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Abstract—Packet classification is the core mechanism that en-
ables many networking devices. Although using Ternary Content
Addressable Memories (TCAMs) to perform high speed packet
classification has become the widely adopted solution, TCAMs
are very expensive, have limited capacity, consume large amounts
of power, and generate tremendous amounts of heat because of
their extremely dense and parallel circuitry. In this paper, we
propose the first packet classification scheme that uses Binary
Content Addressable Memories (BCAMs). BCAMs are similar to
TCAMs except that in BCAMs, every bit has only two possible
states: 0 or 1; in contrast, in TCAMs, every bit has three possible
states: 0, 1, or * (don’t care). Because of the high complexity in
implementing the extra “don’t care” state, TCAMs have much
higher circuit density than BCAMs. As the power consumption,
heat generation, and price grow non-linearly with circuit density,
BCAMs consume much less power, generate much less heat,
and cost much less money than TCAMs. Our BCAM based
packet classification scheme is built on two key ideas. First, we
break a multi-dimensional lookup into a series of one-dimensional
lookups. Second, for each one-dimensional lookup, we convert the
ternary matching problem into a binary string exact matching
problem. To speed up the lookup process, we propose a number
of optimization techniques including skip lists, free expansion,
minimizing maximum lookup time, minimizing average lookup
time, and lookup short circuiting. We evaluated our BCAM
scheme on 17 real-life packet classifiers. On these classifiers, our
BCAM scheme requires roughly 5 times fewer CAM bits than
the traditional TCAM based scheme. The penalty is a throughput
that is roughly 4 times less.

I. I NTRODUCTION

A. TCAM-Based Packet Classification

Packet classification is the core mechanism that enables
many networking devices, such as routers and firewalls, to
perform services such as packet filtering and traffic account-
ing, network address translation (NAT), quality of service
(QoS), load balancing, virtual private networks (VPNs) and
monitoring, differentiated services (Diffserv), etc. Thebasic
classification problem is to compare each packet with a list of
predefined rules and find the first (i.e., highest priority) rule
that the packet matches. Table I shows an example packet
classifier of two rules. The format of these rules is based
upon the format used in Access Control Lists (ACLs) on Cisco
routers. Note that we use the termspacket classifiers, ACLs,
rule lists, and lookup tablesinterchangeably.

Packet classification is often the performance bottleneck

Rule Source IP Dest. IP Source Port Dest. Port ProtocolAction
r1 1.2.3.0/24 192.168.0.1 [1,65534] [1,65534] TCP accept
r2 * * * * * discard

TABLE I
AN EXAMPLE PACKET CLASSIFIER

for Internet routers as they need to classify every packet
on the wire. Achieving wire speed packet classification has
long been a networking goal. Ternary Content Addressable
Memory (TCAM) based packet classification has been the
widely adopted solution. Unlike traditional random access
memory chip receives an address and returns the content of
the memory at that address, a TCAM chip works in a reverse
manner: it receives content and returns the address of thefirst
entry where the content lies in the TCAM in constant time
(i.e., a few CPU cycles). Exploiting this hardware feature,
TCAM-based packet classifiers store a rule in each entry
as an array of 0’s, 1’s, or *’s (don’t-care values). A packet
header (i.e., a search key) matches an entry if and only if
their corresponding 0’s and 1’s match. Given a search key
to a TCAM, the hardware circuits compare the key with all
its occupied entries in parallel and return the index (or the
content, depending on the chip architecture and configuration)
of the first matching entry.

Unfortunately, TCAM’s high speed comes with several
costs. To understand the costs of using TCAM, we must first
understand TCAM chip architecture. A TCAM chip consists of
many TCAM core cells and other supporting circuits and hard-
ware. A TCAM core cell, the building block of a TCAM chip,
serves two basic functions: bit storage and bit comparison.
There are two types of TCAM core cells: a NOR-type TCAM
cell and a NAND-type TCAM cell. A NOR-type TCAM cell
consists of four comparison transistors and two SRAM cells
that have a total twelve transistors. A NAND-type TCAM
cell consists of four comparison transistors and two SRAM
cells that have a total twelve transistors. Furthermore, each
memory access searches all active TCAM memory implying
TCAM power consumption is proportional to the number of
bits searched.

These architectural constraints have several implications on
TCAM deployment. First, due to their large footprint and
large number of transistors, TCAM isvery expensive, costing
hundreds of dollars even in large quantities. TCAM chips often
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cost more than network processors. Second, TCAM haslimited
capacity. The largest available TCAM chip has a capacity of
72Mb, while 2Mb and 1Mb chips are most popular. As rules
stored in TCAM must be ternary, TCAM capacity limitations
are exacerbated by the well known range expansion problem.
That is, converting packet classification rules to ternary rules
typically results in a much larger number of TCAM rules.
In a packet classification rule, the three fields of source and
destination IP addresses and protocol type are specified as
prefixes where all the *s are at the end of the ternary string,
so the fields can be directly stored in a TCAM. However, the
remaining two fields of source and destination port numbers
are specified in ranges, which need to be converted to one
or more prefixes before being stored in a TCAM. This can
lead to a significant increase in the number of TCAM entries
needed to encode a rule. For example, 30 prefixes are needed to
represent the single range[1, 65534], so30×30 = 900 TCAM
entries are required to represent the single ruler1 in Table I.
Third, the large power consumption of TCAM chips constrains
their deployment when system designers must operate within
a “power budget”,e.g., TCAM components may only use 10%
of an entire board’s power budget. The explains that even
though 72Mb TCAM chips are available, the 1-2Mb chips
are most popular [1].

