
ar
X

iv
:1

40
4.

66
87

v1
 [

cs
.IT

]
26

 A
pr

 2
01

4

When Queueing Meets Coding: Optimal-Latency
Data Retrieving Scheme in Storage Clouds

Shengbo Chen
Department of ECE

Ohio State University
chens@ece.osu.edu

Yin Sun
Department of ECE

The Ohio State University
sunyin02@gmail.com

Ulaş C. Kozat
DOCOMO Innovations, Inc.

Palo Alto, CA, 94304
kozat@docomoinnovations.com

Longbo Huang
IIIS, Tsinghua University

longbohuang@tsinghua.edu.cn

Prasun Sinha
Department of CSE

Ohio State University
prasun@cse.ohio-state.edu

Guanfeng Liang
DOCOMO Innovations, Inc.

Palo Alto, CA, 94304
gliang@docomoinnovations.com

Xin Liu
Department of CS

UC Davis
liu@cs.ucdavis.edu

Ness B. Shroff
Department of ECE and CSE

The Ohio State University
shroff@ece.osu.edu

Abstract—Storage clouds, such as Amazon S3, are being widely
used for web services and Internet applications. It has beenob-
served that the delay for retrieving data from and placing data into
the clouds is quite random, and exhibits weak correlations between
different read/write requests. This inspires us to investigate a key
problem: can we reduce the delay by transmitting data replications
in parallel or using powerful erasure codes?

In this paper, we study the problem of reducing the delay
of downloading data from cloud storage systems by leveraging
multiple parallel threads, assuming that the data has been encoded
and stored in the clouds using fixed rate forward error correction
(FEC) codes with parameters(n, k). That is, each file is divided
into k equal-sized chunks, which are then expanded inton chunks
such that any k chunks out of the n are sufficient to successfully
restore the original file. The model can be depicted as a multiple-
server queue with arrivals of data retrieving requests and aserver
corresponding to a thread. However, this is not a typical queueing
model because a server can terminate its operation, depending on
when other servers complete their service (due to the redundancy
that is spread across the threads). Hence, to the best of our
knowledge, the analysis of this queueing model remains quite
uncharted.

Recent traces from Amazon S3 show that the time to retrieve a
fixed size chunk is random and can be approximated as a constant
delay plus an i.i.d. exponentially distributed random variable. For
the tractability of the theoretical analysis, we assume that the
chunk downloading time is i.i.d. exponentially distributed. Under
this assumption, we show that any work-conserving scheme is
delay-optimal among all on-line scheduling schemes whenk = 1.
When k > 1, we find that a simple greedy scheme, which allocates
all available threads to the head of line request, is delay optimal
among all on-line scheduling schemes. We also provide some
numerical results that point to the limitations of the exponential
assumption, and suggest further research directions.

I. INTRODUCTION

Cloud storage, an essential element of cloud computing, has
been rapidly expanding, backed by technology giants, such as
Amazon, Google, Microsoft, IBM, and Apple, as well as now
popular startups, such as Dropbox, Rack-space, and NexGen.
The total cloud storage market is expected to grow from $5.6
billion in 2012 to $46.8 billion by 2018 with a compound

Cloud Storage

Fig. 1. An example of four files using FEC codes with parameters (4,2) in
cloud storage and three thread allocation schemes

annual growth rate of 40.2% [1]. Cloud storage systems pro-
vide users with easy access, low maintenance, flexibility, and
scalability.

As in all storage systems, efficiency, reliability, and latency
are critical requirements for cloud storage systems. Although
simple duplications can be used for reliability, the most promis-
ing storage codes are forward-error-correction (FEC) codes,
such as maximum-distance-separable (MDS) codes, which pro-
vide a better resiliency to erasures than duplication for a given
amount of redundancy. In this paper, we consider FEC codes
with fixed coding parameters(n, k), i.e., each file is divided into
k equal-sized chunks, which are then expanded inton chunks
such that anyk out of n chunks are sufficient to successfully
restore thek original chunks (hence, the file itself). Fig. 1 shows
an example, wheren = 4 andk = 2. In particular, four equal-
length files A, B, C, and D are stored in the cloud using FEC
codes with parameters (4,2). Each filex ∈ {A,B,C,D} is
partitioned into two equal-length chunks,[x1, x2], and its four
coded chunks,[x1, x2, x1 + x2, x1 + 2x2], are stored in the
cloud. A file can be retrieved from any two of its four chunks.
In this manner, different levels of efficiency and reliability can
be achieved by adjusting the parameters(n, k) of FEC, where

http://arxiv.org/abs/1404.6687v1

2

Request

arrivals
Queue

Threads

Cloud

Storage

Dispatcher

Read Time

Fig. 2. The architecture for data retrieval through a multiple-thread dispatcher.

we havek > 1 in general, whilek = 1 simply means data
duplication. Some online file storage companies have already
adopted such FEC codes, such as Wuala [2].

While reliability and efficiency have been carefully studied
in cloud storage systems, its performance in terms of delay has
received much less attention, even though delay is a critically
important issue that significantly affects user experienceand
can play a major role in the widespread adoption of these sys-
tems. Measurement studies show that there exists a significant
skew in network bound I/O performance [3]. Earlier evaluations
of Amazon S3 indicate that the slowest 10-20% of read/write
requests see more than 5× of the mean delays (e.g., see [4]).
The experimental study of Amazon S3 in [3] shows a similar
trend. In particular, the average delay of reading a 1MB file is
139msec, with 80% delay as 179msec, 95% as 303msec, 99.9%
as 811msec, respectively. It has been shown that delay tail has
a large impact on user experience and service provider revenue,
e.g., every 500 ms extra delay in service will lead to a 1.2%
user loss for Google and Amazon [5]. Thus, it is important to
reduce the delay spread, i.e., cutting the long tail of the service
time.

