
RepFlow: Minimizing Flow Completion Times with
Replicated Flows in Data Centers

Hong Xu∗†, Baochun Li†

henry.xu@cityu.edu.hk, bli@eecg.toronto.edu
∗ Department of Computer Science, City University of Hong Kong

† Department of Electrical and Computer Engineering, University of Toronto

Abstract—Short TCP flows that are critical for many interactive
applications in data centers are plagued by large flows and head-
of-line blocking in switches. Hash-based load balancing schemes
such as ECMP aggravate the matter and result in long-tailed
flow completion times (FCT). Previous work on reducing FCT
usually requires custom switch hardware and/or protocol changes.
We propose RepFlow, a simple yet practically effective approach
that replicates each short flow to reduce the completion times,
without any change to switches or host kernels. With ECMP
the original and replicated flows traverse distinct paths with
different congestion levels, thereby reducing the probability of
having long queueing delay. We develop a simple analytical model
to demonstrate the potential improvement of RepFlow. Extensive
NS-3 simulations and Mininet implementation show that RepFlow
provides 50%–70% speedup in both mean and 99-th percentile
FCT for all loads, and offers near-optimal FCT when used with
DCTCP.

I. INTRODUCTION

Data centers run many interactive services, such as search,
social networking, and retail, that impose unique and stringent
requirements on the transport fabrics. They often partition
computation into many small tasks, distribute them to thousands
of machines, and stitch the responses together to return the final
result [4], [38]. Such partition-aggregation workflows generate
a large number of short query and response flows across many
machines, and demand that short flows have low latency in
order to provide soft real-time performance to users. More
importantly, the tail latency also needs to be low since the
request completion time depends on the slowest flow.

TCP is the dominant transport protocol in data centers [4].
Flow completion times (FCT) for short flows in TCP are
poor: FCT can be as high as tens of milliseconds while in
theory they could finish in 10–20 microseconds with 1G or
10G interconnects. The reason is that these flows often find
themselves queued up behind bursts of packets from large
flows of other workloads, such as backup, data mining, etc.
The situation is even worse with imperfect load balancing
schemes such as ECMP that perform hash-based flow-level load
balancing among links of equal distance [3]. ECMP is agnostic
to congestion, does not differentiate between short and long
flows, and may direct many large flows to the same path causing
flash congestions and long-tailed FCT even when the network is
lightly loaded [3], [38]. We measure the round-trip times (RTT)
between two small instances in Amazon EC2’s us-west-2c zone
every 1 second for 100K samples as a rough estimation of FCT.

The newer EC2 data centers are known to have many equal-
cost paths between given pairs of instances [29]. Fig. 1 and
Fig. 2 confirm the long-tailed distribution: While mean RTT is
only 0.5ms, the 99-th percentile RTT is 17ms.

0 2 4 6 8 10 12
RTT (ms)

0.0

0.2

0.4

0.6

0.8

1.0

E
m

p
ir

ic
a
l
C

D
F

Fig. 1: CDF of RTT between two
small instances in EC2 us-west-2c.

0 10 20 30 40 50 60
RTT (ms)

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

E
m

p
ir

ic
a
l
C

D
F

Fig. 2: Long tail of the RTT distribu-
tion.

Recent research has proposed many new transport designs to
reduce FCT of short flows. Broadly speaking, the central idea
is to reduce the short flows’ queueing delay via adaptive ECN-
based congestion control [4], explicit flow rate assignment [19],
deadline-aware scheduling [25], [33], [36], priority queueing
[6], and cross-layer redesign [6], [38]. While effective, they do
require modifications to switches and operating systems, which
makes them difficult to deploy in a large-scale data center with
a large number of servers and switches.

Our goal in this paper is to design a practical and effective
data center transport scheme that provides low latency for short
flows both on average and in the 99-th percentile, and can
be readily deployed in current infrastructures. To this end,
we present RepFlow, a simple data center transport design.
RepFlow directly uses existing TCP protocols deployed in the
network. The only difference with RepFlow is that it replicates
each short TCP flow by creating another TCP connection to
the receiver, and sending identical packets for both flows.
The application uses the first flow that finishes the transfer.
Flow replication can be easily implemented as libraries or
middleware at the application layer. Thus RepFlow requires no
change to switches, the network stack, or operating systems,
and maintains TCP’s robustness for throughput intensive traffic.
It can also be used with other data center transport protocols
such as DCTCP [4] to further improve performance as we will
show later.

The key conceptual insight behind RepFlow is the observa-
tion that multi-path diversity, which is readily available with
high bisection bandwidth topologies such as Fat-tree [2], is
an effective means to combat performance degradation that

ar
X

iv
:1

30
7.

74
51

v2
 [

cs
.N

I]
 8

 D
ec

 2
01

3

2

happens in a random fashion. Flash congestion and queueing
delay due to bursty traffic and ECMP happen randomly in any
part of the network at any time. As a result, congestion levels
along different paths are statistically independent. In RepFlow,
the replicated and original flow are highly likely to traverse
different paths, and the probability that both experience long
queueing delay is much smaller.

It is important to note that RepFlow is built atop ECMP
with per-flow load balancing, and is different from multipathing
schemes such as MPTCP [29] and packet spraying [12] that
split a flow across multiple paths. Traffic is asymmetric and
dynamic, especially considering link failures and external traffic
that origintes or terminates outside of the data center. When the
paths used by a flow have different loads, out-of-order packets
interact negatively with TCP and splitting flows hardly achieves
latency gains for short flows, though it may improve the
aggregate throughput for large flows. ECMP is also widely used
in current data centers, reducing the implementation overhead
of RepFlow.

