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Abstract—In this paper, we develop a hierarchical Bayesian
game framework for automated dynamic offset selection. Use
compete to maximize their throughput by picking the best loally
serving radio access network (RAN) with respect to their own
measurement, their demand and a partial statistical channlestate
information (CSI) of other users. In particular, we investigate
the properties of a Stackelberg game, in which the base stain
is a player on its own. We derive analytically the utilities
related to the channel quality perceived by users to obtain
the equilibria. We study the Price of Anarchy (PoA) of such
system, where the PoA is the ratio of the social welfare attaed

for problems such as power control [4] and spectrum manage-
ment in the interference channel [5]. In [4], a distributedink
power control in a multiple access (MAC) fading channel
was studied and shown to have a unique Nash equilibrium
(NE) point. With the same incomplete information, it was
shown [5] that in a symmetric interference channel with a
one-time interaction, there exists a uniqgue symmetridesjsa
profile which is a NE point. This result however is limited
to scenarios where all users statistically experiencetickdn

when a network planner chooses policies to maximize social channel conditions (due to the symmetry assumption) ansl doe

welfare versus the social welfare attained in Nash/Stackeberg
equilibrium when users choose their policies strategicayt We
show by means of a Stackelberg formulation, how the operatoby
sending appropriate information about the state of the chamnel,
can configure a dynamic offset that optimizes its global utity
while users maximize their individual utilities. The proposed
hierarchical decision approach for wireless networks can each
a good trade-off between the global network performance athe
equilibrium and the requested amount of signaling. Typicaly, it
is shown that when the network goal is orthogonal to user’s gal,
this can lead the users to a misleading association problem.

Index Terms—WLAN, 3G, association problem, misleading
information, channel state information, game theory, Bays-Nash
equilibrium, Bayes-Stackelberg equilibrium, Price of Anachy.

I. INTRODUCTION

not apply to interactions between weak and strong users.

In this paper, we present an alternative approach for con-
figuring a dynamic offset by introducing a certain degree of
hierarchy between the users and the base station. Mordispeci
cally, we propose a Stackelberg formulation of the assiociat
problem when a partial channel state information is assuahed
the transmitter. By Stackelberg we mean distributed deisi
making assisted by the network, where the wireless users aim
at maximizing their own utility, guided by aggregated infa-
tion broadcasted by the network about the CSI of each user. We
first show how to derive the utilities of users that are reldte
their respective channel quality under the different aisdion
policies. We then derive the policy that corresponds to the
Stackelberg equilibrium and compare it to the centralized a
the non-cooperative model. Technically, our approach nit o
aims at improving the network equilibrium efficiency but has

Efficient design of wireless networks calls for end usemso two nice features: (i) It allows the network to guide
implementing radio resource management (RRM), which rasers to a desired equilibrium that optimizes its own wtilit
quires knowledge of the mutual channel state informatiohit chooses the adequate information to send, (i) Only the
in order to limit the influence of interference impairmentg;dividual user demand and a partial statistical CSI of pthe
on the decision making. However, full CSI assumption igsers is needed at each transmitter. Our approach coesibut
not always practical because communicating channel gatosdesigning networks where intelligence is split betwdan t
between different users in a time varying channel withibase station (BS) and mobile stations (MSs) in order to find
the channel coherence time may lead to large overhead.alrdesired trade-off between the global network performance
this case, it is more appropriate to consider each channehched at the equilibrium and the amount of signaling netede
coherence time as a one-stage game where players are t¢mlgnake it work. Note that the Stackelberg formulation a&ise
aware of their own channel gains and their opponent’s cHannaturally in some contexts of practical interest. For exianp
statistics (which vary slowly compared to the channel gaiterarchy is naturally present in contexts where there are
and, therefore, can be communicated [1]). The interactipmnimary (licensed) users and secondary (unlicensed) wsers
between the players may be repeated but with a differer@n sense their environment because there are equipped with
and independent channel realization each time and therefarradio [6]. It is also natural if the users have access to the
is not a repeated game. This motivates the use of games withdium in an asynchronous manner.
incomplete information, also known as Bayesian games32],[ Moreover, this game has an unusual information: jtastial
which have been incorporated into wireless communicatioasd misleading. Misleading - because, although the channel


