Packet Classification Using
Binary Content Addressable Memory

Alex X. Liu Chad R. Meiners  Eric Torng
Department of Computer Science and Engineering
Michigan State University
East Lansing, Ml 48824, U.S.A.
{alexliu, meinersc, torng@cse.msu.edu

R . . Rule | Source IP Dest. [P Source Port Dest. Port ProtogoAction
Abstract—Packet classification is the core mechanism that en- 7 | 1.2.3.0/24 192.168.0.1 [1,65534] [1,65534] TCP| accept
ables many networking devices. Although using Ternary Content o * * * * * discard

Addressable Memories (TCAMs) to perform high speed packet

classification has become the widely adopted solution, TCAMs
are very expensive, have limited capacity, consume large amounts
of power, and generate tremendous amounts of heat because of
their extremely dense and parallel circuitry. In this paper, we for Internet routers as they need to classify every packet
propose the first packet classification scheme that uses Binary on the wire. Achieving wire speed packet classification has
Content Addressable Memories (BCAMs). BCAMs are similar to long been a networking goal. Ternary Content Addressable

TCAMs except that in BCAMSs, every bit has only two possible o e
states: 0 or 1; in contrast, in TCAMs, every bit has three possible Memory (TCAM) based packet classification has been the

states: 0, 1, or * fon't care). Because of the high complexity in Widely adopted S(_)Iution. Unlike traditional random access
implementing the extra “don’t care” state, TCAMs have much memory chip receives an address and returns the content of
higher circuit density than BCAMs. As the power consumption, the memory at that address, a TCAM chip works in a reverse
heat generation, and price grow non-linearly with circuit density, ' manner: it receives content and returns the address dirthe

BCAMs consume much less power, generate much less heat, S . .
and cost much less money than TCAMs. Our BCAM based entry where the content lies in the TCAM in constant time

packet classification scheme is built on two key ideas. First, we (-8, @ few CPU cycles). Exploiting this hardware feature,
break a multi-dimensional lookup into a series of one-dimensional TCAM-based packet classifiers store a rule in each entry

lookups. Second, for each one-dimensional lookup, we converteh as an array of 0's, 1's, or *'sdpn't-care values). A packet
ternary matching problem into a binary string exact matching  header e, a search key) matches an entry if and only if

problem. To speed up the lookup process, we propose a number, . . , , .
of optimization techniques including skip lists, free expansion, their corresponding 0's and 1's match. Given a search key

minimizing maximum lookup time, minimizing average lookup {0 & TCAM, the hardware circuits compare the key with all
time, and lookup short circuiting. We evaluated our BCAM its occupied entries in parallel and return the index (or the
scheme on 17 real-life packet classifiers. On these classifiers, ourcontent, depending on the chip architecture and configumpti
BCAM scheme requires roughly 5 times fewer CAM bits than ¢ the first matching entry.

the traditional TCAM based scheme. The penalty is a throughput
that is roughly 4 times less.

TABLE |
AN EXAMPLE PACKET CLASSIFIER

Unfortunately, TCAM’s high speed comes with several
costs. To understand the costs of using TCAM, we must first

. INTRODUCTION understand TCAM chip architecture. A TCAM chip consists of
o many TCAM core cells and other supporting circuits and hard-
A. TCAM-Based Packet Classification ware. A TCAM core cell, the building block of a TCAM chip,

Packet classification is the core mechanism that enabkesves two basic functions: bit storage and bit comparison.
many networking devices, such as routers and firewalls, Thiere are two types of TCAM core cells: a NOR-type TCAM
perform services such as packet filtering and traffic accouell and a NAND-type TCAM cell. A NOR-type TCAM cell
ing, network address translation (NAT), quality of serviceonsists of four comparison transistors and two SRAM cells
(QoS), load balancing, virtual private networks (VPNs) anthat have a total twelve transistors. A NAND-type TCAM
monitoring, differentiated services (Diffserv), etc. Thasic cell consists of four comparison transistors and two SRAM
classification problem is to compare each packet with a fist cells that have a total twelve transistors. Furthermorehea
predefined rules and find the first (i.e., highest prioritylerumemory access searches all active TCAM memory implying
that the packet matches. Table | shows an example pack€@AM power consumption is proportional to the number of
classifier of two rules. The format of these rules is basdits searched.
upon the format used in Access Control Lists (ACLs) on Cisco These architectural constraints have several implicat@m
routers. Note that we use the teripacket classifie;rsSACLs TCAM deployment. First, due to their large footprint and
rule lists, andlookup tablesnterchangeably. large number of transistors, TCAM igery expensivecosting

Packet classification is often the performance bottlenebkindreds of dollars even in large quantities. TCAM chipsioft



cost more than network processors. Second, TCAMihated The traditional TCAM scheme must accommodate the 104
capacity The largest available TCAM chip has a capacity dbits in the five packet fields. Given the limited number of
72Mb, while 2Mb and 1Mb chips are most popular. As rulegossible TCAM entry widths, this means each entry typically
stored in TCAM must be ternary, TCAM capacity limitationshas 144 bits. On the other hand, in B-CLA8Seach table
are exacerbated by the well known range expansion problemill typically hold only a single packet field. Thus, each mnt
That is, converting packet classification rules to ternags will be much narrower. In most cases, each entry is 72 bits. We
typically results in a much larger number of TCAM rulesdefine the throughput to be the number of CAM bus cycles
In a packet classification rule, the three fields of source anefuired to classify a packet. In the traditional scheme, we
destination IP addresses and protocol type are specifiedoasy require one TCAM lookup. However, the TCAM bus is
prefixes where all the *s are at the end of the ternary strintypically only 72 bits wide. Thus, classifying a packet tyaly

so the fields can be directly stored in a TCAM. However, theequires at least 2 TCAM bus cycles. In B-CLAGSsince
remaining two fields of source and destination port numbeesich BCAM entry is at most 72 bits wide, we will require
are specified in ranges, which need to be converted to amaly one BCAM bus cycle per lookup.