We evaluate our design of RepFlow with queueing analysis,
detailed packet-level simulations in NS-3, and Linux kernel-
based implementation using Mininet [17]. We develop a simple
M/G/1 queueing model to model mean and tail FCT. Our model
shows that the diversity gain of replication can be understood
as a reduction in the effective traffic load seen by short flows,
which leads to significantly improved queueing delay and FCT.
Our evaluation uses two widely used data center workloads: one
that mimics a web search workload [4] and one that mimics
a typical data mining workload [15]. NS-3 simulations with
a 16-pod 1,024-host Fat-tree, and experiments with a 4-pod
Fat-tree on Mininet both show that RepFlow achieves 50%–
70% speedup in both mean and 99-th percentile FCT even for
loads as high as 0.8 compared to TCP. When it is feasible to
use advanced transport protocols such as DCTCP [4], RepFlow
offers competitive performance compared to state-of-the-art
clean slate approaches such as pFabric [6]. The overhead to
the network is negligible, and large flows are virtually not
impacted. Thus we believe it is a lightweight and effective
approach that requires minimal implementation efforts on top of
existing TCP based transport layer with salient FCT reductions.

II. RELATED WORK

Motivated by the drawbacks of TCP, many new data center
transport designs have been proposed. We briefly review the
most relevant prior work in this section. We also introduce
some additional work that uses replication in wide-area Internet,
MapReduce, and distributed storage systems for latency gains.

Data center transport. DCTCP [4] and HULL [5] use ECN-
based adaptive congestion control and appropriate throttling
of large flows to keep the switch queue occupancy low in
order to reduce short flows’ FCT. D3 [36], D2TCP [33], and
PDQ [19] use explicit deadline information to drive the rate
allocation, congestion control, and preemptive scheduling de-
cisions. DeTail [38] and pFabric [6] present clean-slate designs
of the entire network fabric that prioritize latency sensitive
short flows to reduce the tail FCT. All of these proposals

require modifications to switches and operating systems. Our
design objective is different: we strive for a simple way to
reduce FCT without any change to TCP and switches, and
can be readily implemented at layers above the transport layer.
RepFlow presents such a design with simple flow replication
that works with any existing transport protocol.

Replication for latency. Though seemingly naive, the idea
of using replication to improve latency has in fact gained
increasing attention in both academia and industry as a general
technique for its simplicity and effectiveness. Google reportedly
uses request replications to rein in the tail response times
in their distributed systems [11]. In the context of wide-area
Internet, [35] argues for the use of redundant operations to
improve latency of DNS queries, and [37] argues for the latency
benefit of having multiple wide-area transit links in a multi-
cloud CDN deployment scenario. Replication has also been
recently used in MapReduce [7] and storage systems [32] to
mitigate straggling jobs.

III. REPFLOW: MOTIVATION AND DESIGN

A. Motivation

RepFlow’s key design insight is that multi-path diversity
exists profoundly as a result of randomized load balancing.
In today’s data center networks based on a Fat-tree or Clos
topology [4], [15], many paths of equal distance exist between
a given pair of end-hosts. Equal-cost multi-path routing, or
ECMP, is used to perform flow-level load balancing. When a
packet arrives at a switch, ECMP picks an egress port uniformly
at random among equal-cost paths based on the hash value of
its five-tuple in the packet header. All packets of the same flow
then follow a consistent path.

H1 H2 H3 H4

S1 S2

S4S3
large flow

blocked path

unblocked path

Fig. 3: A large flow transmits from H2 to H4 following the path shown in the
solid line. If the short flow from H1 to H3 takes the path S1–S3–S2, it will
queue behind packets of the large flow in the links S1–S3 and S3–S2. If it
takes the path S1–S4–S2, there is no head-of-line blocking since all ports of
this path are empty. ECMP will randomly hash a short flow to one of the two
paths.

Due to its randomness, it is often the case that short and
large flows are routed on the same path. Short flows then have
to wait until packets of large flows are processed, a phenomenon
known as head-of-line blocking. Consider a toy example shown
in Fig. 3. The topology resembles one pod of a 4-pod Fat-tree
network. A host under switch S1(S2) has two paths to each host
under switch S2(S1). There is a persistent large flow from H2
to H4, taking the path S1–S3–S2. Now H1 starts to send short
flows of 10 packets continuously to H3. ECMP will randomly
hash the short flows with 0.5 probability to the path S1–S3–
S2, which results in head-of-line blocking and long FCT. We

3

conduct an experiment in Mininet [17] using exactly the same
setup, and observe the mean FCT is 10x worse when the large
flow co-exists as shown in the following table (more on Mininet
in Sec. VI).

Scenario Mean FCT 99-th percentile FCT
without the large flow 0.0135s 0.0145s

with the large flow 0.175s 0.490s
with the large flow and replication 0.105s 0.212s

TABLE I: Mininet experiment results of the toy example shown in Fig. 3. Each
link is 50Mb with 1ms delay. Short flows of 10 packets are sent continuously
from H1 to H3 with ECMP. With the large flow, short flows suffer from 10x
worse FCT. Replication dramatically improves mean and tail FCT by over 50%
in this case.

Thus ECMP creates serious problems. Yet at the same time
it also provides a promising solution to the problem — multi-
path diversity, which motivates RepFlow. In the toy example
it is obvious that the path S1–S4–S2 has much less queueing
delay, and by replicating the short flow and making sure the two
flows have distinct five-tuples, one copy of it will traverse this
path and improve FCT significantly. From the same Mininet
experiment we do observe over 50% improvement with simple
replication in this case, as shown in Table I. Note in reality it is
in general difficult to know and choose the right path for short
flows beforehand in a data center network with a number of
flows, not to mention its latency overhead. Replication removes
this need by opportunistically utilizing the less congested paths.

B. Design

RepFlow uses flow replication to exploit multi-path diversity.
It does not modify the transport protocol, and thus works on
top of TCP, and evidently any other TCP variants, such as
DCTCP [4] and D2TCP [33]. On the high level, there are
several design choices we need to make. First, which short
flow should be replicated? We heuristically mandate that flows
less than or equal to 100KB are considered short flows, and
are replicated to achieve better latency. This threshold value is
chosen in accordance with many existing papers [6], [19], [25],
[38]. Second, we need to decide when to replicate the flows.
One might argue that we should only replicate the flows when
they are experiencing long queueing delays so the replication
overhead is reduced. However the short duration of these flows
makes such a reactive approach too slow to possibly remedy the
situation. In the current design RepFlow proactively replicates
each and every short flow from the very beginning to achieve
the best latency. As we will show in Sec. V-E, the overhead
of doing so is negligible, thanks to the well-known fact that
short flows only account for a tiny fraction of total bytes in
production systems [6], [20]. Finally, we replicate exactly once
for simplicity, though more replication is possible.

