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Abstract—Mobile crowdsourced sensing (MCS) is a new
paradigm which takes advantage of the pervasive smartphones
to efficiently collect data, enabling numerous novel applications.
To achieve good service quality for a MCS application, incentive
mechanisms are necessary to attract more user participation.
Most of existing mechanisms apply only for the offline scenario
where all users’ information are known a priori. On the contrary,
we focus on a more realistic scenario where users arrive one
by one online in a random order. Based on the online auction
model, we investigate the problem that users submit their private
types to the crowdsourcer when arrive, and the crowdsourcer
aims at selecting a subset of users before a specified deadline
for maximizing the value of the services (assumed to be a non-
negative monotone submodular function) provided by selected
users under a budget constraint. We design two online mecha-
nisms, OMZ and OMG, satisfying the computational efficiency,
individual rationality, budget feasibility, truthfulness, consumer
sovereignty and constant competitiveness under the zero arrival-
departure interval case and a more general case, respectively.
Through extensive simulations, we evaluate the performance and
validate the theoretical properties of our online mechanisms.

I. INTRODUCTION

Crowdsourcing is a distributed problem-solving model in
which a crowd of undefined size is engaged to solve a complex
problem through an open call [1]. Nowadays, the proliferation
of smartphones provides a new opportunity for extending
existing web-based crowdsourcing applications to a larger con-
tributing crowd, making contribution easier and omnipresent.
Furthermore, today’s smartphones are programmable and
come with a rich set of cheap powerful embedded sensors,
such as GPS, WiFi/3G/4G interfaces, accelerometer, digi-
tal compass, gyroscope, microphone, and camera. The great
potential of the mobile phone sensing offers a variety of
novel, efficient ways to opportunistically collect data, enabling
numerous mobile crowdsourced sensing (MCS) applications,
such as Sensorly [2] for constructing cellular/WiFi network
coverage maps, SignalGuru [3], Nericell [4] and VTrack [5]
for providing traffic information, Ear-Phone [6] and Noise-
Tube [7] for making noise maps. For more details, we refer
interested readers to several survey papers [1], [8], [9].

Adequate user participation is one of the most critical fac-
tors determining whether a MCS application can achieve good

service quality. Most of the current MCS applications [2]–
[7] are based on voluntary participation. While participating
in a MCS campaign, smartphone users consume their own
resources such as battery and computing power, and expose
their locations with potential privacy threats. Thus, incen-
tive mechanisms are necessary to provide participants with
enough rewards for their participation costs. Most of existing
mechanisms [10]–[14] apply only for the offline scenario in
which all of participating users report their types, including
the tasks they can complete and the bids, to the crowdsourcer
(campaign organizer) in advance, and then the crowdsourcer
selects a subset of users after collecting the information of
all users to maximize its utility (e.g., the total value of all
tasks that can be completed by selected users). In practice,
however, users always arrive one by one online in a random
order and user availability changes over time. Therefore, an
online incentive mechanism is necessary to make irrevocable
decisions on whether to accept a user’s task and bid, based
solely on the information of users arriving before the present
moment, without knowing future information.

In this paper we consider a general problem: the crowd-
sourcer aims at selecting a subset of users before a specified
deadline, so that the value of the services provided by selected
users is maximized under the condition that the total payment
to these users does not exceed a budget constraint. Specially,
we investigate the case where the value function of selected
users is non-negative monotone submodular. This covers many
realistic scenarios. For example, many MCS applications [2]–
[7] aim at selecting users to collect sensing data so that a
given region can be covered before a specified deadline, where
the coverage function is typically non-negative monotone sub-
modular. We further assume that the cost and arrival/departure
time of each user are private and only known to itself. Users
are assumed to be game-theoretic and seek to make strategy
(possibly report an untruthful cost or arrival/departure time)
to maximize their individual utility in equilibrium. Thus, the
problem of selecting crowdsourcing users while maximizing
the value can be modeled as an online auction.

Our objective is to design online mechanisms satisfying six
desirable properties: computational efficiency, individual ra-
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tionality, budget feasibility, truthfulness, consumer sovereignty
and constant competitiveness. Informally, computational effi-
ciency ensures the mechanism can run in real time, individual
rationality ensures each participating user has a non-negative
utility, budget feasibility ensures the crowdsourcer’s budget
constraint is not violated, truthfulness ensures the participat-
ing users report their true costs (cost-truthfulness) and ar-
rival/departure times (time-truthfulness), consumer sovereignty
ensures each participating user has a chance to win the auction,
and constant competitiveness guarantees that the mechanism
performs close to the optimal solution in the offline scenario
where all users’ information are known a priori.

The main idea behind our online mechanisms is to adopt
a multiple-stage sampling-accepting process. At every stage
the mechanism allocates tasks to a user only if its marginal
density is not less than a certain density threshold that has
been computed using previous users’ information, and the
budget allocated for the current stage has not been exhausted.
Meanwhile, the user obtains a bid-independent payment. The
density threshold is computed in a manner that guarantees
desirable performance properties of the mechanism. We firstly
consider the zero arrival-departure interval case where the
arrival time of each user equals to its departure time (Section
III). In this case, achieving time-truthfulness is trivial. We
present an online mechanism OMZ satisfying all desirable
properties under this special case without considering the time-
truthfulness. Then we revise the OMZ mechanism, and present
another online mechanism OMG satisfying all desirable prop-
erties under the general case (Section IV).

II. SYSTEM MODEL AND PROBLEM FORMULATION

We use Fig. 1 to illustrate a MCS system. The system
consists of a crowdsourcer, which resides in the cloud and
consists of multiple sensing servers, and many smartphone
users, which are connected to the cloud by cellular networks
(e.g., GSM/3G/4G) or Wi-Fi connections. The crowdsourcer
first publicizes a MCS campaign in a Region of Interest (RoI),
aiming to finding some users to complete a set of tasks
Γ = {𝜏1, 𝜏2, . . . , 𝜏𝑚} in the RoI before a specified deadline 𝑇 .
Assume that a crowd of smartphone users 𝒰 = {1, 2, . . . , 𝑛}
interested in participating in the campaign arrive online in a
random order, where 𝑛 is unknown. Each user 𝑖 has an arrival
time 𝑎𝑖 ∈ {1, . . . , 𝑇}, a departure time 𝑑𝑖 ∈ {1, . . . , 𝑇},
𝑑𝑖 ≥ 𝑎𝑖, and a subset of tasks Γ𝑖 ⊆ Γ it can complete within
this time interval. Meanwhile, user 𝑖 also has an associated
cost 𝑐𝑖 ∈ ℝ+ for performing sensing tasks. All information
constitutes the type of user 𝑖, 𝜃𝑖 = (𝑎𝑖, 𝑑𝑖,Γ𝑖, 𝑐𝑖). In this
paper we consider an i.i.d. model which assumes that the costs
and values of users are i.i.d. sampled from some unknown
distributions. Note that the i.i.d. model is different from the
secretary model ∗ and the oblivious adversarial model †.

