arxiv:1404.6687v1 [cs.IT] 26 Apr 2014

When Queueing Meets Coding: Optimal-Latency
Data Retrieving Scheme in Storage Clouds

Shengbo Chen Yin Sun Ulas C. Kozat Longbo Huang
Department of ECE ~ Department of ECE DOCOMO Innovations, Inc. 1lIS, Tsinghua University
Ohio State UniversityThe Ohio State University Palo Alto, CA, 94304 longbohuang@tsinghua.edu.cn
chens@ece.osu.edu sunyin02@gmail.com kozat@docomoinnovations.com

Prasun Sinha Guanfeng Liang Xin Liu Ness B. Shroff
Department of CSE DOCOMO Innovations, Inc. Department of CS Department of ECE and CSE
Ohio State University Palo Alto, CA, 94304 UC Davis The Ohio State University

prasun@cse.ohio-state.edgliang@docomoinnovations.comiu@cs.ucdavis.edu shroff@ece.osu.edu

Abstract—Storage clouds, such as Amazon S3, are being widely — Cloud St >
used for web services and Internet applications. It has beenb- ~—— ou orage

served that the delay for retrieving data from and placing dda into

the clouds is quite random, and exhibits weak correlations btween Al | A2 | A1+A2 | |A1+2A2]
different read/write requests. This inspires us to investjate a key Scheme (a)
problem: can we reduce the delay by transmitting data repliations Ssthnqu (E) Bl || B2 | [BI+B2 | [B1+2B2]

in parallel or using powerful erasure codes?

In this paper, we study the problem of reducing the delay Scheme (¢) ¢l ‘ €2 ‘ ‘ cic2 ‘ ‘CHZCZ‘
of downloading data from cloud storage systems by leveragin DI | D2 | [D1+D2 | [D1+2D2]
multiple parallel threads, assuming that the data has beenreoded
and stored in the clouds using fixed rate forward error corredion ~— -~

(FEC) codes with parameters(n, k). That is, each file is divided

into k£ equal-sized chunks, which are then ex_panded inte chunks Fig. 1. An example of four files using FEC codes with paransetdr2) in
such that any £ chunks out of the n are sufficient to successfully ¢joud storage and three thread allocation schemes

restore the original file. The model can be depicted as a multie-

server queue with arrivals of data retrieving requests and aserver

corresponding to a thread. However, this is not a typical queeing

model because a server can terminate its operation, depemdj on

when other servers complete their service (due to the redurahcy annual growth rate of 40.2%][1]. Cloud storage systems pro-
that is spread across the threads). Hence, to the best of ourvide users with easy access, low maintenance, flexibilitg, a
knowledge, the analysis of this queueing model remains qut scalability.

uncharted. . - N
Recent traces from Amazon S3 show that the time to retrieve a As in all storage systems, efficiency, reliability, and fap

fixed size chunk is random and can be approximated as a constan @r€ critical requirements for cloud storage systems. Aigfo
delay plus ani.i.d. exponentially distributed random variable. For ~ simple duplications can be used for reliability, the mosirpis-

the tractability of the theoretical analysis, we assume thathe ing storage codes are forward-error-correction (FEC) spde
chunk downloading time isi.i.d. exponentially distributed. Under gch as maximum-distance-separable (MDS) codes, which pro

this assumption, we show that any work-conserving scheme is . - P .
delay-optimal among all on-line scheduling schemes wheh — 1. vide a better resiliency to erasures than duplication foivary

When k > 1, we find that a simple greedy scheme, which allocates @mount of redundancy. In this paper, we consider FEC codes
all available threads to the head of line request, is delay dgpmal with fixed coding paramete(s:, k), i.e., each file is divided into
among all on-line scheduling schemes. We also provide somek equal-sized chunks, which are then expanded intthunks
numerica_ll results that point to the Iimitation§ of _the exporential g ch that any: out of n chunks are sufficient to successfully
assumption, and suggest further research directions. restore the: original chunks (hence, the file itself). Fid. 1 shows
an example, where = 4 andk = 2. In particular, four equal-
length files A, B, C, and D are stored in the cloud using FEC
Cloud storage, an essential element of cloud computing, f@sles with parameters (4,2). Each fitee {A, B,C, D} is
been rapidly expanding, backed by technology giants, sachpartitioned into two equal-length chunks; , 22|, and its four
Amazon, Google, Microsoft, IBM, and Apple, as well as nowoded chunks|zy, x2, x1 + z2, 1 + 222], are stored in the
popular startups, such as Dropbox, Rack-space, and NexCaaud. A file can be retrieved from any two of its four chunks.
The total cloud storage market is expected to grow from $5l16 this manner, different levels of efficiency and relidlyilcan
billion in 2012 to $46.8 billion by 2018 with a compoundbe achieved by adjusting the parametersk) of FEC, where

. INTRODUCTION

http://arxiv.org/abs/1404.6687v1

] In this paper, we focus on the delay of read requests (Note
Dispatcher that our results can be also applied to write requests). We