RepFlow can be implemented in many ways. The simplest
is to create two TCP sockets when a short flow arrives, and
send the same packets through two sockets. This is also our
current implementation. Since data centers run a large number
of applications, it is preferable to provide RepFlow as a general
library or middleware for any application to invoke [1]. For
example one may implement RepFlow as a new transport

abstraction in Thrift, a popular RPC framework used by com-
panies like Facebook [31]. We are currently investigating this
option. Another possibility is to implement RepFlow at the
transport layer, by modifying TCP protocol and header so
short flows are marked and automatically replicated with two
independent subflows. This approach provides transparency to
applications, at the cost of requiring kernel upgrades. In this
space, RepFlow can be incorporated into MPTCP [30] with its
multi-path support.

It is evident that RepFlow lends itself to many implemen-
tation choices. No matter the details, it is crucial to ensure
path diversity is utilized, i.e. the five-tuples of the original
and replicated flow have to be different (assuming ECMP is
used). In our implementation we use different destination port
numbers for this purpose.

IV. ANALYSIS

Before we evaluate RepFlow at work using simulations and
experiments, in this section we present a queueing analysis of
flow completion times in data centers to theoretically under-
stand the benefits and overhead of replication.

A. Queueing Model

A rich literature exsits on TCP steady-state throughput mod-
els for both long-lived flows [24], [26] and short flows [18].
There are also efforts in characterizing the completion times
of TCP flows [10], [23]. See [10] and references therein for a
more complete literature review. These models are developed
for wide-area TCP flows, where RTTs and loss probabilities
are assumed to be constants. Essentially, these are open-loop
models. The data center environment, with extremely low fabric
latency, is distinct from the wide-area Internet. RTTs are largely
due to switch queueing delay caused by TCP packets, the
sending rate of which in turn are controlled by TCP congestion
control reacting to RTTs and packet losses. This closed-loop
nature makes the analysis more intriguing [28].

Our objective is to develop a simple FCT model for TCP
flows that accounts for the impact of queueing delay due to
large flows, and demonstrates the potential of RepFlow in data
center networks. We do not attempt to build a fine-grained
model that accurately predicts the mean and tail FCT, which is
left as future work. Such a task is potentially challenging be-
cause of not only the reasons above, but also the complications
of timeouts and retransmissions [27], [34], switch buffer sizes
[8], [23], etc. in data centers.

We construct our model based on some simplifying assump-
tions. We abstract one path of a data center network as a M/G/1
first-come-first-serve (FCFS) queue with infinite buffer. Thus
we do not consider timeouts and retransmissions. Flows arrive
following a Poisson process and have size X ∼ F (·). Since
TCP uses various window sizes to control the number of in-
flight packets, we can think of a flow as a stream of bursts
arriving to the network. We assume the arrival process of the
bursts is also Poisson. One might argue that the arrivals are not
Poisson as a burst is followed by another burst one RTT later
(implying that interarrival times are not even i.i.d). However

4

queueing models with general interarrival time distributions are
difficult to analyze and fewer results are available [14]. For
tractability, we rely on the commonly accepted M/G/1-FCFS
model [6], [8]. We summarize some key notations in the table
below. Throughout this paper we consider (normalized) FCT
defined as the flow’s completion time normalized by its best
possible completion time without contention.

TABLE II: Key notations.

M maximum window size (64KB, 44 packets)
SL threshold for large flows (100KB, 68 packets)

F (·), f(·) flow size CDF and PDF
ρ ∈ [0, 1) overall traffic load

W queueing delay of the M/G/1-FCFS queue
k initial window size in slow-start

For short flows, they mostly stay in the slow-start phase for
their life time [8], [10], [13], [23]. Their burst sizes depend on
the initial window size k. In slow-start, each flow first sends
out k packets, then 2k, 4k, 8k, etc. Thus, a short flow with
X packets will be completed in log2(X/k + 1) RTTs, and its
normalized completion time can be expressed as

FCTX =

log2(X/k+1)∑
i=1

Wi/X + 1, (1)

assuming link capacity is 1 packet per second.
For large flows that are larger than SL, we assume that

they enter the congestion avoidance phase immediately after
it arrives [24], [26]. They continuously send bursts of a fixed
size equal to the maximum window size M (64KB by default
in Linux). A large flow’s FCT is then

FCTLX =

X/M∑
i=1

Wi/X + 1, X ≥ SL. (2)

B. Mean FCT Analysis
We now analyze the mean FCT for short flows in TCP. On

average, each burst sees the expected queueing delay E(W).
Thus according to (1), the mean FCT of a flow with X packets
is

E[FCTX] = log2(X/k + 1)
E[W]

X
+ 1.

The mean FCT for short flows less than SL is

E[FCT] = E[W]

∫ SL

0

log2(x/k + 1)

x

f(x)

F (SL)
dx+ 1. (3)

The mean queueing delay of a M/G/1-FCFS queue with load
ρ is obtained with the famous Pollaczek-Khintchine formula
[16]:

E[W] =
ρ

2(1− ρ)

E[B2]

E[B]
=

ρM

2(1− ρ)
, (4)

where B denotes the burst size as opposed to the flow size.
Since most of the bytes are from large flows, almost all bursts
arrive to the queue are of a fixed size M , and E[B2]/E[B] =
M . Therefore we have

E[FCT] =
ρM

2(1− ρ)

∫ SL

0

log2(x/k + 1)

x

f(x)

F (SL)
dx+ 1. (5)

The mean FCT for short flows depends on the load of
the network and the flow size distribution. Many data center
operators opt for an increased initial window size to reduce
latency in the slow-start phase [13]. So we use k = 12 packets
[6], [13] throughout the paper. Using a flow size distribution
from a production data center running web search workloads
[4], Fig. 4 plots the FCT with varying load.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
load

1

3

5

7

9

11

13

m
e
a
n
 F

C
T

TCP

RepFlow

Fig. 4: Short flow mean FCT. k = 12
packets, flow size distribution from the
web search workload [4].