or more prefixes before being stored in a TCAM. This can e implemented B-CLASS; our BCAM based scheme,
lead to a significant increase in the number of TCAM entriggnd conducted experiments on 17 real-life packet classifier
needed to encode a rule. For example, 30 prefixes are needgeioour set of classifiers, classifier preprocessing time atas
represent the single range 65534, s030 x 30 = 900 TCAM  most a second for almost all the classifiers. First, we compar
entries are required to represent the single rylén Table . the CAM space required by B-CLAS®-and the traditional
Third, the large power consumption of TCAM chips constrainBCAM scheme. Our results indicate that B-CLASSwith

their deployment when system designers must operate withjght optimization requires roughly 5 times less space tifian

a “power budget’e.g, TCAM components may only use 10%raditional TCAM scheme. On top of that, B-CLASSuses

of an entire board’s power budget. The explains that ev@Reaper BCAM bits rather than TCAM bits. It is true that
though 72Mb TCAM chips are available, the 1-2Mb chipg-CLASS< has less throughput than the traditional TCAM
are most popular [1]. scheme. In particular, the average of the maximum number of
) .. .. BCAM lookups required by B-CLASJ-on the 17 classifiers

B. Proposed Approach: BCAM-based Packet CIaSS|f|cat|oniS 8.4. Given that the traditional scheme requires 2 TCAM bus
In this paper, we B-CLASH; the first packet classifica- cycles, we see that B-CLAS&-has a maximum throughput

tion scheme that uses Binary Content Addressable MemqRat is roughly 4 times slower than the traditional TCAM
(BCAM). BCAM works similar to TCAM except that in scheme.

BCAM, every bit has only two possible states: 0 or 1, in tpq yest of the paper proceeds as follows. We start by

iomraft’A'ntiaM' every"b_|t has Ithrec; possllt_J(I:eAﬁ/tlates: Rviewing previous work in Section II. In Section Ill, we
,Ilorb : ) forﬁ ce Ibs simpler t z;l)n a h core present our basic scheme as well as optimization techniques
cell because It only :’:15 a ,|nary state because there IS(3p ,nq_dimensional packet classification using BCAM. In
need for the third don't car€’ state. Specifically, there are Section 1V, we present our BCAM classification scheme for
two types of BCAM core cells: a NOR-type BCAM Ce”multi-dimensional packet classifiers. Experimental ressate

and a NAND-type BCAM cell. A NOR-type BCAM cell g[esented in Section V. We draw conclusions in Section VI.
consists of four comparison transistors and an SRAM cél

that has six transistors. A NAND-type BCAM cell consists
of three comparison transistors and an SRAM cell that has six
transistors. This means TCAM circuitry is about two times
denser than BCAM circuitry. This implies a TCAM chip
consumes roughly twice as much power and roughly twice asTo the best of our knowledge, there is no prior work
much board space as an equivalent BCAM chip. Considering BCAM based packet classification. There is some prior
the number of transistors and the associated circuits, therk that explores ways to address the hardware limitations
circuitry of a TCAM is about two times more dense than thaif TCAMs and cope with the well-known range expansion

II. RELATED WORK

of a BCAM. problem. Such work falls into three broad categories: (1)
o classifier minimizatior{e.g, [3], [6], [8], [9], [15]-[19], [21],
C. Defining CAM Space and Throughput [22], [25], [27], [29]), which converts a given classifier &

We will compare our B-CLASSt scheme with the existing semantically equivalent one that requires fewer TCAM estri
standard TCAM scheme. Because the two schemes are V@) range encoding(e.g, [5], [12], [20], [23], [24], [31]),
different architecturally, we must carefully define spacel a which encodes the range fielde( source port and destination
time for both schemes to provide a reasonable comparisport) in a manner that reduces range expansion; ancir@)it
We define the space used by a packet classifier in a CANbdification (e.g, [28]), which modifies TCAM circuits to
chip as the number of classifier entries or rules multipligd laccommodate range comparisons. We make use of a new
the width of the CAM chip in bits. Recall that each TCAMTCAM SPIiT approach [26] which we discuss in more detall
bit requires roughly twice as much circuitry as a BCAM bitin Section IV-A.



I1l. ONE-DIMENSIONAL PACKET CLASSIFICATION order of prefix length. We usBPF(B) to denote this ordered

In this section, we present B-CLASS, a scheme for perforflefix family; that is, OPF(B) = (b1by - - - buw, biba - - - bu—1%,
ing one-dimensional packet classification using BCAM. This *» b1 * ===, % % ...x). Second, we numericalize every prefix
scheme B-CLASS will be used as the basic building blodR OFF(5) and getN(OPF(B)). The search process starts
for performing multi-dimensional packet classificatiorings PY testing whether the first element of(OPF(B)) (i.e.