Read Time study the read delay induced by different thread allocation
:ﬁ schemes, i.e., how the threads are assigned to retrievectlist
— file chunks. To make the problem more concrete, consider the
= four encoded files A, B, C, and D, shown in Fid. 1. An user
— . . . Cloud) .
Request requesting these four files has four threads and can allocate
arrivals Storage

these four threads using different allocation schemeshasrs
in Fig.[d. In scheme (a), one thread is allocated to each file,
Threads i.e., four threads are allocated to download A1, B1, C1 and D1
depicted by the blue box. After downloading these chunkes, th
threads are then scheduled to download the second chunks of
all four files. Scheme (b), depicted by the red box, provides
parallelism where the two chunks of file A/B, i.e., Al, A2, B1
and B2, are retrieved in parallel. Scheme (c) further exploi
we havek > 1 in general, whilek = 1 simply means data the parallelism, and allocates all four threads to file A ,heac
duplication. Some online file storage companies have afreaéquesting a chunk, i.e., Al, A2, A1+A2 and A1+2A2, as
adopted such FEC codes, such as Wuala [2]. depicted by the green box. As long as any two of the four
While reliability and efficiency have been carefully stutlie chunks are retrieved, the dispatcher immediatedgninates the
in cloud storage systems, its performance in terms of dedsy fother threads and allocates them to the next file. Cleardy, th
received much less attention, even though delay is a dhticaservice delay of file A is minimized by scheme (c) since the file
important issue that significantly affects user experieacd can be constructed from the first two successful chunks. &n th
can play a major role in the widespread adoption of these sysher hand, scheme (a), compared to the previous two schemes
tems. Measurement studies show that there exists a significallows a greater number of parallel requests that can bedgerv
skew in network bound 1/O performance [3]. Earlier evaloasi i.e., four for scheme (a), two for scheme (b) and one for sehem
of Amazon S3 indicate that the slowest 10-20% of read/wri{e). Therefore, there exists a tradeoff between the setirve
requests see more tharx %f the mean delays (e.g., séé [4])of a file and parallelism in data retrieval. And it is inteiegt
The experimental study of Amazon S3 [[3] shows a similao ask which scheme has the best delay performance.
trend. In particular, the average delay of reading a 1MB §le i In this paper, we resort to queueing theory and notice that
139msec, with 80% delay as 1#8sec, 95% as 30fsec, 99.9% the model can be depicted as a multiple-server queue with
as 81nsec, respectively. It has been shown that delay tail hasrivals of data retrieving requests and a server corratipgrio
a large impact on user experience and service provider uevera thread. However, this is not a typical queueing model b&zau
e.g., every 500 ms extra delay in service will lead to a 1.2%server can terminate its operation, depending on whermr othe
user loss for Google and Amazdn [5]. Thus, it is important teervers complete their service (due to the redundancy shat i
reduce the delay spread, i.e., cutting the long tail of theise spread across the threads). Based on observations madg in [3
time. on real traces that are measured over Amazon S3 (see Section
It has been revealed that the delay exhibits weak correlatidIl), the time to retrieve a fixed size chunk is random and can
between different read tasks| [3[.| [4]. Thus, the delay can be approximated as a constant delay plus.iach exponentially
reduced by simply transmitting data replications in patall distributed random variable. The randomness is because the
This motivates us to investigate the critical issue of inirg communication within the cloud causes random delays.

Queue

Fig. 2. The architecture for data retrieval through a mlgtigpread dispatcher.

the system latency of data retrieval. In particular, a kegstjon In this paper, we make the following contributions:
we ask is:can we leverage the inherent redundancy provided « We propose a queueing architecture that leverages the
by FEC for reliability to improve delay performance? Assume coding redundancy inherent in cloud storage systems, to

that a user requests to download files, i.e., their encoded improve file retrieve latency performance. In particular,
chunks, from the cloud storage systems with a dispatcher. Th we present a new queueing model to study data retrieve
dispatcher schedules these downloading requests with aerum latency, where each file is encoded and stored in the cloud
of threads, where each thread can be used to retrieve on& chun using FEC codes.

each time. The number of threads that are assigned to the user Under the simplifying assumption that the chunk down-
is based on the function of the service that the user is willin loading time isi.i.d. exponentially distributed, we analyze
to pay for — the higher the payment, the greater the number of the delay performance of different scheduling schemes.
threads allocated to the user. The model is depicted i Fig. 2 Whenk = 1, we show that any work-conserving scheme
typical application scenario is given as follows: an onljzene that fully utilizes all available threads is delay-optimal
user needs to load and save (read and write) his data into the among all on-line scheduling schemes. For the case when
clouds using FEC codes. The user is allocated with a number &£ > 1, we prove that a simple greedy policy is delay-
of threads, where the number of threads is determined by how optimal among all on-line scheduling schemes. This is a
much the user is willing to spend. somewhat surprising result, as delay optimality is rather

strong in general, which also implies throughput optimal- 0 Fraction of time of the read defay thatis greater than X

ity.
The organization of the paper is as follows. We discuss 107}
related work in Sectiorill. In SectiohJIl, we present our
measurement results over Amazon S3. Sediioh IV describes 107k
the system model. In Sectioris] V and]VI, we present the
results under the cases &f = 1 and & > 1, respectively. e
The simulation results are presented in Secfiod VII. We then
conclude our paper in Sectign MlII.

CCDF

10 E

II. RELATED WORK
10°

The use of coding to improve the efficiency of large-scale o 50 1000 1500)((ﬁgg% C)2500 3000 3500 4000
data storage systems has received significant attention [6]
For instance, the authors dfl[7] used interference alignmen Fig. 3. CCDF of read delay for IMB chunk.
for reducing repair traffic for storage systems with erasure
coding; in [8], the authors constructed explicit regeriagat
codes for achieving minimum bandwidth in distributed stera
systems; in[[9], the authors considered the problem of aflng
capacity for optimal data storage. However, most of thetiexjs
works have focused mainly on utilizing coding to reduce nepa
bandwidth and storage capacity for storage systems (foe mor
discussion, please sde [10] and the references therein).