It has been revealed that the delay exhibits weak correlations
between different read tasks [3], [4]. Thus, the delay can be
reduced by simply transmitting data replications in parallel.
This motivates us to investigate the critical issue of improving
the system latency of data retrieval. In particular, a key question
we ask is:can we leverage the inherent redundancy provided
by FEC for reliability to improve delay performance? Assume
that a user requests to download files, i.e., their encoded
chunks, from the cloud storage systems with a dispatcher. The
dispatcher schedules these downloading requests with a number
of threads, where each thread can be used to retrieve one chunk
each time. The number of threads that are assigned to the user
is based on the function of the service that the user is willing
to pay for — the higher the payment, the greater the number of
threads allocated to the user. The model is depicted in Fig. 2. A
typical application scenario is given as follows: an onlinegame
user needs to load and save (read and write) his data into the
clouds using FEC codes. The user is allocated with a number
of threads, where the number of threads is determined by how
much the user is willing to spend.

In this paper, we focus on the delay of read requests (Note
that our results can be also applied to write requests). We
study the read delay induced by different thread allocation
schemes, i.e., how the threads are assigned to retrieve distinct
file chunks. To make the problem more concrete, consider the
four encoded files A, B, C, and D, shown in Fig. 1. An user
requesting these four files has four threads and can allocate
these four threads using different allocation schemes, as shown
in Fig. 1. In scheme (a), one thread is allocated to each file,
i.e., four threads are allocated to download A1, B1, C1 and D1,
depicted by the blue box. After downloading these chunks, the
threads are then scheduled to download the second chunks of
all four files. Scheme (b), depicted by the red box, provides
parallelism where the two chunks of file A/B, i.e., A1, A2, B1
and B2, are retrieved in parallel. Scheme (c) further exploits
the parallelism, and allocates all four threads to file A, each
requesting a chunk, i.e., A1, A2, A1+A2 and A1+2A2, as
depicted by the green box. As long as any two of the four
chunks are retrieved, the dispatcher immediatelyterminates the
other threads and allocates them to the next file. Clearly, the
service delay of file A is minimized by scheme (c) since the file
can be constructed from the first two successful chunks. On the
other hand, scheme (a), compared to the previous two schemes,
allows a greater number of parallel requests that can be served,
i.e., four for scheme (a), two for scheme (b) and one for scheme
(c). Therefore, there exists a tradeoff between the servicetime
of a file and parallelism in data retrieval. And it is interesting
to ask which scheme has the best delay performance.

In this paper, we resort to queueing theory and notice that
the model can be depicted as a multiple-server queue with
arrivals of data retrieving requests and a server corresponding to
a thread. However, this is not a typical queueing model because
a server can terminate its operation, depending on when other
servers complete their service (due to the redundancy that is
spread across the threads). Based on observations made in [3],
on real traces that are measured over Amazon S3 (see Section
III), the time to retrieve a fixed size chunk is random and can
be approximated as a constant delay plus ani.i.d. exponentially
distributed random variable. The randomness is because the
communication within the cloud causes random delays.

In this paper, we make the following contributions:
• We propose a queueing architecture that leverages the

coding redundancy inherent in cloud storage systems, to
improve file retrieve latency performance. In particular,
we present a new queueing model to study data retrieve
latency, where each file is encoded and stored in the cloud
using FEC codes.

• Under the simplifying assumption that the chunk down-
loading time isi.i.d. exponentially distributed, we analyze
the delay performance of different scheduling schemes.
Whenk = 1, we show that any work-conserving scheme
that fully utilizes all available threads is delay-optimal
among all on-line scheduling schemes. For the case when
k > 1, we prove that a simple greedy policy is delay-
optimal among all on-line scheduling schemes. This is a
somewhat surprising result, as delay optimality is rather

3

strong in general, which also implies throughput optimal-
ity.

The organization of the paper is as follows. We discuss
related work in Section II. In Section III, we present our
measurement results over Amazon S3. Section IV describes
the system model. In Sections V and VI, we present the
results under the cases ofk = 1 and k > 1, respectively.
The simulation results are presented in Section VII. We then
conclude our paper in Section VIII.

II. RELATED WORK

The use of coding to improve the efficiency of large-scale
data storage systems has received significant attention [6].
For instance, the authors of [7] used interference alignment
for reducing repair traffic for storage systems with erasure
coding; in [8], the authors constructed explicit regenerating
codes for achieving minimum bandwidth in distributed storage
systems; in [9], the authors considered the problem of allocating
capacity for optimal data storage. However, most of the existing
works have focused mainly on utilizing coding to reduce repair
bandwidth and storage capacity for storage systems (for more
discussion, please see [10] and the references therein).

Recently, due to the increasing importance of service latency
(i.e., delay) as a system performance metric, e.g., for Google
and Amazon, every500 ms extra delay in service will lead to a
1.2% user loss [5], researchers have started to study the effect
of coding on content retrieval delay for data storage systems.
The work [11] considered delivering a set of packets over a
linear network with minimum delay. In [12], coding was used
to reduce the blocking probability in storage networks. In [13],
coding was used as a way to prevent service interruption. In
[14] and [15], the authors investigated the performance of using
multiple servers to download file replications without consider-
ing coding. The authors in [3] proposed a heuristic transmission
control scheme by dynamically adjusting the coding parameters
which demonstrates good delay performance in cloud storages.