∗In the secretary model, an adversary gets to decide on the costs and values
of users, but not on the order in which they are presented to the crowdsourcer.
We further consider the secretary model in our online technical report [15].

†In the the oblivious adversarial model, an adversary chooses a worst-case
input stream including the users’ costs, values and their arrival orders.
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Fig. 1. Illustration of a mobile crowdsourced sensing system.

We model the interactive process between the crowdsourcer
and users as an online auction. Each user makes a reserve
price, called bid, for selling its service. When a user arrives,
the crowdsourcer must decide whether to buy the service of
this user, and if so, at what price, before it departs. Assume
that the crowdsourcer has a budget constraint 𝐵 indicating
the maximum value that it is willing to pay. Therefore, the
crowdsourcer always expects to obtain the maximum value
from the selected users’ services under the budget constraint.

Users are assumed to be game-theoretic and seek to make
strategy to maximize their individual utility in equilibrium.
Note that the arrival/departure time and cost of user 𝑖 are pri-
vate and only known to itself. Only the task set Γ𝑖 must be true
since the crowdsourcer can identify whether the announced
tasks are performed. In other words, user 𝑖 may misreport
all information about its type except for Γ𝑖. The budget and
value function of the crowdsourcer are common knowledge.
Although we do not require a user to declare its departure
time until the moment of its departure, we find it convenient to
analyze our auctions as direct-revelation mechanisms (DRMs).
The strategy space in an online DRM allows a user to declare
some possibly untruthful type 𝜃𝑖 = (𝑎𝑖, 𝑑𝑖,Γ𝑖, 𝑏𝑖), subject
to 𝑎𝑖 ≤ 𝑎𝑖 ≤ 𝑑𝑖 ≤ 𝑑𝑖. Note that we assume that a user
cannot announce an earlier arrival time or a later departure
time than its true arrival/departure time. In order to obtain the
required service, the crowdsourcer needs to design an online
mechanism ℳ = (𝑓, 𝑝) consisting of an allocation function
𝑓 and a payment function 𝑝. For any strategy sequence
𝜃 = (𝜃1, . . . , 𝜃𝑛), the allocation function 𝑓(𝜃) computes an
allocation of tasks for a selected subset of users 𝒮 ⊆ 𝒰 , and
the payment function 𝑝(𝜃) returns a vector (𝑝1(𝜃), . . . , 𝑝𝑛(𝜃))
of payments to the users. Note that, the crowdsourcer, when
presented with the strategy 𝜃𝑖 of user 𝑖, must decide whether
to accept user 𝑖 at what price (𝑝𝑖) before the time step 𝑑𝑖.

The utility of user 𝑖 is

𝑢𝑖 =

{
𝑝𝑖 − 𝑐𝑖, if 𝑖 ∈ 𝒮;
0, otherwise.

Let 𝑉 (𝒮) denote the value function of the crowdsourcer over
the selected subset of users 𝒮. The crowdsourcer expects to
obtain the maximum value from the selected users’ services
under the budget constraint, i.e.,

Maximize 𝑉 (𝒮) subject to
∑
𝑖∈𝒮

𝑝𝑖 ≤ 𝐵.
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In this paper, we focus on the case where 𝑉 (𝒮) is non-negative
monotone submodular. This covers many realistic scenarios.

Definition 1 (Monotone Submodular Function). Let Ω be a
finite set. For any 𝑋 ⊆ 𝑌 ⊆ Ω and 𝑥 ∈ Ω∖𝑌 , a function
𝑓 : 2Ω 7→ ℝ is called submodular if and only if

𝑓(𝑋 ∪ {𝑥})− 𝑓(𝑋) ≥ 𝑓(𝑌 ∪ {𝑥})− 𝑓(𝑌 ),

and it is monotone (increasing) if and only if 𝑓(𝑋) ≤ 𝑓(𝑌 ).

An Application Example: As illustrated in Fig. 1, we con-
sider the scenario where the crowdsourcer expects to obtain
the sensing data covering all roads in a RoI. For convenience
of calculations, we divide each road in the RoI into mul-
tiple discrete Points of Interest (PoIs), and the objective of
the crowdsourcer is equivalent to obtaining the sensing data
covering all PoIs before 𝑇 . The set of PoIs is denoted by
Γ = {𝜏1, 𝜏2, . . . , 𝜏𝑚}. Assume that each sensor follows a
geometric disk sensing model with sensing range 𝑅, which
means if user 𝑖 senses at a location 𝐿𝑖 and obtain a reading,
then any PoI within the disk with the origin at 𝐿𝑖 and a radius
of 𝑅 has been covered once. The set of PoIs covered by user
𝑖 is denoted by Γ𝑖 ⊆ Γ, which means the sensing tasks that
user 𝑖 can complete. Without loss of generality, assume that
each PoI 𝜏𝑗 has a coverage requirement 𝑟𝑗 ∈ ℤ+ indicating
how many times it requires to be sensed at most. The value
of the selected users to the crowdsourcer is:

𝑉 (𝒮) =
𝑚∑
𝑗=1

min{𝑟𝑗 ,
∑
𝑖∈𝒮

𝑣𝑖,𝑗},

where 𝑣𝑖,𝑗 equals to 1 if 𝜏𝑗 ∈ Γ𝑖, and 0 otherwise. 𝑉 (𝒮)
is non-negative monotone submodular, the proof of which is
given in our online technical report [15] due to page limit.

Our objective is to design online mechanisms satisfying the
following six desirable properties:

∙ Computational Efficiency: A mechanism is computa-
tionally efficient if both the allocation and payment can
be computed in polynomial time as each user arrives.

∙ Individual Rationality: Each participating user will have
a non-negative utility: 𝑢𝑖 ≥ 0.

∙ Budget Feasibility: We require the mechanism to be
budget feasible:

∑
𝑖∈𝒮 𝑝𝑖 ≤ 𝐵.

∙ Truthfulness: A mechanism is cost- and time-truthful (or
simply called truthful, or incentive compatible or strate-
gyproof ) if reporting the true cost and arrival/departure
time is a dominant strategy for all users. In other words,
no user can improve its utility by submitting a false cost
or arrival/departure time, no matter what others submit.

∙ Consumer Sovereignty: The mechanism cannot arbitrar-
ily exclude a user; each user will have a chance to win the
auction and obtain a payment if only its bid is sufficiently
low while others are fixed.

∙ Competitiveness: The goal of the mechanism is to
maximize the value of the crowdsourcer. To quantify
the performance of the mechanism we compare its so-
lution with the optimal solution that can be obtained

in the offline scenario where the crowdsourcer has full
knowledge about users’ types. A mechanism is 𝑂(𝑔(𝑛))-
competitive if the ratio between the online solution and
the optimal solution is 𝑂(𝑔(𝑛)). Ideally, we would like
our mechanism to be 𝑂(1)-competitive.