Recently, due to the increasing importance of service agten d
(i.e., delay) as a system performance metric, e.g., for &oog
and Amazon, every00 ms extra delay in service will lead to a
1.2% user loss[[b], researchers have started to study the effect
of coding on content retrieval delay for data storage system
The work [11] considered delivering a set of packets over a

linear network with minimum delay. I [12], coding was usegh,como Innovations, Inc[[3]. Please refer fd [3] for more
to reduce the blocking probability in storage networks18][details.

coding was used as a way to prevent service interruption. Ing; ; T
) i X g.[3 plots the complementary cumulative distributiondun
[14] and [15], the authors investigated the performancesofgl tion (CCDF) of the delay for downloading a file of size 1MB.

multiple servers to download file replications without cioles- We can see that the downloading time indeed observes a wide
ing coding. The authors in][3] proposed a heuristic transiors spread, although the file size is the same across all expetsme
control scheme by dynamically adjusting the coding pararset Another observation is that despite the delay floors obseave
which demonstrates good dglay performance in cloud stsrag\(;ery low percentiles (e.g., beyond the 99.9th percentilp)to

The most related theoretical results that we know of agyy hercentile, the CCDF is close to a linear term in delay an
[16]-[18], which investigated how to assign the storageslis e that the y-axis is logarithmic. This indicates that¢hank

X ; I?jownloading time can be approximated as a constant delay plu
requests are put in a centralized queue and the authors dhoyﬁi i.d. exponentially distributed random variable

that FEC codes can reduce the data retrieving delay compare

to simple data replications. In_[17], the authors proved thgle

flooding requests to all storage disks, rather than a sutfsetd

disks, has a shorter data retrieving delay for the cengdliz

gueueing model. I [18], the requests are dispatched tdpteult cla
) . ys.

local queues at the storage disks and it was showed thatg:ocﬂn

reduces data retrieving time. Different f_roﬁ[l@}l[lS], Weus_ IV. SYSTEM MODEL

on the systems with limited downloading threads (bandwidth

and study how to allocate the downloading threads to exploitAs mentioned in the introduction, we consider a cloud

the storage redundancy and minimize the data retrievinaydelstorage system, where data is stored using FEC codes with

Since our system model is quite different from the existingoding parametersén, k), i.e., each file has chunks stored

L L L
05 1 15 2

i I I
E] 15 =l 05 o
Time Lag 0t

Fig. 4. Correlation between time ordered delay samples.

gig. [4 shows the autocorrelation coefficient between the

rvice times of consecutive read tasks. Note that the mean
glay is subtracted from the delay samples. We can see that
there is negligible correlation between consecutive dowadail

studies, novel proof techniques are employed. in the clouds and any: out of then chunks are sufficient
to successfully restore the original file. We assume that the
I1l. M EASUREMENTOVER AMAZON S3 files in the cloud are homogeneous with same size and coding

In this section, we describe some measurement resultspafameters, which also implies that all chunks are homagene
the read delay using Amazon S3 made by our coauthors fravith same size.

Data retrieval (read) is provided through a dispatcher with In the following, we will develop a new queueing model
multiple threads, as shown in F[g. 2. When read requestgearrifor analyzing such cloud systems that use FEC codes for
they are first enqueued. The dispatcher then determines haata storage. Before we proceed, we first have the following
to allocate threads for each request. For instance, in[Eig.d2finitions.
there are three threads (rectangles) which are scheduled tBefinition 4.1: The queue is said to be stable under a policy
download chunks from the cloud, while the other three thsead if
(circles) are idle. Due to the service chosen by the user, the
dispatcher can simultaneously keep at mbshreads active in
any time instant. We assume that the read requests arribe at t Definition 4.2: Capacity Region A: The set of request arrival
dispatcher with raté.. Then, when a file is to be read from therates under which the queue can be stabilized by some pessibl
cloud, the dispatcher schedules(k < m < n) read tasks for scheme.
distinct chunks of the file by activating a total of threads (not Definition 4.3: Throughput-optimal scheme: A scheme is
necessarily simultaneously). Due to the use of FEC codes, #aid to be throughput optimal if the queue with arbitraryvair
first k successful responses from the storage cloud will then e\ can be stabilized under this scheme whenever there exists
sufficient for completing the read operation. Hence, weragssuan ¢ > 0 such that\ + ¢ € A.
that oncek chunks are successfully downloaded, the other readDefinition 4.4: Delay-optimal scheme: A schemer is said
tasks in progress can be terminated immediately. to be delay optimal if it yields the smalle&t,[D] among all

For simplicity, we first assume > L 4+ k — 1. This assump- schemes for any request arrival ratesuch that\ + ¢ € A for
tion means that there are always enough distinct data chusksnec > 0.
in the clouds, since it guarantees that there are still &t [Ba
distinct chunks in the cloud for the threads to share given that]) .)
%k — 1 chunks have been successfully downloaded. In this paper!" this section, we first present sevgral thread allocation
we investigate the file retrieve latency under differenegtsr Schemes that can be adopted by the dispatcher and then we

allocation schemes, i.e., how should the dispatcher stted@iotivate our problem using a simple example. The model can
the threads for serving the read requests. be depicted as a multiple-server queue with arrivals of data