http://arxiv.org/abs/1207.6087v2

state indeed can give information on the transmission itége, the wireless channel (excellent, fair, poor...). This can b
known that the actual throughput of a given user is a functia@one through an offset which we will also call in the sequel
of not only his channel state but also of that of the othémterchangeably as the Channel Quality Indicator (CQl)e Th
connected users [7]. The throughput is known to be low&QIl can be a value (or values) representing a measure of
bounded by the harmonic mean of the rates available to eattannel quality for a given channel. Typically, a high value
user [8]. Thus the nodes transmitting at higher rate is digta CQI is indicative of a channel with high quality and vice
below the level of lower bit rate. The real utility of a giverversa. More formally, assume that the knowledge of each
user is the throughput he would get and the user may neter about his own state is limited to the péir, b;), where
be aware that it is possible that an access point with a better= 11y, y,;, with ¥ — a fixed threshold which represents
channel may have a lower throughput because more terminthls dynamic offset parameter set by the 3G BS #pdis the
are connected to it. indicator function equal to 1 if conditiod is satisfied and
From the system design perspective, the given modeltas 0 otherwise. We will calll; the "CQI threshold of user
very useful in practice. Recently, papers like [9] raises th. Thus, a user only knows whether he wants to transmit and
cell reselection process problem in HetNets. Clearly, thvehether the channelis in a googl < 1) or in a bad §; = 0)
association based on highest signal strength is inadegqoateondition given the CQI threshold. In addition any playes ha
address this challenge. Moreover, in the 3GPP RRC standtrd information about the probability distribution of higvio
[10] in Section 5.1.5 it is clearly said that the E-UTRAN carstate(s;, b;) and that of his opponeris;, b,). These are given
configure a list of cell specific offsets and a listldacklisted by «; — the probability to have(h; > ¥;}, and 8; — the
cells. Typically, Release 8 UEs should apply the rankingasprobability thatb; = 1. Let us denote byP = [Py,...,P,]7
on radio link quality (with offsets) unless operator indiesa the (n x 2) policy profile matrix, whose elemef; represents
support for priority-based reselection. This suggests tha the action vector taken by the mobilé low and high channel

offset can be configured for each and every cell dependistates fori =1,...,n.
on the priority set by the operator (e.g., mobility, reqedst In the next sections, we provide a thorough analysis of the
throughput, amount of signalling). existence and characterization of the Bayes equilibrid@th

non-cooperative and Stackelberg scenarios. We first foous o
the two-user case in order to gain insights into how to design
Consider a heterogeneous wireless system consisting afiexision problem in radio environments. Then, we generaliz

single MAN (Metropolitan Area Network, e.g. 3G) cell andbur approach to the multi-user case.

an overlapping wireless LAN (Local Area Networks, e.g.

WiFi) hot-spot. Each user entering in the system will decide. WiFi Throughput

individually to which of the available systems it is best to

. . . o . The measurement of average throughput of a node in a
connect according to its radio condition, its demand and the ) e )
o : : . : wireless LAN is done by the time it takes to transfer the files
statistical information about other users. Their policies

strategies) are then based on this (incomplete) informati between the WiFi access point (AP) and the wireless clients.

The association problem is then generalized to allow the ;rgplcally, one would transfer a file from a wired server to a

, : : . wireless client by means of an AP bridging wired and wireless
to control the users’ behavior by broadcasting appropriate . .
: . S - S néetworks. The throughput depends on the bit rate at which the
information, expected to maximize its utility while indidal

- . . wireless mobile communicates to its AP. On the other hand,
users maximize their own utility. . ) . .
5 . : : . as already mentioned, if there is at least one host with arlowe
o< is the noise variancé; is the demand of user(b; = 1

when there exists a demand, afdotherwise) anda; his rate, a WLAN network presents a performance anomaly in

action defined by the user decision to connect to a cert t|hne sense that the throughput of all the hosts transmitting a

radio access technology (RAT); = 1 when the user chooses igher rate is degraded _below the_level of the lower rate [7],
3G, and0 when the user chooses WiFf. is the downlink [8], [12]. We can accordingly consider that the throughpiut o

channel power gain between the 3G BS and the end-termirf: \VIFI conqect|on 'S, equal to a constant, sgyegardiess of
pg erences in users’ channel data rate.

The channel gains could be either independent or correla
over then users. We assume that all channels are independ nt3G Th hout
and undergo Rayleigh fading. By the transformation theore roughpu

for single random variable, the channel power gajrhas an ~ As opposed to WiFi, the 3G technology uses CDMA
exponential distribution with meak; [11]. We will see later multiplexing. Hence, each user receives a certain number of
how ); is related to different parameters adopted throughotdes which are converted into a certain amount of throughpu
the paper. We assume that the user state is defined by diepending on the chosen modulation and coding scheme,
pair (h;,b;). The network is fully characterized by the usewhich greatly depends on the link quality at the receiver
state. However, when distributing the JRRM decisions, thésde. This can vary greatly depending on the link conditions
complete information is not available to the users. The B& adue to interference and noise impairments. We then model
the AP broadcasts to its terminals an aggregated informatithe utility experienced by a user that is connected to 3G
indicating a measurement of the communication quality &fy the capacity of Shannon [13]. Assuming that there is no
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interference between 3G and the WiFi network, the throughpu Next:

of a user connected to 3G system is given by:

j#Fi (1)