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
load

1

2

3

4

m
e
a
n
 F

C
T

TCP

RepFlow

Fig. 5: Large flow mean FCT. k = 12
packets, flow size distribution from the
web search workload [4].

We now turn our attention to RepFlow, and obtain its mean
FCT expression. For each short flow, RepFlow sends two identi-
cal copies by initiating two TCP connections between the same
end-points. With ECMP, each flow is transmitted along different
paths and experiences different congestion levels. We model
this as having two independent queues with independent arrival
processes and the same load ρ. When a short flow arrives, it
enters both queues and get serviced, and its completion time is
based on the faster queue.

Without replication, each short flow sees a queue of load
ρ, i.e. the network is busy with probablility ρ when the flow
enters, and idle with probablility 1− ρ. Now with replication,
each queue’s load is slightly increased from ρ to (1+ε)ρ, where

ε =

∫ SL
0

xf(x)dx

E[X]
.

ε is the fraction of total bytes from short flows, and is usually
very small (less than 0.1 [4], [15], [20]). Since the two queues
are independent, a short flow will find the network busy only
when both queues are busy with probability (1 + ε)2ρ2, and
idle with probability 1− (1 + ε)2ρ2. In other words, each flow
is effectively serviced by a virtual queue of load (1 + ε)2ρ2.
Thus, the mean FCT for RepFlow is simply

E[FCTrep] =
(1 + ε)2ρ2M

2(1− (1 + ε)2ρ2)

∫ SL

0

log2(x/k + 1)

x

f(x)

F (SL)
dx

+ 1. (6)

For small ε ≤ 0.1, (1 + ε)2ρ2 is much smaller than ρ. As ρ
increases the difference is smaller. However the factor ρ/(1−ρ)
that largely determines the queueing delay E[W] and FCT is
very sensitive to ρ in high loads, and a small decrease of load
leads to significant decrease in FCT. In the same Fig. 4, we
plot FCT for RepFlow with the same web search workload [4],
where 95% of bytes are from large flows, i.e. ε = 0.05. Observe
that RepFlow is able to reduce mean FCT by a substantial
margin compared to TCP in all loads.

Our analysis reveals that intuitively, the benefit of RepFlow
is due to a significant decrease of effective load experienced

5

by the short flows. Such a load reduction can be understood as
a form of multi-path diversity discussed earlier as a result of
multi-path network topologies and randomized load balacing.

At this point one may be interested in understanding the
drawback of RepFlow, especially the effect of increased load
on large flows. We now perform a similar FCT analysis for
large flows. For a large flow with X > SL packets, substitute
(4) to (2) yields

E[FCTL] =
ρM

2(1− ρ)

X

M ·X
+ 1 =

ρ

2(1− ρ)
+ 1. (7)

The mean FCT for large flows only depends on the traffic load.
With RepFlow, load increases to (1 + ε)ρ, and FCT becomes

E[FCTLrep] =
(1 + ε)ρ

2(1− (1 + ε)ρ)
+ 1, (8)

For large flows, load only increases by ε, whereas small flows
see a load decrease of 1 − (1 + ε)2ρ. Large flows are only
mildly affected by the overhead of replication. Fig. 5 plots
the mean FCT comparison for large flows. As we shall see
from simulations and implementations results in Sec. V-E and
Sec. VI the performance degradation is almost negligible even
in high loads.

C. 99-th Percentile FCT Analysis
To determine the latency performance at the extreme cases,

such as the 99-th percentile FCT [4], [5], [19], [38], we need
the probability distribution of the queueing delay, not just its
average. This is more difficult as no closed form result exists
for a general M/G/1 queueing delay distribution. Instead, we
approximate its tail using the effective bandwidth model [21],
which gives us the following

P (W > w) ≈ e
−w 2(1−ρ)

ρ · E[X]

E[X2] = e−w
2(1−ρ)
ρM . (9)

This equation is derived in the extended version of [8]. Setting
(9) equal to 0.01, we obtain the 99-th percentile queueing delay
W̃ :

W̃ = ln 10 · ρM

1− ρ
= 2 ln 10 · E[W]. (10)

Recall short flows finish in log2(X/k+ 1) rounds. If a flow
experiences a queueing delay of W̃ in one round, the total FCT
will be guaranteed to hit the 99-th percentile tail1. Thus, we can
approximate the 99-th percentile FCT for short flows using W̃
as:

˜FCT = E[W]

∫ SL

0

log2(x/k + 1)− 1 + 2 ln 10

x

f(x)

F (SL)
dx+ 1

= E[W] ·N + 1. (11)

By the same token, we can calculate the 99-th percentile FCT
for short flows under RepFlow.

˜FCTrep = E[Wrep] ·N + 1, (12)

where E[Wrep] =
(1 + ε)2ρ2M

2(1− (1 + ε)2ρ2)
.

1We cannot say that the delay is W̃ for all rounds, which happens with
probability 0.01log2(X/k+1), i.e. much smaller than 0.01 even for small
number of rounds.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
load

10
20
30
40
50
60
70
80

9
9

-t
h
 p

e
rc

e
n
ti

le
 F

C
T

TCP

RepFlow

Fig. 6: Short flow tail FCT. k = 12
packets, flow size distribution from the
web search workload [4].

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
load

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

9
9

-t
h
 p

e
rc

e
n
ti

le
 F

C
T

TCP

RepFlow

Fig. 7: Large flow tail FCT. k = 12
packets, flow size distribution from the
web search workload [4].

From (11) and (12) we can see that the tail FCT depends
critically on the queueing delay, which is determined by the
traffic load ρ. Therefore RepFlow provides better tail latency in
addition to better average latency, since it reduces the effective
load seen by the short flows. Fig. 6 shows the numerical results
using the web search workload where we observe ∼40%–70%
tail FCT improvement.

