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Abstract—Many opportunistic scheduling techniques are im-
practical because they require accurate channel state information
(CSI) at the transmitter. In this paper, we investigate the schedul-
ing of unicast and multicast services in a downlink network with a
very limited amount of feedback information. Specifically,unicast
users send imperfect (or no) CSI and infrequent acknowledge-
ments (ACKs) to a base station, and multicast users only report
infrequent ACKs to avoid feedback implosion. We consider the use
of physical-layer rateless codes, which not only combats channel
uncertainty, but also reduces the overhead of ACK feedback.A
joint scheduling and power allocation scheme is developed to
realize multiuser diversity gain for unicast service and multicast
gain for multicast service. We prove that our scheme achieves
a near-optimal throughput region. Our simulation results show
that our scheme significantly improves the network throughput
over schemes employing fixed-rate codes or using only unicast
communications.

I. I NTRODUCTION

Over the past decade, opportunistic scheduling techniques
have been developed to improve the throughput of wireless
networks. Many of these techniques require accurate channel
state information (CSI) at the transmitter. However, obtaining
this information is costly and could incur significant feedback
overhead in practical wireless networks [1]. This issue is
particularly serious for multicast services, where the number of
users could be large and sending back each user’s channel state
may result in feedback implosion [2]. Therefore, a key question
is “how to optimally manage the network resources and exploit
the most from a limited amount of feedback information?”

In this paper, we aim to answer this question by jointly con-
sidering channel coding, scheduling, and power allocationfor
a downlink network with both unicast and multicast services,
which is illustrated in Fig. 1. In this network, the power and
channel resources are shared among the unicast and multicast
service flows. In addition, the throughput of multicast service
can be enhanced by virtue of unicast retransmission after the
multicast session [3]. The network adopts a practical limited
feedback mechanism that is suggested by the LTE-Advanced
MBMS standards [3]–[5]: The unicast users send imperfect
CSI and report one-bit acknowledgements (ACKs) to the base
station [4]. However, the multicast users are only allowed to
send ACKs to the base station1 without feeding back any CSI2.

This work has been supported in part by an IRP grant from HP.
1The ACK signaling procedure for multicast service is realized by a reception

reporting mechanism defined in the LTE-Advanced MBMS standards [3].
2Reporting the CSI of each multicast user is usually inefficient, because the

feedback overhead could be enormous and the throughput of multicast service
is determined by only the channel condition of the worst-case user [4], [5].
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Fig. 1. System model of the downlink network.

An important part of our answer lies in the adoption of
rateless codes[6]. Traditional fixed-rate codes, such as Turbo
codes and LDPC codes, suffer from rate loss if there is channel
uncertainty. Specifically, if the code rate is higher than the
capacity, a decoding error occurs; if the code rate is lower
than the capacity, the available capacity is not fully utilized.
In contrast, rateless codes leverage automatic rate adaptation to
combat channel uncertainty. As the transmitter progressively
sends the coded packets of a rateless code to the receiver,
the code rate decreases over time. Once the code rate drops
below the empirical channel capacity, the receiver can decode
the message and send an ACK to the transmitter. Therefore,
the throughput of rateless codes is close to the empirical chan-
nel capacity [6]. Furthermore, rateless codes can significantly
reduce the amount of ACK feedback [7], because, unlike fixed-
rate codes, they do not require an ACK/NACK for each packet.

We develop a scheduling and power allocation scheme for
unicast and multicast services, where rateless codes (e.g.,
Raptor codes [8], Strider [9], and Spinal codes [10]) are
employed in the physical layer to replace fixed-rate codes.
While rateless codes can improve the network throughput and
reduce ACK feedback,they significantly complicate the network
control problem. In rateless codes, since the transmission of one
message could span over a random number of slots, message
decoding and queue updates occur intermittently at irregular
time intervals. However, the network control action needs to
vary in each slot to achieve multiuser diversity gain for unicast
users. Therefore, the scheduler may switch to another user with
better channel quality before the previous user has decodedits
message and transmitted back an ACK to update the queue
state.This is quite different from traditional queueing systems
for fixed-rate codes, e.g., [11]–[15], where the control action
and queue lengths are both updated periodically in each slot.

http://arxiv.org/abs/1404.6683v1


2

This network control problem is challenging for two reasons:
1) the transmission procedure of rateless codes is correlated
over time; 2) the network controller has very limited channel
knowledge to decide the control action. In particular, traditional
slot-levelLyapunov drift techniques, e.g., [11], [16], [17], are
not sufficient to establish the stability of our network control
scheme based on rateless codes. To that end, the following are
the contributions of our paper:

• We develop a low-complexity scheduling and power al-
location scheme for rateless codes. Our scheme can fully
exploit the imperfect CSI and infrequent ACK feedback to
simultaneously realize multiuser diversity gain and multi-
cast gain. Moreover, our scheme is quite robust against
channel uncertainty. To the best of our knowledge,our
network control scheme with rateless codes is the first
that can simultaneously realize multiuser diversity gain,
multicast gain, and robustness against channel uncertainty
under limited feedback information.

• We show that our scheme can achieve a near-optimal sta-
bility region. In doing so, we utilize fluid limit techniques
to resolve the temporal correlation in the transmission
procedure of rateless codes.

• To prevent one or several multicast users with poor channel
conditions to bring down the throughput of the multicast
group, we divide the multicast users according to their
channel qualities and set up separate unicast sessions
sending additional data to the users with bad channels.
By this, the throughput of multicast communications is
enhanced. The stability region of this combined delivery
scheme is attained.

Before we proceed, we would like to emphasize that we are
using rateless codes at the physical layer, as opposed to those
that address the packet erasures (i.e., packet drops/errors) at
the application layer, with fixed-rate codes being used in the
physical layer, e.g, [18]. In this setting, if one packet is not
successfully decoded in the physical layer, it is discardedand
does not contribute toward decoding of the application layer
message. On the other hand, with physical layer rateless codes,
each packet contributes toward information accumulation,even
if the packet is not decodable by itself. The throughput perfor-
mance of these two approaches is compared in Section VII.

II. RELATED WORK

Opportunistic scheduling of unicast services based on rateless
codes have been extensively studied based on the assumption
of accurate CSI (e.g., see the survey paper [12] and the refer-
ences therein). Under channel uncertainty, ARQ-based feedback
mechanisms for retrieving partial CSI have been developed
for ON/OFF Markov channels, e.g., [13]–[15], [19]. These
mechanisms rely on the time-correlation in the channels to
retrieve knowledge of the channel states, and thus do not work
well when the temporal correlation is low.

For multicast services, scheduling based on fixed-rate codes
has been investigated in, e.g., [20]–[23]. These schemes require
the CSI of all the multicast users, which may result in a

huge amount of feedback overhead. Without accurate CSI, such
schemes may suffer from a significant throughput loss.

Scheduling of multicast transmissions using rateless codes
was studied in [24], where a subset of multicast users were
scheduled in each slot and the average system delay was
minimized by resorting to extreme value theory. A joint
scheduling and code length adaptation approach was developed
for multicast services with hard deadlines by using dynamic
programming [25]. Practical MAC protocols for WiFi networks
based on rateless codes were proposed by virtue of dynamic
programming [26] and channel prediction [27]. However, power
allocation was not incorporated in these studies due to the inher-
ent computational complexity. The throughput performanceof
multicast transmissions using rateless codes was studied in, e.g.,
[28]–[30]. However, these results only apply to erasure channels
and are difficult to be extended to general fading channels. A
joint power allocation, scheduling, and message size adaptation
approach was proposed for unicast service with rateless codes
in [17]. The analysis there cannot be extended to scenarios with
multicast service; see Section V-B for more details.