BCAM, that we describe in the next section. N(b1bs - -by)) is in the BCAM. If yes, then return the
) corresponding decision; otherwise, continue to test wdreth
A. The Basic Scheme the second element dfi(OPF(B)) is in the BCAM. This

We first consider the following prefix membership verifiprocess proceeds until the BCAM returns a match. Figure 1
cation problem:given aw-bit prefix P and a w-bit binary illustrates R-Cl AQS in artinn

number B, how can we store” in a BCAM such that we N 113‘1’ j

can use the BCAM to determine whetheérmatchesP (i.e., QPrefix family generation | 11%% [ a | ¢

B € P)? Our solution leverages the prefix membership 1111 rrrrld
verification scheme in [13]. For prefi® = {0, 1}*{x}v~F opray | 11 4 x Josier minimisaon
with & leading 0’s and 1's followed by — k *'s, the length 1= o= fdy

of P, denoted a&.(P), is defined to bé:. The key observation Fret mmericaizaion | 117712

is that if binary stringB matches prefix?, then the firstL(P) 1111100 - ﬂpreﬁximmﬁmm
bits of P and B are the same. For example, if € 01 * * 1100 010 -1 o match, TToooTilTa
(i.e., x € [0100,0111]), then the first two bits of3 must be Norrmy 1000001 el 1100 010 a N
01. Given aw-bit binary numberB = b,bs - - - b,,, the prefix 0000000) d
family of B, denoted a®F(B), is defined as the set af + 1 Fig. 1. Example of B-CLASS on a packet
prefixes {blbg c by, D1bg b1k, e, by ko k% *},

where thei-th prefix isbibs - - - by_js1 * - - - . For example, B: Skip Lists
PF(0101) = {0101,010%,01 x *,0 = s, % * *x}. It follows The idea of skip lists is based on two key observations.
naturally that for any binary numbées and prefixP, B € P The first observation is that the prefix family generated from
if and only if P € PF(B). a packet contains prefixes of every length from @tdut the

To store a prefixP in BCAM, we need to converP to a minimum classifier converted from the input classifier often
binary number. This process is callptefix numericalization does not. For example, the minimum classifi&rin Figure 1
A prefix numericalization functiorN takes a prefix as the only contains prefixes of lengths 3, 2, and 0. Therefore, when
input and outputs a unique binary number. The importaséarching for a packeB, we can ignore prefixes of B that
property thatN needs to satisfy is that for any two prefixehave no equal length prefix in the minimum classifier. For the
P, and P,, N(P;) = N(P) if and only if P, = P»,. We example in Figure 1, it is unnecessary to search prefités
use the following prefix numericalization scheme: Givem-a and 1 x xx because the minimum classifi€f does not have
bit prefix b1bs --- by * ---x, we first replace every * by 0; prefixes of length 4 or 1.
second, we appenflog (w + 1)] bits whose value is equal The second observation is that the rules in a minimum
to k. For exampleN(101x) = 1010011. We useN(PF(B)) prefix classifier can be sorted in decreasing order of their
to denote the resulting set of binary numbers after numleric@refix length without changing the semantics of the minimum
izing every prefix inPF(B). For example N(PF(0101)) = classifier. More formally, for any 1-dimensional minimum
{0101100,0100011, 0100010, 0000001, 0000000}. Based on prefix classifiel”, let C* denote the prefix classifier formed by
the above concepts, it follows that for any binary number sorting all the rules irC' in decreasing order of prefix length.
and prefixP, B € P if and only if N(P) € N(PF(B)). )

Our 1-dimensional scheme B-CLASS is composed of two: F€€ Expansion
algorithms. The first algorithm describes how to preprocessWe first examine BCAM lookup times for B-CLASS with
a classifier so that it can be stored in BCAM. The secorskip lists. Given a sorted minimal prefix classifiét we use
algorithm classifies a packet. We first describe the classifielST(C) to denote the skip list built folC. Let k& be the
preprocessing. Given a 1-dimensional classifierwe first number of elements ifLIST(C). We usePS; (0 < i <
convert it to an equivalermninimum prefix classifie€”’ using k& — 1) to denote the set of prefixes i@ whose length is
algorithms in [9], [29]. By minimum, we mean that no equivLIST(C)[i]. More precisely,PS; = {P|3r € C s.t. P(r) =
alent prefix classifier has strictly fewer rules than a minimu P, and L(P) = LIST(C)[i]}. We define the set of all prefixes
prefix classifier. Second, for each prefixin C’, we convertP in PS; to belayer i for classifierC'. For any prefixP in PS;
to a binary number using the prefix numericalization desctib (0 < i < £ — 1) and for any packep that will match P, the
above. The preprocessing resNIifC”) is stored in a BCAM. number of BCAM lookups is + 1. Consider the example in

We then classify packets using the following algorithnigure 1. For packep = 1110, the number of BCAM lookups
Given a packet represented aswabit binary numberB = is 2.
biby - - - by, we first generate its prefix family’F(B). In The idea of free expansion is based on two observations.
particular, we generate the prefixeshii( B) in the deceasing First, a prefix inPS; (1 < i < k—1) can be replaced by a set



of 2UST(ONE—1]-LIST(O)] prefixes of lengtHLIST(C)[i — 1]. called theroot. The nodes that have no outgoing edges are
Consider the example in Figure 1. We can expand the prefialled terminal nodes. (2) Each node has a label, denoted
11#% into 110« and 111« (i.e, replace the ruld1*+ — a by F(v), such thatF(v) € {Fy,---,F;} if v is a nonterminal
two rules110x — a and111x — a). After expanding a prefix node andF'(v) € DS if v is a terminal node. (3) Each
P e PS; (1 <i<k-—1),for all packets that matcl®, the edgee:u — v is labeled with a nonempty set of integers,
number of BCAM lookups is reduced froim 1 to . denotedI(e), where I(e) is a subset of the domain af’s