According to queueing theory, the most likely reason for
the extreme events such as 99-th percentile FCT to happen
is that for some time all inter-arrival times are statistically
smaller than usual [9]. This has an intuitive interpretation in
our problem. Recall that our queue resembles a path of the
data center network connecting many pairs of end-hosts. The
arrival process to our queue is in fact a composition of many
Poisson arrival processes generated by the hosts, with ECMP
controlling the arrival rates. While the aggregate arrival rate on
average is λ, at times the queue would see the instantaneous
arrival rates from individual hosts much higher than usual due
to hash collisions in ECMP, resulting in the tail FCT.

The tail FCT analysis for large flows can be similarly derived
as follows.

˜FCTL = E[FCTL] + (2 ln 10− 1)E[W] · P, (13)
˜FCTLrep = E[FCTLrep] + (2 ln 10− 1)E[WL

rep] · P, (14)

where P =

∫ ∞
SL

1

x

f(x)

1− F (SL)
dx,

E[WL
rep] =

(1 + ε)ρM

2(1− (1 + ε)ρ)
.

Fig. 7 shows the numerical results. Large flows enjoy better
tail FCT performance compared to short flows, since their
transmission lasts for a long time and is not sensitive to long-
tailed queueing delay. Again observe that RepFlow does not
penalize large flows.

D. Summary

We summarize our analytical findings. Short flows’ mean and
tail FCT depend critically on queueing delay, and the factor
ρ

1−ρ assuming a M/G/1-FCFS queue. Using replication, they
have much less probability of entering a busy queue, and the
effective load they experience is greatly reduced. This confirms
the intuition that RepFlow provides path diversity gains in data
center networks. RepFlow is expected to have speedup around
40%–70% as numerical results show. The negative impact on
large flow is very mild, because from large flows’ perspectives,
load only increases slightly.

6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
load

1
2
3
4
5
6
7
8
9

FC
T

TCP

RepFlow

DCTCP

RepFlow-DCTCP

pFabric

(a) (0,100KB]: Avg

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
load

0

20

40

60

80

FC
T

(b) (0,100KB]: 99-th percentile

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
load

1
2
3
4
5
6
7
8
9

FC
T

(c) (100KB, ∞): Avg

Fig. 8: FCT breakdown for different flows with a 16-pod Fat-tree and the web search workload [4] in NS-3.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
load

1
2
3
4
5
6
7
8
9

FC
T

TCP

RepFlow

DCTCP

RepFlow-DCTCP

pFabric

(a) (0,100KB]: Avg

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
load

0

20

40

60

80

FC
T

(b) (0,100KB]: 99-th percentile

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
load

1.0

1.5

2.0

2.5

3.0

3.5

4.0

FC
T

(c) (100KB, ∞): Avg

Fig. 9: FCT breakdown for different flows with a 16-pod Fat-tree and the data mining workload [15] in NS-3.

V. EXPERIMENTAL EVALUATION

We now evaluate RepFlow’s performance using extensive
packet-level simulations in the NS-3 simulator. Building on
this, we show how RepFlow performs in a realistic small-scale
implementation running Linux kernel code based on Mininet
[17] in the next section.

A. Methodology

Topology: We use a 16-pod Fat-tree as the network topology
[2], which is commonly used in data centers. The fabric consists
of 16 pods, each containing an edge layer and an aggregation
layer with 8 switches each. The edge switches in each pod
connect to 8 hosts each. The network has 1,024 hosts and 64
core switches. There are 64 equal-cost paths between any pair
of hosts at different pods. Each switch is a 16-port 1Gbps
switch, resulting in a full bisection bandwidth network. The
end-to-end round-trip latency is ∼32µs. ECMP is used as the
load balancing scheme.

Benchmark workloads: We use empirical workloads to
reflect traffic patterns that have been observed in production
data centers. We consider two flow size distributions. The first
is from a cluster running web search [4], and the second is
from a data center mostly running data mining jobs [15]. Both
workloads exhibit heavy-tailed characteristics with a mix of
small and large flows. In the web search workload, over 95%
of the bytes are from 30% of flows larger than 1MB. In the data
mining workload, 95% of all bytes are from ∼3.6% flows that
are larger than 35MB, while more than 80% of flows are less
than 10KB. Flows are generated between random pairs of hosts
following a Poisson process with load varying from 0.1 to 0.8 to
thoroughly evaluate RepFlow’s performance in different traffic

conditions. We simulate 0.5s worth of traffic for the network
at each run, and ten runs for each load. The entire simulation
takes around 900+ machine-hours.

B. Schemes Compared
TCP: Standard TCP-New Reno is used as the baseline of our

evaluation. The initial window is set to 12KB, and switches use
DropTail queues with a buffer size of 100 packets. These are
standard settings used in many studies [6], [33].

RepFlow: Our design as described in Sec. III. All flows less
than 100KB are replicated. Other parameters are the same as
TCP.

DCTCP: The DCTCP protocol with ECN marking at Drop-
Tail queues [4]. Our implementation is based on a copy of the
source code we obtained from the authors of D2TCP [33]. The
ECN marking threshold is set to 5%. Other parameters are set
following [4].

RepFlow-DCTCP: This is RepFlow on top of DCTCP. As
discussed in Sec. III RepFlow can work with any TCP variant.
We use this scheme to demonstrate RepFlow’s ability to further
reduce FCT for networks that have already modified hosts to
adopt specialized data center transport such as DCTCP.

pFabric: This is the state-of-the-art approach that offers
near-optimal performance in terms of minimizing flow comple-
tion times [6]. pFabric assigns higher priority to flows with less
remaining bytes to transfer, encodes the flow priority in packet
headers, and modifies switches so they schedule packets based
on flow priority. Thus short flows are prioritized with near-
optimal FCT. Our implementation is based on a copy of the
source code we obtained from the authors of the paper [6]. We
follow [6] and set the DropTail queue size to be 36KB at each
switch port for best performance.