III. SYSTEM MODEL

We consider a time-slotted downlink cellular network with
one base station,U unicast users, andG multicast user groups,
as illustrated in Fig. 1. In each time slot, the base station
can schedule only one unicast or multicast data flow. Let
u ∈ {1, 2, · · · , U} be the flow index of the unicast users
and g ∈ {U + 1, 2, · · · , U + G} be the flow index of the
multicast user groups. The scheduled flow at slott is denoted
by s(t) ∈ S , {1, 2, · · · , G+ U}.

The channels are assumed to be block fading with a constant
channel state within each slot, and vary from one slot to
another. Lethu(t) represent the channel state of unicast user
u at slot t andhgj(t) represent the channel state of multicast
userj in the gth group withj ∈ {1, · · · , J(g)}, whereJ(g) is
the number of multicast users in thegth group. Each user has
perfect knowledge of its downlink CSI via channel estimation.
However, the base station only has access to an imperfect CSI
ĥ(t) , {ĥ1(t), · · · , ĥU (t)} for the unicast users and the condi-
tional probability distributionf(hu|ĥu) of hu(t) for given value
of ĥu(t) [1], [31], with no channel knowledge for the multicast
users [4]. This model has covered the special cases of no CSI
feedback, i.e.,̂hu(t) is independent ofhu(t), and perfect CSI
feedback, i.e.,̂hu(t) = hu(t). We assume that{hu(t), ĥu(t)}
andhgj(t) are i.i.d. across time and independent across users,
and there are a finite number of possible channel states due to
digital quantization. The state space of the imperfect CSIĥ(t) is
expressed aŝH , {ĥ1, · · · , ĥE} with a stationary distribution
π = {π1, · · · , πE} which is unknown to the base station.

Let P (t) ∈ P be the transmission power of the base station
at slot t, whereP , {P1, P2, · · · , PO} is the set of possible
transmission power values. The downlink transmissions are
subject to a time-average power constraint

lim sup
T→∞

1

T

T−1
∑

t=0

P (t) ≤ Pav, (1)
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wherePav ∈ P is the maximum average transmission power.
When a unicast flow is scheduled, the transmission powerP (t)
is determined from the imperfect CSIĥ(t) to exploit multiuser
diversity gain. On the other hand, the transmission power of
multicast services is simply fixed asP (t) = Pav, because
the base station has no knowledge of the channels for the
multicast users [4]. Letω(t) , (P (t), s(t)) ∈ Ω denote the
power allocation and scheduling control action at slott, where
Ω , {ω1, · · · , ωF } ⊂ P × S is the set of possible network
control actions withωm = (Pm, sm) andF = UO +G.

The mutual information for the downlink channel to theuth
unicast user is denoted byI(hu, P ), and that for thejth user
in multicast user groupg is denoted byI(hgj , P ). We assume
that I(hu, P ) andI(hgj , P ) are bounded by

0 ≤ I(hu, P ) ≤ Imax, 0 ≤ I(hgj , P ) ≤ Imax, (2)

where the upper boundImax is due to the limited dynamic
range of the received signal at the RF front end.

Let Φs(t) denote the number of arrival bits at the data queue
of flow s at slot t. We assume that each arrival processΦs(t)
is an independent irreducible positive recurrent Markov chain
with countable state space and satisfies the Strong Law of Large
Number (SLLN): That is, with probability one

lim
t→∞

∑t
τ=0 Φs(τ)

t
= λs (3)

for each flows, whereλs is the mean arrival rate of flows.
We letλ , (λ1, · · · , λG+U ) denote arrival rate vector.

IV. QUEUEING SYSTEM FOR RATELESSCODES

A. Reception Procedure of Rateless Codes

The encoder of rateless codes can generate an unlimited
number of coded packages from a given payload message. In
each slot, the transmitter sends out one coded packet to the re-
ceiver. In practice, the decoding instant of rateless codescan be
determined in the following way [6]–[8]: The receiver records
the mutual information corresponding to each coded packet,
which represents the reliability of the coded packet. When the
accumulated mutual information exceedsM(1 + ǫ) bits, the
receiver can decode the message with a high probability, where
M is the bit size of the message,ǫ ≥ 0 is a constant called the
reception overhead. A rateless code is said to be “good”, ifǫ
is close to zero. WhenM is large enough,ǫ is small for many
practical physical-layer rateless codes, such as Raptor codes
[8], Strider [9], and Spinal codes [10].

B. Unicast Service
1) Queue Updates:Let Ru(t) denote the accumulated mu-

tual information of useru for decoding the latest message.
Then, the evolutions ofRu(t) are given by

Ru(t+1)=



















Ru(t), if s(t) 6= u;
Ru(t)+I(hu(t), P (t))K,

if s(t) = u and
Ru(t)+I(hu(t), P (t))K<Mu(1+ǫ);

0, otherwise,

(4)

whereK is the number of channel symbols in each slot and
Mu is the bit size of each message for useru. Hence,Ru(t)

increases when useru is scheduled, and is reset to zero when
useru can decode the message with a high probability.

Since channel decoding and queue update occur intermit-
tently, we define aqueue update variablea(t): if user u
can decode the message, i.e., ifs(t) = u and Ru(t) +
I(hu(t), P (t))K ≥ Mu(1 + ǫ), it reports an ACK such that
a(t) = u; otherwise,a(t) 6= u. Let Qu be the data queue of
unicast useru at the transmitter. The evolutions ofQu are

Qu(t+ 1) = (Qu(t)−Mu1{a(t)=u})
+ +Φu(t), (5)

where(·)+ = max{·, 0} and1{A} is the indicator function of
eventA.

2) Code Length:Let nu(t) denote the code index of useru
at slot t, which evolves as

nu(t+ 1) = nu(t) + 1{a(t)=u}. (6)

Define tn,u , min{t ≥ 0 : nu(t) = n} as the first time slot
such thatnu(t) = n. According to the decoding rule of rateless
codes, the code length (i.e., the number of coded packets or
transmission time slots) for thenth rateless code of unicast
useru is (see also [6, Eq. (11)])

Lu(n) =min







tn,u+l−1
∑

t=tn,u

1{s(t)=u} :

tn,u+l−1
∑

t=tn,u

1{s(t)=u}I(hu(t), P (t))K≥Mu(1 + ǫ), l ≥ 1







, (7)

where
∑t2

t=t1
1{s(t)=u} represents the number of serving slots

of user u between slotst1 and t2. Note that the part of
mutual information overshooting the message size, i.e.Mu

bits, results in a small rate loss from the empirical channel
capacity. We omitǫ in the rest of the paper for notational
simplicity. Nevertheless, one can always divideI(hu, P ) by
(1 + ǫ) to derive the result for non-zeroǫ.

C. Multicast Service

1) Queue Updates:Let Rgj(t) denote the accumulated
mutual information that thejth user in multicast groupg has
collected for decoding the latest message. The evolutions of
Rgj(t) are determined by

Rgj(t+ 1)=



















Rgj(t), if s(t) 6= g;
Rgj(t)+I(hgj(t), Pav)K,

if s(t) = g and∃ l ∈ {1, · · · , J(g)},
Rgl(t)+I(hgl(t), Pav)K<Mg;

0, otherwise,

(8)

where Mg is the bit size of each message for groupg.
Therefore,Rgj(t) increases when the multicast groupg is
scheduled, and is reset to zero when all theJ(g) multicast
users can decode the message.