The most related theoretical results that we know of are
[16]–[18], which investigated how to assign the storage disks
to serve the read requests for reducing delay. In [16], all the
requests are put in a centralized queue and the authors showed
that FEC codes can reduce the data retrieving delay compared
to simple data replications. In [17], the authors proved that
flooding requests to all storage disks, rather than a subset of
disks, has a shorter data retrieving delay for the centralized
queueing model. In [18], the requests are dispatched to multiple
local queues at the storage disks and it was showed that coding
reduces data retrieving time. Different from [16]–[18], wefocus
on the systems with limited downloading threads (bandwidth)
and study how to allocate the downloading threads to exploit
the storage redundancy and minimize the data retrieving delay.
Since our system model is quite different from the existing
studies, novel proof techniques are employed.

III. M EASUREMENTOVER AMAZON S3

In this section, we describe some measurement results of
the read delay using Amazon S3 made by our coauthors from

0 500 1000 1500 2000 2500 3000 3500 4000
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

X (msec)

C
C

D
F

Fraction of time of the read delay that is greater than X

Fig. 3. CCDF of read delay for 1MB chunk.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

x 10
6

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time Lag

A
u

to
c

o
rr

e
la

ti
o

n
 C

o
e

ff
ic

ie
n

t

Fig. 4. Correlation between time ordered delay samples.

Docomo Innovations, Inc. [3]. Please refer to [3] for more
details.

Fig. 3 plots the complementary cumulative distribution func-
tion (CCDF) of the delay for downloading a file of size 1MB.
We can see that the downloading time indeed observes a wide
spread, although the file size is the same across all experiments.
Another observation is that despite the delay floors observed at
very low percentiles (e.g., beyond the 99.9th percentile),up to
99th percentile, the CCDF is close to a linear term in delay and
note that the y-axis is logarithmic. This indicates that thechunk
downloading time can be approximated as a constant delay plus
an i.i.d. exponentially distributed random variable.

Fig. 4 shows the autocorrelation coefficient between the
service times of consecutive read tasks. Note that the mean
delay is subtracted from the delay samples. We can see that
there is negligible correlation between consecutive download
delays.

IV. SYSTEM MODEL

As mentioned in the introduction, we consider a cloud
storage system, where data is stored using FEC codes with
coding parameters(n, k), i.e., each file hasn chunks stored
in the clouds and anyk out of the n chunks are sufficient
to successfully restore the original file. We assume that the
files in the cloud are homogeneous with same size and coding
parameters, which also implies that all chunks are homogeneous
with same size.

4

Data retrieval (read) is provided through a dispatcher with
multiple threads, as shown in Fig. 2. When read requests arrive,
they are first enqueued. The dispatcher then determines how
to allocate threads for each request. For instance, in Fig. 2,
there are three threads (rectangles) which are scheduled to
download chunks from the cloud, while the other three threads
(circles) are idle. Due to the service chosen by the user, the
dispatcher can simultaneously keep at mostL threads active in
any time instant. We assume that the read requests arrive at the
dispatcher with rateλ. Then, when a file is to be read from the
cloud, the dispatcher schedulesm (k ≤ m ≤ n) read tasks for
distinct chunks of the file by activating a total ofm threads (not
necessarily simultaneously). Due to the use of FEC codes, the
first k successful responses from the storage cloud will then be
sufficient for completing the read operation. Hence, we assume
that oncek chunks are successfully downloaded, the other read
tasks in progress can be terminated immediately.

For simplicity, we first assumen ≥ L+ k− 1. This assump-
tion means that there are always enough distinct data chunks
in the clouds, since it guarantees that there are still at least L
distinct chunks in the cloud for theL threads to share given that
k−1 chunks have been successfully downloaded. In this paper,
we investigate the file retrieve latency under different thread
allocation schemes, i.e., how should the dispatcher schedule
the threads for serving the read requests.

A. Problem Formulation

We consider a time period[0, T] and let N = {1, 2, 3,
· · · , i, · · ·NT } denote the set of read request arrivals during
this period, wherei denotes thei-th arrival andNT is the total
number of request arrivals during the period. We denoteni

as the number of threads that the dispatcher allocates for the
requesti. Clearly,k ≤ ni ≤ n. We denote the downloading time
of thejth thread for requesti byXi,j , j = 1, · · · , ni. We letT i

A

denote the arrival time of requesti, andT i,j
S denote the starting

time of thejth thread of requesti. Without loss of generality,
we assumeT i,1

S ≤ T i,2
S ≤ · · · ≤ T i,ni

S . We denote the finishing
time of the threadj of the requesti asT i,j

F , which is given by
T i,j
F = T i,j

S +Xi,j . Note that the threads are ordered by their
starting time but not the completion time. So it is possible that
T i,j
F > T i,l

F even if j < l. The departure time of requesti,
denoted asT i

F , is then given by the time whenk of its threads
have finished. LetT i,1:ni

F ≤ T i,2:ni

F ≤ · · · ≤ T i,ni:ni

F be the
sorted permutation of the finish times of requesti’s threads.
Thus, we haveT i

F = T i,k:ni

F .
The system delay for requesti, denoted asDi is therefore

given by

Di = T i
F − T i

A. (1)

Hence, the total expected delay under a thread allocation
policy π is given by

Eπ [D] = lim
T→∞

1

NT

NT∑
i=1

Eπ [Di], (2)

where the expectation is with respect to the distributions of
arrival process and departure process.