7

C. RepFlow on TCP

We first evaluate RepFlow’s performance with TCP. RepFlow
significantly reduces the mean and 99-th percentile FCT for
short flows in both workloads compared to TCP. Fig. 8 and
Fig. 9 show the FCT performance for different flows in the web
search and data mining workloads as we vary the load from 0.1
to 0.8. With the web search workload, RepFlow reduces mean
FCT by ∼40%–45% for short flows for loads from 0.4 to 0.8.
The improvement in tail FCT is more salient. RepFlow can
be ∼10x faster than TCP when the load is low (<0.4), and
over 60% in all other loads. The data mining workload yields
qualitatively similar observations.

The results demonstrate the advantage of replication in
harvesting the multi-path diversity, especially when the load is
relatively low which is usually the case in production networks
[20]. The tail FCT reduction is more substantial in low loads,
while the mean FCT reduction is more significant in high loads.
The reason is that when the load is low, most short flows finish
adequately, with a few exceptions that hit the long tail. Since
path diversity is abundant with low loads, RepFlow can easily
reduce the tail latency by a large margin. When the load is
higher, almost every short flow experiences some queueing
delay resulting in longer FCT in the average case. RepFlow
is thus able to provide diversity gains even in the average case
for most short flows. The results also corroborate our analysis
and numerical results in Sec. IV despite numerical differences.

We also look at the impact of replication on large flows. From
Fig. 8c and 9c we can see that large flows suffer negligible
FCT increment. Thus in a realistic network with production
workloads, RepFlow causes little performance degradation and
perform even better than our analysis predicts. Note that large
flows in the data mining workload has better FCT than those
in the web search workload. This is because the data mining
workload is more skewed with elephant flows larger than 1MB,
while in the web search workload there are many “medium”
flows of size between 100KB and 1MB. These medium flows
also suffer from queueing delay especially in the slow-start
phase, resulting in the larger FCT in Fig. 8c.

D. RepFlow on DCTCP

RepFlow’s full potential is realized when used together with
specialized data center transport such as DCTCP [4]. For data
centers that have already adopted DCTCP, RepFlow can be
readily utilized just as with regular TCP. We observe in Fig. 8
and Fig. 9 that DCTCP improves FCT significantly compared
to TCP, especially the 99-th percentile FCT for short flows.
We show the mean and tail FCT results with only DCTCP,
RepFlow-DCTCP and pFabric in Fig. 10 and 11 for better
contrasts. Observe that RepFlow-DCTCP reduces mean FCT
by another 40% in both workloads, and is only ∼30% slower
than pFabric for the data mining workload. In terms of 99-
th percentile FCT, DCTCP, RepFlow-DCTCP and pFabric all
provide almost an order of magnitude reduction compared to
TCP. RepFlow cuts down another ∼35% tail FCT on top of
DCTCP, and performs close to the near-optimal pFabric [6]. In

general short flows perform better in the data mining workload
than in the web search workload. This is because in the data
mining workload it is less likely that multiple large flows
are transmitting concurrently on the same port, implying less
contention with the short flows.

The improvements of RepFlow with DCTCP are less signif-
icant than with regular TCP. The reason is that by using ECN
marking, DCTCP keeps the queue length very small most of
the time, yielding less path diversity for RepFlow to exploit.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
load

1.0

1.5

2.0

2.5

3.0

3.5

4.0

FC
T

DCTCP

RepFlow-DCTCP

pFabric

(a) Web search workload.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
load

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6

FC
T

DCTCP

RepFlow-DCTCP

pFabric

(b) Data mining workload.

Fig. 10: Mean FCT for short flows with a 16-pod Fat-tree in NS-3. Note the
different ranges of the y-axis in the plots.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
load

0

2

4

6

8

10

12

14
FC

T
DCTCP

RepFlow-DCTCP

pFabric

(a) Web search workload.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
load

0

2

4

6

8

10

12

14

FC
T

DCTCP

RepFlow-DCTCP

pFabric

(b) Data mining workload.

Fig. 11: 99-th percentile FCT for short flows with a 16-pod Fat-tree.

Overall, Fig. 12 shows the average FCT across all flows for
all schemes. RepFlow improves TCP by ∼30%–50% in most
cases. RepFlow-DCTCP improves DCTCP further by ∼30%,
providing very close-to-optimal FCT compared to state-of-the-
art pFabric.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
load

1
2
3
4
5
6
7
8
9

FC
T

TCP

RepFlow

DCTCP

RepFlow-DCTCP

pFabric

(a) Web search workload

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
load

1

2

3

4

5

6

7

8

FC
T

TCP

RepFlow

DCTCP

RepFlow-DCTCP

pFabric

(b) Data mining workload

Fig. 12: Mean FCT for all flows.

E. Replication Overhead

Replication clearly adds more traffic to the network. In this
section we investigate the overhead issue of RepFlow. We
calculate the percentages of extra bytes caused by replicated
flows in both workloads for all loads as shown in Table III.
Since short flows only generate a tiny fraction of all bytes
in both workloads, not surprisingly replication does not incur
excessive overhead to the network. The overhead for the

8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
3.45% 2.78% 3.13% 3.38% 3.29% 3.47% 3.22% 3.27%

(a) Web search workload
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1.41% 1.18% 2.13% 1.38% 1.33% 1.07% 1.12% 1.09%

(b) Data mining workload

TABLE III: Overhead of RepFlow in NS-3 simulation.

DCTCP implementation is essentially the same and we omit
the results.

To summarize, RepFlow achieves much better FCT for short
flows compared to TCP with minimum impact on large flows.
The improvements are not as significant as pFabric [6]. This is
expected since RepFlow only opportunistically utilizes the less
congested path without being able to reduce switch queueing
delay. However since RepFlow does not require switch hard-
ware or kernel changes, it represents an effective and practical
approach to the imminent problem of reducing FCT. On the
other hand when it is feasible to implement RepFlow on top
of advanced protocols such as DCTCP, RepFlow performs
competitively compared to pFabric, again without the burden
of modifying switch hardware.