B. Proposed Approach: BCAM-based Packet Classification

In this paper, we B-CLASS-d, the first packet classifica-
tion scheme that uses Binary Content Addressable Memory
(BCAM). BCAM works similar to TCAM except that in
BCAM, every bit has only two possible states: 0 or 1; in
contrast, in TCAM, every bit has three possible states: 0,
1, or *. A BCAM core cell is simpler than a TCAM core
cell because it only has a binary state because there is no
need for the third “don’t care” state. Specifically, there are
two types of BCAM core cells: a NOR-type BCAM cell
and a NAND-type BCAM cell. A NOR-type BCAM cell
consists of four comparison transistors and an SRAM cell
that has six transistors. A NAND-type BCAM cell consists
of three comparison transistors and an SRAM cell that has six
transistors. This means TCAM circuitry is about two times
denser than BCAM circuitry. This implies a TCAM chip
consumes roughly twice as much power and roughly twice as
much board space as an equivalent BCAM chip. Considering
the number of transistors and the associated circuits, the
circuitry of a TCAM is about two times more dense than that
of a BCAM.

C. Defining CAM Space and Throughput

We will compare our B-CLASS-d scheme with the existing
standard TCAM scheme. Because the two schemes are very
different architecturally, we must carefully define space and
time for both schemes to provide a reasonable comparison.
We define the space used by a packet classifier in a CAM
chip as the number of classifier entries or rules multiplied by
the width of the CAM chip in bits. Recall that each TCAM
bit requires roughly twice as much circuitry as a BCAM bit.

The traditional TCAM scheme must accommodate the 104
bits in the five packet fields. Given the limited number of
possible TCAM entry widths, this means each entry typically
has 144 bits. On the other hand, in B-CLASS-d, each table
will typically hold only a single packet field. Thus, each entry
will be much narrower. In most cases, each entry is 72 bits. We
define the throughput to be the number of CAM bus cycles
required to classify a packet. In the traditional scheme, we
only require one TCAM lookup. However, the TCAM bus is
typically only 72 bits wide. Thus, classifying a packet typically
requires at least 2 TCAM bus cycles. In B-CLASS-d, since
each BCAM entry is at most 72 bits wide, we will require
only one BCAM bus cycle per lookup.

We implemented B-CLASS-d, our BCAM based scheme,
and conducted experiments on 17 real-life packet classifiers.
For our set of classifiers, classifier preprocessing time wasat
most a second for almost all the classifiers. First, we compare
the CAM space required by B-CLASS-d and the traditional
TCAM scheme. Our results indicate that B-CLASS-d with
light optimization requires roughly 5 times less space thanthe
traditional TCAM scheme. On top of that, B-CLASS-d uses
cheaper BCAM bits rather than TCAM bits. It is true that
B-CLASS-d has less throughput than the traditional TCAM
scheme. In particular, the average of the maximum number of
BCAM lookups required by B-CLASS-d on the 17 classifiers
is 8.4. Given that the traditional scheme requires 2 TCAM bus
cycles, we see that B-CLASS-d has a maximum throughput
that is roughly 4 times slower than the traditional TCAM
scheme.

The rest of the paper proceeds as follows. We start by
reviewing previous work in Section II. In Section III, we
present our basic scheme as well as optimization techniques
for one-dimensional packet classification using BCAM. In
Section IV, we present our BCAM classification scheme for
multi-dimensional packet classifiers. Experimental results are
presented in Section V. We draw conclusions in Section VI.

II. RELATED WORK

To the best of our knowledge, there is no prior work
on BCAM based packet classification. There is some prior
work that explores ways to address the hardware limitations
of TCAMs and cope with the well-known range expansion
problem. Such work falls into three broad categories: (1)
classifier minimization(e.g., [3], [6], [8], [9], [15]–[19], [21],
[22], [25], [27], [29]), which converts a given classifier toa
semantically equivalent one that requires fewer TCAM entries;
(2) range encoding(e.g., [5], [12], [20], [23], [24], [31]),
which encodes the range fields (i.e., source port and destination
port) in a manner that reduces range expansion; and (3)circuit
modification (e.g., [28]), which modifies TCAM circuits to
accommodate range comparisons. We make use of a new
TCAM SPliT approach [26] which we discuss in more detail
in Section IV-A.
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III. O NE-DIMENSIONAL PACKET CLASSIFICATION

In this section, we present B-CLASS, a scheme for perform-
ing one-dimensional packet classification using BCAM. This
scheme B-CLASS will be used as the basic building block
for performing multi-dimensional packet classification using
BCAM, that we describe in the next section.

A. The Basic Scheme

We first consider the following prefix membership verifi-
cation problem:given aw-bit prefix P and a w-bit binary
numberB, how can we storeP in a BCAM such that we
can use the BCAM to determine whetherB matchesP (i.e.,
B ∈ P )? Our solution leverages the prefix membership
verification scheme in [13]. For prefixP = {0, 1}k{∗}w−k

with k leading 0’s and 1’s followed byw − k ∗’s, the length
of P , denoted asL(P ), is defined to bek. The key observation
is that if binary stringB matches prefixP , then the firstL(P )
bits of P and B are the same. For example, ifB ∈ 01 ∗ ∗
(i.e., x ∈ [0100, 0111]), then the first two bits ofB must be
01. Given aw-bit binary numberB = b1b2 · · · bw, the prefix
family ofB, denoted asPF(B), is defined as the set ofw+1
prefixes{b1b2 · · · bw, b1b2 · · · bw−1∗, · · ·, b1 ∗ · · · ∗, ∗ ∗ ...∗},
where thei-th prefix is b1b2 · · · bw−i+1 ∗ · · · ∗. For example,
PF(0101) = {0101, 010∗, 01 ∗ ∗, 0 ∗ ∗∗, ∗ ∗ ∗∗}. It follows
naturally that for any binary numberB and prefixP , B ∈ P
if and only if P ∈ PF(B).