The queue update variablea(t) for the multicast flows is de-
termined as follows: Each multicast user reports an ACK to the
base station when it has collected enough mutual information
to decode the message. If all theJ(g) multicast users in group
g have sent back their ACKs by the end of slott, i.e.,s(t) = g
andRgj(t)+ I(hgj(t), Pav)K ≥Mg for all j ∈ {1, · · · , J(g)},
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thena(t) = g; otherwise,a(t) 6= g. Let Qg be the data queue
of multicast user groupg. The evolutions ofQg are given by

Qg(t+ 1) = (Qg(t)−Mg1{a(t)=g})
+ +Φg(t). (9)

2) Code Length:Let ng(t) be the code index of multicast
user groupg, which evolves as

ng(t+ 1) = ng(t) + 1{a(t)=g}. (10)

Define tn,g , min{t ≥ 0 : ng(t) = n} as the first time slot
such thatng(t) = n. The code length for thenth rateless code
of multicast user groupg is determined as

Lg(n) = max
j∈{1,··· ,J(g)}

Lgj(n), (11)

whereLgj(n) is the number of coded packets for thejth
multicast user in groupg to decode thenth message, i.e.,

Lgj(n) =min







tn,g+l−1
∑

t=tn,g

1{s(t)=g} :

tn,g+l−1
∑

t=tn,g

1{s(t)=g}I(hgj(t), Pav)K ≥Mg, l ≥ 1







. (12)

Since hgj(t) and I(hgj(t), Pav) are i.i.d. over time, they
are alsoi.i.d. in the slots when thegth group is scheduled.
Furthermore,Lg(n) is a stopping time that the accumulated
mutual informationRgj(t) exceedsMg bits for all theJ(g)
multicast users. By using the property of stopping times [32],
Lg(n) are i.i.d. for different code indicesn and satisfy SLLN:

lim
N→∞

∑N

n=1 Lg(n)

N
, Lg, (13)

whereLg is the average code length of thegth multicast user
group that is irrelative to the network control algorithm. The
multicast capacity of groupg is Mg/Lg bits/slot [28].

V. NETWORK CONTROL FORRATELESSCODES

In this section, we propose a scheduling and power allocation
scheme for unicast and multicast services with rateless codes.
We show that this scheme achieves a near-optimal throughput
region.

A. Network Control Algorithm

Let us define a virtual queueZ for the time-average power
constraint (1), which evolves as

Z(t+ 1) = (Z(t)− Pav)
+ + P (t). (14)

We now propose a scheduling and power allocation algo-
rithm, which only requires imperfect CSI and infrequent ACK
feedback to control the wireless transmissions:
Network Control For Rateless Codes (NC-RC)

• Scheduling: The scheduling decision at slott is

s(t) = argmax
s∈S

Qs(t)Is(t)− Z(t)Ps(t), (15)

whereIs(t) andPs(t) are given by

Iu(t) = E{I(hu(t), Pu(t))K|ĥu(t)}
Mu

Mu+ImaxK
,

Ig(t) =

{

ng(t)Mg
∑ng(t)−1

n=1 Lg(n)
, if ng(t) > 1;

ImaxK , if ng(t) = 1,

Pu(t) = argmax
P∈P

Qu(t)E{I(hu(t), P )K|ĥu(t)}

×
Mu

Mu + ImaxK
− Z(t)P,

Pg(t) = Pav, (16)

for u ∈ {1, · · · , U} and g ∈ {U + 1, · · · , U + G}, and
E{X |Y } represents the conditional expectation ofX for
a given value ofY .

• Power allocation: The transmission power at slott is

P (t) = Ps(t)(t), (17)

wherePu(t) andPg(t) are defined in (16).
• Queue update:Update the queuesRu(t), Qu(t), Rgj(t),
Qg(t), andZ(t) according to (4), (5), (8), (9), and (14),
respectively.

In this algorithm, the unicast service rateIu(t) is the ergodic
capacity of useru with a rate loss factor ofMu/(Mu+ImaxK).
This rate loss is caused by the part of mutual information
overshooting the message sizeMu. The multicast service rate
Ig(t) is attained by using the ACKs to track the empirical
average throughput of historical transmissions. In particular,
Ig(t) converges to the multicast capacityMg/Lg as t grows.

B. Throughput Region

As in [33], a queueing network is said to bestable, if
the underlying Markov chain is positive recurrent. A stable
throughput region of the proposed network control algorithm
NC-RC is stated as follows:

Theorem 1. The network is stable under NC-RC for any arrival
rate vectorλ strictly insideΛ, whereΛ is given by

Λ =

{

λ

∣

∣

∣

∣

There existαmi ≥ 0, such that

0 ≤ λu ≤
∑

m:sm=u

E
∑

i=1

E{I(hu, P
m)K|ĥi}

Mu

Mu + ImaxK
αmiπi,

0 ≤ λg ≤
Mg

Lg

∑

m:sm=g

E
∑

i=1

αmiπi,

0 ≤
F
∑

m=1

E
∑

i=1

P
m
αmiπi ≤ Pav,

F
∑

m=1

αmi = 1,∀ i

}

, (18)

where Lg is defined in (13), Pm and sm are the power
allocation and scheduling decisions associated with action ωm,
andπi is the stationary probability of the channel stateĥi, i.e.,
πi = Pr{ĥ(t) = ĥi}.

In (18), the unicast throughputλu is upper bounded by
the ergodic capacity of useru multiplied with a rate loss
factor Mu/(Mu + ImaxK) and a time-sharing variableαmi

for selecting actionωm when the imperfect CSI iŝh(t) = ĥi.
The multicast throughputλg is upper bounded by the multicast
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capacity of groupg multiplied with a time-sharing variable
∑E

i=1 αmiπi for scheduling groupg. Therefore, the achievable
throughput regionΛ is as leastminu{Mu/(Mu + ImaxK)}
of the optimal throughput region, without incurring excessive
transmission delay. Note that the NC-RC scheme achievesΛ
with no prior knowledge of the channel distributionπi.

The key difficulty in proving Theorem 1 is that the temporal
correlation in the transmission procedure of rateless codes.
Owing to this, traditionalslot-levelLyapunov drift techniques
[11] are not sufficient to prove Theorem 1. This time-correlation
issue was resolved in [17] for unicast service by constructing a
capacity-achieving scheme withi.i.d. transmission rates across
time slots and evaluating the throughput difference between the
two schemes. However, this method cannot be used to analyze
the multicast throughput of our NC-RC algorithm, because
the transmission rateIg(t) in (16) is non-i.i.d. across time. In
this paper, we utilize fluid limit techniques [33]–[38] to prove
Theorem 1. Since the fluid limit functions are deterministic,
the service rates in the fluid limits are deterministic without
time-correlation. By this, the time-correlation issue is resolved.

The details of the proof are provided in Appendix A. In the
following we provide an outline of the proof. We first show that
the queueing system can be described as a Markov chain after
adding some extra state variables, and then establish the fluid
limits of this Markov chain. According to (7), the accumulated
mutual information of useru is smaller thanMu before the last
coded packet is received, that is

tn,u+l−1
∑

t=tn,u

1{s(t)=u}I(hu(t), P (t))K < Mu, (19)

where l satisfies
∑tn,u+l−1

t=tn,u
1{s(t)=u} = Lu(n) − 1. Using

this, we can obtain a lower bound of the queue service rate
in the fluid limits (Lemma 3). Then, by using a Lyapunov drift
techniques for the fluid limits and the stability criteria stated in
Lemma 4 for discrete-time countable Markov chains, we can
establish the stability of the original queue system when the
arrival rate vectorλ is strictly insideΛ.

VI. M ULTICAST THROUGHPUTENHANCEMENT BY

UNICAST RETRANSMISSIONS

Let us consider the procedure of transmitting a rateless code
to a group of multicast users. At the beginning, all the multicast
users in the group can attain useful mutual information and
the multicast gain is high. However, as more and more users
have decoded the message and stopped receiving packets, the
multicast gain decreases. In the end, only one or several
users with poor channel quality are still receiving packetsand
the multicast gain becomes quite small, which significantly
degrades the throughput of multicast service. In this section,
we analyze the stability region of a combined delivery strategy,
which first delivers the message to most users in a multicast
session, and at certain time switches to unicast retransmissions
[3] to send additional coded packets to the users with poor
channel conditions using higher transmission power.