ThpC = log <1 i phia;b; ) )

o2 +phja;b;

where indexC' stands for 3G cellular network.

o0

i phi
h)y= B; | log(1+ 24
et = 8 [ os (14 S

> hs .
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As can be seen, the throughput obtained by a user in ai:inally:

system depends on both his own decisions and the decisions

taken by the other users. Givep and ¥;, we can compute
that the distribution of; is Exp();) with

a; = exp(—\; ;) 2

Given the information that a player has, there are four jpessi
policies of a player with b; = 1 (we do not consider state

b; = 0, when there is no transmission of any type):

ph; )

o2

Clyw (i) = log (1+ (6)

A. The non-cooperative equilibrium

Game theory has accentuated the importance of randomized
games or mixed games. However, such a game does not find
a significant role in most communication modems and source
coding codecs since equilibria where each user randombkg pic
a decision at each time epoch are unfortunately not iniagest
in such a case, as they amount to perpetual handover between
networks. In what follows, we will make use of the users’-util
ities obtained above to derive the pure association siesteg

where indexiV stands for WiFi network. Let us not consideiyqfinition 1 (Bayes-Nash equilibrium)A strategy profile

the policy (C, W), which is irrational, as the throughput of ap BNE \;

= 1,2 corresponds to a Bayes-Nash equilibrium

player using 3G wherir; > W;} is certainly higher than that (BINE) if, for all users, any unilateral switching to a difégt
when {A; < ¥;}. We then have a game with partial CSI Withyyateqy cannot improve user's payoff at any state. Mathema

two states and &3 x 3) matrix in every state.

ically, this can be expressed by the following inequalityeg

For the ease of comprehension, we will begin by considerifge statistical information about the other uséR; # P;BVE
the two-user case and then generalize the results to thé mult

user case later in Section V.
I1l. THE TWO-USER CASE

Useri’s utility in states = 0,1 is given by

; if useri choosedV at states,
C’{;j(s); if useri chooses”' at states

ui(s,P) = { v 3)
The functionsC?,, describing the utility of player using 3G
when his opponent applies poliéy are defined as follows

Ci1) = Blch(holhs > 1) = -

Qg

/ i (hi)Nie= M dhy,
v,

Ci(0) = Elcy (hi)|hi < W] =

1—0@

with k = WW, WC,CC.
¢t (h;) above is the utility of playet usingC when channel
gain is h; against policyk of player j. These utilities are
defined as follows:
phi

b)) = B | log(14 =2l
coc(hi) ﬂ]/o Og( T T oh;
o 3
(-5 [ tog (142

0

i
o2

YA sdn+

et dn,
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1 Vi
/ i (hi) e~ M dhy,
0

ui(si, (PyPNE PBNEY) > (s, (Qs, PENE)); fors; =0,1

Proposition 1. The game considered in the paper always has

a pure-strategy Bayes-Nash equilibrium. Moreover

(@) (CC,CC) is an equilibrium iffCL - (0) > v for i = 1,2.

(b) (CC,WC) is an equilibrium iff C{;,~(0) > v and
Cec(0) <v < Ca(D).

(c) (CC,WW) is an equilibrium iff Cf;,;;(0) > v and
Céc(l) <w.

(d) (WC,CC) is an equilibrium iffC}(0) < v
and C%,(0) > v.

(e) (WC,WC) is an equilibrium iffC{;, (0)
fori=1,2.

() WC,ww) is an equilibrium iff C,,(0) < v
Clyw (1) andCE (1) < v.

(9) (WW,CC) is an equilibrium iff C}.(1)
Clyw (0) > v.

(hy (WW,WC) is an equilibrium iff Cf;,~(1)
Chryy(0) < v < Cry (1), |

(i) WW,WW) is an equilibrium iffC};,;, (1) < v for i =
1,2.