To store a prefixP in BCAM, we need to convertP to a
binary number. This process is calledprefix numericalization.
A prefix numericalization functionN takes a prefix as the
input and outputs a unique binary number. The important
property thatN needs to satisfy is that for any two prefixes
P1 and P2, N(P1) = N(P2) if and only if P1 = P2. We
use the following prefix numericalization scheme: Given aw-
bit prefix b1b2 · · · bk ∗ · · · ∗, we first replace every * by 0;
second, we append⌈log (w + 1)⌉ bits whose value is equal
to k. For example,N(101∗) = 1010011. We useN(PF(B))
to denote the resulting set of binary numbers after numerical-
izing every prefix inPF(B). For example,N(PF(0101)) =
{0101100, 0100011, 0100010, 0000001, 0000000}. Based on
the above concepts, it follows that for any binary numberB
and prefixP , B ∈ P if and only if N(P ) ∈ N(PF(B)).

Our 1-dimensional scheme B-CLASS is composed of two
algorithms. The first algorithm describes how to preprocess
a classifier so that it can be stored in BCAM. The second
algorithm classifies a packet. We first describe the classifier
preprocessing. Given a 1-dimensional classifierC, we first
convert it to an equivalentminimum prefix classifierC ′ using
algorithms in [9], [29]. By minimum, we mean that no equiv-
alent prefix classifier has strictly fewer rules than a minimum
prefix classifier. Second, for each prefixP in C ′, we convertP
to a binary number using the prefix numericalization described
above. The preprocessing resultN(C ′) is stored in a BCAM.

We then classify packets using the following algorithm.
Given a packet represented as aw-bit binary numberB =
b1b2 · · · bw, we first generate its prefix familyPF(B). In
particular, we generate the prefixes inPF(B) in the deceasing

order of prefix length. We useOPF(B) to denote this ordered
prefix family; that is,OPF(B) = 〈b1b2 · · · bw, b1b2 · · · bw−1∗,
· · ·, b1 ∗ · · · ∗, ∗ ∗ ...∗〉. Second, we numericalize every prefix
in OPF(B) and getN(OPF(B)). The search process starts
by testing whether the first element ofN(OPF(B)) (i.e.,
N(b1b2 · · · bw)) is in the BCAM. If yes, then return the
corresponding decision; otherwise, continue to test whether
the second element ofN(OPF(B)) is in the BCAM. This
process proceeds until the BCAM returns a match. Figure 1
illustrates B-CLASS in action.

B

OPF(B)

1 1 1 1

d* * * *

1 1 0 0

1 1 0 1

1 1 * *

d

d

a

d* * * *

1 1 0 *

1 1 * *

d

a

d0 0 0 0  0 0 0 

1 1 0 0  0 1 1

1 1 0 0  0 1 0

d

a

c

c’

N(c’)

no match

no match

match

1 1 1 *
1 1 1 1

1 1 * *
1 * * *
* * * *

1 1 1 1  1 0 0
1 1 1 0  0 1 1
1 1 0 0  0 1 0
1 0 0 0  0 0 1
0 0 0 0  0 0 0

Prefix family generation

Prefix numericalization

N(OPF(B))

Classifier minimization

Prefix numericalization

Fig. 1. Example of B-CLASS on a packet

B. Skip Lists

The idea of skip lists is based on two key observations.
The first observation is that the prefix family generated from
a packet contains prefixes of every length from 0 tow, but the
minimum classifier converted from the input classifier often
does not. For example, the minimum classifierC ′ in Figure 1
only contains prefixes of lengths 3, 2, and 0. Therefore, when
searching for a packetB, we can ignore prefixes of B that
have no equal length prefix in the minimum classifier. For the
example in Figure 1, it is unnecessary to search prefixes1111
and 1 ∗ ∗∗ because the minimum classifierC ′ does not have
prefixes of length 4 or 1.

The second observation is that the rules in a minimum
prefix classifier can be sorted in decreasing order of their
prefix length without changing the semantics of the minimum
classifier. More formally, for any 1-dimensional minimum
prefix classifierC, letCs denote the prefix classifier formed by
sorting all the rules inC in decreasing order of prefix length.

C. Free Expansion

We first examine BCAM lookup times for B-CLASS with
skip lists. Given a sorted minimal prefix classifierC, we use
LIST(C) to denote the skip list built forC. Let k be the
number of elements inLIST(C). We usePS i (0 6 i 6

k − 1) to denote the set of prefixes inC whose length is
LIST(C)[i]. More precisely,PS i = {P |∃r ∈ C s.t. P(r) =
P, and L(P ) = LIST(C)[i]}. We define the set of all prefixes
in PS i to be layer i for classifierC. For any prefixP in PS i

(0 6 i 6 k − 1) and for any packetp that will matchP , the
number of BCAM lookups isi+ 1. Consider the example in
Figure 1. For packetp = 1110, the number of BCAM lookups
is 2.