The importance of the first three properties is obvious,
because they together guarantee that the mechanisms can be
implemented in real time and satisfy the basic requirements.
In addition, the last three properties are indispensable for
guaranteeing the high performance and robustness. The truth-
fulness aims to eliminate the fear of market manipulation and
the overhead of strategizing over others for the participating
users. The consumer sovereignty aims to guarantee that each
participating user has a chance to win the auction, otherwise
it will hinder the users’ competition or even result in task
starvation. Besides, if some users are guaranteed not to win the
auction, then being truthful or not will have the same outcome.
For this reason, the property satisfying both the consumer
sovereignty and truthfulness is also called strong truthfulness
by Hajiaghayi et al. [16]. Later we will show that satisfying
the consumer sovereignty is not trivial in the online scenario,
which is in contrast to the offline scenario.

III. ONLINE MECHANISM UNDER ZERO
ARRIVAL-DEPARTURE INTERVAL CASE

In this section, we consider a special case where the
arrival time of each user equals to its departure time. In
this case, each user is impatient since the decision must be
made immediately once it arrives. Note that achieving time-
truthfulness is trivial in this case. It is because that any user
has no incentive to report a later arrival time or an earlier
departure time than its true arrival/departure time, since the
user cannot perform any sensing task or obtain a payment after
it departs. We present an online mechanism OMZ satisfying all
desirable properties under this zero arrival-departure interval
case, without considering the time-truthfulness. To facilitate
understanding, it is also assumed that no two users have the
same arrival time. Note that this assumption can also be easily
removed according to the revised mechanism in Section IV.

A. Mechanism Design

An online mechanism needs to overcome several nontrivial
challenges: firstly, the users’ costs are unknown and need to
be reported in a truthful manner; secondly, the total pay-
ment cannot exceed the crowdsourcer’s budget; finally, the
mechanism needs to cope with the online arrival of users.
Previous solutions of online auctions and related problems
[17], [18] always achieve desirable outcomes in online settings
via a two-stage sampling-accepting process: the first batch
of users is rejected and used as the sample which enables
making an informed decision on whether accepting the rest of
users. However, these solutions cannot guarantee the consumer
sovereignty, since the first batch of users has no chance to
win the auction no matter how low its cost is. It can lead to
undesirable effects in our problem: automatically rejecting the
first batch of users encourages users to arrive late; in other
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Fig. 2. Illustration of a multiple-stage sampling-accepting process when
𝑇 = 8.

words, those users arriving early have no incentive to report
their bids, which may hinder the users’ competition or even
result in task starvation.

To address the above challenges, we design our on-
line mechanism, OMZ, based on a multiple-stage sampling-
accepting process. The mechanism dynamically increases the
sample size and learns a density threshold used for future deci-
sion, while increasing the stage-budget it uses for allocation at
various stages. The whole process is illustrated in Algorithm 1.
Firstly, we divide all of 𝑇 time steps into (⌊log2 𝑇 ⌋+1) stages:
{1, 2, . . . , ⌊log2 𝑇 ⌋, ⌊log2 𝑇 ⌋+1}. The stage 𝑖 ends at time step
𝑇 ′ = ⌊2𝑖−1𝑇/2⌊log2 𝑇⌋⌋. Correspondingly, the stage-budget
for the 𝑖-th stage is allocated as 𝐵′ = 2𝑖−1𝐵/2⌊log2 𝑇⌋. Fig. 2
is an illustration when 𝑇 = 8. When a stage is over, we add all
users who have arrived into the sample set 𝒮 ′, and compute a
density threshold 𝜌∗ according to the information of samples
and the allocated stage-budget 𝐵′. This density threshold is
computed by calling the GetDensityThreshold algorithm (to
be elaborated later), and used for making decision at the next
stage. Specially, when the last stage 𝑖 = ⌊log2 𝑇 ⌋+ 1 comes,
the density threshold has been computed according to the
information of all users arriving before time step ⌊𝑇/2⌋, and
the allocated stage-budget 𝐵/2.

Algorithm 1: Online Mechanism under Zero Arrival-departure
Interval Case (OMZ)

Input: Budget constraint 𝐵, deadline 𝑇
(𝑡, 𝑇 ′, 𝐵′,𝒮 ′, 𝜌∗,𝒮)← (1, 𝑇

2⌊log2 𝑇⌋ ,
𝐵

2⌊log2 𝑇⌋ , ∅, 𝜖, ∅);1
while 𝑡 ≤ 𝑇 do2

if there is a user 𝑖 arriving at time step 𝑡 then3
if 𝑏𝑖 ≤ 𝑉𝑖(𝒮)/𝜌∗ ≤ 𝐵′ −∑

𝑗∈𝒮 𝑝𝑗 then4
𝑝𝑖 ← 𝑉𝑖(𝒮)/𝜌∗; 𝒮 ← 𝒮 ∪ {𝑖};5

else 𝑝𝑖 ← 0;6
𝒮 ′ ← 𝒮 ′ ∪ {𝑖};7

end8
if 𝑡 = ⌊𝑇 ′⌋ then9

𝜌∗ ← GetDensityThreshold(𝐵′,𝒮 ′);10
𝑇 ′ ← 2𝑇 ′; 𝐵′ ← 2𝐵′;11

end12
𝑡← 𝑡+ 1;13

end14

Given a set of selected users 𝒮, the marginal value of user
𝑖 /∈ 𝒮 is 𝑉𝑖(𝒮) = 𝑉 (𝒮 ∪ {𝑖}) − 𝑉 (𝒮), and its marginal
density is 𝑉𝑖(𝒮)/𝑏𝑖. When a new user 𝑖 arrives, the mechanism
allocates tasks to it as long as its marginal density is not less
than the current threshold density 𝜌∗, and the allocated stage-
budget 𝐵′ has not been exhausted. Meanwhile, we give user
𝑖 a payment

𝑝𝑖 = 𝑉𝑖(𝒮)/𝜌∗,
and add this user to the set of selected users 𝒮. To start the

mechanism, we initially set a small density threshold 𝜖, which
is used for making decision at the first stage.

Since each stage maintains a common density threshold,
it is natural to adopt a proportional share allocation rule to
compute the density threshold from the sample set 𝒮 ′ and
the allocated stage-budget 𝐵′. As illustrated in Algorithm 2,
the computation process adopts a greedy strategy. Users are
sorted according to their increasing marginal densities. In this
sorting the (𝑖+1)-th user is the user 𝑗 such that 𝑉𝑗(𝒥𝑖)/𝑏𝑗 is
maximized over 𝒮 ′∖𝒥𝑖, where 𝒥𝑖 = {1, 2, . . . , 𝑖} and 𝒥0 = ∅.
Considering the submodularity of 𝑉 , this sorting implies that:

𝑉1(𝒥0)

𝑏1
≥ 𝑉2(𝒥1)

𝑏2
≥ ⋅ ⋅ ⋅ ≥ 𝑉∣𝒮′∣(𝒥∣𝒮′∣−1)

𝑏∣𝒮′∣
.

