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Abstract—Providing anonymity to routes in a wireless ad
hoc network from passive eavesdroppers is considered. Using
Shannon’s equivocation as an information theoretic measure of
anonymity, scheduling strategies are designed for wireless nodes
using receiver directed signaling. The achievable rate region
for multiaccess relays are characterized under constraints on
average packet latency. The relationship between overall network
throughput and the route anonymity is obtained by drawing a
connection to the rate-distortion tradeoff in information theory. A
decentralized implementation of the relaying strategy is proposed,
and the corresponding performance analyzed.

I. INTRODUCTION

A. Motivation

Eavesdropping of transmissions in a network can reveal
vital information about the network operation. The trans-
mission times of nodes alone can be used to determine
source destination pairs and the routes of traffic flow. Such
unauthorized information retrieval, known as a traffic analysis
attack, compromises user privacy and also makes it possible to
launch powerful attacks such as jamming and denial of service.
While cryptography can be used to obfuscate the contents of
communication, hiding the act of communication requires a
fundamental redesign of networking protocols.

The challenge in the design of anonymous protocols is
to hide the routing information from eavesdroppers without
violating constraints imposed by the network. In this regard,
the wireless medium presents its own advantages and disad-
vantages. On the one hand, it is difficult for eavesdroppers to
ascertain the transmitting or receiving nodes of an encrypted
wireless transmission, especially when different traffic streams
are multiplexed at a single relay. On the other hand, the
shared medium is band limited and susceptible to fading and
interference, thereby constraining the network designer.

In this work, we are interested in designing anonymous
transmission and relaying protocols in wireless networks to
prevent the timing based inference of routes. We consider traf-
fic flows where the average per packet delay is bounded. It is
evident that modifying transmission schedules would result in
loss of network performance. We are interested in the tradeoff
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between network performance, measured by throughput, and
the level of anonymity that can be provided. Delay limitations
on traffic are necessary in time sensitive applications such
as media transmission, and in sensor networks, where node
duty cycles are too sparse to store packets for long periods. In
general, a bounded packet delay ensures stability and prevents
congestion at any node in the network.

B. Related Work

The idea of hiding routing information from eavesdroppers
is classical, although with a few exceptions [1], [2], it has
primarily been applied to Internet traffic over a wired network.
Most Internet applications provide anonymity using a concept
known as Mixing, pioneered by Chaum [3]. A Mix is a
special node or server that collects packets from multiple users
and transmits them after modifying the contents and random
delaying such that, it is impossible to match an incoming
and outgoing packet at a Mix. Since a single Mix stands a
chance of being compromised, a (possibly random) sequence
of Mixes are interposed between sources and destinations to
protect against active means of gaining inference.

Subsequent to Chaum’s contribution, many improved batch-
ing strategies [4], [5] have been designed to handle different
types of traffic analysis attacks [6]. While the Mix based
approach is useful for Internet applications such as anonymous
remailers and web browsing [7], a study of flow correlation
attacks [8] showed that when long streams of packets with
latency constraints are forwarded through Mixes, it is possible
to correlate incoming and outgoing streams almost perfectly.

In wireless networks, an alternative solution to Mixing is the
idea of cover traffic [9], [10], where, irrespective of the active
routes, the transmission schedules of all nodes are fixed apri-
ori. If a node does not have any data packets, the transmission
schedule is maintained by transmitting dummy packets. The
fixed scheduling strategy, analyzed in [9] provides complete
anonymity to the routes at all times. Constraints on traffic
latency have however, not been considered. Furthermore, a
fixed scheduling strategy requires synchronization across all
nodes and assumes a constant network topology, which is not
practical in ad hoc wireless networks.
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C. Main Contributions

In this work, we propose an information theoretic approach
towards providing anonymity to traffic flows in a multi-
hop wireless network. In particular, we quantify the route
anonymity using Shannon’s equivocation [11], and design
network protocols that are adaptable to any desired level of
anonymity. Equivocation measures the uncertainty of hidden
information with respect to the eavesdropper’s observation.
It has primarily been used to quantify the secrecy of mes-
sages transmitted over channels such as wiretapped [12] and
broadcast channels [13]; the goal was to characterize the
optimal tradeoff between information rate and secrecy. We
use equivocation to quantify the anonymity of network routes,
and characterize the tradeoff between network throughput and
anonymity. Previously, in [14], we considered a transmitter
directed signaling network with strict delay constraints on
the traffic, and derived the tradeoff between throughput and
anonymity. The achievability of the throughput in [14] required
centralized knowledge of the network routes.

In this work, we consider a receiver directed physical
layer model with average delay constraints, and propose a
decentralized scheduling strategy to provide anonymity. We
propose transmission and relaying strategies to hide the re-
laying operation of individual wireless nodes. These strate-
gies, due to the latency constraints, result in a reduction in
achievable relay rates at the nodes. Therefore, we selectively
reveal portions of the network so that network throughput is
maximized for the desired level of anonymity. A key intuition
for this maximization comes from the rate-distortion tradeoff
in information theory, which is explained as follows.