The idea of free expansion is based on two observations.
First, a prefix inPS i (1 6 i 6 k−1) can be replaced by a set
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of 2LIST(C)[i−1]−LIST(C)[i] prefixes of lengthLIST(C)[i− 1].
Consider the example in Figure 1. We can expand the prefix
11∗∗ into 110∗ and111∗ (i.e., replace the rule11∗∗ → a by
two rules110∗ → a and111∗ → a). After expanding a prefix
P ∈ PS i (1 6 i 6 k − 1), for all packets that matchP , the
number of BCAM lookups is reduced fromi+ 1 to i.

The second observation is that after replacing a prefixP in
PS i (1 6 i 6 k − 1) by a setS of 2LIST(C)[i−1]−LIST(C)[i]

prefixes of lengthLIST(C)[i − 1], some rules with prefixes
in S may become upward redundant. Consider the example
in Figure 1. After expanding the prefix11 ∗ ∗ into 110∗ and
111∗, the rule110∗ → a becomes upward redundant because
of the first rule.

IV. M ULTI -DIMENSIONAL PACKET CLASSIFICATION

Our multi-dimensional BCAM packet classification scheme
B-CLASS-d is based on the TCAM SPliT approach [26]. In
this section, we first give a brief overview of TCAM SPliT.
Then, we introduce B-CLASS-d, and we conclude with two
optimizations for B-CLASS-d. Note, we now assume that
B-CLASS includes skip lists and free expansion.

A. TCAM SPliT

TCAM SPliT is a TCAM based packet classification scheme
that can achieve high TCAM space efficiency. The key obser-
vation is that the rules in a classifier often share a number
of the same field values [4], [11], [30], [32]. For example,
the prefix classifier in Figure 2(a) has only 4 distinct values
for field F1. Such information redundancy can lead to a multi-
plicative increase in the number of rules in a classifier as cross
producting of field values to form rules is often necessary. This
problem is exacerbated in TCAM packet classifiers by range
expansion in the source and destination port fields.

The basic idea of TCAM SPliT is to reduce the multi-
plicative effects of cross producting by decomposinga d-
dimensional packet classifierinto d one dimensional classi-
fiers. This requires replacinga singled-dimensional lookupby
a sequence ofd one-dimensional lookupsthat are pipelined to
improve classification throughput. Intuitively, TCAM SPliT is
essentially an optimized version of the software-based decision
tree packet classification technique. We create a decision
diagram of small one-dimensional classifiers where each of
these small classifiers will be implemented in TCAM. TCAM
SPliT is attractive because the total TCAM space required
to store these small and thin tables is significantly less than
the TCAM space required to store a singled-dimensional
table. For our purpose, the key feature of TCAM SPliT is
that it converts a multi-dimensional lookup into a series of
one-dimensional lookups, which allow us to the B-CLASS
scheme presented in the previous section.

We create the decision tree structure by first converting
the given classifier to an equivalent reduced firewall decision
diagram [10]. A Firewall Decision Diagram(FDD) with a
decision setDS and over fieldsF1, · · · , Fd is an acyclic and
directed graph that has the following five properties: (1) There
is exactly one node that has no incoming edges. This node is

called theroot. The nodes that have no outgoing edges are
called terminal nodes. (2) Each nodev has a label, denoted
F (v), such thatF (v) ∈ {F1, · · · , Fd} if v is a nonterminal
node andF (v) ∈ DS if v is a terminal node. (3) Each
edge e:u → v is labeled with a nonempty set of integers,
denotedI(e), where I(e) is a subset of the domain ofu’s
label (i.e., I(e) ⊆ D(F (u))). (4) A directed path from the
root to a terminal node is called adecision path. No two
nodes on a decision path have the same label. (5) The set
of all outgoing edges of a nodev, denotedE(v), satisfies the
following two conditions: (i)Consistency: I(e)∩I(e′) = ∅ for
any two distinct edgese and e′ in E(v). (ii) Completeness:⋃

e∈E(v) I(e) = D(F (v)). We define afull-length ordered
FDD as an FDD where in each decision path, all fields appear
exactly once and in the same order. An FDD construction
algorithm, which converts a packet classifier to an equivalent
full-length ordered FDD, is in [14]. For ease of presentation,
in the rest of this proposal, we use the term “FDD” to mean
“full-length ordered FDD” if not otherwise specified.

A reducedFDD f satisfies the following two conditions:
(1) no two nodes inf are isomorphic; (2) no two nodes have
more than one edge between them. Two nodesv andv′ in an
FDD areisomorphicif and only if v andv′ satisfy one of the
following two conditions: (1) bothv andv′ are terminal nodes
with identical labels; (2) bothv andv′ are nonterminal nodes
and there is a one-to-one correspondence between the outgoing
edges ofv and the outgoing edges ofv′ such that every pair of
corresponding edges have identical labels and they both point
to the same node. A brute force deep comparison algorithm
for FDD reduction was proposed in [10]; however, it is not
efficient. A more efficient FDD reduction algorithm that uses
a novel fingerprinting technique to speed up node comparison
was proposed in [2].

The second step of TCAM SPliT is to generate a one-
dimensional lookup table from each nonterminal node in the
FDD. Because of the completeness property of an FDD,
each nonterminal node can be viewed as a one-dimensional
classifier. For each such one-dimensional classifier, we apply
the optimal polynomial-time algorithm for minimizing one-
dimensional prefix classifiers in [29]. For example, Figure 2(b)
shows the four minimal one-dimensional tables generated from
the four nonterminal nodes in the FDD.