Find the largest 𝑘 such that 𝑏𝑘 ≤ 𝑉𝑘(𝒥𝑘−1)𝐵
𝑉 (𝒥𝑘)

. The set of
selected users is 𝒥𝑘 = {1, 2, . . . , 𝑘}. Finally, we set the density
threshold to be 𝑉 (𝒥𝑘)

𝛿𝐵′ . Here we set 𝛿 > 1 to obtain a slight
underestimate of the density threshold for guaranteeing enough
users selected and avoiding the waste of budget. Later we
will fix the value of 𝛿 elaborately to enable the mechanism
achieving a constant competitive ratio.

Algorithm 2: GetDensityThreshold

Input: Stage-budget 𝐵′, sample set 𝒮 ′

𝒥 ← ∅; 𝑖← argmax𝑗∈𝒮′(𝑉𝑗(𝒥 )/𝑏𝑗);1

while 𝑏𝑖 ≤ 𝑉𝑖(𝒥 )𝐵′
𝑉 (𝒥∪{𝑖}) do2

𝒥 ← 𝒥 ∪ {𝑖};3
𝑖← argmax𝑗∈𝒮′∖𝒥 (𝑉𝑗(𝒥 )/𝑏𝑗);4

end5
𝜌← 𝑉 (𝒥 )/𝐵′;6
return 𝜌/𝛿;7

B. Mechanism Analysis

In the following, we will firstly prove that OMZ satisfies
the computational efficiency (Lemma 1), individual rationality
(Lemma 2), budget feasibility (Lemma 3), cost-truthfulness
(Lemma 4), and consumer sovereignty (Lemma 5). Then, we
will prove that OMZ can achieve a constant competitive ratio
by elaborately fixing the value of 𝛿 (Lemma 6).

Lemma 1. The OMZ mechanism is computationally efficient.

Proof: Since the mechanism runs online, we only need
to focus on the computation complexity at each time step
𝑡 ∈ {1, . . . , 𝑇}. Computing the marginal value of user 𝑖 takes
𝑂(∣Γ𝑖∣) time, which is at most 𝑂(𝑚). Thus, the running time
of computing the allocation and payment of user 𝑖 (lines 3-
8) is bounded by 𝑂(𝑚). Next, we analyze the complexity
of computing the density threshold (Algorithm 2). Finding
the user with maximum marginal density takes 𝑂(𝑚∣𝒮 ′∣)
time. Since there are 𝑚 tasks and each selected user should
contribute at least one new task, the number of winners is at
most min{𝑚, ∣𝒮 ′∣}. Thus, the running time of Algorithm 2 is
bounded by 𝑂(𝑚∣𝒮 ′∣min{𝑚, ∣𝒮 ′∣}). Therefore, the computa-
tion complexity at each time step (lines 3-13) is bounded by
𝑂(𝑚∣𝒮 ′∣min{𝑚, ∣𝒮 ′∣}). At the last stage, the sample set 𝒮 ′
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has the maximum number of samples, being 𝑛/2 with high
probability. Thus, the computation complexity at each time
step is bounded by 𝑂(𝑚𝑛min{𝑚,𝑛}).

Note that the above analysis is very conservative. In prac-
tice, the running time 𝑂(∣Γ𝑖∣) of computing the marginal value
is much less than 𝑂(𝑚). Moreover, the running time of OMZ
will increase linearly with 𝑛 especially when 𝑛 is large.

Lemma 2. The OMZ mechanism is individually rational.

Proof: From the lines 4-6 of Algorithm 1, we know that
𝑝𝑖 ≥ 𝑏𝑖 if 𝑖 ∈ 𝒮, otherwise 𝑝𝑖 = 0. Thus, we have 𝑢𝑖 ≥ 0.

Lemma 3. The OMZ mechanism is budget feasible.

Proof: At each stage 𝑖 ∈ {1, 2, . . . , ⌊log2 𝑇 ⌋, ⌊log2 𝑇 ⌋ +
1}, the mechanism uses a stage-budget 𝐵′ = 2𝑖−1𝐵

2⌊log2 𝑇⌋ . From
the lines 4-5 of Algorithm 1, it is guaranteed that the current
total payment does not exceed the stage-budget 𝐵′. Specially,
the budget constraint of the last stage is 𝐵. Therefore, every
stage is budget feasible, and when the deadline 𝑇 arrives, the
total payment does not exceed 𝐵.

Designing a cost-truthful mechanism relies on the rationale
of bid-independence. Let 𝑏−𝑖 denote the sequence of bids
arriving before the 𝑖-th bid 𝑏𝑖, i.e., 𝑏−𝑖 = (𝑏1, . . . , 𝑏𝑖−1). We
call such a sequence prefixal. Let 𝑝′ be a function from prefixal
sequences to prices (non-negative real numbers). We extend
the definition of bid-independence [19] to the online scenario:

Definition 2 (Bid-independent Online Auction). An online
auction is called bid-independent if the allocation and payment
rules for each player 𝑖 satisfy:

a) The auction constructs a price schedule 𝑝′(𝑏−𝑖);
b) If 𝑝′(𝑏−𝑖) ≥ 𝑏𝑖, player 𝑖 wins at price 𝑝𝑖 = 𝑝′(𝑏−𝑖);
c) Otherwise, player 𝑖 is rejected, and 𝑝𝑖 = 0.

Proposition 1. ( [20], Proposition 2.1) An online auction is
cost-truthful if and only if it is bid-independent.

Lemma 4. The OMZ mechanism is cost-truthful.

Proof: Consider a user 𝑖 that arrives at some stage for
which the density threshold is 𝜌∗. If by the time the user
arrives there are no remaining budget, then the user’s cost
declaration will not affect the allocation of the mechanism
and thus cannot improve its utility by submitting a false cost.
Otherwise, assume there are remaining budget by the time
the user arrives. In case 𝑐𝑖 ≤ 𝑉𝑖(𝒮)/𝜌∗, reporting any cost
below 𝑉𝑖(𝒮)/𝜌∗ would not make a difference in the user’s
allocation and payment and its utility would be 𝑉𝑖(𝒮)/𝜌∗ −
𝑐𝑖 ≥ 0. Declaring a cost above 𝑉𝑖(𝒮)/𝜌∗ would make the
worker lose the auction, and its utility would be 0. In case
𝑐𝑖 > 𝑉𝑖(𝒮)/𝜌∗, declaring any cost above 𝑉𝑖(𝒮)/𝜌∗ would
leave the user unallocated with utility 0. If the user declares a
cost lower than 𝑉𝑖(𝒮)/𝜌∗ it will be allocated. In such a case,
however, its utility will be negative. Hence the user’s utility is
always maximized by reporting its true cost: 𝑏𝑖 = 𝑐𝑖.

