay constantifchanges its pricing functions. Howevéfs pricing functions presumably

are tied toi's choice of P"(-) as the total cost ta is partly leveraged by the price charged byOnce

®If 5 has multiple predecessorB)* (t) for oneh € P; is an agreement exclusively betweeand k, independent of the flow rates allocated
to 4 by other predecessors. Presumably, howevelesignsP/*(¢) for all h € P; jointly becauser; = > hep, frni, andi has to pay its

offsprings to getr; forwarded.
"The destinationw is the only node that plays no active role in the pricing garascdbed below. It passively accepts the flow assigned

by its predecessors, who treat it as an offspring using atmlf/-zero pricing function. Becausg is assumed to be loop-free and provide

directed path(s) tav from every other node, the total flow arriving @t must be equal tdz,.
®Although not explicit from the notationD;(-) depends o{Pi(-))keo,; -



h reacts to the change iR"(-) by updating its own pricing functionsy, is inevitably adjusted by:’s
predecessors. On the other hand, relays are usually tooiongopote this chain reaction since they have
very limited knowledge of the network. Recall that we madeaactical assumption that a relay is aware
of only its predecessors, siblings and offsprings. As altgisean at best predict the impact of its strategy
on the traffic allocation by its predecessors, but not nodeklédr upstream. It is therefore reasonableifor
to consider only the competition with its siblings for thewiltheir common predecessors currently have.

We now formally define the (static) pricing game (PG) as hguhre following components:

« The set of playerd = N'\{s,w}: relays ing.

. Strategy of playei: continuously differentiable pricing functiong”(-) for all h € P;.

. Payoff to player:: the profit made by servicingf;:)nep,:

> PMfi) - D (Z fi;) ) ®3)

heP; heP;
where the routing f) . jjce is most cost efficient from the perspective of every node, (B-(2)

hold for s and every relay wherer; =3, ., fi,

A pricing game is fully characterized by the tugle, (D;;(-)), Rs). In the rest of the paper, we will study
the outcome of the PG witmyopicplayers as described above. The focus of our work is to iyegst
whether the PG has an equilibrium where no relay can incrégasgrofit by unilaterally changing its
pricing functions, and when an equilibrium exists, how tlesulting routing compares to the socially

optimal one.

D. Best Response and Equilibrium

Each playeri in the PG is assumed to be myopic in the sense that it knows ticeng func-
tions of all its competitors as well as its downstream nod@ssed on its local informatiod; £
((rns (P}(-))jest e, (Pi(-)keo,), playeri anticipates a payoff; (P;; L;) when adopting?; = (P*(-))nep,,
where

D(Pi L) 2 P = Y [Dafi) + Pilfa)]

heP; keO;

(f#;)jeo, is the optimal allocation of, by h € P; given (P/'(-))jco,, and (f;;)reo, is the optimal

allocation ofr; = 3=, ., fr; given (P{(-))keo,-

Definition 1: A pricing function profile(P"(-)),ep, is a best response to local informatids if

Li(Pi; L;) = Ql{éggfbler Qs Ly),



whereQ, = (Q"(-))nep, is feasible if every component is a continuously differabké function.

Denote the set of best responseslioby B;(L;). Before we proceed, we must prove th&{L;) is

non-empty.

Lemma 1:For any L;, the setB;(L;) is non-empty. Furthermore?; € B;(L;) if and only if for all
h € P; and allt € [0, 7],

Bi(t) £ Dpi(t) + P/(t) = Bl(r) = Bl'(ro — 1), (4)
and
B (fs) = Bt () — B — Fas), (5)
where
Bi(r) £ f;n; o Z B (f1s) (6)

and (fui)nep, is @ vector that maximizes

Ti(fi L) £ ) [Bi(ra) = Bl (ra = fui) = Dri(fu)] — (Z fm)

hGPi h€7’z
over all thef, = (fn;) such thatd < f,; <, for all h € P;.

Before giving the proof, we first provide some intuitive expations for the lemma. The functidsf(¢)
gives the total cost spends on routing traffic of rateto i. Since Dy;(-) is fixed and known ta, it is
equivalent to treaB3”(-) as the pricing functiori uses to chargé. With this view,» makes a lump-sum
payment toi determined byB!(-), and letsi pay for the costDy,;(-) on link (k, ). For convenience, from
now on we assume each relagnnounces3!(-) to h € P; and siblingsj € S!*. By (), B%h(r) represents
the minimum cost can achieve by forwarding traffic of rateto offsprings other than. It will become
evident in the next proof that frorits viewpoint, the competition from all € S!* can be aggregated into
a virtual competitor” using pricing functiontl(-). Thus, it is as ifi were competing with one relay in
each “market’h € P;. The vector( f,;),ep, represents the “market shares” that jointly yield the maxim
(anticipated) profit ta. Pricing functionsB”(-) which satisfy the conditions in Lemnia 1 indukec P;
to allocate the ideal “market sharg},; to i and givei the maximum profit. This is becaudéd (5) implies
that allocatingf,; to i and the rest to other relays yields the same coét &s allocating all the traffic to
other relays. So conditionkl(4) arid (5) combined imply ttabther allocation costs less than the above

two schemes.



Proof of LemmdllFirst notice that for fixedL;, the profit ofi when it adopts(B%(-)),ep, is upper
bounded as follows:

Li((BI () Ls) = D [BMfw) = Duil fas)] — D (Z fhz>

hE'Pi hE'Pi

< Z [Bl(ru) — Bl (ri = fni) — Dni(fai)] — Di (Z fhi)

heP; heP;

= Ti(fi; L) <Ti(fis L),
where f;, = (fu)nep, is the optimal amount of traffic allocated towhen i uses(B!(-)). The first
inequality holds because for evetye P;, B (frn;) < B%_h(rh) — B%_h(rh — fni). For otherwise, would
find the cost of allocating;, exclusively to allj € S? (Bgl(rh)) strictly less than the cost of allocating
fri toi andry, — fu; to j € SP (B fri) + B{L(rh — fni)), @ contradiction. The second inequality follows
from the definition off,.