. retrieving requests and a server corresponding to a thread.
A. Problem Formulation However, this is not a typical queueing model because a serve
We consider a time perio,7] and let A’ = {1,2,3, can terminate its operation, depending on when other server
-,i,---Np} denote the set of read request arrivals duringobmplete their service (due to the redundancy that is spread
this period, wheré denotes thé-th arrival andNr is the total across the threads). We here consider two schemegrdieely
number of request arrivals during the period. We denate scheme and theharing scheme.

as the number of threads that the dispatcher allocates or th1) The greedy scheme: All L threads are always allocated

E-[D] < . (3)

B. Thread Allocation Schemes

request. Clearly,k < n; < n. We denote the downloading time to the HoL (head-of-line) request simultaneously until it
of the jth thread for requestby X; ;, j = 1,--- ,n;. We letT? departs. During the serving process, if any thread out of
denote the arrival time of requestandTg’ denote the starting finishes downloading its assigned chunk, it immediately
time of thejth thread of request Without loss of generality, starts to download another distinct chunk belonging to the
we assumd’y' < 7g? < ... < Tg¢™. We denote the finishing same file. Then, at some point, one thread finishes down-
time of the thread of the request asT’, which is given by loading so that the cumulative number of successfully
T = Tg’ 4+ X, ;. Note that the threads are ordered by their downloaded chunks reachksall the otherL — 1 threads
starting time but not the completion time. So it is possibilat t in progress get terminated immediately. The read request
i > T even if j < [. The departure time of request is considered complete and departs the queue. After that,
denoted ad%, is then given by the time wheh of its threads all the threads will be allocated to serve the next HoL
have finished. Lep'™ < Tp*"™ < ... < Tp™™ be the read request if the queue is not empty. Otherwise, all
sorted permutation of the finish times of requéstthreads. threads remain idle.
Thus, we havel}, = T3, 2) The sharing scheme: The dispatcher always allocates
The system delay for request denoted asD; is therefore exactly k threads to each request (not necessarily si-
given by multaneously). The requests are served in a first-come-
Di =Tk —Th. Q) first.-serve manner. The .dispatcher allocates as many
available threads as possible to a request unthreads
Hence, the total expected delay under a thread allocation have been assigned to it in total. When the number of
policy 7 is given by allocated threads for a request reacheshe dispatcher
| M will allocate the available threads to the next request.
E.[D] = A o ZEF [D;], (2) We can see that the greedy scheme and the sharing scheme
T AT S are two extremes. The greedy scheme allocates the maximum

where the expectation is with respect to the distributiohs possible resources to each individual request, but it cavese
arrival process and departure process. only one request at any time. On the other hand, the sharing

theoretical analysis, we assume tat; is i.i.d. exponentially
distributed random variable with meam in the following

Cloud sections.
Storage V. ANALYSIS oFCASEk =1

To facilitate the understanding of our results, we start by
analyzing the case wheln= 1. In this case, it simply means
using data duplication to store the files. To present ouryaisl

Fig. 5. An example of a two-thread queue we first define the following:
Definition 5.1: Work-conserving schemes: A scheme is said

to be work-conserving if no thread is idle whenever there are
scheme is the most conservative for each individual requestquests waiting in the queue.
yet serves the maximum possible parallel requests. AnotheWe emphasize thah throughput-optimal scheme must
observation is that the total number of chunks requiredter tbe work-conserving In addition, a delay-optimal scheme
greedy scheme i& + k — 1, which consists of successfully must be work-conserving The reason is that the delay and
downloaded and. — 1 terminated. This corresponds to thehroughput performance of any non-work-conserving scheme
assumptiom > L+ k — 1. can be improved by assigning the idle threads to download

To better motivate our problem, we consider a simple exarmeme additional chunks.
ple as shown in Fid.]5. Two threads are used to read two filesBefore we state our results, a key property of work-
A and B, which use coding parametgi3 1), i.e., each file conserving scheduling schemes for bdth= 1 and k£ > 1
simply has two duplications. We compare the delay of the twmses is described as follows:
files using the two schemes under two different downloadingLemma5.2: If the downloading time of each individual
time distributions. thread isi.i.d. exponentially distributed with ratg, and all

Case 1)If the downloading time is constant for any chunk/. threads are active, then the service time for the threads to
we can see that the sharing scheme always outperforms dleevnload one more coded chunk is exponentially distributed
greedy scheme in terms of the delay performance since thigh rate Ly and isi.i.d. across coded chunks.
parallel downloads do not bring any benefit when the delay is Proof: Suppose that the system starts to download the next
a fixed value. coded chunk at time, either because a new request arrives or

Case 2)Consider a distribution of downloading time, whichbecause a coded chunk is downloaded. akhe downloading
is 0 with probability 2/3 and 300@s with probability 1/3. operation of Thread may start before time. Let R; be the
Therefore, we can see that sharing scheme has an expeotsitlent downloading time of Threddfter timet. Since allL
delay of 100@ns for each request, since it allocates one requd$ireads are active, the service time for the threads to duawunl
to each thread. On the other hand, since the greedy scheme more coded chunk is given by
allocates both threads to a request one by one, we can easily R— min R)
check that the expected delay for the first request is 1008/3 1e{1,,L} a

and the expected delay for the second one is 2008/30th According to the memoryless property of exponential distri

experience .smaller delgy than those under the sharing Eheﬂﬂjtion, theR,’s are also exponentially distributed with rate

The detailed calculation is as follows: and arei.i.d. across threads. Therefor®, = minje ;... 1y R

1) For the first request, it has a delay of 36@0f and only s exponentially distributed with ratéu. By the memoryless
if both threads suffer a delay of 3008. The probability property of exponential distribution, the download durasi of
of this scenario is 1/9. With a probability of 8/9, the delayhe retrieved coded chunks arg.d. Therefore, the asserted
is 0. Therefore, the expected delay for the first requestdgatement is proved. m
30 + 058 =1000/3 ms. Now, for k = 1 case, we have the following result.