A. User Partition
Suppose that the base station needs to deliver messages to

the users within the setLg in the multicast session, where
Lg ⊂ {1, · · · , J(g)}. In order to improve the throughput of
the multicast session, the users withinLg should have better
channel quality than the other users in thegth group. The base
station can attain the channel quality of each multicast user
by evaluating its average throughput. In particular, the average
throughput of userj in the gth multicast group is

Igj , lim
N→∞

NMg
∑N

n=1 Lgj(n)
, (20)

whereLgj(n) is defined in (12). Without loss of generality, we
assume that the multicast users are sorted in the descendingor-
der of their average throughput, i.e.,Ig1 ≥ Ig2 ≥ · · · ≥ IgJ(g).
Then, the setLg can be expressed asLg = {1, · · · , l(g)}
with l(g) ≤ J(g). In practice, the number of multicast users
l(g) within Lg is attained from system requirements and user
service experience. For example, the LTE-Advanced MBMS
standards require to cover a percentage (e.g.,95%) of the users
by multicast delivery [3].

B. Queueing System

Similar to (11), the service duration for thenth multicast
session of thegth group is

Lg(n, l(g)) = max
j∈{1,··· ,l(g)}

Lgj(n). (21)

Recall thatI(hgj(t), Pav) is i.i.d. in the slots when thegth
group is scheduled. SinceLg(n, l(g)) is a stopping time that
the multicast users withinLg have accumulated enough mutual
information to decode thenth message, one can attain that
Lg(n, l(g)) is i.i.d. for differentn and satisfies SLLN:

lim
N→∞

∑N
n=1 Lg(n, l(g))

N
, Lg(l(g)), (22)

whereLg(l(g)) is the average service duration that is irrelative
to the network control actions. Therefore, the throughput of the
multicast session is given byMg/Lg(l(g)) bits/slot.

The multicast usersj ∈ {l(g)+1, · · · , J(g)} in thegth group
require extra unicast sessions to improve the throughput per-
formance. Letv(g, j) denote the extra unicast flow for thejth
multicast user in thegth group, wherej ∈ {l(g)+1, · · · , J(g)}.
We useR∗

gj(n) ∈ [0,Mg] to represent the amount of mutual
information that userj of the gth group has collected in the
nth multicast session. Then, the leftMv(n) , Mg − R∗

gj(n)
bits of mutual information needs to be retrieved in latter unicast
file repair sessions. Note thatR∗

gj(n) andMv(n) are bothi.i.d.
over n. Let us defineηgj as the ratio of mutual information
obtained in multicast sessions, i.e.,

ηgj , lim
N→∞

N
∑

n=1
R∗

gj(n)

NMg

. (23)

In the unicast retransmission sessions, each receiver sends its
imperfect CSI to the base station like other unicast users. We
defines(t) = v as the event that thevth unicast retransmission
flow is scheduled, anda(t) = v as the event that a message
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Fig. 2. Simulation results of average queue length versus the traffic loadλ
for ρ = 0.1 andSNR = 10dB.

is decoded by the receiver of thevth unicast retransmission
flow. The base station maintains an extra queueQv for the vth
unicast retransmission flow. The evolutions ofQv are given by

Qv(t+1)=
[

Qv(t)−Mv(nv(t))1{a(t)=v}

−R∗
gj(ng(t))1{a(t)=g}

]+
+Φg(t), (24)

wherev = v(g, j), ng(t) is defined in (10), andnv(t) is index
of the latest message in thevth unicast flow similar to (6).

C. Throughput Region

We use the NC-RC algorithm to determine the scheduling
and power allocation actions for this combined delivery strat-
egy, whereJ(g) is replaced byl(g),Qv(t) is updated according
to (24), andIv(t) is in the same form ofIu(t).

A stable throughput region of the combined delivery strategy
is stated as follows:

Theorem 2. The network with the combined delivery strategy
is stable under NC-RC for any arrival rate vectorλ strictly
insideΛ2, whereΛ2 is given by

Λ2 =

{

λ

∣

∣

∣

∣

There existαmi ≥ 0, such that

0 ≤ λu ≤
∑

m:sm=u

E
∑

i=1

E{I(hu, P
m)K|ĥi}

Mu

Mu + ImaxK
αmiπi,

0 ≤ λg ≤
Mg

Lg(l(g))

∑

m:sm=g

E
∑

i=1

αmiπi,

0 ≤ λg ≤
∑

m:sm=v(g,j)

E
∑

i=1

E{I(hgj , P
m)K|ĥi}

(1− ηgj)Mg

(1−ηgj)Mg+ImaxK

× αmiπi +
ηgjMg

Lg(l(g))

∑

m:sm=g

E
∑

i=1

αmiπi, j = l(g) + 1, · · · , J(g),

0 ≤

F
∑

m=1

E
∑

i=1

P
m
αmiπi ≤ Pav,

M
∑

m=1

αmi = 1,∀ i

}

, (25)

whereLg(l(g)) and ηgj are defined in(22), and (23), respec-
tively, Pm and sm are the power allocation and scheduling
decisions associated with actionωm, ĥi is the imperfect CSI
state for unicast users and the multicast users with file repair.

Note thatλg is upper bounded by not only the multicast
throughput of the users within the set{1, · · · , J(g)}, but also
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Fig. 3. Simulation results of average queue length versus the traffic loadλ
for ρ = 0.8 andSNR = 10dB.

the total throughput of multicast and unicast services for each
user within the set{l(g) + 1, · · · , J(g)}.

Proof: See Appendix F.

VII. N UMERICAL EVALUATION

We evaluate the performance of NC-RC algorithm based on
simulations. Consider a downlink network withU = 5 unicast
users andG = 2 multicast user groups. Each multicast group
containsJ(g) = 4 users. The downlink wireless channels are
modeled by Rayleigh fading. We adopt an additive channel
uncertainty model, e.g., [31], in which the imperfect CSIĥu(t)
is determined by

ĥu(t) =
√
ρhu(t) +

√

1− ρn̂u(t), (26)

wherenu(t) is circular-symmetric complex Gaussian variable
with zero mean and the same variance ofhu(t), andρ is the
correlation coefficient which represents the accuracy of the im-
perfect CSI. All the channel states are quantized into 16-bit dis-
crete values due to analog-to-digital conversion. The mutual in-
formation is expressed asI(h, P ) = max{log2(1+ |h|2P ), 5},
where the additional upper boundImax = 5 bits/symbol is
due to the limited dynamic range of practical RF receivers.
The message size of each rateless code isMs = 40 bits, and
the number of channel symbols in each slot is normalized as
K = 1. The average SNR of a wireless channel is determined
as SNR = E{|h(t)|2}Pav. The traffic loads of all the flows
are chosen to be the same, i.e.,λu = λg = λ.

Three reference strategies are considered for performance
comparison: The first strategy uses infinite block-length channel
codes, which achieves an outer bound of the stability region
Λ in (18). However, this strategy is not practical since it
needs prior knowledge of the channel distributionπi and has
an infinite transmission delay. The second one uses fixed-rate
codes on the physical layer and rateless codes on the application
layer [18], where the packets not successfully decoded in the
physical layer are discarded from application layer message
decoding. The third strategy utilizes unicast sessions based on
physical-layer rateless codes to transmit service data to all the
users [17], where all the physical-layer packets contribute to
message decoding by information accumulation. Near-optimal
scheduling and power allocation schemes are designed for
these strategies. As we have mentioned in Section IV-B, the
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Fig. 4. Simulation results of average queue length versus the traffic loadλ
for unicast file repair in a heterogeneous SNR scenario.

throughput performance of practical rateless codes can be
obtained by incorporating their reception overheadǫ and divide
the realized throughput by(1 + ǫ).