The second observation is that after replacing a prefin label (.e, I(e) C D(F(u))). (4) A directed path from the
PS; (1 < i < k—1) by a setS of 2MST(O)-1-LET()l]  root to a terminal node is called decision path No two
prefixes of lengthLIST(C)[i — 1], some rules with prefixes nodes on a decision path have the same label. (5) The set
in S may become upward redundant. Consider the examifall outgoing edges of a node denotedE(v), satisfies the
in Figure 1. After expanding the prefikl * x into 110« and following two conditions: (i)Consistencyl(e)NI(e') = § for
111, the rule110x — a becomes upward redundant becausany two distinct edges and ¢’ in E(v). (i) Completeness
of the first rule. Ueer@) I(e) = D(F(v)). We define afull-length ordered
FDD as an FDD where in each decision path, all fields appear
exactly once and in the same order. An FDD construction

Our multi-dimensional BCAM packet classification schemalgorithm, which converts a packet classifier to an equivtale
B-CLASSH is based on the TCAM SPIiT approach [26]. Irfull-length ordered FDD, is in [14]. For ease of presentatio
this section, we first give a brief overview of TCAM SPIiT.in the rest of this proposal, we use the term “FDD” to mean
Then, we introduce B-CLASE; and we conclude with two “full-length ordered FDD” if not otherwise specified.
optimizations for B-CLASS{. Note, we now assume that A reducedFDD f satisfies the following two conditions:
B-CLASS includes skip lists and free expansion. (1) no two nodes iry are isomorphic; (2) no two nodes have

) more than one edge between them. Two nadesdv’ in an
A. TCAM SPIIT FDD areisomorphicif and only if v andv’ satisfy one of the

TCAM SPIiT is a TCAM based packet classification schemllowing two conditions: (1) bothy andv’ are terminal nodes
that can achieve high TCAM space efficiency. The key obsewith identical labels; (2) botlv and«’ are nonterminal nodes
vation is that the rules in a classifier often share a numband there is a one-to-one correspondence between the ogitgoi
of the same field values [4], [11], [30], [32]. For exampleedges ofy and the outgoing edges of such that every pair of
the prefix classifier in Figure 2(a) has only 4 distinct valuesorresponding edges have identical labels and they bottt poi
for field F;. Such information redundancy can lead to a multto the same node. A brute force deep comparison algorithm
plicative increase in the number of rules in a classifier as<r for FDD reduction was proposed in [10]; however, it is not
producting of field values to form rules is often necessays T efficient. A more efficient FDD reduction algorithm that uses
problem is exacerbated in TCAM packet classifiers by rangenovel fingerprinting technique to speed up node comparison
expansion in the source and destination port fields. was proposed in [2].

The basic idea of TCAM SPIiT is to reduce the multi- The second step of TCAM SPIT is to generate a one-
plicative effects of cross producting by decomposiagi- dimensional lookup table from each nonterminal node in the
dimensional packet classifiento d one dimensional classi- FDD. Because of the completeness property of an FDD,
fiers This requires replacing singled-dimensional lookufpy each nonterminal node can be viewed as a one-dimensional
a sequence af one-dimensional lookuphat are pipelined to classifier. For each such one-dimensional classifier, wéyapp
improve classification throughput. Intuitively, TCAM SPlis the optimal polynomial-time algorithm for minimizing one-
essentially an optimized version of the software-basetsigr dimensional prefix classifiers in [29]. For example, Figu(ie) 2
tree packet classification technique. We create a decisisimws the four minimal one-dimensional tables generated fr
diagram of small one-dimensional classifiers where each tbe four nonterminal nodes in the FDD.
these small classifiers will be implemented in TCAM. TCAM The third step of TCAM SPIiT is to combine the one-
SPIIT is attractive because the total TCAM space requirelimensional tables together. There are two options for ingrg
to store these small and thin tables is significantly less thtables, which are designed for two classification archites,
the TCAM space required to store a singledimensional multi-lookup and pipelined-lookup, respectively. For thalti-
table. For our purpose, the key feature of TCAM SPIiT i®okup architecture, we combine all the one-dimensiortadets
that it converts a multi-dimensional lookup into a series abgether to form a single table. Let be the total number
one-dimensional lookups, which allow us to the B-CLAS®f one-dimensional tables. For each one-dimensional (table
scheme presented in the previous section. we assign a table ID oflogm]| bits. For any table entry

We create the decision tree structure by first convertinghose decision is a nonterminal nodewe replacev by v’s
the given classifier to an equivalent reduced firewall denisi corresponding table ID. Then, for every nonterminal node
diagram [10]. AFirewall Decision Diagram(FDD) with a we prependv's corresponding table ID to each entry in the
decision setDS and over fieldsFy, - - -, F,; is an acyclic and table generated from. After the multi-lookup TCAM table
directed graph that has the following five properties: (1¢rgh is built and stored in a TCAM for al-dimensional packet
is exactly one node that has no incoming edges. This nodeclassifier, the decision for &dimensional packetp:, . . ., pa4)