2) For the second request, the expected delay is the sum ofheorem5.3: Whenk = 1 andn > L, given that the down-
the expected waiting delay in the queue and its expectefiding time of each individual thread is.d. exponentially
service delay. Notice that its expected waiting delay in thfistributed, any work-conserving scheme is throughpuinugt
queue is exactly the expected delay of the first requeghd also delay optimal among all on-line scheduling schemes
i.e., 1000/3ms. In addition, its service delay can befor any arrival process.
calculated in the same way as the first request, that proof: First, we show that a delay optimal scheme must
is, 1000/3ms. Thus, the expected delay for the secongdiso be throughput optimal. Suppose this is not true andtdeno
request is 2000/&ns. a delay optimal scheme in consideration7as which is not

Hence, we can observe that the delay-optimal scheme heatfilyoughput optimal. Then, according to Definitigns| 4.1 4

depends on the distribution of the downloading time. Thibere exists an arrival rat® such that\ + ¢ € A, but under
motivates us to ask a key questiomhat is the delay optimal this rate,7* results inE.-[D] = oo. However, since\ + ¢ €
thread allocation scheme when the downloading time exhibits A, there exists a policyr that hasE.[D] < oo, and hence
a distribution like the one in Fig. B For the tractability of E,[D] < E,-[D]. This contradicts the delay optimality af*.

Req Req

Now we prove the delay optimality part. We only need to Theorem6.4: Whenk > 1 andn > L + k — 1, given
consider the work-conserving schemes, because a non-wdhat the downloading time of each individual threadi.isd.
conserving scheme cannot be delay optimal. In particular, wxponentially distributed, thgreedy scheme is delay optimal
can always transform a non-work-conserving scheme to a-wogknong all on-line scheduling schemes for any arrival praces
conserving scheme by utilizing the idle threads to download Proof: First, notice that a delay-optimal scheme must be
some additional chunks, which leads to a lower delay. work-conserving. Otherwise, it is easy to reduce the delay b

Sincek = 1, each downloaded coded chunk leads to a requa#hply allocating the idle threads to download more chunks.
departure. According to Lemria®.2, the service durations®f | et s, denote the arrival instants of theh arrival effective
downloaded coded chunks aré.d. exponentially distributed chunk andt; denote the departure instants of th#n departed
under any work-conserving scheme. Therefore, the serviggective chunk. Obviously, we have, < s;i1, t; < tit1,
durations of the requests are alsal. exponentially distributed. and s; < ¢;. Fix the arrival processi, = {s1,59,--} of the
Different work-conserving schemes only affect the seroicier effective chunks, we will show that the distribution (probiy
of different requests, but have no influence on the averalgg.dedensity function) of the departure process = {t1,tg, -}
Therefore, any work-conserving scheme is delay optimal. B¥mains the same for any work-conserving scheme.
this, the asserted statement is proved. According to Lemmd5]2, the service time of an effective

B chunk has the same distribution under any work-conserving

It is interesting to see that although some work-conservidgheme. LetS; denote the service time of thieth departed
schemes, such as thgreedy scheme, appears to “waste’effective chunk. Given the arrival instast of the first effective
some system resources because some threads have usgiRfisk, the departure instant is given byt, = s; + S;.
(unfinished) downloads due to redundant assignment, iilis Sioreover, since the distribution &f; remains the same under
both throughput and delay optimal. The reason is becaugg, work-conserving scheme, the distributiort pflso remains
the chunk downloading time is assumed to be exponentiajiye same under any work-conserving scheme. Now consider

distributed, which satisfies the memoryless property. the departure instant; of the i-th departed effective chunk.
Since the system is work-conserving, is given by ¢, =
VI. ANALYSIS oF CASEE > 1 max{s;, t;—1}+S;. Since the distributions dft1, ta, -+ ,t;—1}
In this section, we extend our results to the case when1. ~and.S; remain unchanged under any work-conserving scheme,
We first have the following definitions. one can show that the distribution dfy,ts,---,t;} also

Definition 6.1; Effective chunks. chunks that are down- '€mMains unchanged under any work-conserving scheme. By
loaded by the firsk completed threads for any particular file.induction, we attained that the distribution of the departu
Definition 6.2: Thread terminations. chunk download at- Processwp = {t1,ts,---} remains the same under any work-
tempts that are terminated due to the completion of the re&@'Serving scheme.
request, i.e., there are alreatlyeffective chunks downloaded. Next, we will show that the greedy scheme has the smallest
Next, we have the following theorem regarding the throug€lay among all work-conserving schemes. According to Eqns
put optimality of the work-conserving scheduling policies (@) and [2), the expected delay is given by:
Theorem6.3: Whenk > 1 andn > L+k—1, given that the
downloading time of each individual thread iis.d. exponen- Ex[D]

tially distributed, any work-conserving scheme is thropgth 1 dx) .
optimal among all on-line scheduling schemes for any arrivar lim_ No > Ex[Th — T
process. =t
Proof: We only need to consider the work-conserving 1 3 ; i
schemes, because a non-work-conserving scheme cannot:b&r;oN_TE/M /WD(TF:”_TA)f(wA)f(lewA)dede’
i=