In the following, we will develop a new queueing model
for analyzing such cloud systems that use FEC codes for
data storage. Before we proceed, we first have the following
definitions.

Definition 4.1: The queue is said to be stable under a policy
π if

Eπ[D] < ∞. (3)

Definition 4.2: Capacity Region Λ: The set of request arrival
rates under which the queue can be stabilized by some possible
scheme.

Definition 4.3: Throughput-optimal scheme: A scheme is
said to be throughput optimal if the queue with arbitrary arrival
rateλ can be stabilized under this scheme whenever there exists
an ǫ > 0 such thatλ+ ǫ ∈ Λ.

Definition 4.4: Delay-optimal scheme: A schemeπ is said
to be delay optimal if it yields the smallestEπ[D] among all
schemes for any request arrival rateλ such thatλ+ ǫ ∈ Λ for
someǫ > 0.

B. Thread Allocation Schemes

In this section, we first present several thread allocation
schemes that can be adopted by the dispatcher and then we
motivate our problem using a simple example. The model can
be depicted as a multiple-server queue with arrivals of data
retrieving requests and a server corresponding to a thread.
However, this is not a typical queueing model because a server
can terminate its operation, depending on when other servers
complete their service (due to the redundancy that is spread
across the threads). We here consider two schemes: thegreedy
scheme and thesharing scheme.

1) The greedy scheme: All L threads are always allocated
to the HoL (head-of-line) request simultaneously until it
departs. During the serving process, if any thread out ofL
finishes downloading its assigned chunk, it immediately
starts to download another distinct chunk belonging to the
same file. Then, at some point, one thread finishes down-
loading so that the cumulative number of successfully
downloaded chunks reachesk, all the otherL−1 threads
in progress get terminated immediately. The read request
is considered complete and departs the queue. After that,
all the threads will be allocated to serve the next HoL
read request if the queue is not empty. Otherwise, all
threads remain idle.

2) The sharing scheme: The dispatcher always allocates
exactly k threads to each request (not necessarily si-
multaneously). The requests are served in a first-come-
first-serve manner. The dispatcher allocates as many
available threads as possible to a request untilk threads
have been assigned to it in total. When the number of
allocated threads for a request reachesk, the dispatcher
will allocate the available threads to the next request.

We can see that the greedy scheme and the sharing scheme
are two extremes. The greedy scheme allocates the maximum
possible resources to each individual request, but it can serve
only one request at any time. On the other hand, the sharing

5

Req

A

Thread

1

Thread

2

Cloud
Storage

Req

B

A

A

B

B

Fig. 5. An example of a two-thread queue

scheme is the most conservative for each individual request,
yet serves the maximum possible parallel requests. Another
observation is that the total number of chunks required for the
greedy scheme isL + k − 1, which consists ofk successfully
downloaded andL − 1 terminated. This corresponds to the
assumptionn ≥ L+ k − 1.

To better motivate our problem, we consider a simple exam-
ple as shown in Fig. 5. Two threads are used to read two files
A and B, which use coding parameters(2, 1), i.e., each file
simply has two duplications. We compare the delay of the two
files using the two schemes under two different downloading
time distributions.

Case 1)If the downloading time is constant for any chunk,
we can see that the sharing scheme always outperforms the
greedy scheme in terms of the delay performance since the
parallel downloads do not bring any benefit when the delay is
a fixed value.

Case 2)Consider a distribution of downloading time, which
is 0 with probability 2/3 and 3000ms with probability 1/3.
Therefore, we can see that sharing scheme has an expected
delay of 1000ms for each request, since it allocates one request
to each thread. On the other hand, since the greedy scheme
allocates both threads to a request one by one, we can easily
check that the expected delay for the first request is 1000/3ms
and the expected delay for the second one is 2000/3ms. Both
experience smaller delay than those under the sharing scheme.

The detailed calculation is as follows:
1) For the first request, it has a delay of 3000ms if and only

if both threads suffer a delay of 3000ms. The probability
of this scenario is 1/9. With a probability of 8/9, the delay
is 0. Therefore, the expected delay for the first request is
3000

9
+ 0×8

9
= 1000/3 ms.

2) For the second request, the expected delay is the sum of
the expected waiting delay in the queue and its expected
service delay. Notice that its expected waiting delay in the
queue is exactly the expected delay of the first request,
i.e., 1000/3ms. In addition, its service delay can be
calculated in the same way as the first request, that
is, 1000/3ms. Thus, the expected delay for the second
request is 2000/3ms.

Hence, we can observe that the delay-optimal scheme heavily
depends on the distribution of the downloading time. This
motivates us to ask a key question:what is the delay optimal
thread allocation scheme when the downloading time exhibits
a distribution like the one in Fig. 3. For the tractability of

theoretical analysis, we assume thatXi,j is i.i.d. exponentially
distributed random variable with meanµ in the following
sections.

V. ANALYSIS OF CASEk = 1

To facilitate the understanding of our results, we start by
analyzing the case whenk = 1. In this case, it simply means
using data duplication to store the files. To present our analysis,
we first define the following:

Definition 5.1: Work-conserving schemes: A scheme is said
to be work-conserving if no thread is idle whenever there are
requests waiting in the queue.

We emphasize thata throughput-optimal scheme must
be work-conserving. In addition, a delay-optimal scheme
must be work-conserving. The reason is that the delay and
throughput performance of any non-work-conserving scheme
can be improved by assigning the idle threads to download
some additional chunks.