The objective of a rate-distortion optimization is to map
a set of source sequences to a smaller set of reconstruction
sequences such that the average distortion between the source
and reconstructed sequences is minimized. The idea is to
divide the set of source sequences into bins (Figure 1.a)),
and generate a reconstruction sequence for each bin. The
compression rate determines the total number of allowed
bins, and the binning and reconstruction are performed such
that overall distortion is minimized. A classical result in
information theory characterizes the optimal distortion-rate
trade-off as:

D(r) = min
q(Ŝ|S):I(S,Ŝ)≤r)

d(S, Ŝ), (1)

where S is the source alphabet, Ŝ is the reconstruction
alphabet and d(S, Ŝ) is the distortion measure.

In the anonymous networking setup, let the set of active
routes at any given time be referred to as a network session.
The key idea is to divide the set of all possible network
sessions into bins (Figure 1.b)) such that, for each bin, there
exists a scheduling strategy that would make the sessions
within that bin indistinguishable to an eavesdropper. The level
of anonymity required determines the number of bins, and the
optimal scheduling strategy plays the role of the reconstruction
sequence by minimizing the performance loss across sessions

Xn
x bits/s 2 bits/s

Encoder Decoder X̂n

0010010

1010101

1110110

1011111

X̂a : 0010011 X̂b : 1110100

X̂c : 0000000 X̂d : 1110111

Sequences
0000000
0000001

...

...
1111111

(a) Rate-Distortion: Any sequence in bin a corresponds to reconstruction
sequence X̂a. Reconstruction sequences X̂ are chosen to minimize distortion
within corresponding bins

Sa1

San

Sb1

Sbn

τa τb

τc τd

Sessions
S1

S2

...

...
Sn

Sessions
S1

S2

...

...
Sn

(b) Anonymous Networking: For any network session in bin a, eavesdropper
observes τa, and cannot decide from Sa1 · · ·San. τs are designed to minimize
performance loss within corresponding bins.

Fig. 1. Connection between rate distortion and anonymous networking.

within a bin. In this work, we show that the throughput-
anonymity relation can be equated to a rate-distortion function.

The remainder of this paper is organized as follows. In
Section II, the anonymity model and the formal problem setup
are described. In Section III, the scheduling algorithms to
hide the operation of individual relays are presented along
with the characterization of achievable relay rates for Poisson
distributed schedules. In Section IV, the extension of the
strategies to multihop routes in a network are described.
The characterization of throughput-anonymity tradeoff and a
decentralized implementation are presented in Section V.

II. PROBLEM SETUP

Let the network be represented by a directed graph G =
(V, E), where V is the set of nodes and E ⊂ V × V is the
set of directed links. (A,B) is an element of E iff node B
can receive transmissions from node A. A sequence of nodes
P = (V1, · · · , Vn) ∈ V∗ is a valid path in G if (Vi, Vi+1) ∈
E , ∀i < n. The set of all possible paths is given by P(G).

We assume that during any network observation by the
eavesdropper, a subset of nodes communicate using a fixed set
of paths. We call this set of paths S ∈ 2P(G) a network session.
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The set of all possible sessions S is typically a strict subset
of 2P(G). We model S as an i.i.d. random variable S ∼ p(S).
The information that we wish to hide from the eavesdropper
is the network session S. We assume that the prior p(S) on
sessions is available to the eavesdropper.

S1

S2

B

D1

D2

Fig. 2. Two Node Switching Network: G1 = (V, E), V =
{S1, S2, B, D1, D2}, E = {(S1, B), (S2, B), (B, D1), (B, D2)}.

For example, consider the simple network G1 as shown
in Figure 2. Let S1, S2 be the source nodes and D1, D2

the destinations. Let S1, S2 always communicate with distinct
destinations. For this network,

P(G1) = { (S1, B), (S1, B,D1), (S1, B,D2), (S2, B),
(S2, B,D1), (S2, B,D2), (B,D1), (B,D2) }.

However, since destinations are always distinct,

S = { {(S1, B,D1), (S2, B,D2)}
{(S1, B,D2), (S2, B,D1)} }.

For the purposes of obtaining an analytical characterization
of the throughput-anonymity tradeoff, we have considered an
abstraction that deviates from the real network operation. It is
our hope that the insights obtained in this setting will provide
design guidelines for real applications.

Transmission Schedules The eavesdroppers’ observation in
a session comprises of the packet transmission times of all
the nodes. We assume that packet headers are encrypted, and
hence, undecodable by the eavesdropper. Therefore, merely
detecting a transmission on the wireless medium cannot pro-
vide the eavesdropper information about the transmitter or
receiver. However, we consider a receiver directed physical
layer model, where the eavesdropper can use knowledge of
spreading sequences to determine the receiving node of every
transmitted packet.
Receiver Directed Signaling: All packets received by a par-
ticular node are required to be modulated using the same
spreading sequence, and each receiving node is associated with
a unique orthogonal spreading sequence. Under this scheme,
an eavesdropper would be able to “tune” his detector to a
spreading sequence and detect transmission times of packets
sent to the corresponding node. Note that since headers are
not available, the identity of the transmitting node is hidden.

Observable Scheduling Let τA represent the transmission
times of packets received by node A. The schedule τA is given
by a point process,

τA = {TA(1), TA(2), · · · },
where TA(i) represents the transmission time of the ith packet
sent to node A. Since we cannot determine which nodes are

being monitored, the eavesdroppers’ complete observation is
assumed to be τ = {τA : A ∈ V}.