<

< v and

< v and

Proof: The statements (a)—(i) are direct consequences of
the definition of Bayes-Nash equilibrium and the form of
payoff matrices. Next, it is immediate to see that the défing
of Ci(s) imply the following inequalities:

Céc(s) < Ciya(s) < Ciyw(s)



for i = 1,2 ands = 0,1. Now, using these inequalities, it isHowever (8) and (9) cover all the valueswfending the proof.
tedious but straightforward to show that always at leastaine ]
the conditions (a)—(i) is satisfied. Roughly speaking, this means that for higher values of the
B CQI thresholds¥;s the players are more likely to use 3G
The next proposition gives us some information on hovather than WiFi and conversely, for low values of the CQI
the Nash-Bayes equilibria depend on the chosen valuestimfesholds¥ ;s the players are more likely to use WiFi rather
the CQI threshold¥/,;. Form a simple analysis, we can comeghan 3G. Interestingly, this result also suggests thaherat
up with the following informations on how the Nash-Bayeshan increasing the offered throughpuytthe operator could
equilibria depend on the chosen values of the CQI thresholtntrol the equilibrium of its wireless users to maximize it
;. own revenue by broadcasting appropriate CQI threshdlds.
This can lead the network to minimize its overall cost and
users to a misleading association problem. Next, we address

Proposition 2. If ¥; and ¥, are small enough none of thethIS problem by introducing a hierarchical model.

players use€’'C in equilibrium. If they are large enough, none
of the players uses policf/ W in equilibrium. Moreover, for B. The hierarchical equilibrium

all the values of the parameters of the model one of the two

possibilities is true: In this section, we propose a methodology that transforms
(a) For ¥; and ¥, small enough at least one of the playeréhe above non-cooperative game into a Stackelberg game.
uses policy W in equilibrium Concretely, the network may guide users to an equilibriuat th

b) For ¥, and U, large enough at least one of the pla eré)ptlmlzes its own utility if it chooses the adequate infotimia
(b) uses éolicyCCQ‘ in gquilibriugm Pay o send. We first study the policy that maximizes the utility
' of the network, which is defined as the expected number of

More discussion on this result is given in [14]. active users connected to 3G network, which for two users can
Proof: Define fori = 1,2 andk = CC,WC,WW be defined as follows:
Ci(o0) = / i (hi)\ie= M dh; (7) Ups(P,¥1,V¥3) = 1(lip,—ccy + arllip,—wey )+
0 . Ba(Ugp,—ccy + 2llip,—wey)
Note that when¥; — 0 and ¥y — 0, Ci(0)(Py, Us) — = B1(lgp,—coy + e llip, —wey )+

0 and Ci(1)(Vy,¥y) — Ci(oco) for i = 1,2, k
CC,wWC,WW. Analogously, whenl; — oo and ¥, — oo,
Ci(o)(\lj:[,\IJQ) — C;C(OO) and? Ci(l)(‘l’l,\lfg) — 400.
Thus for¥; and ¥, small enoughC,i(O)(\Ifl, Uy) < v forall
the values ofi and k, which by Proposition 1 implies that no
player uses policyCC' in equilibrium. Analogously for¥,
U, big enoughC7 (0)(¥4, ¥2) > o for all the values of and
k, and thus no player usé& W in equilibrium then.

Now note that by Proposition 1, one of the players us€s Definition 2 (Bayes-Stackelberg equilibriun). By denoting
in equilibrium iff (U, B5E w,B5F) the strategy profile of the BS at a Bayes-
Stackelberg equilibrium (BSE), this definition translatesth-
ematically as

Thus if we takel', ¥, large enough, we can pass to the limit;
(0, BSF @, B5F) arg max Ups(PENE (U, Wy), Wy, y),

Ciro(o00) > v or Cha(c0) > w. (8) 1,2 (10)
Analogously, one of the players usBsW in equilibrium iff wherePPNF (1, W) is any Bayes-Nash equilibrium in the

game of the previous section with CQI thresholds equdltp
Civc(l) <v or Cie(l) <w. W,.

Passing to the limit whe®d&,, ¥, approach 0,

Bo(Myp,—ccy +e 2V Wip,_wey)

Nevertheless, as it is not realistic to consider that thesuse
will seek the global optimum, we show how to find the policy
that corresponds to the Bayes-Stackelberg equilibriumrevhe
the BS tries to maximize its own utility/ zs just by choosing
the CQI thresholds, knowing that users will try to maximize
their individual utilities.