Before we state our results, a key property of work-
conserving scheduling schemes for bothk = 1 and k > 1
cases is described as follows:

Lemma5.2: If the downloading time of each individual
thread is i.i.d. exponentially distributed with rateµ, and all
L threads are active, then the service time for the threads to
download one more coded chunk is exponentially distributed
with rateLµ and isi.i.d. across coded chunks.

Proof: Suppose that the system starts to download the next
coded chunk at timet, either because a new request arrives or
because a coded chunk is downloaded att. The downloading
operation of Threadl may start before timet. Let Rl be the
resident downloading time of Threadl after timet. Since allL
threads are active, the service time for the threads to download
one more coded chunk is given by

R = min
l∈{1,··· ,L}

Rl. (4)

According to the memoryless property of exponential distri-
bution, theRl’s are also exponentially distributed with rateµ
and arei.i.d. across threads. Therefore,R = minl∈{1,··· ,L}Rl

is exponentially distributed with rateLµ. By the memoryless
property of exponential distribution, the download durations of
the retrieved coded chunks arei.i.d. Therefore, the asserted
statement is proved.

Now, for k = 1 case, we have the following result.
Theorem5.3: Whenk = 1 andn ≥ L, given that the down-

loading time of each individual thread isi.i.d. exponentially
distributed, any work-conserving scheme is throughput optimal
and also delay optimal among all on-line scheduling schemes
for any arrival process.

Proof: First, we show that a delay optimal scheme must
also be throughput optimal. Suppose this is not true and denote
a delay optimal scheme in consideration asπ∗, which is not
throughput optimal. Then, according to Definitions 4.1 and 4.3,
there exists an arrival rateλ such thatλ + ǫ ∈ Λ, but under
this rate,π∗ results inEπ∗ [D] = ∞. However, sinceλ + ǫ ∈
Λ, there exists a policyπ that hasEπ[D] < ∞, and hence
Eπ [D] < Eπ∗ [D]. This contradicts the delay optimality ofπ∗.

6

Now we prove the delay optimality part. We only need to
consider the work-conserving schemes, because a non-work-
conserving scheme cannot be delay optimal. In particular, we
can always transform a non-work-conserving scheme to a work-
conserving scheme by utilizing the idle threads to download
some additional chunks, which leads to a lower delay.

Sincek = 1, each downloaded coded chunk leads to a request
departure. According to Lemma 5.2, the service durations ofthe
downloaded coded chunks arei.i.d. exponentially distributed
under any work-conserving scheme. Therefore, the service
durations of the requests are alsoi.i.d. exponentially distributed.
Different work-conserving schemes only affect the serviceorder
of different requests, but have no influence on the average delay.
Therefore, any work-conserving scheme is delay optimal. By
this, the asserted statement is proved.

It is interesting to see that although some work-conserving
schemes, such as thegreedy scheme, appears to “waste”
some system resources because some threads have useless
(unfinished) downloads due to redundant assignment, it is still
both throughput and delay optimal. The reason is because
the chunk downloading time is assumed to be exponentially
distributed, which satisfies the memoryless property.

VI. ANALYSIS OF CASEk > 1

In this section, we extend our results to the case whenk > 1.
We first have the following definitions.

Definition 6.1: Effective chunks: chunks that are down-
loaded by the firstk completed threads for any particular file.

Definition 6.2: Thread terminations: chunk download at-
tempts that are terminated due to the completion of the read
request, i.e., there are alreadyk effective chunks downloaded.

Next, we have the following theorem regarding the through-
put optimality of the work-conserving scheduling policies.

Theorem6.3: Whenk > 1 andn ≥ L+k−1, given that the
downloading time of each individual thread isi.i.d. exponen-
tially distributed, any work-conserving scheme is throughput
optimal among all on-line scheduling schemes for any arrival
process.

Proof: We only need to consider the work-conserving
schemes, because a non-work-conserving scheme cannot be
throughput optimal. According to Lemma 5.2, we know that
the service durations of effective chunks under any work-
conserving scheme have the same distribution, i.e., they are
i.i.d. exponentially distributed with rateLµ. Since each request
requires to download exactlyk effective chunks, the average
request departure rate of any work-conserving scheme isLµ/k.
On the other hand, the queue is stable if and only if the
average request arrival rate is less than the average request de-
parture rate. From the previous discussion, any work-conserving
scheme can provide the maximum request departure rateLµ/k.
Therefore, any work-conserving scheme is throughput optimal.

We now have the following theorem regarding the delay
performance of thegreedy scheme.

Theorem6.4: When k > 1 and n ≥ L + k − 1, given
that the downloading time of each individual thread isi.i.d.
exponentially distributed, thegreedy scheme is delay optimal
among all on-line scheduling schemes for any arrival process.

Proof: First, notice that a delay-optimal scheme must be
work-conserving. Otherwise, it is easy to reduce the delay by
simply allocating the idle threads to download more chunks.

Let si denote the arrival instants of thei-th arrival effective
chunk andti denote the departure instants of thei-th departed
effective chunk. Obviously, we havesi < si+1, ti < ti+1,
and si < ti. Fix the arrival processωA = {s1, s2, · · · } of the
effective chunks, we will show that the distribution (probability
density function) of the departure processωD = {t1, t2, · · · }
remains the same for any work-conserving scheme.