The third step of TCAM SPliT is to combine the one-
dimensional tables together. There are two options for merging
tables, which are designed for two classification architectures,
multi-lookup and pipelined-lookup, respectively. For themulti-
lookup architecture, we combine all the one-dimensional tables
together to form a single table. Letm be the total number
of one-dimensional tables. For each one-dimensional table,
we assign a table ID of⌈logm⌉ bits. For any table entry
whose decision is a nonterminal nodev, we replacev by v’s
corresponding table ID. Then, for every nonterminal nodev,
we prependv’s corresponding table ID to each entry in the
table generated fromv. After the multi-lookup TCAM table
is built and stored in a TCAM for ad-dimensional packet
classifier, the decision for ad-dimensional packet(p1, . . . , pd)
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Prefix Classifiers Reduced FDD and 1-D tables Combine and numericalize 1-D tables

Fig. 2. Overview of the BCAM sequential decomposition

can be found by performingd searches on the TCAM. The
first search keyk1 is formed by concatenating the root node’s
ID and p1. Let f(k1) denote the search result ofk1. The
second search key,k2 is formed by concatenatingf(k1) and
p2. This process continues until we computef(kd), which
is the decision for the packet. For example, given the two
dimensional multi-lookup prefix table in 2c and a packet
(0011, 0010), the first search key is000011, which returns
10. The second search key is100010, which returnsd (i.e.,
discard) as the decision for the packet.

For the pipelined-lookup architecture, we only combine the
tables of the same field into a single table. Letmi be the
number of nodes with labelFi in the reduced FDD. The ID
assigned to eachFi node consists of⌈logmi⌉ bits. Similarly,
for any table entry whose decision is a nonterminal nodev, we
replacev by v’s corresponding table ID; for every nonterminal
nodev, we prependv’s corresponding table ID to each entry
in the table generated fromv. The resultingd tables are stored
in d TCAM chips, and thed chips are chained together into
a pipeline such that the search result of thei-th chip is part
of the search key for the(i + 1)-th chip. The result of the
last chip is the decision for the packet. With such a chain,d
packets can be processed in parallel in the pipeline.

B. B-CLASS-d: d-Dimensional BCAM Packet Classification

B-CLASS-d is built upon B-CLASS and the above multi-
lookup TCAM SPliT scheme for TCAM based packet clas-
sification. We make two modifications to the single multi-
lookup table. First, we numericalize every entry in the table.
Second, for every entry in the table, we store the index of
the corresponding skip list of the one-dimensional table that
the entry belongs to. The skip lists of all one-dimensional
tables that are stored in the SRAM associated with the BCAM.
Figure 2(c) shows the multi-lookup BCAM table with skip list
indexes omitted. We next formally analyze packet lookup time.

Given a reduced FDD and the minimal one-dimensional
tables generated from nonterminal nodes, for any packetp,
we can calculate the lookup time (i.e., the number of BCAM

lookups) of p. Given a packetp = (p1, · · · , pd), there is
one and only one path in the FDD that the packet matches.
Let v1, · · · , vd be thed nonterminal nodes starting from the
root in the path, andt1, · · · , td be thed corresponding one-
dimensional tables. For1 6 i 6 d, let Pi be the prefix of the
first rule thatpi matches in tableti. We call the sequence of
prefix/table pairs〈P1/t1, · · · , Pd/td〉 the lookup pathof packet
p. The lookup path for packet(0011, 0010) for the example
in Figure 2(b) is〈00 ∗ ∗/00, · · · , ∗ ∗ ∗ ∗ /10〉.

Let ki be the lookup time for the packets that satisfyPi in
table ti. In other words,Pi is in layerki − 1 of table ti (i.e.,
L(Pi) = LIST(ti)[ki − 1]). Thus, the lookup time for packet
p is Σd

i=1ki. We callΣd
i=1ki the lookup time for the lookup

path 〈P1/t1, · · · , Pd/td〉. For example, the lookup time for
packet(0011, 0010) on the multi-lookup table in Figure 2(c)
is 5 because the first field0011 needs 2 BCAM lookups on
table 00 in 2(b) and the second field0010 needs 3 BCAM
lookups on table 10 in 2(b).

Next, we present techniques for minimizing the maximum
lookup time and the average lookup time respectively. The key
observation is that the BCAM may still have free space after
storing a multi-lookup table. Such free BCAM space can be
exploited to optimize lookup time.

C. Algorithm for Minimizing Maximum Packet Lookup Time

The key idea is that we can reduce the lookup time for
some packets by expanding some prefixes in the 1-dimensional
lookup tables. Our focus is to find the correct prefixes to
expand such that the maximum lookup time can be reduced.
For any lookup path〈P1/t1, · · · , Pd/td〉 whereti is in anFi