20f course there are some limits of the possible influence @fofperator.
1 2 As it is clearly seen from the proof given above, the situatwhen users
CWO (OO) svoor CWC(OO) S v (9) always choose WiFi for small values of the given CQI thredhand 3G for
1 i ; . the big ones is not possible — the possible situations aréotloeving: when
_ “To prove thatCy (0)(¥1,¥2) — 0 and Cp(1)(W1,¥2) = +00 it the value of; is small, the player chooses WiFi below this threshold (and
is enough to notice that the conditional expected valudy gid (Ill) are 54 he does it with a low probability) and 3G above this thrégshé/hen W
bounded from above and from below respectively by the biggaisie ofc;  gets bigger it ceases to provide any information to the playe thus he
on the set{h; : h; < ¥;} and the smallest one on the g@t; : h; > Vs}.  chooses 3G both below and abowe, which means that he still chooses 3G
Note however that the former is bounded from aboveéday( 1+ % which  with a higher probability. The second possible situatiothat for a low value
converges to 0 a&; — 0. Then the latter one is bounded from below byof ¥; playeri chooses WiFi for both his states, while for a high value of
i ph; P ph; ¥, he distinguishes between these states by choosing either 3@Fi, but
(1- BJ)/ log ( + >>‘ dh; = (1 — B;)log ( ) again for any value of the CQI threshold the probability tW4FEi is used is
which cIearIy goes to |nf|n|ty ak; — oo. smaller than that of using 3G.




We next exemplify our general analysis by investigating the3) In the fully non-cooperative model, the players in equi-
possibility of considering three scenarios for the choit@g librium chooseVl, = ¥} and ¥y = ¥} satisfying
and . ) . ) .
1) Centralized model the base station chooses bokhs cwe(P7) = v =cpc(¥Ys) (11)
and the policies for the players, aiming to maximize the  gnd then both use ¥ C policy.
expected number of players using 3G in the second stage.

Formally, the centralized strategy is the one satisfying What we see in this proposition is that when the BS can
decide on the behavior of the users, it forces them to use 3G.

¢ 3.C pC : . :
(W17, W27, PY) Carg max Ups(P, V1, ¥2), In other cases (when users can decide on their behavioréut a

1,%*2,

i iven only partial information), the users’ interest is twose
2) Stackelberg modet there are two stages: at the first On%e CQI thresholds somewhere in the middle of the channel
the base station chooses bakixs given the information oaiy range. This can be seen as a desired trade-off between
about the distributions ofh;,b;) aiming to maximize o g1ohal network performance at the equilibrium and the
the expected number of players using 3G at the Secﬁﬂ@iividual efficiency of all the users. On the other hand, the
stage, when players play the game from the last SeCtigflg )55 an incentive to choose CQI thresholds either very high

Th: proposed apﬁroach Cl"_’m be se(Tn as hmtfrlznedlgr%t case in the Stackelberg scenario) or very low (the isgco
scheme between the centralized model and the fully nollsse) Both these choices give little information for therus

cooperative model, about actual channel condition, which is precisely what he

3) Fully nor_l-cooperatlve model the game has t‘_NO Stages yants to avoid. It is interesting and somewhat surprisirag th
at the first one, players choose their;s given the

) : e the optimal policy of the BS in the Stackelberg game can be
information they have about the distributions (@f;, b;) both giving high or low values of CQI thresholds. This can

aiming to maximize their expected throughput at thRqever be explained when we understand the meaning of
second stage; at the second stage they choose a poligyse 1o situations — very high value of the threshold means
depending on actudls;, b;) as in the model of the last ¢ g information about the channel state is given. In this

section. Formally, a fully non-cooperative strategy is aWase, when both users connect to 3G, this corresponds to the

one satisfying choice of the BS. Now, if in the "no information” case players
\plNC C arg max E[u; (s;, PPNE (W, \115,\70))]; for i = 1,2 choose WiFi, then the base station tries to divide the rarfige o
i h; into a small (in terms of probability) part when the players
with PBNE(\IIi,\Ilj.VC) being any Bayes-Nash equilib-use WiFi and, a large one when they use 3G. This is done
rium in the game of the previous section. by giving the lowest possible CQI threshold above which the

Below, we analyze the behavior of the base station and tRi8Yers would have an incentive to use rather 3G than WiFi.
players at the equilibria of each of these models. This explains why the BS has an incentive to choose CQI
thresholds very low in this case.

Proposition 3. The final two results of this section are given without proofs

1) In the centralized model, the base station chooseslany which are straightforward.
and ¥, and C'C policies for both users.