According to Lemma 5.2, the service time of an effective
chunk has the same distribution under any work-conserving
scheme. LetSi denote the service time of thei-th departed
effective chunk. Given the arrival instants1 of the first effective
chunk, the departure instantt1 is given by t1 = s1 + S1.
Moreover, since the distribution ofSi remains the same under
any work-conserving scheme, the distribution oft1 also remains
the same under any work-conserving scheme. Now consider
the departure instantti of the i-th departed effective chunk.
Since the system is work-conserving,ti is given by ti =
max{si, ti−1}+Si. Since the distributions of{t1, t2, · · · , ti−1}
andSi remain unchanged under any work-conserving scheme,
one can show that the distribution of{t1, t2, · · · , ti} also
remains unchanged under any work-conserving scheme. By
induction, we attained that the distribution of the departure
processωD = {t1, t2, · · · } remains the same under any work-
conserving scheme.

Next, we will show that the greedy scheme has the smallest
delay among all work-conserving schemes. According to Eqns.
(1) and (2), the expected delay is given by:

Eπ[D]

= lim
T→∞

1

NT

NT∑
i=1

Eπ[T
i
F − T i

A]

= lim
T→∞

1

NT

NT∑
i=1

∫
ωA

∫
ωD

(T i
F :π−T i

A)f(ωA)f(ωD|ωA)dωAdωD,

= lim
T→∞

∫
ωA

∫
ωD

1

NT

NT∑
i=1

(T i
F :π−T i

A)f(ωA)f(ωD|ωA)dωAdωD,

(5)

where the expectation is taken over the distribution of the
arrival process of effective chunksωA and the corresponding
distribution of the departure process of the effective chunks
ωD. T i

F :π denotes the departure time of thei−th request under
schemeπ. Notice that the distributions ofωA and ωD are
always the same for any work-conserving scheme.

For the greedy schemeπgreedy, since it serves the requests
one by one and each request requires exactlyk effective chunks,
the i-th request departs when theik-th effective chunk departs,

7

1

Time

1 2 2 3 3

1

Time

2 1 3 3 2

Seq. 1

t1 t2 t3 t4 t5 t6

Seq. 2

Fig. 6. Different departure sequences under same sample path

i.e.,

T i
F :πgreedy

= tik. (6)

For an alternative work-conserving schemeπalt, suppose that
the i-th arrival request departs when theai-th effective chunk
departs, i.e.,

T i
F :πalt

= tai
. (7)

The sequence{ta1
, ta2

, · · · , taNT
} may not be in an in-

creasing order. After sorting, suppose that this sequence be-
comes{tb1 , tb2 , · · · , tbNT

} such thattbi < tbi+1
and tbi ∈

{ta1
, ta2

, · · · , taNT
}. Therefore,i requests have departed from

the system by timetbi . Since each request containsk effective
chunks, the systems must have downloaded at leastik effective
chunks bytbi , which tells us that

tbi ≥ tik. (8)

Using (6)-(8), we can attain

1

NT

NT∑
i=1

(T i
F :πgreedy

− T i
A)−

1

NT

NT∑
i=1

(T i
F :πalt

− T i
A)

=
1

NT

NT∑
i=1

(T i
F :πgreedy

− T i
F :πalt

)

=
1

NT

NT∑
i=1

(tik − tai
)

=
1

NT

NT∑
i=1

(tik − tbi)

≤0. (9)

Since the distributions ofωA and ωD are always the same
for any work-conserving scheme, (9) tells us that the greedy
scheme achieves the minimum average delay among all the
work-conserving schemes, which completes our proof.

Fig. 6 shows an example whenk = 2, i.e., each request
requires two effective chunks. In the figure, we plot two
same sample paths of effective chunk departure, where each
rectangle represents an effective chunk and the number means
which request this effective chunk belongs to. Sequence1
represents the effective chunks belonging under the greedy
scheme, where the chunks depart in order. On the contrary,
some other work-conserving scheme may have a non-ordered
effective chunks departure, such as Sequence2. Although for a
particular request, its delay may be greater in greedy scheme,
such as request 3 departs later in Sequence 1 than Sequence 2

in the figure, the summation of delay under greedy scheme is
always no greater than any other work-conserving scheme, as
t2 + t4 + t6 ≤ t3 + t5 + t6 in the example.

VII. S IMULATIONS

In this section, we conduct experiments under exponentially
distributed downloading time and real traces plotted in Sec-
tion III.

A. Simulation Setup

We simulate a system withL = 16 threads. The downloading
requests arrive as a Poisson process with parameterλ. In our
simulations, we setλ = 50, and the number of arrival is set to
be 62500. The expected downloading time for any individual
thread is assumed to be1/µ. Thus, the load is given by

ρ =
λ

Lµ
. (10)

Besides the greedy scheme and the sharing scheme, we will
also simulate the round-robin scheme as follows:

The Round-robin scheme: At any time when some threads
become idle and the queue is not empty, the dispatcher allocates
these idle threads to all the requests in the queue in a round-
robin way, i.e., the first idle thread to the first request, the
second idle request to the second request, etc..

Notice that the round-robin scheme is also work-conserving.
De facto, the Round-robin scheme actually works closely to
the greedy for low to medium arrival rates as the probabilityof
finding two requests waiting in the queue is low. We take the
average delay over 1000 sample paths for each experiment.

B. Exponential Distribution Case

First, we show the result under the case ofk = 1. We set
n = L+k−1. We plot the expected delay versus different load
ρ under the greedy scheme, the round-robin scheme and the
sharing scheme. As shown in Fig. 7, we can see that the delay
performance of the greedy scheme and round-robin scheme are
the same, which is much smaller than the delay of the sharing
scheme. The reason is that both of the greedy and round-robin
scheme are work-conserving, while the sharing scheme is not.
This observation validates our result in Theorem 5.3.