Figures 2 and 3 illustrate the comparison results of average
queue length versus the traffic loadλ for ρ = 0.1 andρ = 0.8,
respectively, where the users have the same average SNR of
10 dB. As expected, the performance of all four schemes
improves with increasingρ. The performance of our scheme
with rateless codes is quite close to that achieved by using in-
finite block-size codes. In fact, our scheme can achieve at least
Mu/(Mu + ImaxK) = 8/9 of the optimal throughput region.
The performance of physical-layer fixed-rate codes is much
worse than that of our scheme. The reason is that the maximum
achievable goodputmaxR RPr{I(hu, P ) ≥ R|ĥu} could be
much smaller than the ergodic capacityE{I(hu, P )|ĥu} for
unicast service. Similar rate loss also exists in multicastservice.
We note that although application-layer rateless codes can
achieve multicast gain and reduce feedback overhead, they
cannot recover the rate loss caused by fixed-rate codes in the
physical layer. The performance of unicast only scheme is bad,
because it has not exploited the multicast gain.

Figure 4 provides the results of our schemes with and without
unicast file repair. The average SNRs of the 5 unicast users
are [12, 10, 8, 6, 4] dB, the average SNRs of the 2 groups of
multicast users are[12, 9, 6, 3; 12, 9, 6, 3] dB, andl(g) = 3 for
both groups. Whenρ = 0.2, unicast file repair can achieve a
higher throughput, because the base station uses more power
to serve the last multicast user with poor channel quality.
When ρ = 0.9, the throughput benefit of unicast file repair
becomes larger, because the opportunistic gain provided by
power allocation increases withρ.

VIII. C ONCLUSION

We have investigated the management of network resources
under imperfect CSI and infrequent ACK feedback. To that end,
a scheduling and power allocation strategy has been developed
for downlink networks with both multicast and unicast services
using rateless codes. Our strategy can simultaneously realize the
benefits of multiuser diversity gain, multicast gain, and achieve
robustness against channel uncertainty. Our simulation results
suggest that our strategy can significantly improve the network

throughput, compared to schemes using fixed-rate codes or
relying on unicast communications to serve all the users.
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APPENDIX A
PROOF OFTHEOREM 1

A. A Markov Chain of the Queueing System

Let us defineTs(t) ,
∑t

t=tn,s
1{s(t)=s} as the number of

slots that has been used to send the latest message of flows.
The evolutions ofTs(t) is given by

Ts(t+ 1) =

{

Ts(t) + 1{s(t)=s} , if a(t) 6= s;
0 , otherwise.

(27)

We further defineΥg(t) ,
∑ng(t)−1

n=1 Lg(n) as the accumulated
block-length of the rateless codes of groupg, which evolves as

Υg(t+ 1) = Υg(t) + (Tg(t) + 1)1{a(t)=g}. (28)

Let X (t) , (Ru(t), Rgj(t), Qs(t), Z(t),
ns(t)
t+1 ,

Ts(t)
t+1 ,

Υg(t)
t+1 )

denote the system state. Note that we usens(t)
t+1 instead ofns(t)

t
,

so that it is well-defined whent = 0. Since there are finite
number of possible CSI values and control actions, the state
spaces ofRu(t),Rgj(t),Qs(t), Z(t), ns(t), Ts(t), Υg(t) are all

countable. Moreover, the ratiosns(t)
t+1 , Ts(t)

t+1 , andΥg(t)
t+1 also have

countable state space. In the NC-RC algorithm, the network
control action{s(t), P (t)} at slot t is determined fromX (t)
and ĥ(t). The service update variablea(t) is determined from
X (t), {s(t), P (t)}, and the channel states{hu(t), hgj(t)}. In
addition, one can observe that the system stateX (t + 1) can
be derived fromX (t), {s(t), P (t)}, and a(t). Therefore, the
processX = (X (t), t ≥ 0) is a discrete-time countable Markov
chain.

B. Fluid Limits

We now establish the fluid limit model ofX . Let us define the
norm ofX (t) as||X (t)|| , ∑U+G

s=1 |Qs(t)|+ |Z(t)|+ |Ru(t)|+
|Rgj(t)|+ |ns(t)

t+1 |+ |Ts(t)
t+1 |+ |Υg(t)

t+1 |. Let X (x) denote a process
X with an initial state satisfying

||X (x)(0)|| = x. (29)

LetAs(t) ,
∑t

τ=0 Φs(τ) andDs(t) denote the accumulated
arrival and departure bits at queueQs up to slot t, respec-
tively. We adopt the convention thatAs(0) = 0 andDs(0) = 0.
Let Ψs(t) ,Ms1{a(t)=s} denote the service rate ofQs at slot
t. Since the queue can be empty when it is scheduled, we have
Ds(t) − Ds(t − 1) ≤ Ψs(t). The queue lengthQs can be
described in an alternative form

Qs(t) = Qs(0) +As(t)−Ds(t). (30)

LetW (t) andΘ(t) denote the accumulated arrival and depar-
ture power of the virtual queueZ, respectively. Therefore, we
attainW (t) ,

∑t

τ=0 P (τ) andΘ(t)−Θ(t− 1) ≤ Pav. Then,
the virtual queueZ can be also written as

Z(t) = Z(0) +W (t)−Θ(t). (31)

Let Bmi(t) denote the time fraction up to slott when the
network control action isωm and the imperfect channel state
is ĥi, defined by

Bmi(t) ,
t

∑

τ=0

1{ω(τ)=ωm,ĥ(τ)=ĥi}
. (32)

Let us define another processY = (X , As, Ds,
W,Θ, Bmi,Ψs), where the tuple denotes a list of pro-
cesses. Therefore, the sample path ofY(x) uniquely define the
sample path ofX (x). We extend the definition ofY to each
continuous timet ≥ 0 asY(x)(t) = Y(x)(⌊t⌋).

Recall that a sequence of functionsfn(·) is said to converge
to a functionf(·) uniformly over compact (u.o.c) if for all
t ≥ 0, limn→∞ sup0≤t′≤t |fn(t′)−f(t′)| = 0. We now consider
a sequence of processes{ 1

xn
Y(xn)(xn·)} that is scaled both in

time and space, and show the convergence properties of the
sequences in the following lemma:

Lemma 1. With probability one, for any sequence of the
processes{ 1

xn
Y(xn)(xn·)}, wherexn is a sequence of positive

integers withxn → ∞, there exists a subsequencexnk
with

http://arxiv.org/abs/1207.7298
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xnk
→ ∞ ask → ∞ such that the following u.o.c convergences

hold:
1

xnk

Q
(xnk

)
s (xnk

t) → qs(t), (33)

1

xnk

A
(xnk

)
s (xnk

t) → as(t), (34)

1

xnk

D
(xnk

)
s (xnk

t) → ds(t), (35)

1

xnk

Z
(xnk

)(xnk
t) → z(t), (36)

1

xnk

W
(xnk

)(xnk
t) → w(t), (37)

1

xnk

Θ(xnk
)(xnk

t) → θ(t), (38)

1

xnk

B
(xnk

)

mi (xnk
t) → bmi(t), (39)

1

xnk

∫ t

0

Φ
(xnk

)
s (xnk

τ )dτ →

∫ t

0

φs(τ )dτ, (40)

1

xnk

∫ t

0

Ψ
(xnk

)
s (xnk

τ )dτ →

∫ t

0

ψs(τ )dτ, (41)

1

xnk

∫ t

0

P
(xnk

)(xnk
τ )dτ →

∫ t

0

p(τ )dτ, (42)

where the functionsqs, as, ds, z, w, θ, bmi are Lipschitz contin-
uous in[0,∞).