IV. MULTI-DIMENSIONAL PACKET CLASSIFICATION



Rules F, F, Decision
1 0000 | 0000 d 0000 | 01
2 o000 | 1111 a o0 |t [or 000000 | 01 000000100 | 01
00+ | 10 001111 | 01 001111100 | 01
3 0000 | 11** d
e | 11 0000+ | 10 000000010 | 10
4 [ 0000 | xex o 00
& 000 | —T 00%55% | 1] 000000000 | 11
5 | 1111 | 0000 d 0000 | 4 010000 | d 010000100 | d
1111 it | ot 11 | a
6 i | 1 f e w0l 01 ||| otri a 011111100 | a
1= | d
7 1111 | 11%* d ko werx | |1 p——— 0111%% d E> 011100010 | d
3 i | o . 01=x | g 010000000 | a
= 10 n = 0101 | 4 100101 | 4 100101100 | d
9 00** | 0101 d 1010 - o
0101 a 10 | o1= | ¢ [| 1001 a 100100010 | a
10 | 00** | O1** a 01%* 10%* | d wrrs | g 10353 d 100000100 | d
11 00** kokokok d ok ok Fokkok a 111010 a 111010100 | a
12 kkkk 1010 a 1010 a /‘ 1110%* d 111000010 | d
1) 10 | d s | g 110000000 | a
13 skokkk 10** d EEE ] a
14 seskoskok ko okosk a
(a) (b) (©)
Prefix Classifiers Reduced FDD and 1-D tables Combine and mecalize 1-D tables

Fig. 2. Overview of the BCAM sequential decomposition

can be found by performing searches on the TCAM. Thelookups) of p. Given a packetp = (p1,---,pq), there is
first search keyk; is formed by concatenating the root node’sne and only one path in the FDD that the packet matches.
ID and p;. Let f(k1) denote the search result &i. The Letvq,---,vq be thed nonterminal nodes starting from the
second search ke¥, is formed by concatenating(k,) and root in the path, and,,---, ¢, be thed corresponding one-
p2. This process continues until we compufék,), which dimensional tables. Far < i < d, let P; be the prefix of the
is the decision for the packet. For example, given the twiost rule thatp; matches in table;. We call the sequence of
dimensional multi-lookup prefix table in 2c and a packairefix/table pairg Py /t1,- - -, Py/tq) thelookup pathof packet
(0011,0010), the first search key i900011, which returns p. The lookup path for packet011,0010) for the example
10. The second search key 190010, which returnsd (i.e., in Figure 2(b) is(00 x x/00, - - -, * * x x /10).
discard) as the decision for the packet. Let k; be the lookup time for the packets that satigtyin

For the pipelined-lookup architecture, we only combine thablet;. In other words,P; is in layerk; — 1 of tablet; (i.e,
tables of the same field into a single table. ket be the L(FP;) = LIST(¢;)[k; — 1]). Thus, the lookup time for packet
number of nodes with labet; in the reduced FDD. The ID p is Eleki. We call Eﬁzlki the lookup time for the lookup
assigned to each; node consists oflogm;| bits. Similarly, path (P, /t1,---, P;/tq). For example, the lookup time for
for any table entry whose decision is a nonterminal nedee packet(0011,0010) on the multi-lookup table in Figure 2(c)
replacev by v's corresponding table ID; for every nonterminals 5 because the first field011 needs 2 BCAM lookups on
nodewv, we prepend’s corresponding table ID to each entrytable 00 in 2(b) and the second field010 needs 3 BCAM
in the table generated from The resulting/ tables are stored lookups on table 10 in 2(b).
in d TCAM chips, and thel chips are chained together into Next, we present techniques for minimizing the maximum
a pipeline such that the search result of thih chip is part lookup time and the average lookup time respectively. Thye ke
of the search key for th¢i + 1)-th chip. The result of the observation is that the BCAM may still have free space after
last chip is the decision for the packet. With such a chdin,storing a multi-lookup table. Such free BCAM space can be
packets can be processed in parallel in the pipeline. exploited to optimize lookup time.

B. B-CLASS# d-Dimensional BCAM Packet Classification C. Algorithm for Minimizing Maximum Packet Lookup Time

B-CLASSH is built upon B-CLASS and the above multi- The key idea is that we can reduce the lookup time for
lookup TCAM SPIIiT scheme for TCAM based packet classome packets by expanding some prefixes in the 1-dimensional
sification. We make two modifications to the single multilookup tables. Our focus is to find the correct prefixes to
lookup table. First, we numericalize every entry in the éablexpand such that the maximum lookup time can be reduced.
Second, for every entry in the table, we store the index &br any lookup path P /ti,---, Py/tq) wheret; is in an F;
the corresponding skip list of the one-dimensional tabk thtable for eachl < i < d, we can calculate its lookup time
the entry belongs to. The skip lists of all one-dimensionals discussed above. By traversing the reduced FDD where
tables that are stored in the SRAM associated with the BCAMach nonterminal node is associated with a one-dimensional
Figure 2(c) shows the multi-lookup BCAM table with skip listtable, we can easily calculate all the lookup paths that have
indexes omitted. We next formally analyze packet lookugetimthe maximum lookup time. We call a lookup path that has the

Given a reduced FDD and the minimal one-dimensionalaximum lookup time anaximum lookup pathGiven a set
tables generated from nonterminal nodes, for any pagketof maximum lookup paths, we next discuss how to bring the
we can calculate the lookup timeg, the number of BCAM maximum lookup time down using available BCAM space.