Notice that the upper bourld( f;; L;) is independent of B?(-)). It is tight if and only if both inequalities
hold with equality. To make the second inequality tight,sitnecessary and sufficient to have the traffic
allocation f, induced by(B"(-)) equal tof;. Given that, the first inequality is tight iF4}3(5) hold nsie
they guarantee that allocatirfg; to i andr), — f,; to j € Sl is in I’s best interest. They are also necessary
because€ (5) is prerequisite for the first inequality to bbttignd consequentli/l(4) cannot be violated either.
For example, if for somé € P; and somet € [0,74), B}(t) < Bl'(ry) — B (r, —t). Then allocating
toiandr, — ¢t to j € S! would incur strictly less cost té than B/(ry,) = B (t)(fui) + Bl (rn — fui)-

Thus, h would not have aIIocategfh,- to 7, which is a contradiction. O

Note that best respongd}'(-)) always exists because, for instand¥,(t) = B! (ry) — Bl'(r), —t) for
t € [0,r,] satisfies[(¥)E(5). The (pure-strategy) Nash equilibriageined as the fixed points of the best

response mapping.

Definition 2: Pricing function profilesP;, i € Z constitute an equilibrium if for all € Z, P; € B;(L;)
where the incoming flow vectdrr,),cp, contained inL; results from the routindf};) e that is most
cost efficient from the perspective of every individual node., (1)-[2) hold fors and alli € Z,

m= > fpe W hts

9EPh

andr, = R, if h = s.
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It is easy to see that ifP;);cz constitutes an equilibrium;(P;; L;) must coincide with the actual
payoff of i.
Definition 3: An equilibrium (P,),c7 is efficientif it induces the socially optimal routing. In this case,

(P;)cz is said to induce the social optimum.

Before proving the existence of equilibria and analyzingirtiefficiency in the general setting, we first
study pricing games under some simple network topologibe.dnalysis of these games not only provide

valuable insight into the general problem but also haveifsogmt implications in their own right.

[1l. EQUILIBRIA IN OLIGOPOLY

The simplest topologies within our framework are thoseuduig a single layer of relays, e.g. the one

in Figure[2. HereN relays each have a direct link fromand a direct link tow. They compete for the

Fig. 2. Oligopoly with N relays.

total flow R, by advertising their pricing functions;(-) = ds(-) + pi(:),i = 1,---, N. From now on,
we will more often refer to the derivatives;(-) andp;(-) as link cost and pricing functions, since they
appear to be more convenient for marginal cost analysisalilega. Also we will use simplified notation
whenever appropriate, e.g. the superscript is omitted fsgm, 5;(-) ass is the only predecessor to every
relay. We refer to a pricing game under such a topology asligopoly. Define \;(t) £ d.;(t) + di(t).
An oligopoly PG is fully characterized by the tuplé/, (\;(-))X,, Rs).

Because all\;(+) are strictly increasing, the socially optimal routifg )Y, is unique and is given by

Airi) = min

Aj(r7)

if ¥ >0.
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We now analyze the routing established by the oligopoly P®el(5;(-)):co., the self-interest ok

leads it to adopt the most cost efficient routifg;)¥, such that

j=1,
wheneverfZ > 0. Whether(f%) = (r7) or not depends on ho{pg;(-)) are chosen by the individual

2

relays.

A. Best Response and Existence of Equilibria

We apply Lemmall to the oligopoly PG. Here,
t

B(t) = / Bi(r) dr,
0

fsj
B;(t) = _min B;(r) dr.
Zj;&i ij:t; 0 ’
It is easy to show thaB;(¢) is continuous and increasing. Its derivative, denoted3jgy), is in general
piecewise continuous. Far € (0, R,), let the left and right limits ofg:(¢) be denoted bys;(¢)~ and

5;(t)"d By Lemmall, the best responseiofiven 3;(-) can be simply characterized by

/t Bilr) dr { 2 o Sl By =) dr 0t Ry )
0 = fo B%<Rs - T) dr, t= fi*a
where

fi
fi € argmax Bi(Rs — 1) — Ni(r) dr. (9)

0<fi<Rs Jo
To gain an intuitive idea of the above conditions, supp8sé&, — r) and \;(r) are given by the dashed

and solid curves in Figurel 3. A typical best respoiser) is shown as the dotted curve. In particular,

Fig. 3. Typical best response curve in oligopoly.

one can lets;(r) coincide with 5;(Rs — ) on [0, f7] and let3;(r) > B:(Rs — r) on (f, Rs]. Such a
best response will be referred to aseplicatingresponse. As we will show, oligopoly equilibria induced
by replicating responses are always efficient while egudiinduced by other best responses are not
necessarily efficient.

°It is understood thap; (0) has only a right limit and thag; (R.) has only a left limit.
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B. Efficient Equilibria

Theorem 1:The socially optimal routing of an oligopoly can always bduned by an equilibrium.

Proof: We prove the theorem by constructing an equilibrium thatiges the socially optimal routing
(r¥). Define \* & min;—; .. Aj(r7). Let Bi(r) = A* for all 4. Thenj;(r) = B;(R, —r) = A" is a best

response for all with f* = r}. Thus,(5;(-)) constitutes an equilibrium which results in the rout{ng). O

Because the socially optimal routing always exists, we @arciude that theralwaysexists arefficient
equilibrium for any oligopoly pricing game.

Although we used constarit;(-)) (or linear pricing functiong B;(-))) to construct an efficient equi-
librium in the proof, efficient equilibria can be establidhey nonlinear pricing functions as well. For
instance, Figurél4 depicts an equilibrium in a duopoly PG retttee two relays adopt; (-), f2(-) of a

more general shape. Notice that in a duopglyt) = G2(t) and 55(t) = 51(t).