Proof: See Appendix B.
Since the limiting functionsqs, as, ds, z, w, θ, bmi are Lip-

schitz continuous in[0,∞), they are absolutely continu-
ous. Therefore, these limiting functions are differentiable at
almost all timet ∈ [0,∞), which we callregular time.

Lemma 2. Any fluid limit (qs, as, ds, z, w, θ, bmi) satisfies the
following equations:

qs(t) = qs(0) + as(t)− ds(t), (43)
as(t) = λst, (44)

ds(t) ≤

∫ t

0

ψs(τ )dτ, (45)

d

dt
qs(t) =

{

λs − ψs(t), if qs(t) > 0;
(λs − ψs(t))

+, otherwise,
(46)

z(t) = z(0) + w(t)− θ(t), (47)

w(t) =

∫ t

0

p(τ )dτ, (48)

θ(t) ≤ Pavt, (49)
d

dt
z(t) =

{

p(τ )− Pav, if z(t) > 0;
(p(τ )− Pav)

+, otherwise,
(50)

F
∑

m=1

bmi(t) = πit. (51)

Proof: See Appendix C.
Let us define the functions

cmi(t) ,
1

πi

d

dt
bmi(t), (52)

for all regular timet ≥ 0. Then, by (51), we attain

F
∑

m=1

cmi(t) = 1, ∀ i. (53)

Lemma 3. The fluid limit functions satisfy the properties:

ψu(t) ≥
∑

m:sm=u

E
∑

i=1

E{I(hu, P
m)K|ĥi}

Mucmi(t)πi

Mu + ImaxK
, (54)

ψg(t) =
∑

m:sm=g

E
∑

i=1

Mg

Lg

cmi(t)πi, (55)

p(t) =
F
∑

m=1

E
∑

i=1

P
m
cmi(t)πi, (56)

for all u ∈ {1, · · · , U} and g ∈ {U + 1, · · · , U +G}.

Proof: See Appendix D.

C. Stability Analysis

The following lemma provides a stability criteria for distrete-
time countable Markov chains, first obtained by Malyshev and
Menshikov [39]. This stability criteria was also derived in[40]
for continuous-time countable homogeneous Markov chains.

Lemma 4. [33, Theorem 4] Suppose that there exist anǫ >
0 and a finite integerT > 0 such that for any sequence of
processes{ 1

x
S(x)(xT ), x = 1, 2, · · · }, we have

lim sup
x→∞

E

[

1

x
||S(x)(xT )||

]

≤ 1− ǫ. (57)

Then, the Markov chainS is stable.

Note that from system causality, we havens(t) ≤ t for all
flow s. Then, we have

lim
k→∞

1

xnk

∣

∣

∣

∣

1

xnk
t+ 1

n
(xnk

)
s (xnk

t)

∣

∣

∣

∣

= 0 (58)

almost surely for allt ≥ 0. Similarly, since Ts(t) ≤ t

and Υg(t) ≤ t, the fluid limits of Ts(t)
t+1 ,

Υg(t)
t+1 are also zero

functions almost surely. In addition, the accumulated mutual
information Ru(t), Rgj(t) satisfiesRu(t) ≤ ImaxKt and
Rgj(t) ≤ ImaxKt, hence their fluild limits are zero functions
almost surely. Therefore, it remains to show that the fluid limit
model of the subsystem(Qs(t), Z(t)) is stable in the sense of
(57).

Let us consider a quadratic Lyapunov function for the fluid
limit system:

L(t) =
1

2

U+G
∑

s=1

qs(t)
2 + z(t)2. (59)

Then, we can establish the following statement:

Lemma 5. Consider a network under the RNC-RC algorithm
for any arrival rate vectorλ strictly insideΛ. For anyδ1 ≥ 0,
there exists anδ2 > 0 such that the fluid limit functions satisfy
the following property with probability 1: At any regular time
t,

L(t) ≥ δ1 implies
d

dt
L(t) ≥ −δ2. (60)

Proof: See Appendix E.
Lemma 5 implies that for anyζ ∈ (0, 1), there exists a finite

T > 0 such that
∑U+G

s=1 |qs(T )|+ |z(T )| ≤ ζ. In other words,
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for any sequence of processes1
xn

X (xn)(xnT ), there exists a
subsequence such that

lim
k→∞

1

xnk

||X (xnk
)(xnk

T )|| ≤ ζ , 1− ǫ. (61)

This further implies that with probability 1

lim sup
x→∞

1

x
||X (x)(xT )|| ≤ 1− ǫ (62)

holds, because there must exist a subsequence ofx that con-
verges to the same limit aslim supx→∞

1
x
||X (x)(xT )||.

According to (30) and (31), we have||X (x)(xT )|| ≤ x +
∑U+G

s=1 As(xT ) +W (xT ). Hence,

E

{

1

x
||X (x)(xT )||

}

≤ 1 +
U+G
∑

s=1

λsT + PmaxT , F (T ) ≤ ∞.

Therefore, it follows from the Dominated Convergence Theo-
rem that

lim sup
k→∞

E

[

1

x
||X (x)(xT )||

]

= E

[

lim sup
k→∞

1

x
||X (x)(xT )||

]

≤ 1− ǫ, (63)

and thus the condition of Lemma 4 is satisfied. This completes
the proof of Theorem 1.

APPENDIX B
PROOF OFLEMMA 1

It follows from the SLLN (3) that 1
xnk

∫ t

0 Φs(xnk
τ)dτ →

λst. Moreover, sinceAs(t) =
∫ t

0
Φs(τ)dτ , the convergences

(34) and (40) hold, and each of the limiting functions are
Lipschitz continuous. For any given0 ≤ t1 ≤ t2, since
0 ≤ Ds(t)−Ds(t− 1) ≤ Ψs(t) ≤Ms, we have that

0 ≤ 1

xn

[

D(xn)
s (xnt2)−D(xn)

s (xnt1)
]

≤Ms(t2 − t1). (64)

Thus, the sequence of functions{ 1
xn
D

(xn)
s (xn·)} is uniformly

bounded and uniformly equicontinuous. Consequently, by the
Arzela-Ascoli Theorem, there must exist a subsequence along
which (35) holds. Moreover, (64) also implies that each of
the limiting functionsds is Lipschitz continuous. Using sim-
ilar arguments, the convergences (37)-(39) can be shown and
each of the limiting functionsw(t), θ(t), and bmi is Lipschitz
continuous.

Since the sequence{ 1
xn
Q

(xn)
s (0)} are upper bounded by

1 due to (29), there exists a subsequence (for simpleness,
assume the subsequence is denoted by{xnk

}) such that
1

xnk

Q
(xnk

)
s (0) → qs(0). Hence, convergence (33) simply fol-

lows from (30). Also, each of the limiting functionsqs(t) is
Lipschitz continuous. Using similar arguments, we can prove
the result for (36).

SinceΨs(t) =Ms1{a(t)=s}, we have

1

xn

∫ t2

t1

Ψ(xn)
s (xnτ)dτ ≤Ms(t2 − t1). (65)

Then by applying the Arzela-Ascoli Theorem again for (65),
there must exist a subsequence along which (41) holds. Using
similar arguments, we can prove (42).

APPENDIX C
PROOF OFLEMMA 2

First, (44) follows from the SLLN (3). Equations (43), (45),
(47)-(49) are satisfied from the definitions. By (32), we derive
∑F

m=1Bmi(t) =
∑t

τ=0 1{ĥ(τ)=ĥi}
. Since ĥ(t) is i.i.d. over

time,1{ĥ(t)=ĥi}
is alsoi.i.d., hence (51) follows from the SLLN.

Since each of the limiting functionsqs is differentiable at any
regular time t ≥ 0, (5) and (9) can be rewritten as (46).
Similarly, (50) follows from (14).