throughput optimal. According to Lemnia’b.2, we know that N
the service durations of effective chunks under any work- . 1 i i
conserving scheme have the same distribution, i.e., they a'Thjgo /WA /WDN_TZ:(TF:”_TA)f(wA)f(wD|wA)dede’
i.i.d. exponentially distributed with ratéu. Since each request = (5)
requires to download exactly effective chunks, the average
request departure rate of any work-conserving schem@ j%. where the expectation is taken over the distribution of the
On the other hand, the queue is stable if and only if thgrival process of effective chunks, and the corresponding
average request arrival rate is less than the average tedpiesdistribution of the departure process of the effective dfsun
parture rate. From the previous discussion, any work-aoireg 5. 7}, denotes the departure time of theth request under
scheme can provide the maximum request departurdaté. schemer. Notice that the distributions of 4 and wp are
Therefore, any work-conserving scheme is throughput adtimalways the same for any work-conserving scheme.
u For the greedy schemegeedy, Since it serves the requests

We now have the following theorem regarding the delayne by one and each request requires exactfective chunks,

performance of thgreedy scheme. thei-th request departs when thie-th effective chunk departs,

Seq. 1 m m M M H H ------ in the figure, the summation of delay under greedy scheme is
Time always no greater than any other work-conserving scheme, as

to +t4 + tg < t3 + t5 + tg IN the example.
Seq.2 |1 M m H M M — o
t @ & t I & > VII. SIMULATIONS

In this section, we conduct experiments under exponewtiall
Fig. 6. Different departure sequences under same samgile pat distributed downloading time and real traces plotted in-Sec
tion [T

ie., A. Smulation Setup

We simulate a system with = 16 threads. The downloading
requests arrive as a Poisson process with parametir our

For an alternative work-conserving schemg, suppose that simulations, we seh = 50, and the number of arrival is set to
the i-th arrival request departs when theth effective chunk be 62500. The expected downloading time for any individual

T}y = ik ©)

departs, i.e., thread is assumed to ¢y Thus, the load is given by
i _ A
TF:?Tah - tai' (7) p= L_ (10)
The sequence(ta,,ta,, " ,tay, } May not be in an in- K

creasing order. After sorting, suppose that this sequemee b Besides the greedy scheme and the sharing scheme, we will
comes {ty,,t,, - ,tyy. } such thatt,, < ., andt, € also simulate the round-robin scheme as follows:
19 29 ? NT 7 i+1 i

{tarstays 7’5aNT}- Therefore; requests have departed from The Rpund-robin scheme; At any time wher_1 some threads
the system by time,,. Since each request contaiheffective become idle and the queue is not empty, the dispatcher tdloca

chunks, the systems must have downloaded at féastfective these idle threads to all the requests in the queue in a round-
chunks byty,, which tells us that robin way, i.e., the first idle thread to the first request, the

second idle request to the second request, etc..
o, = Lik- (8) Notice that the round-robin scheme is also work-conserving
De facto, the Round-robin scheme actually works closely to

Usin -[8), we can attain . . .
ing (G}(8), w I the greedy for low to medium arrival rates as the probabdfty

1 & . 1 . finding two requests waiting in the queue is low. We take the
Np z;(TF:ﬂgreedy —T4) - Np E(TF:W —T) average delay over 1000 sample paths for each experiment.
1 Nz } B. Exponential Distribution Case
:N_T Z(Tlg:wgreedy — Ty First, we show the result under the casekof 1. We set
i=1 n = L+k—1. We plot the expected delay versus different load
N, p under the greedy scheme, the round-robin scheme and the
:N_T . (tik = ta,) sharing scheme. As shown in F[d. 7, we can see that the delay
Z;Tl performance of the greedy scheme and round-robin scheme are
_ b (tir — th)) the same, which is much smaller than the delay of the sharing
" Np P ik scheme. The reason is that both of the greedy and round-robin
<0. ©) scheme are work-conserving, while the sharing scheme is not

This observation validates our result in Theofen 5.3.
Since the distributions ofv4, and wp are always the same Fig.[8 shows the expected delay under both the greedy and
for any work-conserving schemé] (9) tells us that the greethe round-robin scheme whén= 2 (Since the sharing scheme
scheme achieves the minimum average delay among all titees a much worse expected delay, in order to clearly show
work-conserving schemes, which completes our proof. the gap between the two work-conserving schemes, we do not
m plot the sharing scheme in the figure). We can see that the
Fig.[@ shows an example whein = 2, i.e., each request greedy scheme outperforms the round-robin scheme in terms
requires two effective chunks. In the figure, we plot twof expected delay, which verifies our result in Theodeni 6.4.
same sample paths of effective chunk departure, where eétclis indeed surprising that the greedy scheme outperforms
rectangle represents an effective chunk and the numberanetiie Round-robin scheme as one can intuitively think that
which request this effective chunk belongs to. Sequehceround robin makes more opportunistic use of parallel thsead
represents the effective chunks belonging under the greddigwever, the capacity regions are the same under both ssheme
scheme, where the chunks depart in order. On the contrayg,we have proven in Theordm16.3.
some other work-conserving scheme may have a non-ordereth Fig.[d, we fix p = 0.1. It shows that expected delay
effective chunks departure, such as Sequen@dthough for a versus different values of. It can be also noticed that the
particular request, its delay may be greater in greedy seherexpected delay under the greedy scheme is strictly smaller
such as request 3 departs later in Sequence 1 than Sequerntter? the expected delay under the round-robin scheme. And