For any prefixP in a minimum 1-dimensional lookup tableour initial BCAM budget. Then we enter our greedy iterative
t, we can reduce the lookup time for the packets whogphase where we first compute all the maximum lookup paths.
first matching prefix isP by either expanding® directly or Second, we compute all the expansion options that can reduce
expanding all prefixes in a layer aboyrin ¢. More formally, the lookup time of all maximum lookup paths. Third, we
assumingL(P) = LLIST(¢)[i], expanding the single prefi® choose the expansion option that requires the fewest extra
into 2MST(O)i—1-LIST(C)[i] prefixes of lengtALIST(C)[i —1] BCAM entries. When there is a tie, we choose the expansion
and expanding all prefixes of lengftIST(C)[j] (0 < j < ¢) option that can reduce the lookup time of more paths. We then
have the same lookup time reduction effect for the packeipdate our BCAM budget and repeat our greedy process until
that satisfy P. Consider the example of table 00 in Figureghe BCAM budget is used up.
2(b). If we want to reduce the lookup time of the packets ] o )
whose first matching prefix is # ##, we can either expand D. Algorithm for Minimizing Average Packet Lookup Time
* * x+ to four prefixes00 * x, 01 * *, 10 % *, and 11 x x, Rather than minimize thenaximumlookup time, we may
or we can expand0 = x to four prefixes0000, 0001, 0010, want to minimize average lookup time. This does require
and 0011. We define the follow set as theokup reduction a probability distribution for packets. For simplicity ofed
set for prefix P in table t: {({P},t),{P’ | L(P’) = scription, we assume each packet is equally likely to occur,
LIST(C)[i — 1]},t),---,({P’" | L(P’) = LIST(C)[1]},t)}. though our greedy algorithm extends to general probability
For example, for prefix x x* in table 00 in Figure 2(b), the distributions. Given a classifier, a fixed BCAM budget, and
lookup reduction set i$({x  xx},00), ({00 x*},00)}, where a probability distribution on packets, the problem of firglin

00 is the table ID. the set of prefixes to expand that fit within our BCAM budget
Suppose that there are a total of maximum lookup and improve average packet lookup time the most is an open
paths: (P11/t11, Pi2/ti2, -+ Pia/t1,4), -, {(Pm1/tm1, Problem with a knapsack flavor. In this paper, we propose

Pr2/tmz2, - Pm.a/tm.a). FOr example, the FDD in Figure the following simple greedy strategy. For each minimum 1-
2(b) has 3 lookup paths with maximum lookup time oflimensional tablet, assumingt’s skip list LIST(¢) has k
6: (x x % x /00,% % x x /O1), (x x % x /00,* = * = /10), elements, for each (1 < ¢ < k), we calculate the cost
(s /00, #x5% /11). Let R; ; (1 <4< m, 1 < j <d)bethe of expanding all prefixes of lengthIST(¢)[:] and the gain
lookup reduction set for prefi®; ; in its corresponding table measured by the number of packets whose lookup time will
t; ;. We defineR; = UJ_, R, ; as the lookup reduction set forbe reduced by one. Among all such expansion options, we
lookup path (P, 1/ti1,P;2/tiz2, - P;a/tiqa). For example, choose the one with the largegtin/cost ratio and update
the lookup reduction set for lookup pafksx* /00, %% /01) our BCAM budget.
iS {({##xx},00), ({00x},00), ({s*=x},01), ({11*x},01)}; The above process repeats until the average lookup time
the lookup reduction set for lookup pafhsxx /00, xxxx/10) reduces very slowly or the BCAM is used up. We define a
is {({**xx},00), ({00%x},00), ({**=*x},10), ({01%x},10)}; round as the process of choosing one prefix layer to expand.
the lookup reduction set for lookup pafksxx /00, *x* % /11) Let AVG; to denote the average lookup time after round
is {({xx+},00), ({005+},00), ({x#=x},11), ({10#+},11)}.  We predefine a small threshotd When 47— 2VCatl o o
To reduce the lookup time of all thes maximum lookup we terminate the process after roundn our experiments, we
paths <P1’1/t1’1, Pl,?/tl,Za cee Pl,d/tl,d>7 BRI <Pm’1/tm,17 choses = 1072.
Poo/tmz2, -+ Pmd/tmd), We must choose at least one Considering the lookup tables in Figure 2(b), the rule with
expansion option from evenR; for 1 < i < m. The the best gain for cost is the prefix*x in table00. This prefix
easiest way to do this is to choose an expansion optionhas a gain ofl1 x 16 = 176 as 176 packets will have their
N, R, if this intersection set is not empty. For the threéokup time reduced by one. The cost of this prefix is 2 as we
maximum lookup paths in Figure 2(b), by expanding eithereed to introduce 3 prefixe8] * *, 10 % *, and 11 * x, for a
(****,00) or(00**,00), we can reduce the lookup time of all cost of 2 extra prefixes. This expansion thus hag@ / cost
three paths. Otherwise, we need to choose more than oatio of 176/2 = 88. Of course, this expansion can only be
expansion option. However, we do not want to expand moctosen if we have a BCAM budget of at least 2.
than is necessary. We enumerate all other possible minimum o
expansions in the following manner. For eachRBgtwe define E- Lookup Short Circuiting
R, = R, — N7, R;. We then consider all combinations of So far, we have assumed the use fafl-length FDDs
m elements fromR; for 1 < ¢ < m. Note that the same where in each decision path all fields appear exactly once.
expansion option may show up in multip®, sets in which Actually, this constraint can be relaxed so that some paths
case we would use fewer tham expansion options. For may omit unnecessary fields when a node in the path contains
example, to reduce the lookup time of all three maximumnly one outgoing edge. In this case, the node along with
lookup paths in Figure 2(b), we can expand the three prefixafmgleton outgoing edge can be pruned. Using FDDs that are
(x * %x,01), (x x #x,10), and (x x xx,11). Each expansion not full-length has the advantage of reducing FDD size and
reduces the lookup time for one lookup path. consequently reducing the total number of tables. Furthezm
Our algorithm for minimizing maximum lookup time worksthis optimization allows some specific decision paths to be
as follows. We have an initialization phase where we deteemiperformed with a reduced number of lookups, which will allow
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for faster packet processing when the tables are processed iFor all classifiers, we apply the optimization techniques of
a multi-lookup fashion. Therefore, we call this optimipati minimizing maximum lookup time and minimizing average
techniqudookup short circuiting Note this optimization tech- lookup time in isolation for a better evaluation on the etffee
nigue requires storing field information in the decisionkisT ness of each technique, although minimizing maximum lookup
optimization is very useful as our experimental resultshia t time will reduce the average lookup time and minimizing
next section demonstrate. average lookup time may reduce the maximum lookup time.