[

Fig. 4. General (focal) equilibrium in duopoly.

To derive a simple criterion for checking the efficiency ofeaquilibrium, we need to make the following
distinction. A routing(f;)¥, is said to bemonopolisticif f,, = R, for some relaym and f; = 0 for
all 7 # m. In this caseyn is called thedominantrelay. An equilibrium ismonopolisticif it induces a
monopolistic routing. A routing is said to beompetitiveif there are at least two relays; such that

fi >0, f; > 0. An equilibrium iscompetitiveif it induces a competitive routing.
Theorem 2:1f an oligopoly equilibrium is competitive, it must be effegit.
We will need the next lemma to prove Theoréim 2.

Lemma 2: At an oligopoly equilibrium(;(-)) which induces routind f), if 0 < f* < R;, then for
all j #1,
Bi(Rs — f1)7 < Bi(f7)-
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If 0 < f < R, then for allj # i such thatf; > 0,
Bi(Re = [7)™ = Bi(f7)-
Proof: By definition, if t < Ry, §;(t)" = lima_,o+(B;(t + A) — B;(t))/A. Therefore whery; > 0,
SR~ £ = Jim CAB(R,~ [+ A) = B(R, ~ [7))

i
I min (r) dr — E
A=t A {Z]‘;ﬁi fi=Rs—fi+A ; BJ( ) 0
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Here, equation (a) follows from the fact thgt')\, is the equilibrium routing of?, induced by(5;(-))1;.
Inequality (b) is obtained by substituting the minimum-o@aiting of R — f+ A by an arbitrary routing,
namely f; + A allocated tok and f; to eachj # i, k. The second inequality in the lemma can be proved

in a similar manner. O

Proof of Theoreni]2iet (f) be the routing induced by a competitive equilibriuym(-)). Let m,n
be any two relays such that, > 0, f* > 0. It is enough to show thad,,(f’) = A\.(fF) and that
Am(fo) < Ni(f7) for any j with f* = 0. By (@), B(f.,) = Bu(f,)- The best response conditidn (9)
implies that 8, (R, — f)” < Aa(fh) < Ba(Rs — fi)T. By Lemmal2,3,(f5) < Ban(Rs — fr)~
and B;,(Rs — fi)t < Bu(fr). In conclusion,8,(f}) = An(f}). By symmetry, we can show that
Bm(fi) = Al fi)- Therefore,\,.(fr) = A\u(fyr). Now supposef; = 0. By (9) and Lemmal2);(0) >

B5(Rs)™ = Ba(f2) = Am(f7)- So the proof is complete. O

C. Inefficient Equilibria

Theorem[ 2 does not rule out the possibility of inefficient iBgia. In fact, an equilibrium may be
inefficient if it is monopolistic. For example, the socialtyptimal routing of the duopoly PG represented
by Figure[® is(r}, Rs — r) whereas the equilibrium depicted leads to a monopolistitimg (R, 0).

In this example, relay2 adopts a pricing function,(-) such thathRS Ba(r) dr = fORS Ao(r) dr and
Ba(Rs — 1) > Ai(r) for all » € [0, Ry]. Given such a3,(-), relay 1 would want to acquire all the flow
(cf. @)) by usingp;(-) such thatf, (R, —r) dr < [} Xo(r) dr and [, Bi(r) dr > [; Bo(Rs — 1) dr for
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Fig. 5. Inefficient equilibrium in duopoly.

all t € (0,R,) and [, f1(Rs —7) dr = [, Xo(r) dr = [, Ba(r) dr. Thus, it satisfies[{8) and leaves
relay 2 no incentive to acquire any traffic. So the monopolistic Blguum holds.

In general, monopolistic equilibria in an oligopoly PG hatie following property.

Theorem 3:If an oligopoly equilibrium is monopolistic with dominanglay m, we must have

/0 Y o) dr < /0 " M (r) dr

for any other relay;.

Proof: Consider anyj with f; = 0 in a monopolistic equilibrium. The conditionl(9) impliesath
RS RS
/ Aj(r) dr > B;(RS —r) dr.
0 0

On the other hand,

Rs R

Rs
Bi(Rs —r) dr = Bi(r) dr = Bm(r) dr,
0 0 0

since from the perspective of the optimal allocation o, to all the relays except still assigns all the

traffic to m. It follows from m’s best response conditiorls (8)-(9) that
R, R,

Rs
B(r) dr = Baw(Rs — 1) dr > / Am (1) dr.
0

0 0

Thus the proof is complete. O

The next conclusion easily follows from Theorémn 3.

Corollary 1: If the socially optimal routing of an oligopoly is monopdilis then every equilibrium of

the oligopoly is monopolistic and efficient.

Proof: It can deduced from the uniqueness of the socially optimating and Theorerhl2 that every

equilibrium of such an oligopoly must be monopolistic. Byebinem_B8, the dominant relay of such an
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equilibrium has the minimunj,™ A,,,(r) dr among all relays. But such an must be the dominant relay

in the socially optimal routing. O

It is shown next that there always exists a monopolisticldariim in an oligopoly. Thus, we have the
following conclusion.

Corollary 2: If the socially optimal routing of an oligopoly is competid, then there exists an inefficient
(monopolistic) equilibrium.

Proof: We need only show that there exists a monopolistic equilibrin such an oligopoly. Let all
B;(-) be the same strictly decreasing functigft) such thatfot B(Rs — r)dr < f(f Aj(r)dr for all j and

€ [0, R,) but [ B(R, — r)dr = [, Ap(r)dr wherem € argmin; fOR“" Aj(r)dr. Sincef(-) is strictly
decreasing$;(r) = g(r) for all j. By construction,f; = 0 is an ideal flow toj # m (cf. (9)) whereas
Bm(:) = B(-) and fr = R, jointly satisfy m’s best response conditions| (8)-(9). So the monopolistic

equilibrium is established. O

When an oligopoly has inefficient equilibria, it is of intetdo compare the worst-case network cost

under an inefficient equilibrium to the optimal cost.