table for each1 6 i 6 d, we can calculate its lookup time
as discussed above. By traversing the reduced FDD where
each nonterminal node is associated with a one-dimensional
table, we can easily calculate all the lookup paths that have
the maximum lookup time. We call a lookup path that has the
maximum lookup time amaximum lookup path. Given a set
of maximum lookup paths, we next discuss how to bring the
maximum lookup time down using available BCAM space.
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For any prefixP in a minimum 1-dimensional lookup table
t, we can reduce the lookup time for the packets whose
first matching prefix isP by either expandingP directly or
expanding all prefixes in a layer aboveP in t. More formally,
assumingL(P ) = LIST(t)[i], expanding the single prefixP
into 2LIST(C)[i−1]−LIST(C)[i] prefixes of lengthLIST(C)[i−1]
and expanding all prefixes of lengthLIST(C)[j] (0 < j < i)
have the same lookup time reduction effect for the packets
that satisfyP . Consider the example of table 00 in Figure
2(b). If we want to reduce the lookup time of the packets
whose first matching prefix is∗ ∗ ∗∗, we can either expand
∗ ∗ ∗∗ to four prefixes00 ∗ ∗, 01 ∗ ∗, 10 ∗ ∗, and 11 ∗ ∗,
or we can expand00 ∗ ∗ to four prefixes0000, 0001, 0010,
and 0011. We define the follow set as thelookup reduction
set for prefix P in table t: {({P}, t), ({P ′ | L(P ′) =
LIST(C)[i − 1]}, t), · · · , ({P ′ | L(P ′) = LIST(C)[1]}, t)}.
For example, for prefix∗ ∗ ∗∗ in table 00 in Figure 2(b), the
lookup reduction set is{({∗ ∗ ∗∗}, 00), ({00 ∗ ∗}, 00)}, where
00 is the table ID.

Suppose that there are a total ofm maximum lookup
paths:〈P1,1/t1,1, P1,2/t1,2, · · · P1,d/t1,d〉, · · · , 〈Pm,1/tm,1,
Pm,2/tm,2, · · ·Pm,d/tm,d〉. For example, the FDD in Figure
2(b) has 3 lookup paths with maximum lookup time of
6: 〈∗ ∗ ∗ ∗ /00, ∗ ∗ ∗ ∗ /01〉, 〈∗ ∗ ∗ ∗ /00, ∗ ∗ ∗ ∗ /10〉,
〈∗∗∗∗/00, ∗∗∗∗/11〉. LetRi,j (1 6 i 6 m, 1 6 j 6 d) be the
lookup reduction set for prefixPi,j in its corresponding table
ti,j . We defineRi = ∪d

j=1Ri,j as the lookup reduction set for
lookup path 〈Pi,1/ti,1, Pi,2/ti,2, · · ·Pi,d/ti,d〉. For example,
the lookup reduction set for lookup path〈∗∗∗∗/00, ∗∗∗∗/01〉
is {({∗∗∗∗}, 00), ({00∗∗}, 00), ({∗∗∗∗}, 01), ({11∗∗}, 01)};
the lookup reduction set for lookup path〈∗∗∗∗/00, ∗∗∗∗/10〉
is {({∗∗∗∗}, 00), ({00∗∗}, 00), ({∗∗∗∗}, 10), ({01∗∗}, 10)};
the lookup reduction set for lookup path〈∗∗∗∗/00, ∗∗∗∗/11〉
is {({∗∗∗∗}, 00), ({00∗∗}, 00), ({∗∗∗∗}, 11), ({10∗∗}, 11)}.

To reduce the lookup time of all them maximum lookup
paths 〈P1,1/t1,1, P1,2/t1,2, · · ·P1,d/t1,d〉, · · · , 〈Pm,1/tm,1,
Pm,2/tm,2, · · ·Pm,d/tm,d〉, we must choose at least one
expansion option from everyRi for 1 6 i 6 m. The
easiest way to do this is to choose an expansion option in
∩m
i=1Ri if this intersection set is not empty. For the three

maximum lookup paths in Figure 2(b), by expanding either
(****,00) or(00**,00), we can reduce the lookup time of all
three paths. Otherwise, we need to choose more than one
expansion option. However, we do not want to expand more
than is necessary. We enumerate all other possible minimum
expansions in the following manner. For each setRi, we define
R′

i = Ri − ∩m
j=1Rj . We then consider all combinations of

m elements fromR′
i for 1 6 i 6 m. Note that the same

expansion option may show up in multipleR′
i sets in which

case we would use fewer thanm expansion options. For
example, to reduce the lookup time of all three maximum
lookup paths in Figure 2(b), we can expand the three prefixes:
(∗ ∗ ∗∗, 01), (∗ ∗ ∗∗, 10), and (∗ ∗ ∗∗, 11). Each expansion
reduces the lookup time for one lookup path.

Our algorithm for minimizing maximum lookup time works
as follows. We have an initialization phase where we determine

our initial BCAM budget. Then we enter our greedy iterative
phase where we first compute all the maximum lookup paths.
Second, we compute all the expansion options that can reduce
the lookup time of all maximum lookup paths. Third, we
choose the expansion option that requires the fewest extra
BCAM entries. When there is a tie, we choose the expansion
option that can reduce the lookup time of more paths. We then
update our BCAM budget and repeat our greedy process until
the BCAM budget is used up.

D. Algorithm for Minimizing Average Packet Lookup Time

Rather than minimize themaximumlookup time, we may
want to minimize average lookup time. This does require
a probability distribution for packets. For simplicity of de-
scription, we assume each packet is equally likely to occur,
though our greedy algorithm extends to general probability
distributions. Given a classifier, a fixed BCAM budget, and
a probability distribution on packets, the problem of finding
the set of prefixes to expand that fit within our BCAM budget
and improve average packet lookup time the most is an open
problem with a knapsack flavor. In this paper, we propose
the following simple greedy strategy. For each minimum 1-
dimensional tablet, assumingt’s skip list LIST(t) has k
elements, for eachi (1 6 i < k), we calculate the cost
of expanding all prefixes of lengthLIST(t)[i] and the gain
measured by the number of packets whose lookup time will
be reduced by one. Among all such expansion options, we
choose the one with the largestgain/cost ratio and update
our BCAM budget.