VI. IMPLEMENTATION ON MININET

We implement RepFlow on Mininet, a high-fidelity network
emulation framework based on Linux container based virtual-
ization [17]. Mininet creates a realistic virtual network, running
real Linux kernel, switch and application code on a single
machine. Though its scale is smaller than production data center
networks due to the single-machine CPU limitation (tens of
Mbps link bandwidth compared to 1Gbps), it has been shown
to faithfully reproduce implementation results from [3], [4] with
high fidelity [17], and has been used as a flexible testbed for
networking experiments [22].

Our implementation follows the design in Sec. III. We run
socket-based sender and receiver programs as applications on
virtual hosts in Mininet. Each virtual host runs two receivers,
one for receiving regular flows and the other for replicated
flows, in separate threads and listening on different ports. A
flow is created by spawning a sender thread that sends to the
regular port of the receiving host, and if it is a short flow
another sender thread sending to the other port. The replicated
flow shares the same source port as the original flow for easy
idenfitification. We implement RepFlow on top of TCP-New
Reno in Mininet 2.0.0 on a Ubuntu 12.10 LTS box.

We use a 4-pod Fat-tree topology with 16 hosts connected
by 20 switches, each with 4 ports. Each port has 50 packets of
buffer. We set link bandwidth to 20Mb and delay to 1ms. The
minimum delay Mininet supports is 1ms without high-precision
timers. RiplPOX is installed as the controller on switches to
support ECMP. The entire experiment takes ∼6 hours to run on
an EC2 c1.xlarge instance with 8 virtual cores. We observe that
Mininet becomes unstable when the load exceeds 0.5, possibly
due to its scalability limitation. Thus we only show results for
loads from 0.1 to 0.5.

Fig. 13 and 14 show the results. Fig. 13a and 14a show
RepFlow has ∼25%–50% and 50%–70% mean FCT improve-
ment in the web search and data mining workload, respectively.
The improvement in tail FCT is around 30% in most cases
for both workloads and is smaller than the NS-3 simulation
results. The reason is two-fold. First there are fewer equal-
cost paths in the 4-pod Fat-tree than the 16-pod Fat-tree
in the simulation, implying less path diversity for RepFlow.
Second, in the Mininet implementation, each sender thread of
the replicated flow is forked after the original flow. The time
difference due to virtualization overhead is non-negligible for
short flows (∼1ms). Thus it less likely for the replicated flows
to finish faster, reducing the potential of RepFlow. We believe in
a real implementation without virtualization this is unlikely to
become an issue. Fig. 13c and 14c confirm that large flows are
not affected by replication. Overall the implementation results
are in line with simulation results.

VII. CONCLUDING REMARKS

We presented the design and evaluation of RepFlow, a simple
approach that replicates short TCP flows to reap path diversity
in data centers to minimize flow completion times. Analytical
and experimental results demonstrate that it reduces mean and
tail FCT significantly with no changes to existing infrastruc-
tures. We believe flow replication is an intuitive approach to
combat unpredictable performance degradations, including but
not limited to slow and long-tailed FCT.

Our work is a first step in this direction. Our next step is to
prototype RepFlow as a general application library running on
TCP and DCTCP, and evaluate its benefits for real applications
in a deployed data center. Ultimately, this may pave the path
for practical use of RepFlow at scale. Many interesting issues
remain. For example, intuitively RepFlow improves resilience
against failures which needs to be better understood. A more
detailed theoretical model of TCP flow completion times in
data center networks would also provide a principled analysis
of RepFlow’s benefits.

ACKNOWLEDGMENT

We thank Balajee Vamanan and Shuang Yang for providing
their simulation code in the papers [33] and [6] for DCTCP and
pFabric, respectively. We also thank David Maltz and Christo-
pher Stewart for providing positive feedback and suggestions
in the early stage of this work.

REFERENCES

[1] Personal communication with David Maltz.
[2] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data

center network architecture. In Proc. ACM SIGCOMM, 2008.
[3] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vah-

dat. Hedera: Dynamic flow scheduling for data center networks. In
Proc. USENIX NSDI, 2010.

[4] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar,
S. Sengupta, and M. Sridharan. Data center TCP (DCTCP). In Proc. ACM
SIGCOMM, 2010.

[5] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and
M. Yasuda. Less is more: Trading a little bandwidth for ultra-low latency
in the data center. In Proc. USENIX NSDI, 2012.

9

0.1 0.2 0.3 0.4 0.5
load

0

2

4

6

8

10

12

14

FC
T

TCP

RepFlow

(a) (0, 100KB]: Avg

0.1 0.2 0.3 0.4 0.5
load

0

10

20

30

40

50

60

70

FC
T

TCP

RepFlow

(b) (0, 100KB]: 99-th percentile

0.1 0.2 0.3 0.4 0.5
load

0

2

4

6

8

10

12

FC
T

TCP

RepFlow

(c) (100KB, ∞): Avg

0.1 0.2 0.3 0.4 0.5
load

0

2

4

6

8

10

12

FC
T

TCP

RepFlow

(d) Overall: Avg

Fig. 13: Implementation on Mininet with a 4-pod Fat-tree and the web search workload [4].

0.1 0.2 0.3 0.4 0.5
load

2
4
6
8

10
12
14
16
18

FC
T

TCP

RepFlow

(a) (0, 100KB]: Avg

0.1 0.2 0.3 0.4 0.5
load

0

10

20

30

40

50

60

70
FC

T
TCP

RepFlow

(b) (0, 100KB]: 99-th percentile

0.1 0.2 0.3 0.4 0.5
load

2

3

4

5

6

7

8

FC
T

TCP

RepFlow

(c) (100KB, ∞): Avg

0.1 0.2 0.3 0.4 0.5
load

2

4

6

8

10

12

14

16

FC
T

TCP

RepFlow

(d) Overall: Avg

Fig. 14: Implementation on Mininet with a 4-pod Fat-tree and the data mining workload [15].

[6] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. M. B. Prabhakar, and
S. Shenker. pFabric: Minimal near-optimal datacenter transport. In
Proc. ACM SIGCOMM, 2013.