C. Real Traces

i
1
=

Greedy Scheme
Round-robin Scheme

Sharing Scheme / Not surprisingly, the simulations using exponential segvi

] times for individual threads are in line with the optimaliy
work-conserving schemes fér= 1 and the greedy scheme in
general fork > 1 established in the previous sections. As we
have indicated in Sectidn]ll, real public clouds such as Aoma
S3 have in general non-negligible constant overheads for al
files sizes. Thus, our results on delay optimality cannaaiy
be used for real systems, which calls for further invesibgest
In [3], for instance, it is clearly shown that adding more
T 05 i o5 oe o7 o5 oe redundancy reduces the system throughput and suggests that
Load FEC should be adaptive to the system load to improve system

i d delay und d d-robin and st h performance.
Fig. 7. Expected delay under greedy, round-robin an emes when . .
ngI P Y greedy % In Figure [I0, we plot average latency using real traces

collected from Amazon S3 for 1 Mbyte files in North California
region in 2012. In the figurek = 2 and each chunk size is
i i i i 1Mbyte (thus, the original file is of 2Mbyte in size). Thus, to
Round-Robin Scherme] / recover the file at least 2 chunks must be downloaded. Using
/ the same traces for chunk service times, we compared non-
preemptive first come first serve strategies. Each pointén th
horizontal axis corresponds to a different strategy thapst
dictates how many chunks are requested per file request. As
in the previous section, we assume that there fare= 16
threads. The file arrival rate is set such that= 0.05, i.e.,
it is low enough to keep the system stable regardless of how
many chunks are requested per file. The left-most point in the
: ‘ ‘ ‘ ‘ ‘ ‘ curve corresponds to the sharing strategy that sénds 2
Ot 02 03 04 Doy 08 0T 0809 requests per job. Right-most two points are equivalent € th
greedy strategy that allocates all threads to the same fplest
Fig. 8. Expected delay under greedy and round-robin schevhesk = 2 until £ chunks are downloaded for that job. The intermediate
strategies trade-offs between maximum sharing vs. alldyree
strategy by allocating more and more chunk requests for the
‘ ‘ ‘ same job. As it is clear in the figure that the average system
Round-robin Scheme ; delay first reduces and than increases until the scheduling
policies converge to the greedy strategy. In this particciese,
downloading 10 chunks per job (in a non-work-conserving
fashion!) becomes the best strategy among the fixed FEC rate
strategies. Thus, even when the system is operating wilign t
capacity region the queueing delay penalty can wipe out the
benefits of service time improvements achieved with usingemo
number of redundant requests. We plot the service timg (i.e.
) the time it takes from the time one of the threads starts i3grvi
o ‘ ‘ ‘ ‘ ‘ ‘ the first chunk of an object until the k-th chunk of the same
K object is completely downloaded) in the same figure. Clearly
there is diminishing return for improving the service timéahw
Fig. 9. Expected delay versusunder greedy and round-robin schemes more redundant requests. In contrast, the queueing delay ge
worse with higher redundancy.

To illustrate how sending redundant requests improve the
the gap increases ak becomes larger. The reason is thatervice time, we plot the CCDF for a 2Mbyte file. As before
whenk increases, the effective chunk departure sequence under set the chunk size to 1Mbyte (i.ek, = 2), but this
round-robin scheme has more randomness and becomes niiote assumed thaf. = oo to provide a lower bound on
disordered. From the discussion following Theorem 6.4, veervice time distribution with unlimited bandwidth. Figdl 1
know that the ordered departure of requests under the grestipws CCDF curves when 2, 3, 4, 8 and 16 encoded chunks
scheme leads to the smallest delay. Thus, a larger delayais requested simultaneously. The individual chunk servic
expected if more disorder occurs. times are simulated using the same Amazon S3 traces as in

i
Iy
=

Expected delay (ms)
2oe e
5 8 8 8 8 3

N
=]

150

=
o
S

Expected delay (ms)
g

140

1201

Expected delay (ms)
5 3 3 B8

N
=)

k=2,L =16, p=0.05

e~ Average System Time|
< Average Service Time|

160 1

Average Delay (ms)

I A S S R S|
5 6 7 8 9 10 11 12 13 14 15 16 17 18
of requested chunks per file request

Fig. 10. Greedy scheme is not delay-optimal in general ozal clouds.

CCDF of Service Time for k=2; chunk size = 1Mbyte; L =co
e e SRR Gt ok B B R HEUR S EERR G
. [‘|2 Parallel Chunk Requests
-=-3 Parallel Chunk Requests
< 4 Parallel Chunk Requests

8 Parallel Chunk Requests
-+ 16 Parallel Chunk Requests

10"

4| I I L I I I I I Il I Il Il Il Il Il Il Il Il
0 100 200 300 400 500 600 700 800 900 1(0001)100120013001400150016001700180019002000
X (ms

Fig. 11. Complementary cumulative distribution functid®QDF) of service

time with unlimited bandwidth for a 2Mbyte file and k=2.

the data retrieving delay of different scheduling schemebé
non-exponential case. Some initial efforts were made thcen
in [3], [18]-[20]. Another open problem is to analyze the
data retrieving delay of different scheduling schemes wthen
conditionn > L + k — 1 does not hold.