We model τ as a sequence of random variables with
conditional distribution q(τ |S). The idea is to design q(τ |S)
such that eavesdroppers obtain minimum information about
the session S by observing τ . Note that τ only contains
transmission times of packets received by each node, and does
not indicate the routes in the network. The eavesdropper would
therefore need to correlate transmission schedules across nodes
to determine the actual flow of traffic.

A. Anonymity Measure

In Mix-net analyses, anonymity has been defined [4], [5] us-
ing the anonymity set (set of possible source-destination pairs)
of an observed packet. Although anonymity sets provide useful
metrics for Internet applications, in wireless ad hoc or sensor
networks, it is equally important to hide the routes of data flow
as it is to hide source destination information. Furthermore, to
measure the overall anonymity in a network it is imperative to
consider entire streams of packets, as significant information
is inferable from the inter-packet timings [8].

We define anonymity using the notion of equivocation [11],
which measures the uncertainty of the information we wish to
hide (S) given the complete observation of the eavesdropper
(τ ).

Definition 1: A distribution q(τ |S) is defined to have
anonymity α if

H(S|τ)
H(S)

≥ α.

When α = 1, H(S|τ) = H(S), and the distribution q(τ |S)
is defined to have perfect anonymity. In other words, the
schedule τ does not provide any additional information about
the routes than the available prior p(S). For a general α,
the physical interpretation comes from Fano’s Inequality [15]:
Let the error probability of the eavesdropper in decoding the
session S be Pe. Then,

Pe ≥ H(S|τ) − 1
log |S| ≥ αH(S) − 1

log |S|
�
= f(α).

Furthermore, if S is a large set with uniform prior {p(s) =
1
|S| ,∀s ∈ S}, then f(α) ≈ α, which implies that the
probability of error is lower bounded by the anonymity.

B. Network Constraints and Throughput

The design of schedule distribution q(τ |S) is subject to
network constraints on medium access and latency. Our goal
is to design q(τ |S) for any desired level of anonymity α
such that network performance is maximized under the given
constraints. In this work, network performance is measured
using throughput and the medium access and delay constraints
are described as follows.

Medium Access Constraints We consider long streams of
packets, and measure the transmission rate to node A as:

λA = lim
n→∞

n

TA(n)
. (2)
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Owing to orthogonal receiver directed signaling, every λA

is bounded independently by a constant CA, which depends
on medium characteristics of the medium and the reception
capability of node A. If λA ≤ CA, every packet is successfully
received at node A. We assume that the network operates
in full duplex mode, where nodes can transmit and receive
packets simultaneously as long as the transmission rates are
within the specified bounds. Therefore, τ is a valid network
schedule if and only if λA ≤ CA for every node A.

Latency Constraint: In general, each relay is allowed to
reencrypt packets, delay and reorder arrived packets, and
transmit dummy packets. We consider time-sensitive traffic
where the average per-packet delay at a node A is bounded
by a constant ∆A.

The schedule τ does not indicate which packets actually
travel from source to destination on each route of a session.
Further, some of the transmission times in τ could correspond
to dummy packets. Therefore, the schedules need to be sup-
plemented with a relaying strategy. The relaying strategy Z is
a set of subsequences of τ that depends on the routes in S,
and contains only the transmission times of packets that are
relayed from sources to destinations.

Definition 2: Let a session S = (P (1), · · · , P (|S|)), where
each P (i) = (A(i, 1), · · · , A(i, |Pi|)) is a valid path. A set of
transmission schedules Z(S, τ) = {Zi,j : i ≤ |S|, 1 < j ≤
|P (i)|} is a valid relaying strategy for the pair S, τ if:

1) ∀i ≤ |S|, 1 < j ≤ m(i), Zi,j ⊂ τA(i,j).
2) For every i ≤ |S|, {Zi,j : j < m(i)} satisfy

Zi,j+1(n) − Zi,j(n) ≥ 0,

lim
n→∞

n∑
m=1

Zi,j+1(m) − Zi,j(m)
n

≤ ∆A(i,j). (3)

3) If (A(i, j), A(i, j + 1)) = (A(l,m), A(l,m + 1)), then
Zi,j ∩ Zl,m = φ.

In the above definition, condition 2 guarantees that the
streams of relayed packets satisfy the delay constraint at every
intermediate relay. Condition 3 is required to ensure that, if any
pair of nodes is common to multiple routes, the subsequences
picked from the transmission schedules are mutually exclusive.

Note that the set of subsequences Z could be a strict subset
of the transmission schedule τ . The transmission times in τ/Z
would represent dummy packet transmissions. In Section III,
we also consider relaying strategies in which data packets can
be dropped, so that higher relay rates are achievable. In that
case, some of the transmission times in τ/Z would correspond
to the dropped packets.

The rates of packets relayed from sources to destinations can
be determined using Z . Specifically, the relay rates in session
S are denoted by a vector L(S,Z) = (λr(1), · · · , λr(|S|)),
where

λr(i) = lim
n→∞

n

Zi,1(n)
, ∀i.

Note that since all the subsequences on a route have same
length, it is sufficient to use Zi,1 to compute the relay rate.

C. Performance Metric

The performance metric, throughput, is defined as the
expected sum-rate of packets relayed from the sources to the
destinations per session.