2) In the Stackelberg model, whef. . (co) > v for i =
1,2 then the base station chooses apy > ¥i* and
Uy > W3 with Ur* satisfying C4-(0)(¥;*) = v and
C%C(O)(_\Ilg*) = and th-en users.both plagC. Bi + Ba > Ups(PBSE GBSE yBSE) (12)
WhenCt(00) < v for i =1 or ¢ = 2, then the base > UBS(PNC7W£VC7W§JC) =0

station choose®:**, for i = 1,2 maximizing either
Bre M1 4 go—ata The important fact the corollary |mpI|es.|s that the users:
L 2 never choose the same way the base station would, but their

subject tOCévc(l)(‘I’h Uy) > v > C%}VC(O)(‘IH, Ws), interests however need not be necessarily contradictintnd

Corollary 1. Note that the maximum network utility, obtained
in scenario 1) is equal tg3; + [2. Obviously the utilities
obtained in the other two scenarios always satisfy

i = 1,2 or maximizing second corollary, we give the method to compute the price of
s anarchy(PoA) [15][16] for our model.
i+ Bje= The PoA measures how good the system performance is

subject toCy, . (0) (1, Uy) > v andC’éC(l)(\Ifl, 0y) > when users play selfishly and reach the NE instead of playing
v. In the first case, both players chodséC in the second 0 achieve the social optimum [15][16]. Note that as the
stage. In the second case, ugechoosesVC and user Maximum network utility which can be obtained /i + Ss,

i choosex"C. the price of anarchy when players use strategy prafilis
3Here and in the sequél (s)(¥1, ¥'2) denotes the respective! (s) when PoA = P1+ B2 )
the values ofl;s have the given value. Ups(P, Uy, Us)

40f course the one of the two with the higher objective functi® chosen o ] )
— its value is the BS utility at equilibrium. Thus, Proposition 3 implies that



Corollary 2. The price of anarchy in the Stackelberg modethere the functionsj‘ki, describing the utility of playei
equals 1 whenevef', - (cc) > v for i = 1,2. When for some using 3G when his opponents use policies describedby
i, CL(o0) < v, then the price of anarchy is equal to theare similarly as for the two-user case:

smaller of the two values:

Ck (1) =Elck (hi)hi > T 16
. B+ k (1) =Eleg_, (hi)l ] (16)
Cly o (1) (1,92) 20> Cl 6 (0) (1, ¥2) k=1,2 fre= 171 + foe=r2 P2’ 1>,
= cic (hi)hie™ M dhy,
min B1 + B2 @ Jy, ’
Ciy o (0)(¥1,¥2)>0,CL o (1)(¥1,T2) >0 Bi + ﬁjei/\j‘y]‘
In fully non-cooperative model, Ck_,(0) = Elck _,(hi)lhi < ¥ a7)
PoA = /81 + /82 -
Bre= MV 4 e roVa” 1 : / C%,i(hi))\ie”‘ihi dh;.
whereU* and ¥} satisfy (11). —%iJo

The above corollary is just a rewriting of the Proposition 8/€Xt the functior!s%fi, defining utility of player: using
using different language. when channel gain ig; against policieX of his opponents,

can be written &5
IV. THE MULTI-USER CASE

ki1 ka2 q
Now let us consider the case where instead of two V\tﬁl,kz](h) — ZZZﬂHq(l ,ﬂ)k1+k2*7“*q <k1> <k2)

have n users choosing to connect either to WiFi or to 3G =0 g=0 v=0 r q
network. Again we assume that the information about the
channel quality that user possesses is limited to that about q AT R
the dis_,tributions (_)f stategs;,b;) of each of the players [q:,oo)vxmn—qflx[m,)qﬂe
(including ), that is aboute; (or A;) and 3; and to exact
information about his own current state;, b;) (but not about 1 ( ph ) 1

" » og (1+ 5—&F—)A\""'dhy...dhy,—
exact value ofy;). Our additional assumption about the model & o2+p 3710 by ! nt
_conS|dered in this section is that _th_e m_odel is symmetrigt th Below, we give a generalization of Proposition 1 for the
is all the valuess;, A; and ¥; defining it, are the same for
each of the players (and equal f9\ and ¥ respectively). - _ _ _
This significantly simplifies the notation without any serso Proposition 4. The symmetriz:-user game considered in the
limitation of generality (we believe that some counterpat paper always has a pure-strategy Bayes-Nash equilibrium of

(%

n-user case.

all our results will be true also for asymmetric model). one of six types:
To define the utilities of the players first let us redefingy) Whe”Cfo.o](l) < v then the profile where all the players
throughput for each system: use policyW W is an equilibrium.
. < phias b ) (b) WheanO,k_l%_(l) > v > Cfo,k](l) and Cfo,k—1 (0) < v,
Thp; =log |1+ — (13) then any profile wheré players use policyy’ C' and all
0%+ Pz hias b the others play W is an equilibrium.
Thp'V = (14) () WhenCY, ,, (1) > v andCy,,,_,;(0) < v then the pro-

file Wher_e all the players use poliWC’ is an equilibrium.
?V\/_hen ka,n—k—u(l) > v and ka—m—k] 0) > v >
C[Z’C-’""“‘él(o) then any |_or_ofile wherek: players apply
policy CC' and the remaining: — k players use policy
WC is an equilibrium.