V. EXPERIMENTAL RESULTS B. Effectiveness

We now report our experimental results on the effectivene\.ﬁwe conducted experiments on a set of 25 real-life classifiers

and efficiency of B-CLASSE for a number of real-world c pbtaineq these real-life clggsifiers f“’”.‘ di.Stht netwo
packet classifiers as well as large synthetic packet clessifi service providers and the classifiers range in size f rom fioze
As a reminder, we use BCAM lookup time to refer to '[hé0 hund.reds of rules. We C?I.I the com.b|na.1t|on of .Sk'.p Ilgteef
number of BCAM lookups performed. expansion, and short circuiting tec_h_mqudag_ﬁt opt|m|zat|(_)ri
because they performed very efficiently in our experiments.
A. Metrics We usemax-optimizatiorto denote the technique of minimiz-

We first define the metrics for measuring the BCAM spac'gg the maximum lookup time in addition to light optimizatio

that B-CLASSd in its various forms uses. Given a BCAMS}ned;\;gr:p:{gZZj Iogtrzedi?]n;c;(eji;g?\ ttgcl:ih?]'tqgeﬂr?]fizrgt'g:zgng
classification algorithmd and a classifierf, let A(f) denote g P gntop

the BCAM space used byl for /, and Direc(1) denote the (& SRR 8 Rat ol TuE s B0 e v of
TCAM space used by direct expansion for We define the pace,

. . a 0.5 Mb BCAM chip in our experiments.
space used by a classifier in a BCAM or TCAM chip as the Figure 3 shows the effectiveness of our optimization tech-

number of classifier entries multiplied by the entry widthame niques for all 17 packet classifiers. Note that without any

sured in bits:space = # of entrics x CAM width, where optimizations, B-CLASS? requires 109 lookups for every

CAM width is 72, 144, 288, or 576. Note that CAM width acket. For maximum lookup time, Figure 3(a) shows light
typically must be 72, 144, 288, or 576 bits wide. We define thDe ) P ' 719

following metrics regarding CAM space&Compression ratio optimizationbrings down the maximum Iookuptim(_a fr.om. 109
of A on f: CRatio(A, f) = —A0)_ Average compression to 15 or lower with an average af).4, and max-optimization

’ Direct(f)’ S CRatio(A.f) further reduces the maximum lookup time to 12 or lower with
ratio of A for a set of classifiers: A(S) = % an average 08.9. For average lookup time, Figure 3(a) shows
where|S| is the number of classifiers if. that light optimization brings down the average lookup time




from 109 t012.99 or lower with an average of.7, and max- both B-CLASSd with light optimization and B-CLASSt

optimization further reduces the average lookup tim&.t) with avg-optimization are very efficient; however, the fésu

or lower with an average di.4. show that the techniques of max-optimization is much slower
In Figure 3(b), we compare the lookup time of B-CLA8S-Thus, we recommend the use of max-optimization when

with only light optimization and that of the sequential detiming is not an immediate concern.

composition based TCAM multi-lookup scheme. Without th

. L . . with Tight with avg- with max-
technique of short circuiting, the lookup time of the sedisn NUS“JI):; of optimizgtion optimizaﬁon optimization
decomposition based TCAM multi-lookup scheme is always - (sgcd?éld) (Sgcggd) (Sg;ggd)
5. With the technique of shor't circuiting, the 'maximum lopku a7 0.99 204 168.03
time for the TCAM scheme is 5 or lower with an average qf 42 0.65 0.78 0.85
4.4. In comparison, the maximum lookup time for B-CLAZS- TABLE Il