Lemma 5. The OMZ mechanism satisfies the consumer
sovereignty.

Proof: Each stage is an accepting process as well as a
sampling process ready for the next stage. As a result, users
are not automatically rejected during the sampling process,
and are allocated as long as their marginal densities are not
less than the current density threshold, and the allocated stage-
budget has not been exhausted.

Before analyzing the competitiveness of the OMZ mech-
anism, we firstly introduce an offline mechanism proposed
by Singer [21], which has been proved to satisfy the com-
putational efficiency, individual rationality, budget feasibility,
and truthfulness. This mechanism does not have knowledge
about users’ costs, but it is an offline mechanism, i.e., all
users submit their bids to the mechanism and wait for the
mechanism to collect all the bids and decide on an allocation.
This mechanism has been proved to be 𝑂(1)-competitive
in maximizing the value of services received under budget
constraint compared with the optimal solution. Therefore, we
only need to prove that OMZ has a constant competitive ratio
compared with this offline mechanism, then OMZ will also be
𝑂(1)-competitive compared with the optimal solution. Note
that in the offline scenario satisfying the time-truthfulness and
consumer sovereignty is trivial, since all decisions are made
after all users’ information is submitted to the crowdsourcer.

Algorithm 3: Proportional Share Mechanism (Offline) [21]
Input: Budget constraint 𝐵, User set 𝒰
/* Winner selection phase */
𝒮 ← ∅; 𝑖← argmax𝑗∈𝒰 (𝑉𝑗(𝒮)/𝑏𝑗);1

while 𝑏𝑖 ≤ 𝑉𝑖(𝒮)𝐵
𝑉 (𝒮∪{𝑖}) do2

𝒮 ← 𝒮 ∪ {𝑖};3
𝑖← argmax𝑗∈𝒰∖𝒮(𝑉𝑗(𝒮)/𝑏𝑗);4

end5
/* Payment determination phase */
foreach 𝑖 ∈ 𝒰 do 𝑝𝑖 ← 0;6
foreach 𝑖 ∈ 𝒮 do7
𝒰 ′ ← 𝒰∖{𝑖}; 𝒬 ← ∅;8
repeat9

𝑖𝑗 ← argmax𝑗∈𝒰′∖𝒬(𝑉𝑗(𝒬)/𝑏𝑗);10
𝑝𝑖 ← max{𝑝𝑖,min{𝑏𝑖(𝑗), 𝜂𝑖(𝑗)}};11

until 𝑏𝑖𝑗 ≤
𝑉𝑖𝑗

(𝒬𝑗−1)𝐵

𝑉 (𝒬)
;12

end13
return (𝒮, 𝑝);14

The offline mechanism adopts a proportional share al-
location rule. As described in Algorithm 3, it consists of
two phases: the winner selection phase and the payment
determination phase. The winner selection phase has the same
working process as Algorithm 2. To compute the payment for
each winner 𝑖 ∈ 𝒮, we sort the users in 𝒰∖{𝑖}:

𝑉𝑖1(𝒬0)

𝑏𝑖1
≥ 𝑉𝑖2(𝒬1)

𝑏𝑖2
≥ ⋅ ⋅ ⋅ ≥ 𝑉𝑖𝑛−1(𝒬𝑛−2)

𝑏𝑖𝑛−1

,

where 𝑉𝑖𝑗 (𝒬𝑗−1) = 𝑉 (𝒬𝑗−1 ∪ {𝑖𝑗}) − 𝑉 (𝒬𝑗−1) denotes
the marginal value of the 𝑗-th user and 𝒬𝑗 denotes the first
𝑗 users according to this sorting over 𝒰∖{𝑖} and 𝒬0 = ∅.
The marginal value of user 𝑖 at position 𝑗 is 𝑉𝑖(𝑗)(𝒬𝑗−1) =
𝑉 (𝒬𝑗−1 ∪ {𝑖})− 𝑉 (𝒬𝑗−1). Let 𝑘′ denote the position of the
last user 𝑖𝑗 ∈ 𝒰∖{𝑖}, such that 𝑏𝑖𝑗 ≤ 𝑉𝑖𝑗 (𝒬𝑗−1)𝐵/𝑉 (𝒬𝑗). For
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brevity we will write 𝑏𝑖(𝑗) = 𝑉𝑖(𝑗)(𝒬𝑗−1)𝑏𝑖𝑗/𝑉𝑖𝑗 (𝒬𝑗−1), and
𝜂𝑖(𝑗) = 𝑉𝑖(𝑗)(𝒬𝑗−1)𝐵/𝑉 (𝒬𝑗−1 ∪ {𝑖}). In order to guarantee
the truthfulness, each winner should be paid the critical value,
which means that user 𝑖 would not win the auction if it bids
higher than this value. Thus, the payment for user 𝑖 should be
the maximum of these 𝑘′ + 1 prices:

𝑝𝑖 = max
𝑗∈[𝑘′+1]

{min{𝑏𝑖(𝑗), 𝜂𝑖(𝑗)}}.

Let 𝑍 be the set of selected users 𝒮 computed by Algorithm
3, and the value of 𝑍 is 𝑉 (𝑍). The density of 𝑍 is 𝜌 =
𝑉 (𝑍)/𝐵. Define 𝑍1 and 𝑍2 as the subsets of 𝑍 that appears
in the first and second half of the input stream, respectively.
When the stage ⌊log2 𝑇 ⌋ is over, we obtain the sample set 𝒮 ′

consisting of all users arriving before the time ⌊𝑇/2⌋. Thus,
we have 𝑍1 = 𝑍 ∩ 𝒮 ′, and 𝑍2 = 𝑍 ∩ {𝒰∖𝒮 ′}. Let 𝑍 ′

1 denote
the set of selected users computed by Algorithm 2 based on
the sample set 𝒮 ′ and the allocated stage-budget 𝐵/2, and the
value of 𝑍 ′

1 is 𝑉 (𝑍 ′
1). The density of 𝑍 ′

1 is 𝜌′1 = 2𝑉 (𝑍 ′
1)/𝐵.

The density threshold of the last stage is 𝜌∗ = 𝜌′1/𝛿. Let 𝑍 ′
2

denote the set of selected users computed by Algorithm 1 at
the last stage. Assume that the value of each user is at most
𝑉 (𝑍)/𝜔, where the parameter 𝜔 will be fixed later.