Definition 3: R is defined to be an achievable throughput
with anonymity α if ∃q(τ |S) with anonymity α such that

1) For every session S = {P (1), · · · , P (|S|)}, every real-
ization of τ is a valid network schedule.

2) For every realization of (S, τ), there exists a valid
relaying strategy Z(S, τ) such that

E (|L(S,Z)|1) ≥ R, (4)

where the expectation is over the joint pdf of τ and S.

The goal is to characterize the maximum achievable R(α).
In this work, we design transmission and relaying strategies
and characterize a lower bound on the maximum achievable
R(α).

The maximum achievable R(0) is easily computed given
the medium access constraints. When α = 0, the maximum
sum-rate in a session S = (P (1), · · · , P (|S|)) can be ob-
tained using the max-flow in S that satisfies medium access
constraints. Let L0

r(S) = (λ0
r(1), · · · , λ0

r(|S|)) represent the
vector of achievable relay rates on the paths in session S when
α = 0, and let Λ0

r(S) be the maximum sum-rate. Then,

Λ0
r(S) = max(λ0

r(1) + · · · + λ0
r(|S|)), (5)∑

i:B∈P (i)

λ0
r(i) ≤ CB , ∀B ∈ V. (6)

The maximum network throughput when anonymity α = 0
is then given by the expected sum-rate (expectation over p(S))

R(α = 0) = E(Λ0
r(S)).

In the following sections, we design schedules τ and relay-
ing strategies Z for a general α, and characterize an achievable
R(α).

III. COVERT RELAYING

Our approach to designing schedules and relay strategies
derives its motivation from Mix networks, but differs in several
key aspects due to properties of multihop wireless networks.
First, owing to encrypted packet headers, if incoming and
outgoing schedules at a particular node are uncorrelated, an
eavesdropper would not be able to detect the flow of traffic
through that node. Therefore, traffic from multiple sources
are not always required to hide the relaying operation of a
relay. Second, it may not be necessary to hide every link of
communication in the network. It is possible to reveal certain
portions of the routes to the eavesdropper without violating
the anonymity requirement.

Using these observations, we propose the following strategy.
In every session S = (P (1), · · · , P (|S|)), we divide the set
of relays into two categories, covert relays and visible relays,
which are defined as follows.

Covert Relays: A covert relay B uses an outgoing transmis-
sion schedule that is statistically independent of the schedules
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of all nodes occurring previously in paths that contain B. This
would make it impossible for an eavesdropper to correlate the
schedule of packets received by B and that received by any
subsequent node in the paths that contain B, effectively hiding
the relay operation.

Visible Relays: A visible relay B generates its transmission
schedule depending on the arrival times of packets at B.
Specifically, every received packet is immediately relayed by
B (processing delays are assumed to be negligible). It is
evident that a relay operating under this highly correlated
schedule is easily detected by an eavesdropper.

Due to the independent transmission schedule, a covert
relay would need to transmit dummy packets, and therefore,
achieve lower relay rates than a visible relay. Since the
loss in relay rates at every covert relay can reduce overall
network throughput, it is necessary, to choose the covert relays
optimally to maximize network performance. The choice of
covert relays depends on the routes of a session and the desired
level of anonymity. Further, we allow randomization of the
relay selection to increase the eavesdroppers’ confusion.

In the remainder of this section, we describe the relaying
strategy for a covert relay and characterize the set of achievable
relay rates under the delay and medium access constraints.
In Section IV, we present the random selection strategy and
using the characterization of covert relay rates, derive the
relationship between network throughput and anonymity.

A. Covert Relay Rate Regions

CB

B

D1S1

Sm
Dm

CD1

CDm

Fig. 3. m × 1 Relay

Consider an m × 1 relay, as shown in Figure 3, where the
relay B forwards packets from sources S1, · · · , Sm to distinct
destinations D1, · · · , Dm. We shall use the notation τSi,B to
denote the schedule of packets transmitted from Si to B. Since
all transmissions to B use the same spreading sequence, τB =⋃

τSi,B . Let λ(Si, B) denote the rate of process τSi,B . Due
to the medium access constraints,

λ(B) =
∑

λ(Si, B) ≤ CB .

Relay B generates an outgoing schedule τB,Di
(⊂ τDi

)
apriori for every pair Si, Di. We assume that Di receives
packets only from node B, and hence the maximum rate
allocated to τB,Di

is CDi
. If multiple nodes are transmitting

packets to Di, CDi
can be replaced by the corresponding rate

allocated to node B.
The goal is to pick subsequences {ZSi,B}, {ZB,Di

} from
{τSi,B},{τB,Di

} respectively, such that the relaying strategy

is valid. Note that, since we are analyzing a single covert
relay, Z is indexed using the node identities. In the general
multihop network model, each ZSi,B would be represented as
Zi,j depending on which paths in the session contain B.