with light optimization is 15 or lower with an average of RUNNING TIMES FOR THREE REALLIFE CLASSIFIERS
10.4, and it drops to 12 or lower with an average &0 Because packet classifier rules are considered confidential
if we apply max-optimization. With the technique of shortlue to security concerns, it is difficult to get many read-lif
circuiting, the average lookup time for the TCAM schemeacket classifiers for experiments. To address this issde an
is 3.9 or lower with an average of.8. In comparison, the further evaluate the efficiency of our approaches, we gésetra
average lookup time for B-CLAS8-with light optimization a set of synthetic packet classifiers of 9 sizes, where eaeh si
is 12.99 or lower with an average @f7, and it drops t®B.99 has 100 independently generated classifiers. Every ptedica
or lower with an average df.4 if we apply avg-optimization. of a rule in our synthetic packet classifiers has five fields:
Based on the above empirical data, we see that B-CLASSsource IP address, destination IP address, source portemumb
with light optimization often achieves a maximum or averaggestination port number, and protocol type. We first rangoml
lookup time that is often no more than twice that of thgenerated a list of values for each field. For IP addresses, we
TCAM scheme. Given that BCAM is significantly cheapegenerated several random class C addresses and then génerat
than TCAM, it is cost-effective to use two BCAM chips tosingle IP addresses within the class C addresses; for ports
process packets in parallel to achieve similar throughgtlt wwe generated a random range; for protocols, we chose TCP,
the TCAM scheme. Furthermore, in non-peak modes, oDP, or ICMP. Every field also has the “*" value included in
BCAM chip can be powered down to conserve energy. the list. We then generated a list of predicates by taking the
Figure 3(c) shows the compression ratios of the optimizetioss product of these five lists and randomly selected from
versions of B-CLASS{ (i.e, with light optimization, with the cross product until we reached our desired classifier siz
max-optimization, and with avg-optimization) and the TCAMy including a final default predicate. Finally, we randomly
scheme (with short circuiting). The experimental resufisvé assigned one of two decisions, accept or discard, to each
that B-CLASSH with light optimization achieves compressiompredicate to make a complete rule. The timing results on the
ratios that are similar to those achieved by the TCAM schensynthetic rules for our BCAM classification scheme with tigh
For the real-life classifiers, the compression ratios aefie optimization are shown in Figure 4.
by B-CLASS< with light optimization range between 0.008 ) ,
and 2.77 with an average of 0.44; similarly, the compressiéh KK-Longest Prefix Matching
ratios achieved by the TCAM scheme range between 0.008 andiVe implemented the longest prefix matching algorithm
2.77 with an average of 0.44. We also observe that the teckescribed in [7] and built a packet classification schemedbas
niques of max-optimization and avg-optimization do consunon sequential decomposition. We evaluated both lookup time
a significant amount of BCAM space. The compression ratiasd memory cost of two schemes.
achieved by the BCAM scheme with max-optimization range Figure 5 shows the maximum (worst case) memory ac-
between 0.02 and 87.33 with an average of 7.13; similargy, thess number for B-CLASE-with only light optimization,
compression ratios achieved by the BCAM scheme with avB-CLASS+d with max-optimization and sequential decompo-
optimization range between 0.008 and 87.33 with an averagj#ion based longest prefix matching scheme. For B-CLASS-
of 4.65. However, these large compression ratios are lessoofe BCAM lookup is counted as one memory access. The
a concern, except from an energy standpoint, because thesximum lookup time for B-CLASSFwith light optimization
technigues are constrained by the available BCAM space. is 15 or lower with an average df).4, and it drops to 12 or
lower with an average of.9 if we apply max-optimization.
The maximum lookup time for sequential decomposition based
We implemented our BCAM packet classification schemengest prefix matching is 16 with an average of 15.48. Note
using Visual Basic on the Microsoft .Net framewal) and that we count one Bloom filter query or one hash table lookup
Python. Our experiments were carried out on a desktop RE€ one memory access for the sequential decomposition based
running Windows XP with 1G memory and a sin@l® GHz longest prefix matching scheme.
AMD Opteron 148 processor. Most real world classifiers ran In Figure 6, we evaluated the memory cost of the three
in under a second. Table Il show the running time for threchemes. The experimental result shows that the memory cost
representative classifiers. The experimental results ghatv for B-CLASS+ with light optimization is from 0.053 KB to

C. Efficiency



8.93 KB with an average of 1.08 KB, and it increases to froq3] A. X. Liu and F. Chen. Collaborative enforcement of firéwgolicies
0.105 KB to 50.2 KB with an average of 7.93 KB. Note

that we assume 0.5 Mb BCAM budget. The memory cost
for sequential decomposition based longest prefix matchipng]
is from 2083 KB to 2106 KB with an average of 2099 KB.

We can see that our B-CLAS&-scheme requires at leasts
two orders of magnitude less memory space than sequential

decomposition based longest prefix matching scheme wi'irg3
better worst case performance. [

]

VI. CONCLUSIONS ANDFUTURE WORK [17]

The significance of this paper lies in B-CLASSthe first

proposed BCAM packet classification scheme, as well

Az

the several optimization techniques such as skip liste fre
expansion, an algorithm for minimizing maximum lookup
time, an algorithm for minimizing average lookup time, angig]
lookup short circuiting. We implemented B-CLASSand
conducted experiments on a number of real-life classifietig.
Our experimental results validate the practicality of dimity

high performance BCAM based packet classification systensi]

Furthermore, as this paper opens a new packet classification

paradigm, there are many possible future research directio
such as developing more efficient and effective algorithons f[22]
minimizing the maximum or average lookup time.
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