Since the costs and values of all users are i.i.d., they
can be selected in the set 𝑍 with the same probability. The
sample set 𝒮 ′ is a random subset of 𝒰 since all users arrive
in a random order. Therefore the number of users from 𝑍
in the sample set 𝒮 ′ follows a hypergeometric distribution
𝐻(𝑛/2, ∣𝑍∣, 𝑛). Thus, we have 𝔼[∣𝑍1∣] = 𝔼[∣𝑍2∣] = ∣𝑍∣/2.
The value of each user can be seen as an i.i.d. random
variable, and because of the submodularity of 𝑉 (𝒮), it can
be derived that: 𝔼[𝑉 (𝑍1)] = 𝔼[𝑉 (𝑍2)] ≥ 𝑉 (𝑍)/2. The
expected total payments to the users from both 𝑍1 and 𝑍2 are
𝐵/2. Since 𝑉 (𝑍 ′

1) is computed with the stage-budget 𝐵/2, it
can be derived that: 𝔼[𝑉 (𝑍 ′

1)] ≥ 𝔼[𝑉 (𝑍1)] ≥ 𝑉 (𝑍)/2, and
𝔼[𝜌′1] ≥ 𝜌, where the first inequality follows from the fact
that 𝑉 (𝑍 ′

1) is the optimal solution computed by Algorithm
2 with stage-budget 𝐵/2 according to the proportional share
allocation rule. Therefore, we only need to prove that the ratio
of 𝔼[𝑉 (𝑍 ′

2)] to 𝔼[𝑉 (𝑍 ′
1)] is at least a constant, then the OMZ

mechanism will also have a constant expected competitive
ratio compared with the offline mechanism.

Lemma 6. For sufficiently large 𝜔, the ratio of 𝔼[𝑉 (𝑍 ′
2)]

to 𝔼[𝑉 (𝑍 ′
1)] is at least a constant. Specially, this ratio

approaches 1/4 as 𝜔 → ∞ and 𝛿 → 4.

The proof of Lemma 6 is given in Appendix A.

Theorem 1. The OMZ mechanism satisfies the computational
efficiency, individual rationality, budget feasibility, truthful-
ness, consumer sovereignty, and constant competitiveness un-
der the zero arrival-departure interval case.

IV. ONLINE MECHANISM UNDER GENERAL CASE

In this section, we consider the general case where each user
may have a non-zero arrival-departure interval, and there may
be multiple online users in the auction simultaneously.

A. Mechanism Design

In order to hold desirable properties of OMZ, we adopt a
similar algorithm framework under the general case. Mean-
while, in order to guarantee the cost- and time-truthfulness,
it is necessary to modify OMZ based on three principles.
Firstly, any user is added to the sample set only when it
departs; otherwise, the bid-independence will be destroyed if
its arrival-departure time spans multiple stages, because a user
can indirectly affect its payment now. Secondly, if there are
multiple users who have not yet departed at some time, we sort
these online users according to their marginal values, instead
of marginal densities, and preferentially select those users with
higher marginal value. In this way, the bid-independence can
be held. Thirdly, whenever a new time step arrives, it scans
through the list of users who have not yet departed and selects
those whose marginal densities are not less than the current
density threshold under the stage-budget constraint, even if
some arrived much earlier. At the departure time of any user
who was selected as a winner, the user is paid for a price
equal to the maximum price attained during the user’s reported
arrival-departure interval, even if this price is larger than the
price at the time step when the user was selected as a winner.

Algorithm 4: Online Mechanism under General Case (OMG)
Input: Budget constraint 𝐵, deadline 𝑇
(𝑡, 𝑇 ′, 𝐵′,𝒮 ′, 𝜌∗,𝒮)← (1, 𝑇

2⌊log2 𝑇⌋ ,
𝐵

2⌊log2 𝑇⌋ , ∅, 𝜖, ∅);1
while 𝑡 ≤ 𝑇 do2

Add all new users arriving at time step 𝑡 to a set of online3
users 𝒪; 𝒪′ ← 𝒪 ∖ 𝑆;
repeat4

𝑖← argmax𝑗∈𝒪′(𝑉𝑗(𝒮));5
if 𝑏𝑖 ≤ 𝑉𝑖(𝒮)/𝜌∗ ≤ 𝐵′ −∑

𝑗∈𝒮 𝑝𝑗 then6
𝑝𝑖 ← 𝑉𝑖(𝒮)/𝜌∗; 𝒮 ← 𝒮 ∪ {𝑖};7

else 𝑝𝑖 ← 0;8
𝒪′ ← 𝒪′ ∖ {𝑖};9

until 𝒪′ = ∅ ;10
Remove all users departing at time step 𝑡 from 𝒪, and add11
them to 𝒮 ′;
if 𝑡 = ⌊𝑇 ′⌋ then12

𝜌∗ ← GetDensityThreshold(𝐵′,𝒮 ′);13
𝑇 ′ ← 2𝑇 ′; 𝐵′ ← 2𝐵′; 𝒪′ ← 𝒪;14
repeat15

𝑖← argmax𝑗∈𝒪′(𝑉𝑗(𝒮 ∖ {𝑗}));16
if 𝑏𝑖 ≤ 𝑉𝑖(𝒮 ∖ {𝑖})/𝜌∗ ≤ 𝐵′ −∑

𝑗∈𝒮 𝑝𝑗 + 𝑝𝑖 and17
𝑉𝑖(𝒮 ∖ {𝑖})/𝜌∗ > 𝑝𝑖 then

𝑝𝑖 ← 𝑉𝑖(𝒮 ∖ {𝑖})/𝜌∗;18
if 𝑖 /∈ 𝒮 then 𝒮 ← 𝒮 ∪ {𝑖};19

end20
𝒪′ ← 𝒪′ ∖ {𝑖};21

until 𝒪′ = ∅ ;22
end23
𝑡← 𝑡+ 1;24

end25

According to the above principles, we design OMG satisfy-
ing all desirable properties under the general case, as described
in Algorithm 4. Specially, we consider two cases. The first
case is when the current time step 𝑡 is not at the end of any
stage. In this case, the density threshold remains unchanged.
The following operations (the lines 3-11 in Algorithm 4) are
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performed. Firstly, all new users arriving at time step 𝑡 are
added to a set of online users 𝒪. Then we make decision on
whether to select these online users one by one in the order of
their marginal values; the users with higher marginal values
will be selected first. If an online user 𝑖 has been selected as a
winner before time step 𝑡, we need not to make decision on it
again because it is impossible to obtain a higher payment than
before (refer to our proof in [15]). Otherwise, we need to make
decision on it again: if its marginal density is not less than the
current density threshold, and the allocated stage-budget has
not been exhausted, it will be selected as a winner. Meanwhile,
we give user 𝑖 a payment 𝑝𝑖 = 𝑉𝑖(𝒮)/𝜌∗, and add it to the set
of selected users 𝒮. Finally, we remove all users departing at
time step 𝑡 from 𝒪, and add them to the sample set 𝒮 ′.