D. Price of Anarchy

The price of anarchy, as a measure of loss of social efficielugyto selfish behavior of individual
agents, was studied in the literature on selfish routing [B]], In this work, the price of anarchy of a

general PG is defined as follows.

Definition 4: The price of anarchy(G, (D;;(-)), R,) of a pricing game&(G, (D;;(+)), R;) is the ratio of
the maximum cost at an equilibrium to the socially optimadtca.e.,
maxy; EZZ Dl(fl)
p(G, (Dyy()), Ry) 2 —— L Siee
2 igyee Dig(f)

where F¥ is the collection of all routings that can be induced by anilégyium of (G, (D;;(+)), Rs) and

(f35)@.5)ee is the socially optimal routing of the game.

In this section, we study the price of anarchy specificallyol@opolies. As we will showp(N, (X\;(+)), Rs)
is equal toN when marginal cost functions are concave, e.g. when costituns are quadratic. However,
the price of anarchy can be arbitrarily large when when nmaitgzost functions are convex, as is the case

for the cost functions discussed in Section ]I-B.
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Theorem 4:If the cost derivativeg\;(-)) are concavep(N, (\;(-)), Rs) of an oligopoly pricing game
is upper bounded by the number of relays The upper bound is achieved when the cost derivatives are
linear.

Proof: Let the socially optimal routing bé)Y, = (o, R,)Y, where the coefficientn;) are nonneg-

ative and sum to one. The optimal cost then is

N

a;Rs
D* = Z/o Ai(r) dr.

=1
Since\;(r) is concave, it can be shown thgi”Rs Ai(r)dr > of [;7 \i(r)dr where equality holds when

Ai(r) is linear. ThereforeD* is lower bounded as

Recall that inefficient equilibria in an oligopoly are momdigtic such that the dominant relay satisfies
Theorem B. The price of anarchy, which is the ratio of the edstny monopolistic equilibrium (ME) to

D*, is upper bounded as

S

DME @ [ (r) dr ® B Ay dr 1 9
D =y a2 [{ n(r) dr T S a2 [T Aa(r) dr - 07 T

Next we specify the condition under which the upper boundcisieved. Notice that (a) holds with

IN

equality if and only if [;* T Ni(r)dr = o2 fo r)dr for all 4. This requires each;(r) to be a linear
function. Inequality (b) is tight whelfO r)dr = fO * A\ (r)dr for everyi # m. Hence, all the relays
must have the same linea;(r). Thus, (r;*) must be the uniform, hence competitive, allocation, i.e.,
a; = 1/N for all i. This is exactly what is needed to make (c) tight.

Now it remains to find the pricing functions which can indube tmnonopolistic equilibrium attaining
the upper bound. Let;(r) = A\(R, — ) £ B(r) for everyzl Sincej;(r) is strictly decreasing for every
i, B:(r) = B(r) = MRs —r). SinceB:(Rs —r) = A(r), every relay is indifferent to having any amount of

flow. Thus, the monopolistic equilibrium can be sustained. OJ

Unlike the selfish routing games considered in [7], [8], fduieh the price of anarchy is independent
of the topology [17], Theorernl 4 indicates thatV, (\;(-)), Rs) of an oligopoly PG explicitly depends
on topology throughV. Such a conclusion implies that the more intensive (lafggthe competition is,

Here we have omitted the subscript ®f() in light of the symmetry.
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the more inefficient the market becomes if it is monopoliZBak situation is even worse if the relays in

an oligopoly have convex;(-). In this case, the price of anarchy can be arbitrarily large.

Theorem 5:For a fixed numberN > 2 of relays and for anyM > 0, there exists an oligopoly
(N, (\()Y,, R,) with convex();(+)) such thato(N, (X\(+)), Rs) > M.

Sketch of ProofWe can construct an oligopoly witl relays such that the socially optimal routing is
competitive. By Corollary 2, inefficient monopolistic etjbiia exist. However, within the class of convex
functions, \,,(-) of the dominant relayn can be designed so thégRS Am() = M D*, where D* is the

optimal cost. O

E. Focal Equilibria

Although possible, inefficient equilibria in an oligopolyeavery unlikely to happen. The example in
Figure[5 represents a highly pathological situation. Suchequilibrium is reached only if the subtle
relationships betweer,(-) and A\;(-) and betweens,(-) and \y(:) are satisfied. These relationships,
however, can be established only by coincidence, sincg telzannot observe(-) and relayl cannot
observe);(-). In a general PG, it is arguably most rational for a relay te asreplicating response as

described in Section T-A.

Definition 5: A focal equilibrium of a general pricing game is an equilimi where every relay
adopts the replicating response to its local informatign= ((ry, (B?(-))jesﬁ)hepi, (Bi(-))keo,), i-€., for

all » e P,

— Bi(r ) — BM(pr — -
By ~ B = B =0, tEfil (10)
> Bi(ry) — Bl (ry— 1),  t € (fiim]

Where(B?(), fr:)nep, are as specified in Lem.

In this section, we investigate focal equilibria in oligdies. Such equilibria are not only reasonable for
implementation, but also, more importantihwaysefficient. The next theorem establishes the existence

of focal equilibria in an oligopoly.

Theorem 6:The socially optimal routing of an oligopoly is always inédgcby a focal equilibrium.