REFERENCES

[1] “Public/private cloud storage market,”
http://www.marketsandmarkets.com/PressReleasedkdtarage.asp.

[2] “Wuala,” http://www.wuala.com/.

[3] G. Liang and U. Kozat, “FAST CLOUD: Pushing the Envelopa o
Delay Performance of Cloud Storage with CodintEEE/ACM Trans.
Networking, Nov 2013, preprint.

[4] S. L. Garfinkel, “An evaluation of Amazons grid computirsgrvices:
EC2, S3 and SQS,” Harvard University, Tech. Rep., 2007.

[5] VY. Lu, Q. Xie, G. Kliot, A. Geller, J. Larus, and A. Greenige “Join-
idle-queue: A novel load balancing algorithm for dynamiicacalable
web services, Performance Evaluation, 2011.

[6] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright, and K.afchan-
dran, “Network coding for distributed storage systemi&EE Trans. Inf.
Theory, vol. 56, no. 9, Sept. 2010.

[7]1 Y. Wu and A. G. Dimakis, “Reducing repair traffic for erasucoding-
based storage via interference alignmergEE Intl Symp. on Information
Theory (I99T), 2009.

[8] K. V. Rashmi, N. B. Shah, P. V. Kumar, and K. Ramchandrdxglicit
and optimal exact-regenerating codes for the minimum-wadttl point
in distributed storage,IEEE Intl Symp. on Information Theory (IST),
2010.

[9] D. Leong, A. G. Dimakis, and T. Ho, “Distributed storag#oeation
problems,” Proceedings of the Workshop on Network Coding, Theory,
and Applications (NetCod), 2009.

[10] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A syrnen
network codes for distributed storageProceedings of the IEEE, vol.
99, no. 3, March 2011.

[11] T. Dikaliotis, A. G. Dimakis, T. Ho, and M. Effros, “On édelay of
network coding over line networksfEEE International Symposium on
Information Theory (ISIT), 2009.

U. J. Ferner, M. Medard, and E. Soljanin, “Toward sustai

. . o 12]
Fig.[10. Notice that the dl_strlbutlon gets sharpened ananh% able networking: Storage area networks with network catling
16 chunks are requested in parallel, the shape comes close to http:/arxiv.org/abs/1205.3797, 2012.

a deterministic service time. Under deterministic services,

[13] A. ParandehGheibi, M. Medard, A. Ozdaglar, and S. Shakk “Avoid-
ing interruptions: A QoE reliability function for streangrmedia applica-

we know that the sharing scheme is the delay optimal strategy ions,” IEEE J. Sdl. Areas Commun,, vol. 29, no. 5, pp. 1064-1074, May
Therefore, even under relatively high bandwidth condiion 2011 . _ _
(e.g.,L >> n), adding redundancy beyond a certain thresholyf!] J: H. Kim, H.-S. Ahn, and R. Righter, "Managing queueshwhetero-

should not bring any benefit and a sharing strategy thatathsc

geneous servers,Journal of Applied Probability, vol. 48, pp. 435-452,
2011.

a limited number of threads to each file request should parfof15] Y. Kim, R. Righter, and R. Wolff, “Grid scheduling with BU service

better than a pure greedy strategy that allocates all teréad
the same job request. These insights suggest that the ticabre
insights should be applied with care only in situations wtien

exponential assumption is reasonable.

VIII. CONCLUSION

times,” Operations Research Letters, vol. 38, pp. 502-504, 2010.

[16] L. Huang, S. Pawar, H. Zhang, and K. Ramchandran, “Cedesreduce
queueing delay in data centersProceedings of IEEE International
Symposium on Information Theory (IST), July 2012.

[17] N. B. Shah, K. Lee, and K. Ramchandran, “The MDS queuealysing
latency performance of codes,” http://arxiv.org/absil8405, to appear
in IEEE ISIT, 2014.

[18] G. Joshi, Y. Liu, and E. Soljanin, “On the delay-storagede-
off in content download from coded distributed storage ayst”

In this paper, we study delay performance of downloading pp://arxiv.org/abs/1305.3945, 2013.

data from cloud storages by leveraging multiple paralledaids,

assuming that the data in the clouds has been encoded u
FEC codes. This leads to a new queueing model. We roug
approximate the downloading time for any individual thread

[19] G. Liang and U. C. Kozat, “On throughput-delay optimetess to storage

N. B. Shah, K. Lee, and K. Ramchandran, “When do redundzouests
reduce latency?” irAllerton Conference, 2013.

iﬁ-n clouds via load adaptive coding and chunking,THEE INFOCOM, 2014.
y

an i.i.d. exponentially distributed random variable. We show
that the any work-conserving scheme is delay-optimal among

all on-line scheduling schemes whén= 1. Whenk > 1, we

prove that a simple greedy scheme is delay optimal among all
on-line scheduling schemes. We validate our results throug

simulations with exponentially distributed service tinidere

are two interesting important open directions: One is tdyaea

http://www.marketsandmarkets.com/PressReleases/cloud-storage.asp

	I INTRODUCTION
	II RELATED WORK
	III Measurement Over Amazon S3
	IV SYSTEM MODEL
	IV-A Problem Formulation
	IV-B Thread Allocation Schemes

	V ANALYSIS of CASE K=1
	VI ANALYSIS of CASE K>1
	VII Simulations
	VII-A Simulation Setup
	VII-B Exponential Distribution Case
	VII-C Real Traces

	VIII Conclusion
	References