Again we assume that each of the players uses one of T(
three policiesWW, W C, CC, where first letter stands for a
player’s action when his channel is bad, and the second one
when his channel is good. As it is troublesome to write down
the policies for each ofi players, we will make use of the . i
fact that the game is symmetric, writing instead of the golic(e) WhenC’fn_LO] (0_) = v then th_e_ proflle where all the
profile a policy statisticX = [kcc, kwc| with koc denoting players use policy’C' is an e{qU|I|br|um.
the number of players applying poligfC and Ko — of () WhenCyp_, , 11(0) = v > Cf, . _,_yy(1) then any pro-
players applyingVC. Of course the number of those using 1€ Wherek players apply policyCC" and the remaining

policy WW is n— kco — kwe, so we will omit it. GivenK, n — k players use policy¥’ W is an equilibrium.
we can define useis utility in states = 0,1 as It may also have another pure strategy Bayes-Nash equililori
Ky =) if useri choosedV at states, chVlith ¥ ?{?yfrj isglgcg) a:ir:%lcf " _(Ok): is;ng WG when
uils, K) = Ci_(s); if useri chooseg" at states et —1A2) = 2 = Mkl (-1, = &
(15)

60f course this formula is a generalization of the form.ulaszf}g given

SNotation K _; used below denotes policy statistics defined as in the twdﬁ_ sectioh Il and it_ applies'for any. > 2, in particular ¢, = top
user case but without policy of useér o = Cfo,u andcyyy = Cfo,o] whenn = 2 and players are symmetric.



We give a corollary to this proposition. It gives a kind
of consistency property for equilibria in games for diffietre
values ofn.

If such a¥(k,) does not exist, ov < Cj; (1)
and k£ < n, then it putsP(k,l) = 0. Otherwise it
computes

Corollary 3. P(k,1) = Bl + e N ED (L —1)).
(a) Suppose that a profile where at least one player usesypolic
WW and the number of players using policié€” and

WC is k is an equilibrium inn-user symmetric game.
Then it is also an equilibrium in any.-user game defined
with the same parameter$ A and ¥ andm > k.

(b) Moreover for any fixed parametefis A and ¥ there exists
ann such that for anyn > n at leastm — n players use
policy WW in any equilibrium inm-user game.

Finally it choosesk,,,... and l,,,... with the biggest
value of P(k,l) (which equals the BS utility at
equilibrium). The choice 0¥ (k,q4z, lmas) at the first
stage and any profile of policies whelg,. players
use policyCC and koo — lmaz play WC will then
be an equilibrium.

We give one corollary to this proposition.

Proof: Note that Ofkl_’kz](s) does not depend on theCorollary 4. The price of anarchy in the-user Stackelberg
number of players in the game only on the number of those model can be computed as
who use one of the policidd’C or CC'. Just this implies part
(a). Part (b) is due to the fact théfo,n_u(l) — 0 asn — oo.
[ |
The next proposition generalizes the results for hieraathi (wherens is the maximum value of the base station’s utility
model included in Proposition 3 for-user symmetric games.obtained in scenario 1) of Proposition 5), and is either elqua
We only consider scenarios 1) and 2) discussed there, as itasl whenk < k*, or satisfies
difficult to apply scenario 3) to the symmetric model. The BS
utility, defined as before, as the expected number of players

_nb

PoA =
? Pk, 1)

min
k*<k<n,k<n*,0<I<k

using 3G network, can be now written as:
UBS([k17 kQ]a \I]) = ﬁ(kl + e_kqlkg).

Proposition 5.

with £* and n* defined as in Proposition 5. For > n* it
grows to infinity linearly.

The first part of this corollary is again just a rewriting
of the results from Proposition 5 with the stress made on

1) In the centralized model, the base station chooses amgtwork utilities rather than strategies of the playershibws

value of U and C'C policies for all the users.
2) In the Stackelberg model the base station computes
everyk <n

C[ik7170](00) ::/0 kaflﬂo](h)AE_/\hdh
and
Clop—1y(00) = /O clo k1 (R)Ae ™ dh,

and findsk* and n* such that

v

Cli—1,0(00) = v > Cly.e (00)

and

C[iO,n*fl] (00) =2 v = Cg e

(c0)

Next:

(8 If n < k* then at the equilibrium the base statio
chooses any such _thatC[in_LO] (0)(¥) > v and all
the players use policg’C.