APPENDIX D
PROOF OFLEMMA 3

A. Proof of Eq.(54)

From (41), we attain

ψu(t)

=
d

dt

∫ t

0

ψu(τ)dτ

= lim
δ→0

∫ t+δ

0 ψu(τ)dτ −
∫ t

0 ψu(τ)(τ)dτ

δ

= lim
δ→0

lim
k→∞

1

δxnk

⌊(t+δ)xnk
⌋

∑

τ=⌊txnk
⌋+1

Ψ
(xnk

)
u (τ)

= lim
δ→0

lim
k→∞

1

δxnk

⌊(t+δ)xnk
⌋

∑

τ=⌊txnk
⌋+1

Mu1{a(τ)=u}. (66)

According to (7), the accumulated mutual information of user
u is smaller thanMu before the last coded packet is received.
This implies

tn,u+l−1
∑

t=tn,u

1{s(t)=u}I(hu(t), P (t))K < Mu, (67)

wherel satisfies
∑tn,u+l−1

t=tn,u
1{s(t)=u} = Lu(n)− 1. Taking the

summation over time on both sides of (67) yields

t2
∑

τ=t1

I(hu(τ), P (τ))K
(

1{s(τ)=u} − 1{a(τ)=u}

)

<

t2
∑

τ=t1

Mu1{a(τ)=u} +Mu

for all 0 ≤ t1 < t2. Therefore, we have
t2
∑

τ=t1

I(hu(τ), P (τ))K1{s(τ)=u}

<

t2
∑

τ=t1

[Mu + I(hu(τ), P (τ))K] 1{a(τ)=u} +Mu

(2)
<

t2
∑

τ=t1

(Mu + ImaxK)1{a(τ)=u} +Mu.
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Hence,

Mu

Mu + ImaxK

t2
∑

τ=t1

I(hu(τ), P (τ))K1{s(τ)=u}

<

t2
∑

τ=t1

Mu1{a(τ)=u} +
M2

u

Mu + ImaxK
.

By this, we can derive

lim
k→∞

1

δxnk

⌊(t+δ)xnk
⌋

∑

τ=⌊txnk
⌋+1

Mu1{a(τ)=u}

≥ lim
k→∞

1

δxnk

[ ⌊(t+δ)xnk
⌋

∑

τ=⌊txnk
⌋+1

I(hu(τ), P (τ))K1{s(τ)=u}

× Mu

Mu + ImaxK
− M2

u

Mu + ImaxK

]

= lim
k→∞

1

δxnk

⌊(t+δ)xnk
⌋

∑

τ=⌊txnk
⌋+1

I(hu(τ), P (τ))K1{s(τ)=u}

× Mu

Mu + ImaxK

= lim
k→∞

1

δxnk

⌊(t+δ)xnk
⌋

∑

τ=⌊txnk
⌋+1

∑

m:sm=u

E
∑

i=1

I(hu(τ), P
m)K

× 1{ω(τ)=ωm,ĥ(t)=ĥi}

Mu

Mu + ImaxK

=
∑

m:sm=u

E
∑

i=1

lim
k→∞

1

δxnk

⌊(t+δ)xnk
⌋

∑

τ=⌊txnk
⌋+1

[

I(hu(τ), P
m)K

×1{ω(τ)=ωm,ĥ(τ)=ĥi}

]

Mu

Mu + ImaxK
. (68)

Moreover, we have

lim
k→∞

1

δxnk

⌊(t+δ)xnk
⌋

∑

τ=⌊txnk
⌋+1

[

I(hu(τ), P
m)K1{ω(τ)=ωm,ĥ(τ)=ĥi}

]

= lim
k→∞

1

δxnk

⌊(t+δ)xnk
⌋

∑

τ=0

[

I(hu(τ), P
m)K1{ω(τ)=ωm,ĥ(τ)=ĥi}

]

− lim
k→∞

1

δxnk

⌊txnk
⌋

∑

τ=0

[

I(hu(τ), P
m)K1{ω(τ)=ωm,ĥ(τ)=ĥi}

]

(a)
= E{I(hu, Pm)K|ĥi}

× lim
k→∞

1

δxnk

[ ⌊(t+δ)xnk
⌋

∑

τ=0

1{ω(τ)=ωm,ĥ(τ)=ĥi}

−
⌊txnk

⌋
∑

τ=0

1{ω(τ)=ωm,ĥ(τ)=ĥi}

]

(b)
= E{I(hu, Pm)K|ĥi}

bmi(t+ δ)− bmi(t)

δ
, (69)

where step(a) follows from the SLLN and the fact that
I(hu, P

m) is i.i.d. in the time slots whereω(t) = ωm and

ĥ(t) = ĥi, and step(b) is due to (32) and (39). Substituting
(52), (68), and (69) into (66), (54) follows.

1) Proof of Eq. (55): It follows from (10) that
∑t

τ=0 1{a(τ)=g} = ng(t). Moreover, by the definition of
Lg(n), one can obtain that

ng(t)
∑

n=0

Lg(n) ≤
t

∑

τ=0

1{s(τ)=g} ≤
ng(t)+1
∑

n=0

Lg(n).

In view of (22), we obtain

lim
t→∞

∑t

τ=0 1{s(τ)=g}
∑t

τ=0 1{a(τ)=g}

≥ lim
t→∞

∑ng(t)
n=0 Lg(n)

ng(t)
= Lg,

and

lim
t→∞

∑t
τ=0 1{s(τ)=g}

∑t

τ=0 1{a(τ)=g}

≤ lim
t→∞

∑ng(t)+1
n=0 Lg(n)

ng(t)
= Lg.

Hence,

lim
t→∞

∑t
τ=0 1{s(τ)=g}

∑t
τ=0 1{a(τ)=g}

= Lg. (70)

From (41), we attain
∫ t

0

ψg(τ)dτ

= lim
k→∞

1

xnk

⌊txnk
⌋

∑

τ=0

Mg1{a(τ)=g}

=Mg lim
k→∞

∑⌊txnk
⌋

τ=0 1{a(τ)=g}
∑⌊txnk

⌋

τ=0 1{s(τ)=g}

1

xnk

⌊txnk
⌋

∑

τ=0

1{s(τ)=g}

(70)
= Mg

1

Lg

lim
k→∞

1

xnk

⌊txnk
⌋

∑

τ=0

1{s(τ)=g}

=
Mg

Lg

∑

m:sm=g

E
∑

i=1

lim
k→∞

1

xnk

⌊txnk
⌋

∑

τ=0

1{ω(τ)=ωm,ĥ(τ)=ĥi}

(39)
=

Mg

Lg

∑

m:sm=g

E
∑

i=1

bmi(t).

Taking the gradient on both sides of this equation, (55) is
proved.

2) Proof of Eq.(56): From (42), we attain
∫ t

0

p(τ)dτ

= lim
k→∞

1

xnk

⌊txnk
⌋

∑

τ=0

P (t)

=
F
∑

m=1

E
∑

i=1

Pm lim
k→∞

1

xnk

⌊txnk
⌋

∑

τ=0

1{ω(τ)=ωm,ĥ(τ)=ĥi}

(39)
=

F
∑

m=1

E
∑

i=1

Pmbmi(t),

Taking the gradient on both sides of this equation, (56) is
proved.
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APPENDIX E
PROOF OFLEMMA 5

Sinceλ is strictly insideΛ, there exist some parametersε >
0 andβmi ≥ 0 such that the following inequalities hold:

λu + ε ≤
∑

m:sm=u

E
∑

i=1

E{I(hu, Pm)|ĥi}
MuKβmiπi
Mu + ImaxK

, (71)

λg + ε ≤
∑

m:sm=g

E
∑

i=1

Mg

Lg

βmiπi, (72)

F
∑

m=1

E
∑

i=1

Pmβmiπi + ε ≤ Pav, (73)

M
∑

m=1

βmi = 1. (74)