We are interested in characterizing the set of achievable
relay rates {λr(Si, Di)} where

λr(Si, Di)
�
= lim

n→∞
n

ZSi,B(n)

is the rate of relayed packets from Si to Di through B.
If B were a visible relay, any set of rates satisfying the

medium access constraints would be achievable. Specifically,
any set of rates that satisfy

λr(Si, Di) ≤ CDi
,

m∑
i=1

λr(Si, Di) ≤ CB . (7)

are achievable. To characterize the achievable rate region
for a covert relay, we use a technique from [16], called the
Bounded-Greedy-Match (BGM) algorithm (see Table I). The
BGM algorithm, proposed in the context of chaff insertion in
stepping stone attacks, is used to match incoming and outgoing
transmission times within a strict delay constraint ∆, such that
the number of packets dropped are minimized. Under a strict
delay constraint, every received packet needs to be forwarded
within ∆ time units or otherwise dropped. In [17], we used the
BGM algorithm and characterized achievable rates for a pair
of independent Poisson schedules, when traffic is subjected to
a strict delay constraint.

Let TSi,B(n), TB,Di
(n) represent the arrival time of the nth packet

from Si and departure time of nth packet from B.
1. Initialize i = 1, j = 1, k = 1.

2. Let t = min{TSi,B(i), TB,Di
(j)}.

3. If t = TB,Di
(j), then

i. B transmits a dummy packet at time TB,Di
(j).

ii. j = j + 1.
else if TB,Di

(j) − TSi,B(i) ≤ ∆
i. B transmits the ith packet from Si at TB,Di

(j).
ii.ZSi,B(k) = TSi,B(i), ZB,Di

(k) = TB,Di
(j).

iii. i = i + 1, j = j + 1, k = k + 1.
else

i. Drop the ith packet that arrived from Si.
ii.i = i + 1.

4. Repeat Step 2,3 until the end of the streams.

TABLE I
BOUNDED GREEDY MATCH ALGORITHM

For an average delay constraint, consider the following.
After generating the independent outgoing schedule, node B
picks epochs from τSi,B and τB,Di

according to the BGM
algorithm, ignoring the delay constraint. In other words, the
strict delay constraint is treated as infinite. In order to ensure
that every data packet is relayed, node B is required to transmit
a strictly positive rate of dummy transmissions. Although,
all sources utilize identical spreading sequences, the relay
can decode packet headers and distinguish the individual
processes. The overall relaying strategy is therefore a parallel
application of the BGM algorithm on each pair of incoming
and outgoing processes. The following theorem provides an
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analytical characterization of the achievable rate region, when
the schedules are independent Poisson processes.

Theorem 1: If {τSi,B}m
i=1 and {τB,Di

}m
i=1 are independent

Poisson processes, any set of rates {λr(Si, Di)}m
i=1 that satisfy

λr(Si, Di) ≤ CDi
− 1

∆B
,∀i,

m∑
i=1

λr(Si, Di) ≤ CB (8)

are achievable by covert relay B.

Proof: Refer to Appendix
From the theorem, it is clear that the rates achievable by a

covert relay are less than that of a visible relay. Specifically,
the relay B transmits additional dummy packets at rate of 1

∆B

for every source-destination pair to maintain independence in
schedules.

B. Achievable Rate Regions with Packet Drops

If the relay B is allowed to drop data packets, then the
achievable relay rate region can be further improved. The
strategy is as follows. Let the sources and the relay transmit
packets at the maximum rates possible. The relay B uses
the BGM algorithm on each pair τSi,B , τB,Di

with a finite
strict delay ∆∗

i . The ∆∗
i is chosen such that for the pair of

transmission rates λ(Si, B), λ(B,Di), the average per packet
delay is bounded by ∆B . Since ∆∗

i < ∞, we know from [17]
that the BGM algorithm results in a non-zero rate of dropped
packets for independent Poisson processes, and the achievable
relay rate would be strictly less than the source transmission
rate λ(Si, B).

Theorem 2: The set of relay rates {λ(Si, B)} are achiev-
able for an m×1 covert relay with packet drops if ∃{λ(Si, B)}
s.t.

λr(Si, B) ≤ λ(Si, B)
CDi

(
e−∆∗

i (λ(Si,B)−CDi
) − 1

)
CDi

e−∆∗
i (λ(Si,B)−CDi

) − λ(Si, B)
,

�
= λ(Si, B)(1 − εB(Si, Di))∑

i

λ(Si, B) ≤ CB ,

where ∆∗
i is the solution to

1 + e∆∗
i (CDi

−λ(Si,B)) [∆∗
i (CDi

− λ(Si, B)) − 1]
(λ(Si, B) − CDi

)
[
1 − e∆∗

i (CDi
−λ(Si,B))

] = ∆B .

Proof: Refer to Appendix

εB(Si, Di) in Theorem 2 denotes the fraction of packets
dropped by B for the packet stream from source Si. When
∆B ≥ 1

CDi
−CB

,∀i, the packet drop rate vanishes and the
covert and visible relay rate regions are identical.

Figure 4 provides a comparison of the different rate regions.
The figure clearly demonstrates that allowing packet losses
increases the set of achievable rates at a covert relay. At
the (linear) portion of the regions, where the boundaries
coincide, the transmission rates λ(S1, B), λ(S2, B) satisfy the
conditions CDi

−λ(Si, B) ≥ 1
∆B

, i = 1, 2. In that case, covert
relaying does not reduce the relay rates (albeit requires dummy
transmissions by B).