!Since the derivatives!(-) of B! (-) is in general piecewise continuous, we henceforth allowndtirevative3}*(-) of B}'(-) to be piecewise

continuous. Let3! ()~ and 8! (r)™ denote the left and right limits g8/ (-) at r.
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Proof: Note that the equilibrium constructed in the proof of Theof® is a focal equilibrium. [

Figurel4 illustrates a focal equilibrium in a duopoly inddd®y nonlinear pricing function®; (-), Ba(-).
The linear pricing equilibrium used in the proof is a specide of Figurél4d such that the curvesspfr)
and 5y (r) are the same horizontal line that passes the point whgrg and A\»(R; — r) intersect. Notice
that the focal equilibria encompassed by the above exangie & common property. That is, the curves
Bi(+) and \;(+) of all i intersect at the point that corresponds to the social optimhe next theorem

states that such a phenomenon is no coincidence.
Theorem 7:Every focal equilibrium of an oligopoly is efficient.

Proof: In light of Theoreni 2, we only need to show that any monopiclisical equilibrium is efficient.
Let (B;(+)) be the pricing functions that induce such an equilibrium rghe is the dominant relay. By

the best response conditidd (9) and the fact that:) is a replicating response 1o, (-), at f = Rs,
)\m(Rs) S 5m(0)+ = Bm(RS)_‘

Applying (9) and Lemmal2 to any # m, we have

)\](0) 2 Bj(Rs)_ 2 Bm(Rs)_'

Therefore,\,,(Rs) < A;(0) for any j # m, which implies that the monopolistic routing is efficient.]

To summarize, as the most reasonable outcomes of a pricimg,g@cal equilibria always exist and
are always efficient in oligopolies. We have yet to find out thiee these properties hold in general PGs.
In the remainder of the paper, we focus on the class of foaalibga when we study pricing games in

multi-hop network@ For brevity, we will drop the qualifier “focal” henceforth.

IV. EQUILIBRIA IN GENERAL PRICING GAME

In this section, we consider a general multi-hop relay netweith one source-destination pair as
described in Sectionlll. As in Sectign]lll, we assume thatvarg local competition, a relay declares
BM-) = pP(-) + dui(-) to anh € P; and allj € SP.

Notice that if. € P; hasr, = 0, then technically any!(-) is a best response since the local competition
involving i and j € S!* is vacuous. To prevent absurd equilibria resulting fromhsaditrary pricing,

2\We deliberately ignore the type of inefficient equilibrisdlissed in Sectidn IIHC because there is no new discoveryawenake about

them in the general PG. They are inefficient in oligopoliex] ¢herefore inefficient in general PGs.
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however, we assume thauseshonest pricings! (t) = dp;(t) + d;(t + Zh’ePi\h f;) whenry, = 0. Here,
fr; is the flows intends to acquire from’ Pi\hidi(wrzh,epi\h fr:;) is the derivative of the minimum
cost incurred byi in forwarding traffic to its offsprings. Thus3!(¢) exactly matches the actual cost of
1 for forwarding flow fromh. Honest pricing, though restrictive, is in line witts self interest. Being
honest with its own cost, maximally alleviates the burden &f whose cost is partly leveraged BY(-).
Therefore, honest pricing can be seen as the best effartdyelp improve the competitiveness fof in
the hope of earning profit from should’ later receive positive;, from its predecessors.

We will frequently use the following terms. pathis a concatenation of links from to w, while a
sub-pathis a contiguous segment of a path from a relaystdGiven a routing fi;) ;. jce, @ path/sub-path
is said to have positive flow if,,, > 0 for every(m, n) in that path/sub-path. Otherwise, the path/sub-path
is said to have zero flow. Thearginal coston a path/sub-path is the sum @&f,,(f....) over all (m,n)

on that path/sub-path.
Theorem 8:The socially optimal routing of a general PG can be induceciyequilibrium.

Proof: Let (f;) be the link flows of the socially optimal routing. Denote tluat incoming flow at
nodei by r* £ > nep, f1i- Note that under the socially optimal routing, a path/satifhas positive flow
only if its has the minimum marginal cost among all paths/gaths with the same origin. Let’ denote
the minimum marginal cost of any path/sub-path froto w (for i = w, A} = 0). Consider the following
pricing scheme. Each relayadoptss!(t) = A; for any h € P; unlessr; = 0, in which case honest
pricing is enforced. We show that such a set of pricing fumgisupports the socially optimal routing,
i.e., the pricing functions along with the socially optintaliting constitute an equilibrium.

First consider any nodewith r; > 0. We prove that has no incentive to deviate from using the pricing
functions described above and from allocating its totabming flowr; as in the socially optimal routing.
Notice that the honest pricing functigif (t) = dy;(t) + d;(r; +t), as well as any other pricing function,
is a best response ofif r; = 0. On the other hand, if; > 0, theng%(¢t) = X; for all i/ € S". Thus,
ﬁi.h(t) = \;. The actual marginal cost fotto forward traffic forh is given by ! (t) = d,;(t)+\; since every
j € O; adoptspi(t) = A;. If at the socially optimal routingf;; > 0, we must have\; = d(f;;) + A;.

Sincedy,;(-) is increasing, it is trivial that

fhi fhi fhi
fr = arg max/ dpi(fr:)—dpi(r) dr = arg max/ X;L—)\?(r) dr = arg max ﬁg.h(r;:—r)—)\?(r) dr.
0 0

0<fhi<r}, 0<fri<r}, 0<fri<ry JO

That is to sayf;; is the ideal amount of flow that wants to acquire fronk given 6{1(-). Furthermore,

3Node: need not use honest pricing faf # k if ' has positive incoming flow.
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the replicating responsé/(t) = ﬂf(r; —t) = A; is known to be a best responseiofif at the socially
optimal routing, f;/; = 0, then it must be true that,;(0) + \; > X}, and so\!(0) > B{l(r;). Therefore,
fr; = 0is indeed the ideal incoming flow fay and setting3}'(t) = 8 (r;, —t) = \;, is enough to induce
such allocation. The socially optimal allocatigfy;),co, of r; is also in the best interest éfoecause all
j € O; adopt the same pricing function, and that make&sdifferent to any allocation to them.