Sinceqs andz are differentiable for any regular timet ≥ 0,
we can obtain the derivative ofL(t) as

D+

dt+
L(t)

(a)
=

U+G
∑

s=1

qs(t) [λs − ψs(t)] + z(t) [p(t)− Pav]

=

U
∑

u=1

qu(t)

[

λu−
∑

m:sm=u

E
∑

i=1

E{I(hu, Pm)|ĥi}
MuKβmiπi
Mu + ImaxK

]

+
U+G
∑

g=U+1

qg(t)

[

λg −
∑

m:sm=g

E
∑

i=1

Mg

Lg

βmiπi

]

+ z(t)

[

F
∑

m=1

E
∑

i=1

Pmβmiπi − Pav

]

+

U
∑

u=1

qu(t)

[

∑

m:sm=u

E
∑

i=1

E{I(hu, Pm)|ĥi}

× MuKβmiπi
Mu + ImaxK

− ψu(t)

]

+

U+G
∑

g=U+1

qg(t)

[

∑

m:sm=g

E
∑

i=1

Mg

Lg

βmiπi − ψg(t)

]

+ z(t)

[

p(t)−
F
∑

m=1

E
∑

i=1

Pmβmiπi

]

, (75)

where D+

dt+
L(t) = limδ↓0

L(t+δ)−L(t)
δ

and step(a) is due to
(46) and (50).

Let us chooseδ3 > 0 such thatL(t) ≥ δ1 implies
max{maxs∈{1,··· ,U+G} qs, z} ≥ δ3. Then, we can conclude

from (71)-(73) that

U
∑

u=1

qu(t)

[

λu−
∑

m:sm=u

E
∑

i=1

E{I(hu, Pm)|ĥi}
MuKβmiπi
Mu + ImaxK

]

+

U+G
∑

g=U+1

qg(t)

[

λg −
∑

m:sm=g

E
∑

i=1

Mg

Lg

βmiπi

]

+z(t)

[

F
∑

m=1

E
∑

i=1

Pmβmiπi − Pav

]

≤ −δ3ε , −δ2 < 0. (76)

In addition, since RNC-RC chooses scheduling and power
allocation decisions according to (15)-(17), the following rela-
tionship holds:

cmi(t) ∈ arg max
αmi:

∑
F
m=1 αmi=1,αmi≥0

[ U
∑

u=1

qu(t)
∑

m:sm=u

E{I(hu, Pm)K|ĥi}
Mu

Mu + ImaxK
αmi

+

U+G
∑

g=U+1

qg(t)
∑

m:sm=g

Mg

Lg

αmi − z(t)

F
∑

m=1

Pmαmi

]

. (77)

Then, we obtain

U
∑

u=1

qu(t)ψu(t) +

U+G
∑

g=U+1

qg(t)ψg(t)− z(t)p(t)

≥
E
∑

i=1

πi

[ U
∑

u=1

qu(t)
∑

m:sm=u

E{I(hu, Pm)K|ĥi}

× Mu

Mu + ImaxK
cmi(t) +

U+G
∑

g=U+1

qg(t)
∑

m:sm=g

Mg

Lg

cmi(t)

− z(t)

F
∑

m=1

Pmcmi(t)

]

≥
E
∑

i=1

πi

[ U
∑

u=1

qu(t)
∑

m:sm=u

E{I(hu, Pm)K|ĥi}

× Mu

Mu + ImaxK
βmi +

U+G
∑

g=U+1

qg(t)
∑

m:sm=g

Mg

Lg

βmi

− z(t)

F
∑

m=1

Pmβmi

]

. (78)

where the first inequality is due to Lemma 3 and the second
inequality is due to (77). Finally, substituting (76) and (78) into
(75), we attainD+

dt+
L(t) ≤ −δ2 and the asserted statement is

proved.

APPENDIX F
PROOF OFTHEOREM 2

Let Rv(t) be the accumulated mutual information of the
unicast file repair flowv. The evolutions ofRv(t) are given
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by

Rv(t+1)=























Rv(t), if s(t) 6= v;
Rv(t)+I(hu(t), P (t))K,

if s(t) = v and
Rv(t)+I(hu(t), P (t))K<Mv(nv(t));

0, otherwise.
(79)

LetX (t) , (Ru(t), Rgj(t), Rv(t), Qu(t), Qg(t), Qv(t), Z(t),
ns(t)
t+1 ,

Ts(t)
t+1 ,

Υg(t)
t+1 ) denote the system state. One can prove

that X = (X (t), t ≥ 0) is a discrete-time countable Markov
chain. Similar to Lemma 1 and Lemma 2, we can show that
the fluid limit model ofX exists, which can be expressed as
(qs, as, ds, z, w, v, bmi).

Lemma 6. The fluid limit functions satisfy the properties:

ψu(t) ≥
∑

m:sm=u

E
∑

i=1

E{I(hu, P
m)K|ĥi}

Mucmi(t)πi

Ms + ImaxK
, (80)

ψg(t) =
∑

m:sm=g

E
∑

i=1

Mg

Lg(l(g))
cmi(t)πi, (81)

ψv(t) ≥ (1− ηgj)
∑

m:sm=v(g,j)

E
∑

i=1

E{I(hgj , P
m)K|ĥi}

Mgcmi(t)πi

Mg + ImaxK

+ηgj
∑

m:sm=g

E
∑

i=1

Mg

Lg(l(g))
cmi(t)πi, (82)

p(t) =
F
∑

m=1

E
∑

i=1

P
m
cmi(t)πi, (83)

for all u ∈ {1, · · · , U}, g ∈ {U + 1, · · · , U + G}, and v =
v(g, j).

Proof: Equations (80), (81), and (83) follows from Lemma
3. Therefore, we only need to prove (82).

∫ t

0

ψv(τ)dτ

= lim
k→∞

1

xnk

⌊txnk
⌋

∑

τ=0

[

Mv(nv(τ))1{a(τ)=v}

+R∗
gj(ng(τ))1{a(τ)=g}

]

= lim
k→∞

1

xnk

⌊txnk
⌋

∑

τ=0

Mv(nv(τ))1{a(τ)=v}

+ lim
k→∞

1

xnk

⌊txnk
⌋

∑

τ=0

R∗
gj(ng(τ))1{a(τ)=g} (84)

By following the proof idea in Appendix D-A and using the
fact that

lim
N→∞

N
∑

n=1
Mv(n)

N
= (1− ηgj)Mg. (85)

we can obtain

lim
k→∞

1

xnk

⌊txnk
⌋

∑

τ=0

Mv(nv(τ))1{a(τ)=v}

=
∑

m:sm=v(g,j)

E
∑

i=1

E{I(hgj , Pm)K|ĥi}

× (1− ηgj)Mg

(1− ηgj)Mg + ImaxK
bmi(t). (86)

On the other hand, using (23), we attain

lim
k→∞

1

xnk

⌊txnk
⌋

∑

τ=0

R∗
gj(ng(τ))1{a(τ)=g}

= ηgjMg lim
k→∞

1

xnk

⌊txnk
⌋

∑

τ=0

1{a(τ)=g}

= ηgj
Mg

Lg(l(g))
lim
k→∞

1

xnk

⌊txnk
⌋

∑

τ=0

1{s(τ)=g}

= ηgj
Mg

Lg(l(g))

∑

m:sm=g

E
∑

i=1

lim
k→∞

1

xnk

⌊txnk
⌋

∑

τ=0

1{ω(τ)=ωm,ĥ(τ)=ĥi}

(39)
= ηgj

Mg

Lg(l(g))

∑

m:sm=g

E
∑

i=1

bmi(t). (87)

Substituting (86) and (87) into (84) and taking the gradientover
t, (82) follows.

Theorem 2 can be proved by employing the same arguments
used in Appendix A-C, except that Lemma 3 is replaced by
Lemma 6.
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