Fig. 8 shows the expected delay under both the greedy and
the round-robin scheme whenk = 2 (Since the sharing scheme
has a much worse expected delay, in order to clearly show
the gap between the two work-conserving schemes, we do not
plot the sharing scheme in the figure). We can see that the
greedy scheme outperforms the round-robin scheme in terms
of expected delay, which verifies our result in Theorem 6.4.
It is indeed surprising that the greedy scheme outperforms
the Round-robin scheme as one can intuitively think that
round robin makes more opportunistic use of parallel threads.
However, the capacity regions are the same under both schemes,
as we have proven in Theorem 6.3.

In Fig. 9, we fix ρ = 0.1. It shows that expected delay
versus different values ofk. It can be also noticed that the
expected delay under the greedy scheme is strictly smaller
than the expected delay under the round-robin scheme. And

8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

20

40

60

80

100

120

140

160

180

Load

E
xp

ec
te

d
de

la
y

(m
s)

Greedy Scheme
Round−robin Scheme
Sharing Scheme

Fig. 7. Expected delay under greedy, round-robin and sharing schemes when
k = 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

Load

E
xp

ec
te

d
de

la
y

(m
s)

Greedy Scheme
Round−Robin Scheme

Fig. 8. Expected delay under greedy and round-robin schemeswhenk = 2

2 3 4 5 6 7 8 9
0

20

40

60

80

100

120

140

k

E
xp

ec
te

d
de

la
y

(m
s)

Greedy Scheme
Round−robin Scheme

Fig. 9. Expected delay versusk under greedy and round-robin schemes

the gap increases ask becomes larger. The reason is that
whenk increases, the effective chunk departure sequence under
round-robin scheme has more randomness and becomes more
disordered. From the discussion following Theorem 6.4, we
know that the ordered departure of requests under the greedy
scheme leads to the smallest delay. Thus, a larger delay is
expected if more disorder occurs.

C. Real Traces

Not surprisingly, the simulations using exponential service
times for individual threads are in line with the optimalityof
work-conserving schemes fork = 1 and the greedy scheme in
general fork ≥ 1 established in the previous sections. As we
have indicated in Section III, real public clouds such as Amazon
S3 have in general non-negligible constant overheads for all
files sizes. Thus, our results on delay optimality cannot directly
be used for real systems, which calls for further investigations.
In [3], for instance, it is clearly shown that adding more
redundancy reduces the system throughput and suggests that
FEC should be adaptive to the system load to improve system
performance.

In Figure 10, we plot average latency using real traces
collected from Amazon S3 for 1 Mbyte files in North California
region in 2012. In the figure,k = 2 and each chunk size is
1Mbyte (thus, the original file is of 2Mbyte in size). Thus, to
recover the file at least 2 chunks must be downloaded. Using
the same traces for chunk service times, we compared non-
preemptive first come first serve strategies. Each point in the
horizontal axis corresponds to a different strategy that simply
dictates how many chunks are requested per file request. As
in the previous section, we assume that there areL = 16
threads. The file arrival rate is set such thatρ = 0.05, i.e.,
it is low enough to keep the system stable regardless of how
many chunks are requested per file. The left-most point in the
curve corresponds to the sharing strategy that sendsk = 2
requests per job. Right-most two points are equivalent to the
greedy strategy that allocates all threads to the same job request
until k chunks are downloaded for that job. The intermediate
strategies trade-offs between maximum sharing vs. all greedy
strategy by allocating more and more chunk requests for the
same job. As it is clear in the figure that the average system
delay first reduces and than increases until the scheduling
policies converge to the greedy strategy. In this particular case,
downloading 10 chunks per job (in a non-work-conserving
fashion!) becomes the best strategy among the fixed FEC rate
strategies. Thus, even when the system is operating within the
capacity region the queueing delay penalty can wipe out the
benefits of service time improvements achieved with using more
number of redundant requests. We plot the service time (i.e.,
the time it takes from the time one of the threads starts serving
the first chunk of an object until the k-th chunk of the same
object is completely downloaded) in the same figure. Clearly,
there is diminishing return for improving the service time with
more redundant requests. In contrast, the queueing delay gets
worse with higher redundancy.

To illustrate how sending redundant requests improve the
service time, we plot the CCDF for a 2Mbyte file. As before
we set the chunk size to 1Mbyte (i.e.,k = 2), but this
time assumed thatL = ∞ to provide a lower bound on
service time distribution with unlimited bandwidth. Fig. 11
shows CCDF curves when 2, 3, 4, 8 and 16 encoded chunks
are requested simultaneously. The individual chunk service
times are simulated using the same Amazon S3 traces as in

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

60

80

100

120

140

160

180

of requested chunks per file request

A
ve

ra
ge

 D
el

ay
 (

m
s)

k=2, L = 16, ρ = 0.05

Average System Time
Average Service Time

Fig. 10. Greedy scheme is not delay-optimal in general over real clouds.

0 100 200 300 400 500 600 700 800 900 10001100120013001400150016001700180019002000
10

−4

10
−3

10
−2

10
−1

10
0

X (ms)

C
C

D
F

CCDF of Service Time for k=2; chunk size = 1Mbyte; L = ∞

2 Parallel Chunk Requests
3 Parallel Chunk Requests
4 Parallel Chunk Requests
8 Parallel Chunk Requests
16 Parallel Chunk Requests

Fig. 11. Complementary cumulative distribution function (CCDF) of service
time with unlimited bandwidth for a 2Mbyte file and k=2.