Next suppose; = 0. Again we need to show that!(t) = \; is a best response offor h € P;
such thatr; > 0. Sincer; = 0, hencef;, = 0, it can be concluded that;;(0) + A\; > \;. Also
notice that allj € O; use honest pricing te, the actual marginal cost of forwarding traffic forh
evaluated atfy; = 0 is \}(0) = dp;(0) + A} > Ay = p(r;). This shows that gettingy; = 0 from &

is in the best interest af which can be induced by (t) = g!(r; —t) = ;. So the proof is completel]

A. Inefficient Equilibria and Price of Anarchy

Unlike the oligopoly case, in a general PG, not all focal égua are efficient. The inefficiency of an
equilibrium in general PG’s is caused not only by the mardpwé behavior of dominant relays but also

by the myopiaof nodes. We illustrate this point by the game depicted irufgf6. The derivative of link

Fig. 6. Arbitrarily bad equilibrium of a general PG.

cost functions are marked above each link, €g.(r) = 2M + 2¢ + 6(r — 2R;), wherel, ¢ and ¢ are
positive constants such that > <R, and M > JR,. The pricing function of each node is marked above
the node. There are three paths frerto w, of which (s, k,i,w) has the smallest marginal costr even
whenr = R;. So the socially optimal routing should allocake entirely to the pathis, h, i, w). However,
the equilibrium shown in Figure 6 leads to only(20) being routed oris, h, i, w) while the rest is routed
on (s, g, w). In fact, s is indifferent among all allocations @, to h andg sincefy () = ,(-) = 2M +e¢.
Figure[ T explains why such,(-) and,(-) areh andg’s best responses in their competition. Notice that

h is able to win onlys/(26) of the total flow because it has cast(r) = ds(r) + dn(r) = 2M + 207.
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Fig. 7. Competition betweeh and g.

This inflated cost is a consequence:;sfmyopic pricing. Since has superior cost\{(r) = 20r) relative
to j (\;j(r) = 2M + 26r), i can afford to matchj’s pricing functiong;(-) = 2M. Neither: nor j has
any incentive to deviate fro\/ sincei has acquired all the flow/(25) while making the maximum
possible profit whilej would suffer a loss if it tried to win a positive share by bidlglilower than21.
Althoughi could have made more profit if it cut its price, thereby makingiore competitive, it is unable
to discover this opportunity as it lacks “global vision”.

To conclude, although focal equilibria of a general PG rulé the manipulative pricing by a superior
relay (cf. Se€.ll-C), the equilibria are susceptible te timefficiency caused by the dominant relays’
myopic pricing. Such a source of inefficiency is intrinsicrietworks consisting of selfish nodes who are
aware of their neighbors only. The price of anarchy causeshygpic inefficiency can be arbitrarily large.

For the example in Figure 6, the equilibrium holds for algrenoughl/ and results in a total cost

£ Rs— = 2 2
E 25 25 B o g_ _ _ i _ i
D _/O 467 dr+/0 2(M+e—0R,)+20r dr = —+2(M+e—0R,) (Rs 25)+5 (Rs 25) ,
whereas the optimal cost is
R
D* = / 467 dr = 20 R?.
0

Therefore, the price of anarchy is at ledst /D*, which can be made arbitrarily large by increasing
Although in a multi-hop network equilibria can be arbittaiinefficient, we will show in the following

that there is a class of equilibria which are always efficient

B. Everywhere Competitive Equilibria

Definition 6: An equilibrium of a general PG is everywhere competitiv¢ifiduces a routingf;; ) jyee
such thatf;,; > 0 for at least twoi € O, wheneverr, > 0 unlessw € O, and f,,, > 0

1Recall that we have assumed in SecfionlI-A tf@,| > 2 if w ¢ O.
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Notice that the equilibrium in Figurd 6 is not everywhere gatitive asi is dominant toj. One would
expect that when no relay is unrivalled, mistakes such a®tigemade by could be avoided. The next
theorem validates this intuition. Its proof is containedhe Appendix.

Theorem 9:If an equilibrium of a general PG is everywhere competitivenust be efficient.

V. PRICING GAME WITH ELASTIC SOURCE

So far we have assumed thalhas a fixed, inelastic demand. In this section, we show theihgrgames
with an elastic source can be studied within the same framewe have developed for the inelastic case.
We consider a source with elastic traffic demand. The source’s preference oviergint admitted

ratesr, is measured by a utility functiod,(r,) such thatUs(rs) = Us(Rs) for all v, > R,. In other
words, R, is the maximum desired service ratesofin the intervall0, R, U,(-) is assumed to be strictly
increasing, concave with continuous derivativg-). Taking the approach of [18], we define theerflow
rate as f,, = R, — 1. Thus, ats we have
> fut fuw = Re. (12)
i€O;

Let Dy (fsw) 2 Us(Rs) — Us(rs) denote the utility loss tos resulting from having a rate of;,
rejected from the network. Equivalently, if we imagine thia¢ blocked flowf,,, is routed on avirtual
overflow linkdirectly from s to w [18], then D, (fs,) can simply be interpreted as the cost incurred
on the overflow link when its flow rate ig,,. Moreover, as definedD,(fs,) is strictly increasing,
continuously differentiable, and convex fia, on [0, R,]. Denote the derivative ab,,,(-) by dg,(-). Thus,
we can treat the pricing game with an elastic source as oreasitinelastic source and an overflow link
(s, w). An oligopoly pricing game with an overflow link is illusteed in Figure[ 8, where the overflow

link (s,w) is represented by a dashed arrow. Such an oligopoly is éskeihe same as those studied

Fig. 8. Oligopoly with an overflow link.

in SectionIll with the exception that now has the additional option of sending traffic on lifkw).
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From a pricing perspective, we can think:ofas directly competing with relays by usingiaiformly-zero
pricing function

In a general pricing game, the introduction of the overflawk laffects only the local competition faced
by i € O,. Now w becomes a new competitor to ale O, whose presence changes eashperception
of the competition. Specifically, the pricing function @ virtual competitor is derived as

Bi(r) = min ) B (fy) + Deu(fow);
JES?

where the minimization is taken with respect to nonnegatiyg ) cs: fsw) such thaty _; fs; + fou =1
The conclusions for pricing games with an elastic sourceabm®st verbatim to those for inelastic pricing

games. Limited by space, we do not elaborate further.