[7] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica. Effective
straggler mitigation: Attack of the clones. In Proc. USENIX NSDI, 2013.

[8] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing router buffers. In
Proc. ACM SIGCOMM, 2004.

[9] O. Boxma and B. Zwart. Tails in scheduling. SIGMETRICS Perform.
Eval. Rev., 34(4):13–20, March 2007.

[10] N. Cardwell, S. Savage, and T. Anderson. Modeling TCP latency. In
Proc. IEEE INFOCOM, 2000.

[11] J. Dean. Achieving rapid response times in large online services. Berkeley
AMPLab Cloud Seminar, http://research.google.com/people/jeff/latency.
html, March 2012.

[12] A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella. On the impact of
packet spraying in data center networks. In Proc. IEEE INFOCOM, 2013.

[13] N. Dukkipati, T. Refice, Y. Cheng, J. Chu, T. Herbert, A. Agarwal,
A. Jain, and N. Sutin. An argument for increasing TCP’s initial congestion
window. ACM SIGCOMM Comput. Commun. Rev., 40(3):26–33, June
2010.

[14] S. Foss. Wiley Encyclopedia of Operations Research and Management
Science, chapter The G/G/1 Queue. 2011.

[15] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
P. Patel, and S. Sengupta. VL2: A Scalable and Flexible Data Center
Network. In Proc. ACM SIGCOMM, 2009.

[16] D. Gross, J. F. Shortle, J. M. Thompson, and C. M. Harris. Fundamentals
of Queueing Theory. Wiley-Interscience, 2008.

[17] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown.
Reproducible network experiments using container-based emulation. In
Proc. ACM CoNEXT, 2012.

[18] J. Heidemann, K. Obraczka, and J. Touch. Modeling the performance
of HTTP over several transport protocols. IEEE/ACM Trans. Netw.,
5(5):616–630, October 1997.

[19] C.-Y. Hong, M. Caesar, and P. B. Godfrey. Finishing flows quickly with
preemptive scheduling. In Proc. ACM SIGCOMM, 2012.

[20] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken. The
nature of datacenter traffic: Measurements & analysis. In Proc. IMC,
2009.

[21] F. P. Kelly. Notes on effective bandwidths. In Stochastic networks: Theory
and applications, pages 141–168. Oxford University Press, 1996.

[22] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey. Veriflow:
Verifying network-wide invariants in real time. In Proc. USENIX NSDI,
2013.

[23] A. Lakshmikantha, C. Beck, and R. Srikant. Impact of file arrivals and
departures on buffer sizing in core routers. IEEE/ACM Trans. Netw.,
19(2):347–358, April 2011.

[24] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The macroscopic behavior

of the TCP congestion avoidance algorithm. ACM SIGCOMM Comput.
Commun. Rev., 27(3):67–82, July 1997.

[25] A. Munir, I. A. Qazi, Z. A. Uzmi, A. Mushtaq, S. N. Ismail, M. S. Iqbal,
and B. Khan. Minimizing flow completion times in data centers. In
Proc. IEEE INFOCOM, 2013.

[26] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP
throughput: A simple model and its empirical validation. In Proc. ACM
SIGCOMM, 1998.

[27] A. Phanishayee, E. Krevat, V. Vasudevan, D. G. Andersen, G. R. Ganger,
G. A. Gibson, and S. Seshan. Measurement and analysis of TCP
throughput collapse in cluster-based storage systems. In Proc. USENIX
FAST, 2008.

[28] R. S. Prasad and C. Dovrolis. Beyond the model of persistent TCP flows:
Open-loop vs closed-loop arrivals of non-persistent flows. In Proc. IEEE
ANSS, 2008.

[29] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. Han-
dley. Improving datacenter performance and robustness with multipath
tcp. In Proc. ACM SIGCOMM, 2011.

[30] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene,
O. Bonaventure, and M. Handley. How hard can it be? designing and
implementing a deployable multipath TCP. In Proc. USENIX NSDI, 2012.

[31] M. Slee, A. Agarwal, and M. Kwiatkowski. Thrift: Scalable cross-
language services implementation. Technical report, Facebook, 2007.

[32] C. Stewart, A. Chakrabarti, and R. Griffith. Zoolander: Efficiently meeting
very strict, low-latency SLOs. In Proc. USENIX ICAC, 2013.

[33] B. Vamanan, J. Hasan, and T. Vijaykumar. Deadline-aware datacenter
TCP (D2TCP). In Proc. ACM SIGCOMM, 2012.

[34] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen, G. R.
Ganger, G. A. Gibson, and B. Mueller. Safe and effective fine-grained
TCP retransmissions for datacenter communication. In Proc. ACM
SIGCOMM, 2009.

[35] A. Vulimiri, O. Michel, P. B. Godfrey, and S. Shenker. More is less:
Reducing latency via redundancy. In Proc. ACM HotNets, 2012.

[36] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowstron. Better never than
late: Meeting deadlines in datacenter networks. In Proc. ACM SIGCOMM,
2011.

[37] Z. Wu and H. V. Madhyastha. Understanding the latency benefits
of multi-cloud webservice deployments. ACM SIGCOMM Computer
Communication Review, 43(1):13–20, April 2013.

[38] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz. DeTail: Reducing
the flow completion time tail in datacenter networks. In Proc. ACM
SIGCOMM, 2012.

http://research.google.com/people/jeff/latency.html
http://research.google.com/people/jeff/latency.html

	I Introduction
	II Related Work
	III RepFlow: Motivation and Design
	III-A Motivation
	III-B Design

	IV Analysis
	IV-A Queueing Model
	IV-B Mean FCT Analysis
	IV-C 99-th Percentile FCT Analysis
	IV-D Summary

	V Experimental Evaluation
	V-A Methodology
	V-B Schemes Compared
	V-C RepFlow on TCP
	V-D RepFlow on DCTCP
	V-E Replication Overhead

	VI Implementation on Mininet
	VII Concluding Remarks
	References