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

λ(S
1
,D

1
)

λ(
S

2,D
2)

Visible Relay
Covert Relay
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Fig. 4. 2 × 1 rate region: CB = 5, CD1 = 4, CD2 = 3, ∆ = 2

An important feature in the algorithms presented is that
the relays do not require prior knowledge about transmission
schedules of the source nodes. The decision to transmit any
packet is based on events occurring between its arrival time
and the subsequent departure time. This makes it particularly
attractive for a decentralized implementation of the scheduling,
where nodes are unaware of transmission schedules of other
nodes in the paths.

IV. COVERT RELAY SELECTION

Using the characterized rate regions in Sections III-A and
III-B, we now proceed to design the strategy to select relays
in each session to be covert. In any session S, if a subset of
relays B are chosen to be covert, then the schedules τ and
the relaying strategy Z can be obtained from the algorithms
described previously.

We model the set of covert relays B as a random variable
with a conditional probability mass function {q(B|S) : B ∈
2V ,S ∈ S}. The eavesdropper is assumed to have knowledge
of the distribution q(B|S), however, he is unaware of the
realization of the randomness. The goal is to optimize the
conditional p.m.f {q(B|S)} so that network throughput is
maximized for a given level of anonymity α. In order to per-
form this optimization, we need to characterize the achievable
network throughput and the eavesdropper’s “observed session”
for any given pair S,S.

A. Eavesdropper’s Observed Session

When a relay is visible, we assume that the eavesdropper
perfectly correlates the transmission times of packets to the
relay and those of the subsequent node in a route containing
the relay. As a result, the eavesdropper would perfectly detect
certain portions of the routes in the session. The perfectly
detected portion is denoted by a set of paths Ŝ ∈ 2P(G),
which can be expressed as a deterministic function of the
actual session S and the set of covert relays B.

Define function t : 2P(G) × V → 2P(G) such that for a set
of paths P, t(P, B) contains the observed paths when only
node B is covert. In a receiver directed signaling network
with encrypted headers, it is not possible to detect the source
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node in any route. Therefore, t(P, φ) is obtained by removing
source nodes from every path in P.

When B �= φ, a path P ∈ P(G) belongs to t(P, B) if and
only if it satisfies one of the following conditions:
1. ∃P ′ = (A1, · · · , Ak, B,Ak+1, · · · , An) ∈ P, such that
P = (A1, · · · , Ak, B) or P = (Ak+1, · · · , An).
2. P ∈ P and B /∈ P .

Condition 1 states that, when a path in P contains a covert
relay, the eavesdropper would observe two different paths, one
terminating at B and the other originating from the node
following B. Condition 2 states that a path that does not
contain a covert relay is fully observed.

When a subset B = (B1, · · · , Bm) ⊂ V of relays are covert,
then Ŝ is obtained by repeated application of t:

Ŝ = t(· · · (t(t(S, φ), B1) · · · ), Bm)
�
= T(S,B). (9)

Ŝ denotes the portion of the session perfectly detected by
the eavesdropper. In Section V, it will be shown that Ŝ is a
sufficient statistic for the eavesdropper in detecting S.

B. Throughput Function

The relaying strategies in Section III were designed to
maximize achievable rates at a single covert relay. Extending
those results to multihop routes, we characterize the loss in
sum-rate when a subset of relays B are covert in session S.

The loss in sum-rate depends on the delay requirement at
each covert relay in B. Let Lr(S,B) = (λB

r (1), · · · , λB
r (|S|)

represent the achievable relay rates from sources to destina-
tions for the session S = (P (1), · · · , P (|S|)), when nodes

in B are covert, and let Λr(S,B)
�
=

∑|S|
i=1 λB

r (i) denote the
achievable sum-rate.

Consider the relaying strategies without packet loss (Section
III-A). We know that, at a covert relay B, the delay constraint
of ∆B incurs a reduction in relay rate of 1

∆B
. Therefore,

λB
r (i) = λ0

r(i) −
∑

B∈B∩P (i)

1
∆B

.

When packet drops are allowed, then using the relaying
strategy described in Section III-B, if A(i, j) represents the
jth node in path P (i),

λB
r (i)

λ0
r(i)

=
∏

j:A(i,j)∈B∩P (i)

(
1 − εA(i,j)(A(i, j − 1), A(i, j + 1))

)
.

where εB(A,C) represents the fraction of data packets trans-
mitted by node A to C, that are dropped by covert relay B.
Using the techniques in Section III, εB(A,C) can be character-
ized as a function of the transmission rates of nodes A,B. Note
that Theorem 2 provides an analytical characterization of rates
at the first covert relay following a source node. When a path
contains multiple covert relays, the schedules of data packets
after the first covert relay are no longer Poisson distributed,
and hence the results of the Theorem do not directly apply.
Analytical characterization of achievable rates using multiple
covert relays is, in general, cumbersome, but a numerical
evaluation can be easily performed.

V. PERFORMANCE CHARACTERIZATION

A. Throughput-Anonymity Tradeoff

Using the eavesdropper estimate and the throughput char-
acterization, we now proceed to optimize {q(B|S)}. For a
desired α, the optimal distribution q(B|S) can be obtained
using a brute force search over a large dimensional probability
simplex. The procedure would be computationally intensive,
and impractical for large networks. The following result,
however, proves the duality of this optimization to information
theoretic rate-distortion function, which can then be used to
obtain the optimal strategy efficiently and characterize the
maximum throughput R(α) analytically.