VI. CONCLUSION

This work presented a game-theoretic analysis of price etitgm in multi-hop relay networks. The
introduction of possibly nonlinear pricing functions teetbame enabled us to develop a much richer set
of results than if we allowed only constant unit prices. WHhe socially optimal routing can always be
induced by an equilibrium, the game may have inefficient ldaia as well. Furthermore, the existence
of competition turns out to be a two-sided coin. On the one,sahy competitive equilibrium in oligopoly
pricing games and any everywhere competitive equilibrimngéneral pricing games must be efficient.
On the other side, the conclusion that the price of anarchgnobligopoly is equal to the number of
competitors seems to suggest that more intense compaiitignmakes inefficient (monopolistic) equilibria
even worse. Unlike the case of oligopolies, the inefficien€yequilibria in a general pricing game can
be attributed not only to manipulative pricing by dominaelays, but also more fundamentally, to the
myopia of dominant relays. We showed that the price of aryaattributed to both the monopolistic and

myopic effects is unbounded.

APPENDIX
Proof of Theoreni]9

We use the following lemmas to prove the theorem.

Lemma 3:Given any (focal) equilibrium with induced link flowsfy,;) and node total incoming rates
(r;), for any nodei with r; € (0, R,), its actual marginal cost”(-) of forwarding traffic for anyh € P;
satisfies

A (fra) T < A (fua) ™ (12)
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where \!(fy;)* and A2 (f,;)~ are the right and left limits of\”(-) at f;.

Proof: First assume that has only one offspring, which by our assumption must be thstirion.
Thus,\2(t) = dy,;(t) + diw(t). Since bothdy,(-) andd;,(-) are continuous everywhera’(-) must also be
continuous everywhere. The inequality(12) holds with dityua

Next assume that has multiple offsprings. By the same reasoning as used ipithef of Lemmd_ 2,

for any j € O; with fi; > 0, we have
A?(fhi)Jr < dpi(fri) + 5;(7% - fz'j)+ = dpi(fni) + B;(fzg)_ < )‘?(fhi)_a

where the equality follows from the replicating responiget ]( —t), t € [0, fi;], assumed by a

focal equilibrium. O

Lemma 4:Given any (focal) equilibrium with induced link flowsf;,;) and node total incoming rates
(r;), for any h # w such thatf,; > 0 and f,; > 0 for two different relaysi, j € O, it holds that

(i) the actual marginal cost!(-), A(-) of ¢ and j forwarding traffic for’ are continuous af}; and
fnj, respectively;

(i) the marginal pricing functionﬁ{l(-), ﬁ]f?(-) of 4 andj’s virtual competitors are continuous®at— f;
andry, — f;, respectively;

(iii)

N (fri) = Xy (fg) = B2 (rn — fui) = B2 (rn — fng) = e
Proof: The replicating response impligt ( ;)™ = Bﬁ(rh — fni)*. The fact that

—argmax/ Bl (rp — 1) = A (r) dr

0<f<rp
implies ﬁf(rh — fui)T > Ni(fr)” and \i(fri)t > ﬁf(rh — fni)~. By the same reasoning as used in the

proof of Lemmd2, it can be shown thﬁﬁf(rh — fui)” = Bl (fr;)”- Invoking LemmeB, we have
Bi(fas)™ = Bi(rn = fud) ™ 2 N (faa) ™ 2 M) ™ 2 B2 — fu)™ 2 B} (fag)™ (13)
By symmetry,
B (frg)™ = B3 (rn — fag) ™ 2 N} (fng)™ 2 Nj(fug)™ 2 BE(rn — fug)™ 2 B (fas) ™

Thus, it can be concluded that all terms involved in the abiwwe inequalities must be equal to each

other. So the proof is complete. O



25

Lemma 5:Given any (focal) equilibrium with induced link flowsfy,;) and node total incoming rates
(r;), for any h # w such thatf,,, > 0 and f,; > 0 for a relayi € Oy, it holds that

(i) the actual marginal cost” (-), A*(-) of w andi forwarding traffic for. are continuous af;,,, and
fni, respectively;

(ii) the marginal pricing functionﬁ?() of 4’s virtual competitor is continuous a$, — f;;

(iii)

)‘?(fhz') = 5?(7% — fhi)-

Proof: First of all, w always uses honest pricing, i.€"(:) = M (-) = d.(-). So M (-) and 3" (")
are continuous everywhere. For the relgythe inequality [(I8) holds withj being replaced byw.
Also notice thats?(f:)~ < B"(fm)*. For otherwise would be able to strictly reduce its total cost
by shifting an infinitesimal amount of flow fror,7) to (h,w). However, since3”(-) is continuous,
B (frw)™ = B (fiw) . It follows that all the inequalities il (13) must hold witljeality. So the proof is

complete. 0

Lemma 6:At an everywhere competitive equilibrium, all the pathshwpositive flow have equal

marginal cost.