The above process repeats until the average lookup time
reduces very slowly or the BCAM is used up. We define a
round as the process of choosing one prefix layer to expand.
Let AVGt to denote the average lookup time after roundt.
We predefine a small thresholdε. When |AVGt−AVGt−1|

AVGt−1

< ε,
we terminate the process after roundt. In our experiments, we
choseε = 10−2.

Considering the lookup tables in Figure 2(b), the rule with
the best gain for cost is the prefix∗∗∗∗ in table00. This prefix
has a gain of11 × 16 = 176 as 176 packets will have their
lookup time reduced by one. The cost of this prefix is 2 as we
need to introduce 3 prefixes,01 ∗ ∗, 10 ∗ ∗, and11 ∗ ∗, for a
cost of 2 extra prefixes. This expansion thus has again/cost
ratio of 176/2 = 88. Of course, this expansion can only be
chosen if we have a BCAM budget of at least 2.

E. Lookup Short Circuiting

So far, we have assumed the use offull-length FDDs
where in each decision path all fields appear exactly once.
Actually, this constraint can be relaxed so that some paths
may omit unnecessary fields when a node in the path contains
only one outgoing edge. In this case, the node along with
singleton outgoing edge can be pruned. Using FDDs that are
not full-length has the advantage of reducing FDD size and
consequently reducing the total number of tables. Furthermore,
this optimization allows some specific decision paths to be
performed with a reduced number of lookups, which will allow
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for faster packet processing when the tables are processed in
a multi-lookup fashion. Therefore, we call this optimization
techniquelookup short circuiting. Note this optimization tech-
nique requires storing field information in the decisions. This
optimization is very useful as our experimental results in the
next section demonstrate.

V. EXPERIMENTAL RESULTS

We now report our experimental results on the effectiveness
and efficiency of B-CLASS-d for a number of real-world
packet classifiers as well as large synthetic packet classifiers.
As a reminder, we use BCAM lookup time to refer to the
number of BCAM lookups performed.

A. Metrics

We first define the metrics for measuring the BCAM space
that B-CLASS-d in its various forms uses. Given a BCAM
classification algorithmA and a classifierf , let A(f) denote
the BCAM space used byA for f , andDirect(f) denote the
TCAM space used by direct expansion forf . We define the
space used by a classifier in a BCAM or TCAM chip as the
number of classifier entries multiplied by the entry width mea-
sured in bits:space = # of entries × CAM width, where
CAM width is 72, 144, 288, or 576. Note that CAM width
typically must be 72, 144, 288, or 576 bits wide. We define the
following metrics regarding CAM space:Compression ratio
of A on f : CRatio(A, f) = A(f)

Direct(f) ; Average compression

ratio of A for a set of classifiersS: A(S) =
∑

f∈S CRatio(A,f)

|S| ,
where|S| is the number of classifiers inS.

For all classifiers, we apply the optimization techniques of
minimizing maximum lookup time and minimizing average
lookup time in isolation for a better evaluation on the effective-
ness of each technique, although minimizing maximum lookup
time will reduce the average lookup time and minimizing
average lookup time may reduce the maximum lookup time.

B. Effectiveness

We conducted experiments on a set of 25 real-life classifiers.
We obtained these real-life classifiers from distinct network
service providers and the classifiers range in size from dozens
to hundreds of rules. We call the combination of skip lists, free
expansion, and short circuiting techniques “light optimization”
because they performed very efficiently in our experiments.
We usemax-optimizationto denote the technique of minimiz-
ing the maximum lookup time in addition to light optimization,
and avg-optimizationto denote the technique of minimizing
the average lookup time in addition to light optimization. Since
the techniques of max-optimization and avg-optimization are
sensitive to the available BCAM space, we assume the use of
a 0.5 Mb BCAM chip in our experiments.

Figure 3 shows the effectiveness of our optimization tech-
niques for all 17 packet classifiers. Note that without any
optimizations, B-CLASS-d requires 109 lookups for every
packet. For maximum lookup time, Figure 3(a) shows thatlight
optimizationbrings down the maximum lookup time from 109
to 15 or lower with an average of10.4, and max-optimization
further reduces the maximum lookup time to 12 or lower with
an average of8.9. For average lookup time, Figure 3(a) shows
that light optimization brings down the average lookup time
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from 109 to12.99 or lower with an average of4.7, and max-
optimization further reduces the average lookup time to8.99
or lower with an average of3.4.

In Figure 3(b), we compare the lookup time of B-CLASS-d
with only light optimization and that of the sequential de-
composition based TCAM multi-lookup scheme. Without the
technique of short circuiting, the lookup time of the sequential
decomposition based TCAM multi-lookup scheme is always
5. With the technique of short circuiting, the maximum lookup
time for the TCAM scheme is 5 or lower with an average of
4.4. In comparison, the maximum lookup time for B-CLASS-d
with light optimization is 15 or lower with an average of
10.4, and it drops to 12 or lower with an average of8.9
if we apply max-optimization. With the technique of short
circuiting, the average lookup time for the TCAM scheme
is 3.9 or lower with an average of1.8. In comparison, the
average lookup time for B-CLASS-d with light optimization
is 12.99 or lower with an average of4.7, and it drops to8.99
or lower with an average of3.4 if we apply avg-optimization.
Based on the above empirical data, we see that B-CLASS-d
with light optimization often achieves a maximum or average
lookup time that is often no more than twice that of the
TCAM scheme. Given that BCAM is significantly cheaper
than TCAM, it is cost-effective to use two BCAM chips to
process packets in parallel to achieve similar throughput with
the TCAM scheme. Furthermore, in non-peak modes, one
BCAM chip can be powered down to conserve energy.