The second case is when the current time step is just at
the end of some stage. In this case, the density threshold will
be updated. The mechanism works as the lines 13-22. We
need to make decision on whether to select these online users,
and at what prices, one by one in the order of their marginal
values, no matter whether they have ever been selected as the
winners before time step 𝑡. As shown in the lines 17-20, if
user 𝑖 can obtain a higher payment than before, its payment
will be updated. Meanwhile, if user 𝑖 has never been selected
as a winner before time step 𝑡, it will be added to the set 𝒮.

B. Mechanism Analysis

It is convenient to prove that the OMG mechanism also
holds the individual rationality, consumer sovereignty, and
constant competitiveness as OMZ (with almost the same
proof), although OMG may have slightly lower competitive
ratio than OMZ. In the following, we prove that OMG also
satisfies the computational efficiency, the budget feasibility,
and most importantly, the cost- and time-truthfulness.

Lemma 7. The OMG mechanism is computationally efficient.

Proof: The OMG mechanism needs to compute the al-
locations and payments of multiple online users at each time
step. Thus, the running time of computing the allocations and
payments at each time step is bounded by 𝑂(𝑚∣𝒪∣) < 𝑂(𝑚𝑛),
where ∣𝒪∣ is the number of online users. The complexity of
computing the density threshold is the same as that of OMZ.
Thus, the computation complexity at each time step is the
same as that of OMZ, i.e., bounded by 𝑂(𝑚𝑛min{𝑚,𝑛}).
Lemma 8. The OMG mechanism is budget feasible.

Proof: From the lines 6-7 and 17-18 of Algorithm 4, it is
guaranteed that the current total payment does not exceed the
stage-budget 𝐵′. Note that in the line 17, 𝑝𝑖 is the price paid
for user 𝑖 in the previous stage instead of the current stage,
so it cannot lead to the overrun of the current stage-budget.
Thus every stage is budget feasible, and when the deadline 𝑇
arrives, the total payment does not exceed 𝐵.

Lemma 9. The OMG mechanism is cost- and time-truthful.

The proof of Lemma 9 is quite lengthy and is given in our
online technical report [15].

Theorem 2. The OMG mechanism satisfies the computational
efficiency, individual rationality, budget feasibility, truthful-
ness, consumer sovereignty, and constant competitiveness un-
der the general case.

V. PERFORMANCE EVALUATION

To evaluate the performance of our online mechanisms, we
implemented OMZ and OMG, and compared them against
the following three benchmarks. The first benchmark is the
(approximate) optimal offline solution which has full knowl-
edge about all users’ types. The problem in this scenario is
essentially a budgeted maximum coverage problem, which is
a well-known NP-hard problem. It is known that a greedy
algorithm provides a (1 − 1/𝑒)-approximation solution [22].
The second benchmark is the proportional share mechanism
in the offline scenario (Algorithm 3). The third benchmark
is the random mechanism, which adopts a naive strategy, i.e.,
rewards users based on an uninformed fixed density threshold.
The performance metrics include the running time and the
crowdsourcer’s value.

A. Simulation Setup

We consider a Wi-Fi signal sensing application with the
same scenario as [23]. The RoI is located at Manhattan, NY,
including three avenues of 0.319km length and three streets of
1.135km length. We divide each road in the RoI into discrete
PoIs with a uniform spacing of 1m, so the RoI consists of
4353 PoIs (𝑚 = 4352) in total. Without loss of generality,
let the coverage requirement of each PoI be 1. We set the
deadline (𝑇 ) to 1800s, and vary the budget (𝐵) from 100 to
10000 with the increment of 100. Users arrive according to a
Poisson process in time with arrival rate 𝜆. We vary 𝜆 from 0.2
to 1 with the increment of 0.2. Whenever a user arrives, it is
placed at a random location on the roads. In OMZ each user
has zero arrival-departure interval, and in OMG the arrival-
departure interval of each user is uniformly distributed over
[0, 300] seconds. The sensing range (𝑅) of each sensor is set to
7 meters. Each user’s cost is uniformly distributed over [1, 10].
The initial density threshold (𝜖) of Algorithm 1 and 4 is set
to 1. As we proved in Lemma 6, when 𝛿 = 4 OMZ is 𝑂(1)-
competitive for sufficiently large 𝜔. Meanwhile we note that
𝜔 increases with the number of users who have arrived. Thus,
we set 𝛿 = 1 initially, and change it to 𝛿 = 4 once the size
of the sample set exceeds a specified threshold. Note that this
threshold could be an empirical value. In our simulation, we
set this threshold to 240, because we observe that each user’s
value is at most 1/100 of the total value when the number of
users is larger than 240. For the random mechanism, we obtain
the average performance of 50 such solutions for evaluations,
where in each solution the density threshold was chosen at
random from the range of 1 to 29 ‡. All the simulations were
run on a PC with 1.7 GHz CPU and 8 GB memory. Each
measurement is averaged over 100 instances.

‡Each user can cover at most 29 PoIs, and its bid is at least 1, so its
marginal density is at most 29.
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Fig. 4. Crowdsourcer’s value.

B. Evaluation Results

Running Time: Fig. 3 shows the running time of OMZ and
OMG. Specially, Fig. 3(a) plots the running time at different
stages while 𝜆 = 0.6§. Fig. 3(b) plots the running time at
the last stage with different arrival rates (𝜆). Both the OMZ
and OMG mechanisms have similar performance while OMG
outperforms OMZ slightly. Note that the size of the sample
set increases linearly with the time 𝑡 and the arrival rate 𝜆, so
Fig. 3 implies the relationship between the running time and
the number of users. Thus, from Fig. 3 we can infer that the
running time increases linearly with the number of users (𝑛),
which is consistent with our analysis in Section III-B.

Crowdsourcer’s Value: Fig. 4 compares the crowdsourcer’s
value achieved by OMZ and OMG against the three bench-
marks. From Fig. 4(a) we can observe that the crowdsourcer
obtains higher value when the budget constraint increases.
From Fig. 4(b) we can observe that the crowdsourcer obtains
higher value when more users participate. The approximate
optimal mechanism and the proportional share mechanism
operate in the offline scenario, where the true types or strate-
gies of all users are known a priori, and will therefore always
outperform OMZ and OMG. It is shown that the proportional
share mechanism sacrifices some value of the crowdsourcer to
achieve the cost-truthfulness compared with the approximate
optimal mechanism, and OMG also sacrifices some value to
achieve the time-truthfulness compared with OMZ. We can
also observe that both OMZ and OMG are guaranteed to be
within a constant factor of the offline solutions. Specially,
although both OMZ and OMG are only guaranteed to be
within a competitive factor of at least 8 of the proportional
share solution in expectation as we proved in Lemma 6, the

§As we proved in Lemma 1, the computation complexity is dominated by
computing the density threshold, so only the running time at the end time of
each stage is plotted.

simulation results show that this ratio is almost as small as 1.6
for OMZ or 2.4 for OMG. As compared to the approximate
optimal solution, this ratio is still below 2.2 for OMZ or below
3.4 for OMG. In addition, we can see that both OMZ and OMG
largely outweigh the random mechanism.