Proof: Let s,nq,n9, -+ ,ni, w be the nodes on a patR with positive flow at the equilibrium. For
simplicity, denotes by n, andw by nj41. SO f,n,,, >0 foralli=0,1,--- k.
At the equilibrium we must have for all=1,--- [k —1,
- _ @ ) _ b .
A (Fricand)”™ 2 dngan(Fricans) + Bty (Frinie) ™ = dngine(Fricind) + Baty (Pne = froni) ™

(e) _ _
> dni71”i<fni—1ni) +)\Z;+1<fnini+1) :

We have seen inequalityn) in the proof of Lemmal3. The equalitip) follows from the replicating

response. The inequality) is due to the fact thaf,,,,., is the ideal flow rate to:; given 57 (-).

i1

Using the above relation successively from: 1 to i = & — 1, we obtain

)‘le (fsm)_ > dSm (fSTLl) + dmm(fmnz) et dnk—2”k71(nk_2nk_1) + )\2§71(fnk71nk)_'
Finally notice that5)x(-) = d,,, w(-), SO

)‘2271 (fnk—lnk)_ > d”kflnk + ng (f”kw)_ = dnkﬂnk + d”kw(fnkw>'

Therefore, the marginal cost of paf is upper bounded as

dSm (fSTLl) + dmnz(fmm) T+t d”kflnk (fnk—lnk) + dnkw(f”kw) < )‘fu(me)_'
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Furthermore, since the equilibrium is everywhere competitthere exists a node, # n; for every

i=1,---,k such thatf, ., > 0. Using the results of Lemnid 4 addl 5, we can show that

anl”i(f”Fl”i) + )\ZZ+1 (fnmi+1) = d”i—l”i(fni—lni) + 5;;:+1 (Tm- - fnini+1) Z )‘2271<fm71m)7
fori=1,--- k— 1. Applying the above inequality successively fram- k£ — 1 to i = 1, we have
8711(fsm) + dmm(fmnz) +o At dnkflnk(-fnkflnk) + dnkw(fnkw)

d
dsm(fsm) + dnmz(fmnz) +oeeet dnk—lnk(-fnk—lnk) + ng(fmw)
d

sy (fSTLl) + dmm(fmnz) et )‘Z:ﬂ

v

> A%, (fonr):

Also by Lemmé& 4,\; () is continuous aff,,,. Thus, the lower and upper bounds of the total marginal
cost of R are both equal to\} (f..,) = n,. SinceR is chosen arbitrarily, we can conclude that all the

paths with positive flow have the same marginal egst O

Proof of Theorenl]9By Lemmal6, at an everywhere competitive equilibrium, evaagh with positive
flow has the same marginal cagt To prove that the routing is socially optimal, it remainsstoow that
any path with zero flow has marginal cost greater than or efqual. Let s, 21, - - , 2,,, w be the nodes
on a zero-flow pathZ. To simplify notation, writes as z, andw as z,,,;. Recall that the flow rate of
a path is the minimum of the flow rates on all its links. So thexest link(s) (z;, z;+1) on Z such that

fzizin = 0. Next we show that on pat,

Aoy vz (foriz) + )‘Z+1(fzz-zz-+1>+ > )‘Zfl(fzz-ﬂzz-)ﬂ (14)

wherei =1,--- ,m.

Notice that fori = m,

dszlzm (fszlzm) + )\§Z+1 (fzmz7rz+1)+ = dszlzm (fszlzm) + dzmw(fzmw) 2 )\mel (fszlzm)—i_'

Zm

Now consider any = 1,--- ,m — 1. At an everywhere competitive equilibrium, jf > 0, then there

iZ2i+1

must existz],; # z41 for which f.... > 0. Applying Lemma# of 5, we have

dziflzi(fzi—lzi) + )‘Z+1(f2izz-+1) = dzi—lzi(fzi—lzi) + BZZZH(TZZ - fzizi+1) > )‘Zfl(fzz-qz/i)—k'
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This is a special case of (14) ag', (-) is continuous atf...,,,. If f...., = 0, however, we have to
consider the following two cases. In the first casg,> 0, so z; has at least two offsprings , ,, 2/,
such thatfzizzf_+1 > 0 and fziz;;l > 0. Assumez;,, # w, we therefore have

By (foaz) + A0, (Frz) T = de 2 (0) + A7 (0)F
12, (0) + B2, ()™
Aoy ii(0) + B3 (for, )™

= dzlflzL(O) + 52“ (TZ@' - fZizéﬂ) > )\Zil(fzi—lzi)-i_‘

IVE

S

—
)
~

Here, inequality(a) holds becausg...,., = 0 is the ideal amount of flow ta,,,. We applied the same
reasoning as used in the proof of Lemima 2 to @é¢t Inequality(c) follows from the replicating response
of 2., and from using Lemm&l4 df 5 (depending on whether = w or not). Next we consider the

case where-,, = 0 and consequently all offsprings ef adopt honest pricing te;. It follows that

dziflzi(fziflzi) + >\Z+1 (fzizi+1)+ = dziflzi(fziflzi) + ZH (fzizi+1)+ 2 )\271(f2i712i)+.

So far we have proved (114). Usinlg {14) we can lower bound theyima cost of Z as

dzoZ1 (f2021> +oeet dzqum(fszlzm) + dzmw(fzmw)

d2021(f2021> +oeet dzqum(fszlzm) + )‘fum(fzmw>

Z )\21 (f321>+'

If fo., >0, by Lemma4,); (-) is continuous aff,., and is equal to),. So we are done. If,., =0, s
must have two other offsprings, 2y for which f,., > 0, f... > 0. Then we can apply the same argument

as we used in inequalitigs)-(c) to show that

)\21 (f821)+ > 551 (Rs - fszi) = )\Z (fszi)7

Where)\gi(fszi) = n,. SO we are done.
To summarize, we have shown that at an everywhere compegitjuilibrium, every path with positive
flow has the same marginal cagt moreover, every path with zero flow has marginal cost grettn

or equal torn,. Therefore, the routing pattern of such an equilibrium isialty optimal. 0J
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