Figure 3(c) shows the compression ratios of the optimized
versions of B-CLASS-d (i.e., with light optimization, with
max-optimization, and with avg-optimization) and the TCAM
scheme (with short circuiting). The experimental results show
that B-CLASS-d with light optimization achieves compression
ratios that are similar to those achieved by the TCAM scheme.
For the real-life classifiers, the compression ratios achieved
by B-CLASS-d with light optimization range between 0.008
and 2.77 with an average of 0.44; similarly, the compression
ratios achieved by the TCAM scheme range between 0.008 and
2.77 with an average of 0.44. We also observe that the tech-
niques of max-optimization and avg-optimization do consume
a significant amount of BCAM space. The compression ratios
achieved by the BCAM scheme with max-optimization range
between 0.02 and 87.33 with an average of 7.13; similarly, the
compression ratios achieved by the BCAM scheme with avg-
optimization range between 0.008 and 87.33 with an average
of 4.65. However, these large compression ratios are less of
a concern, except from an energy standpoint, because these
techniques are constrained by the available BCAM space.

C. Efficiency

We implemented our BCAM packet classification scheme
using Visual Basic on the Microsoft .Net framework2.0 and
Python. Our experiments were carried out on a desktop PC
running Windows XP with 1G memory and a single2.2 GHz
AMD Opteron 148 processor. Most real world classifiers ran
in under a second. Table II show the running time for three
representative classifiers. The experimental results showthat

both B-CLASS-d with light optimization and B-CLASS-d
with avg-optimization are very efficient; however, the results
show that the techniques of max-optimization is much slower.
Thus, we recommend the use of max-optimization when
timing is not an immediate concern.

Number of
Rules

with light
optimization

(second)

with avg-
optimization

(second)

with max-
optimization

(second)
661 2.45 3.99 69.77
87 0.99 2.94 168.03
42 0.65 0.78 0.85

TABLE II
RUNNING TIMES FOR THREE REAL-LIFE CLASSIFIERS

Because packet classifier rules are considered confidential
due to security concerns, it is difficult to get many real-life
packet classifiers for experiments. To address this issue and
further evaluate the efficiency of our approaches, we generated
a set of synthetic packet classifiers of 9 sizes, where each size
has 100 independently generated classifiers. Every predicate
of a rule in our synthetic packet classifiers has five fields:
source IP address, destination IP address, source port number,
destination port number, and protocol type. We first randomly
generated a list of values for each field. For IP addresses, we
generated several random class C addresses and then generated
single IP addresses within the class C addresses; for ports
we generated a random range; for protocols, we chose TCP,
UDP, or ICMP. Every field also has the “*” value included in
the list. We then generated a list of predicates by taking the
cross product of these five lists and randomly selected from
the cross product until we reached our desired classifier size
by including a final default predicate. Finally, we randomly
assigned one of two decisions, accept or discard, to each
predicate to make a complete rule. The timing results on the
synthetic rules for our BCAM classification scheme with light
optimization are shown in Figure 4.

D. K-Longest Prefix Matching

We implemented the longest prefix matching algorithm
described in [7] and built a packet classification scheme based
on sequential decomposition. We evaluated both lookup time
and memory cost of two schemes.

Figure 5 shows the maximum (worst case) memory ac-
cess number for B-CLASS-d with only light optimization,
B-CLASS-d with max-optimization and sequential decompo-
sition based longest prefix matching scheme. For B-CLASS-d
one BCAM lookup is counted as one memory access. The
maximum lookup time for B-CLASS-d with light optimization
is 15 or lower with an average of10.4, and it drops to 12 or
lower with an average of8.9 if we apply max-optimization.
The maximum lookup time for sequential decomposition based
longest prefix matching is 16 with an average of 15.48. Note
that we count one Bloom filter query or one hash table lookup
as one memory access for the sequential decomposition based
longest prefix matching scheme.

In Figure 6, we evaluated the memory cost of the three
schemes. The experimental result shows that the memory cost
for B-CLASS-d with light optimization is from 0.053 KB to
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8.93 KB with an average of 1.08 KB, and it increases to from
0.105 KB to 50.2 KB with an average of 7.93 KB. Note
that we assume 0.5 Mb BCAM budget. The memory cost
for sequential decomposition based longest prefix matching
is from 2083 KB to 2106 KB with an average of 2099 KB.
We can see that our B-CLASS-d scheme requires at least
two orders of magnitude less memory space than sequential
decomposition based longest prefix matching scheme with
better worst case performance.

VI. CONCLUSIONS ANDFUTURE WORK

The significance of this paper lies in B-CLASS-d, the first
proposed BCAM packet classification scheme, as well as
the several optimization techniques such as skip lists, free
expansion, an algorithm for minimizing maximum lookup
time, an algorithm for minimizing average lookup time, and
lookup short circuiting. We implemented B-CLASS-d and
conducted experiments on a number of real-life classifiers.
Our experimental results validate the practicality of building
high performance BCAM based packet classification systems.
Furthermore, as this paper opens a new packet classification
paradigm, there are many possible future research directions
such as developing more efficient and effective algorithms for
minimizing the maximum or average lookup time.
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