VI. RELATED WORK

At present, there are some studies [10]–[14] on incen-
tive mechanism design for MCS applications in the offline
scenario. Generally, two system models are considered: the
platform/crowdsourcer-centric model where the crowdsourcer
provides a fixed reward to participating users, and the user-
centric model where users can have their reserve prices for the
sensing service. For the crowdsourcer-centric model, incentive
mechanisms were designed by using a Stackelberg game
[12], [13], where the costs of all users or their probability
distribution was assumed to be known. In contrast, the user-
centric model allows that each user has a private cost only
known to itself. Danezis et al. [10] developed a sealed-bid
second-price auction to estimate the users’ value of sensing
data. Lee and Hoh [11] designed a reverse auction based
dynamic incentive mechanism for purchasing users’ sensing
data. Jaimes et al. [14] further considered the users’ location
and a budget constraint. Yang et al. [13] designed an auction-
based incentive mechanism, and proved this mechanism was
computationally efficient, individually rational, profitable, and
truthful. However, all of these studies failed to account for the
online arrival of users.

To the best of our knowledge, there are few research work
on the online mechanism design for crowdsourcing markets
[24]–[26]. Singer et al. [24] and Singla et al. [25] presented
pricing mechanisms for crowdsourcing markets based on the
bidding model and the posted price model respectively. How-
ever, they focused only on a simple additive utility function
instead of the submodular one. Badanidiyuru et al. [26] con-
sidered pricing mechanisms for maximizing the submodular
utility function under the bidding model. However, they failed
to consider the consumer sovereignty and the time-truthfulness.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have investigated online incentive mech-
anisms for mobile crowdsourced sensing. We focus on the
non-negative monotone submodular value function that can
be applied in many realistic scenarios. We have designed two
online mechanisms under different assumptions: OMZ can be
applied to the zero arrival-departure interval case, and OMG
can be applied to a more general case. We have proven that
our mechanisms satisfy the computational efficiency, indi-
vidual rationality, budget feasibility, truthfulness, consumer
sovereignty and constant competitiveness.

The are several interesting open problems. Here, we aim
at maximizing the value of services under a budget con-
straint. One future work is to design online mechanisms for
minimizing payments while obtaining the specific value of
services, where the value function is non-negative monotone
submodular. Another interesting work is for maximizing the



9

profit of the crowdsourcer, namely the value of services minus
the total cost of selected users, without budget constraint,
where the profit function is non-monotone submodular, and
can be negative.
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APPENDIX

A. Proof of Lemma 6

We consider two cases according to the total payment to
the selected users at the last stage as follows.

Case (a): The total payment to the selected users at the last
stage is at least 𝛼𝐵, 𝛼 ∈ (0, 1/2]. In this case, since each
selected user has marginal density at least 𝜌∗, so we have that

𝑉 (𝑍 ′
2) ≥ 𝜌∗𝛼𝐵 =

𝛼𝜌′1𝐵
𝛿

=
2𝛼𝑉 (𝑍 ′

1)

𝛿
.

Case (b): The total payment to the selected users at the
last stage is less than 𝛼𝐵, 𝛼 ∈ (0, 1/2]. There might be two
reasons leading to that users from 𝑍2 are not selected in 𝑍 ′

2.
The first case is when the marginal densities of some users
from 𝑍2 are less than 𝜌∗, and thus we do not select them.
Even if these users are all in 𝑍2, their expected total payment
is at most 𝐵/2. Because of submodularity, the expected total
loss due to these missed users is at most

𝜌∗ ⋅ 𝐵
2

=
𝜌′1𝐵
2𝛿

=
𝑉 (𝑍 ′

1)

𝛿
.

The other case is when there is not enough budget to pay
for some users whose marginal densities are not less than 𝜌∗.
It means that the payment for such a user (for example, user
𝑖) is larger than (1/2 − 𝛼)𝐵, i.e., 𝑉𝑖(𝒮)/𝜌∗ > (1/2 − 𝛼)𝐵;
otherwise adding this user to 𝑍 ′

2 will not lead to that the
total payment for 𝑍 ′

2 exceeds the stage-budget 𝐵/2. Because
𝔼[𝜌′1] ≥ 𝜌, we have that

𝔼[𝑉𝑖(𝒮)]>𝔼[𝜌∗]⋅(1
2
−𝛼)𝐵=

(1− 2𝛼)𝔼[𝜌′1]𝐵
2𝛿

≥ (1− 2𝛼)𝜌𝐵

2𝛿
.

Because the expected total payment to all users in 𝑍2 is at
most 𝐵/2, there cannot be more than ( 𝛿

1−2𝛼 − 1) such users
in 𝑍2. Since the value of each user is at most 𝑉 (𝑍)/𝜔, the
expected total loss due to these missed users is at most ( 𝛿

1−2𝛼−
1)𝑉 (𝑍)/𝜔. Therefore, we have that

𝔼[𝑉 (𝑍 ′
2)] ≥ 𝔼[𝑉 (𝑍2)]− (

𝛿

1− 2𝛼
− 1)

𝑉 (𝑍)

𝜔
− 𝔼[𝑉 (𝑍 ′

1)]

𝛿

≥ 𝑉 (𝑍)

2
− (

𝛿

1− 2𝛼
− 1)

𝑉 (𝑍)

𝜔
− 𝔼[𝑉 (𝑍 ′

1)]

𝛿

≥ [
1

2
− (

𝛿

1− 2𝛼
− 1)

1

𝜔
− 1

𝛿
]𝔼[𝑉 (𝑍 ′

1)].

Considering both of case (a) and (b), the ratio of 𝔼[𝑉 (𝑍 ′
2)]

to 𝔼[𝑉 (𝑍 ′
1)] will be at least 2𝛼/𝛿, if it satisfies that

1

2
− (

𝛿

1− 2𝛼
− 1)

1

𝜔
− 1

𝛿
=

2𝛼

𝛿
. (1)

Therefore, for a specific parameter 𝜔, we can obtain the op-
timal ratio of 𝔼[𝑉 (𝑍 ′

2)] to 𝔼[𝑉 (𝑍 ′
1)] by solving the following

optimization problem:

Maximize
2𝛼

𝛿
subject to Eq. (1) and 𝛼 ∈ (0, 1/2].

When 𝜔 is sufficiently large (at least 12), we can obtain a
constant ratio of 𝔼[𝑉 (𝑍 ′

2)] to 𝔼[𝑉 (𝑍 ′
1)]. Specially, the optimal

ratio approaches 1/4 as 𝜔 → ∞ and 𝛿 → 4.