Fig. 10. Notice that the distribution gets sharpened and when
16 chunks are requested in parallel, the shape comes close to
a deterministic service time. Under deterministic servicetimes,
we know that the sharing scheme is the delay optimal strategy.
Therefore, even under relatively high bandwidth conditions
(e.g.,L >> n), adding redundancy beyond a certain threshold
should not bring any benefit and a sharing strategy that allocates
a limited number of threads to each file request should perform
better than a pure greedy strategy that allocates all threads to
the same job request. These insights suggest that the theoretical
insights should be applied with care only in situations whenthe
exponential assumption is reasonable.

VIII. C ONCLUSION

In this paper, we study delay performance of downloading
data from cloud storages by leveraging multiple parallel threads,
assuming that the data in the clouds has been encoded using
FEC codes. This leads to a new queueing model. We roughly
approximate the downloading time for any individual threadas
an i.i.d. exponentially distributed random variable. We show
that the any work-conserving scheme is delay-optimal among
all on-line scheduling schemes whenk = 1. Whenk > 1, we
prove that a simple greedy scheme is delay optimal among all
on-line scheduling schemes. We validate our results through
simulations with exponentially distributed service time.There
are two interesting important open directions: One is to analyze

the data retrieving delay of different scheduling schemes in the
non-exponential case. Some initial efforts were made recently
in [3], [18]–[20]. Another open problem is to analyze the
data retrieving delay of different scheduling schemes whenthe
conditionn ≥ L+ k − 1 does not hold.

REFERENCES

[1] “Public/private cloud storage market,”
http://www.marketsandmarkets.com/PressReleases/cloud-storage.asp.

[2] “Wuala,” http://www.wuala.com/.
[3] G. Liang and U. Kozat, “FAST CLOUD: Pushing the Envelope on

Delay Performance of Cloud Storage with Coding,”IEEE/ACM Trans.
Networking, Nov 2013, preprint.

[4] S. L. Garfinkel, “An evaluation of Amazons grid computingservices:
EC2, S3 and SQS,” Harvard University, Tech. Rep., 2007.

[5] Y. Lu, Q. Xie, G. Kliot, A. Geller, J. Larus, and A. Greenberg, “Join-
idle-queue: A novel load balancing algorithm for dynamically scalable
web services,”Performance Evaluation, 2011.

[6] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright, and K. Ramchan-
dran, “Network coding for distributed storage systems,”IEEE Trans. Inf.
Theory, vol. 56, no. 9, Sept. 2010.

[7] Y. Wu and A. G. Dimakis, “Reducing repair traffic for erasure coding-
based storage via interference alignment,”IEEE Intl Symp. on Information
Theory (ISIT), 2009.

[8] K. V. Rashmi, N. B. Shah, P. V. Kumar, and K. Ramchandran, “Explicit
and optimal exact-regenerating codes for the minimum-bandwidth point
in distributed storage,”IEEE Intl Symp. on Information Theory (ISIT),
2010.

[9] D. Leong, A. G. Dimakis, and T. Ho, “Distributed storage allocation
problems,” Proceedings of the Workshop on Network Coding, Theory,
and Applications (NetCod), 2009.

[10] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A survey on
network codes for distributed storage,”Proceedings of the IEEE, vol.
99, no. 3, March 2011.

[11] T. Dikaliotis, A. G. Dimakis, T. Ho, and M. Effros, “On the delay of
network coding over line networks,”IEEE International Symposium on
Information Theory (ISIT), 2009.

[12] U. J. Ferner, M. Medard, and E. Soljanin, “Toward sustain-
able networking: Storage area networks with network coding,”
http://arxiv.org/abs/1205.3797, 2012.

[13] A. ParandehGheibi, M. Medard, A. Ozdaglar, and S. Shakkottai, “Avoid-
ing interruptions: A QoE reliability function for streaming media applica-
tions,” IEEE J. Sel. Areas Commun., vol. 29, no. 5, pp. 1064–1074, May
2011.

[14] J. H. Kim, H.-S. Ahn, and R. Righter, “Managing queues with hetero-
geneous servers,”Journal of Applied Probability, vol. 48, pp. 435–452,
2011.

[15] Y. Kim, R. Righter, and R. Wolff, “Grid scheduling with NBU service
times,” Operations Research Letters, vol. 38, pp. 502–504, 2010.

[16] L. Huang, S. Pawar, H. Zhang, and K. Ramchandran, “Codescan reduce
queueing delay in data centers,”Proceedings of IEEE International
Symposium on Information Theory (ISIT), July 2012.

[17] N. B. Shah, K. Lee, and K. Ramchandran, “The MDS queue: Analysing
latency performance of codes,” http://arxiv.org/abs/1211.5405, to appear
in IEEE ISIT, 2014.

[18] G. Joshi, Y. Liu, and E. Soljanin, “On the delay-storagetrade-
off in content download from coded distributed storage systems,”
http://arxiv.org/abs/1305.3945, 2013.

[19] G. Liang and U. C. Kozat, “On throughput-delay optimal access to storage
clouds via load adaptive coding and chunking,” inIEEE INFOCOM, 2014.

[20] N. B. Shah, K. Lee, and K. Ramchandran, “When do redundant requests
reduce latency?” inAllerton Conference, 2013.

http://www.marketsandmarkets.com/PressReleases/cloud-storage.asp

	I INTRODUCTION
	II RELATED WORK
	III Measurement Over Amazon S3
	IV SYSTEM MODEL
	IV-A Problem Formulation
	IV-B Thread Allocation Schemes

	V ANALYSIS of CASE K=1
	VI ANALYSIS of CASE K>1
	VII Simulations
	VII-A Simulation Setup
	VII-B Exponential Distribution Case
	VII-C Real Traces

	VIII Conclusion
	References