Theorem 3: Let d : 2P × 2P → R s.t

d(S, Ŝ) =
{

minB(S,Ŝ) Λ0
r(S) − Λr(S,B) B(S, Ŝ) �= φ

∞ o.w.
(10)

where B(S, Ŝ) = {B : Ŝ = T(S,B)}. Then, a throughput R
is achievable with α−anonymity if

R(0) − R(α) ≥ D (H(S)(1 − α)) ,

where D(r) is the Distortion-Rate function defined as

D(r) = min
q(Ŝ|S):I(S;Ŝ)≤r

E(d(S, Ŝ)). (11)

Proof: Refer to Appendix.

The above theorem characterizes R(α) using the single
letter representation of a rate-distortion function. The loss
function d(S, Ŝ) in (10) represents the throughput reduction
due to covert relaying. Although the loss function parameters
do not explicitly include the set of covert relays B, it is
shown in the proof of Theorem 3 that given S, Ŝ, the set
of covert relays B is unique (the minimization in (10) is
trivial). Therefore, the distribution q(B|S) to chose covert
relays is equivalent to the distortion minimizing distribution in
(11). As a result, the Blahut-Arimoto algorithm [18] provides
an efficient iterative technique to obtain q(B|S) and the
achievable network throughput R(α).

In order to achieve the throughput of Theorem 3, it is neces-
sary for every relay to be aware of the entire session S and to
use an identical randomizer. From a practical perspective, this
could be achieved, if nodes exchange local messages with their
neighbours such that they reach a distributed consensus about
the session. Since total number of sessions is finite, perfect
convergence can be reached in finite time, assuming perfect
transmissions. However, there may be network applications
where each node is only aware of its adjacent nodes in the
paths. This is especially important to prevent information
retrieval by compromising nodes in the network. Under such
circumstances, we propose a decentralized alternative, where
nodes are not required to exchange messages.

B. Decentralized Implementation

Define function l : V × S 
→ 2V×V , where l(A,S) denotes
the information available to node A in session S. Then,

l(B,S) = {(A(i, j − 1), A(i, j + 1)) : A(i, j) = B}.
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In other words, l(B,S) is the set of node pairs (A(i, j −
1), A(i, j+1)) such that node B relays packets from A(i, j−1)
to A(i, j + 1) on route P (i) of S.

Since there are no message exchanges across nodes with
regard to the session information, we require that each node
makes a decision to be covert based on the local information
function only. Further, we do not assume any common ran-
domness available to the nodes, and hence, the decisions of
multiple nodes are conditionally independent (conditioned on
the session). Accordingly, we define function

qc : V × 2V×V 
→ [0, 1],

where qc(B, l(A,S)) is the probability that node B is covert in
session S. Owing to conditional independence, the probability
that nodes in a subset B are covert in session S is given by:

q(B|S) =
∏

B∈B

qc(B, l(B,S))
∏

B /∈B

(1 − qc(B, l(B,S))). (12)

Let Q∗ represent the set of all conditional probability mass
functions q(B|S), such that there exists covert probability
function qc(·, ·) which satisfies (12) for every (B,S). From
Theorem 3, we know that the pairs of variables (S,B) and
(S, Ŝ) have a one-one correspondence. Therefore, Q∗ corre-
sponds to an equivalent set Q∗∗ of conditional probabilities
q(Ŝ|S).

Theorem 4: A throughput R(α) that satisfies

R(0) − R(α) ≥ D′ (H(S)(1 − α)) ,

is achievable with a decentralized strategy where

D′(r) = min
q(Ŝ|S)∈Q∗∗:I(S;Ŝ)≤r

E(d(S, Ŝ)). (13)

Proof: Since the minimizing distribution q(Ŝ|S) is an
element of Q∗∗, it corresponds to a conditional distribution
q(B|S) that is expressible in the form (12), which in
turn provides the decentralized strategy through the covert
probability function qc(·|·). The achievability of R(α) then
follows from the proof of Theorem 3. �

Note that the minimization in (13) is over a subset of the
probability simplex, and could therefore result in a lower
throughput than that of Theorem 3. Even if l(B,S) uniquely
identifies the session for all B,S, the throughput may not reach
the optimal value of Theorem 1 owing to lack of common
randomness. This is illustrated in the following example.

C. Example

Consider the switching network example shown in Figure
5. During any network session, each source Si picks a distinct
destination Dj , and for each pairing {Si, Dj} there is a
fixed set of paths. The set of possible sessions, S, contains
24 elements (distinct {Si, Dj} pairings) which are assumed
equiprobable. For this setup, Figure 6 plots the throughput-
anonymity region for the different strategies.

As can be seen, when all relays are visible, the maximum
sum-rate is achieved with a strictly positive anonymity level.

S1

S2

S3

S4

D1

D2

D3

D4

M1
M2

M3
M4

Fig. 5. Switching Network: {Si} transmit to {Di} through relays {Mi}.
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Fig. 6. Throughput-Anonymity Region for 4 × 4 switching network with
CMi

= CDi
= 1 ∀i, ∆M1 = ∆M3 = 4, ∆M2 = ∆M4 = 2.

This is because, receiver directed signaling induces some
uncertainty about the source nodes. Note that the throughput-
anonymity curves resulting from the centralized strategy are
convex; this is due to the average nature of the metrics, namely
equivocation and expected sum-rate. The figure also illustrates
the gain in throughput when relaying strategies are allowed to
drop data packets.

An interesting observation is that the difference between
centralized and decentralized strategies is significant only at
higher anonymity levels. This is because, a higher level of
anonymity would require multiple relays in every route to be
covert, and the performance is therefore affected by the lack of
common randomness. The non-convexity of the decentralized
throughput can be attributed to the disparate knowledge of the
session at different nodes; without common knowledge of the
session, it is not possible to time-share multiple strategies.

VI. CONCLUSIONS

One of our key contributions in this work is the theoretical
model for anonymity against traffic analysis. To the best of
our knowledge, this is the first analytical metric designed to
measure the secrecy of routes in an eavesdropped wireless
network. Based on the metric, we designed scheduling and
relaying strategies to maximize network performance with a
guaranteed level of anonymity. Although we consider specific
constraints on delay and medium access, the ideas of covert
relaying and the randomized selection are quite general, and
apply to arbitrary multihop wireless networks.
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APPENDIX

A. Proof of Theorems 1 and 2

Consider the application of the BGM algorithm with finite
delay constraint ∆∗

i . For this analysis, we adopt a technique
used in [19]. Consider the two point processes τSi,B , τB,Di

.
If a packet in τSi,B , say at time t, is dropped by the BGM
algorithm, we insert a virtual packet at time t + ∆∗

i in τB,Di
.

Similarly, if a packet at time t in τB,Di
is designated as dummy

packet, we insert a virtual packet at time t in τSi,B . From
[19], we know that the difference process W = {TB,D1(i) −
TS1,B(i)} is a random walk with two absorbing barriers at
0 and ∆. Therefore, the average delay incurred by the BGM
algorithm is equal to the expected step size of the process W .
Following the exposition in ( [20], Page 67), the cumulative
distribution of step size x in (0,∆) is given by

H(x) =
1 − λ(Si,B)

CDi
exp(∆∗

i + x)(λ(Si, B) − CDi
)

1 − λ(Si,B)2

C2
Di

exp(∆∗
i (λ(Si, B) − CDi

))
. (14)

Using the expression above, the average delay ∆ for the BGM
algorithm with strict delay ∆∗

i can be evaluated as:

E(x) =
1 + exp(∆∗

i (λ(Si, B) − CDi
)) [∆(λ(Si, B) − CDi

) − 1]
(CDi

− λ(Si, B)) [1 − exp(∆∗
i (λ(Si, B) − CDi

))]
.

Therefore, for any pair of transmission rates λ(Si, B), CDi
,

the BGM algorithm with strict delay ∆∗
i that solves E(x) =

∆B , would incur an average delay of ∆B . A finite strict delay
constraint, however, results in non-zero packet loss [17].

In order to design relaying strategies that incur zero packet
loss, we set ∆∗

i = ∞ and reduce λ(Si, B) such that the
average delay constraint is satisfied. Specifically, as ∆∗

i → ∞,

E(x) =
1 + exp(∆∗

i (λ(Si, B) − CDi
))∆∗

i (λ(Si, B) − CDi
)

(CDi
− λ(Si, B)) [1 − exp(∆∗

i (λ(Si, B) − CDi
))]

=
1

CDi
− λ(Si, B)

.

If λ(Si, B) ≤ CDi
− 1

∆B
, then the BGM algorithm with ∆∗

i =
∞ satisfies the average constraint with no packet drops. �

B. Proof of Theorem 3

Consider the distribution q∗(Ŝ|S) that minimizes (11). From
the definition of d(S, Ŝ), it is easy to see that if �B s.t. Ŝ �=
T(S,B), then q∗(Ŝ|S) = 0. Given S, Ŝ, we now show that
the set of covert relays B is uniquely determined.

Suppose ∃B1 �= B2 such that Ŝ(S,B1) = Ŝ(S,B2). Then
without loss of generality, we can write B1 = (B,B′

1),B2 =
(B,B′

2) where B′
1 = (B11, · · · , B1m), B′

2 = (B21, · · · , B2n)
and B′

1

⋂
B′

2 = φ. We know that

Ŝ(S,B1) = T(· · · t(T(S,B), B11), · · · ), B1m)
= T(· · · t(T(S,B), B21), · · · ), B2n) = Ŝ(S,B2).

Suppose none of the paths in T(S,B) contain B′
1

⋃
B′

2,
then it does not matter if those relays are covert or not, in
which case the subset of covert relays would be B. If ∃P ∈
T(S,B) that contains B11, then Ŝ(S,B1) would contain a
path that ends in B11, whereas Ŝ(S,B2) cannot contain such
a path. Therefore, we have a contradiction.

The above argument shows that we can equivalently write
q∗(Ŝ|S) = q∗(B|S). Therefore, q∗ specifies a valid selection
strategy. Since H(S) is fixed apriori, I(S; Ŝ) ≤ (1−α)H(S)
ensures that an anonymity α is guaranteed. Further, for every
B, the function d(S, Ŝ) evaluates the difference in achievable
sum-rates Λ0

r(S) and Λr(S,B). Therefore, taking expectation
over q∗(B|S), the throughput is shown to be achievable. �
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