(b) If n > k* then the base station computes for dny)
such thatk* < k£ < min{n,n*} and any0 <1 <k, 3¢

a U(k,!1) such that

min{C’ka_l_l](l)(\I/(k, 1), C[il—l,k—l] (0)(¥(k.1)} = v.

n

that exactly the same procedure, used to find the equilibrium
fwlicies, can be applied to evaluate the performance of the
network.

The second part of the corollary (unbounded increase of
PoA forn*) is a consequence of the fact that adding each new
player to the game gives the BS more patterns of behavior of
the users which can be stimulated by a proper choic& of
only up to the threshold number of players. From then on
no new player in the game is interested in using 3G network,
because for such a large number of players the throughput
would be too degraded, regardless of how good the channel
would be.

If someone is interested not in finding the equilibria for all
the numbers of players, but only in the limit number of player
for which the base station can lead the players to the desired
equilibrium just by a proper choice of the CQI threshold, he
may instead of computing* given above an upper bound can
be computed as given below.

Corollary 5. The valuek* appearing above can be bounded
from above byk** = max{% + 1, k%) with kT satisfying

_etone? [ PR n (k" —1)8
/0 10g(1+02)e dh+1og((k+_1)ﬁ_2

This last bound cannot be given in a closed form, but it can
be computed much faster thaii.



V. NUMERICAL |LLUSTRATIONS channel state means that the channel is in a very good state,
and "bad” channel state means hardly any information about
We consider a simple scenario of an operator providiRgle channel quality. Accordingly, for low values &f users
subscribers with a service available through a large 3G cglivays choose WiFi in "bad” state and for high value bf
coexisting with a WiFi access point with constant throughpdiways choose 3G in "good” state. This suggests that knowing
v. As mentioned before, users are characterized by the-distfie distribution of the channel (through), one can maximize
bution of their 3G downlink channel and the distribution the user throughput by Correcﬂy Choosing the CQ| threshold
their demand. We consider for each user a Rayleigh dis&ibutrhe same observation is done for higher values of k* in
channel fading. In order to validate our theoretical findingfigure 2, but here the threshold value®fis clearly identified
we obtain users’ actions at the equilibrium defined by use§ the conditions of Prop. 5. At this point, although higher
decisions to connect to WiFi or 3G at low/high channgjalues of &' describe a better channel conditions, following
state. In order to provide with extensive results we studyis information is already misleading to users due to thgda
the scenario of the multi-users case with increasing numhgimber of interacting users.
of users. This scheme allows us to address the proposeﬂ‘]terestingb/, we have shown in this paper by means of a
distributed decision making problem and gain insights intgtackelberg formulation that in order to make users commgct
how to design association policies in such a radio envirantmeto 3G network, the BS could control the CQI thresholds
Without loss of generality, we seA = 0.6 as average rather than increasing the offered throughput. As a rethat,
channel state for all users and consider normalized useserator not only obtains a better revenue at no additioretl ¢
CQI threshold¥ € [0,1]. Unless otherwise stated, for allpyt also significantly improves its energy efficiency.
numerical applications, we assume the following numerical To go further with the analysis, we resort to study the
normalized valuesy = 0.25 Mbits/sec,3 = 0.5 and a  ppA of the considered configurations of hierarchical and
derives from\ and 0. It is then possible to compute the nongentralized schemes for numerically evaluated examples in
cooperative Bayes-Nash equilibrium strategies and trete®| order to give insight on the performance of the proposed
users’ utilities obtained at the equilibrium. For the hreracal hierarchical approach_ From Figure 3, we may draw that the
Stackelberg equilibrium, given the action of the BS, i.Be t poa is equal tol beforek* as the hierarchically coordinated
CQI threshold¥, we compute the best-response function Gfctions of 3G BS and users allow to identify not only the alctua
the mobile users, i.e., the action of the mobile users Whi@lﬂ]anne] qua“ty and traduces in good users’ ut|||ty due to lo
maximizes their utilities given the action of the 3G BS. Thﬂumber Of users interacting_ Frohi to n* (defined in Prop_
network utility is defined as the average throughput obting) as stated before, by increasing the number of users, each
by a user selecting the 3G BS. Finally, under the formerjyew user to the game gives the BS more patterns of behavior
defined policy statistic& = {k, [}, the ratio number of user of the users which can be stimulated by a proper choice of
connected to SySterS (W|th S = C for the macro-cell and U but on|y up to a numben = n*. In our Simu|ationS, for
S = W for the WiFi AP), L(S), can be respectively expressed, - p,* = 41 because of the large number of interacting users,
as follows:£(C) = (k+la)/n andL(W) = (n—k —la)/n.  the 3G BS throughput is so degraded that no new user will
We first notice that, different equilibria can be archivedonnect with the 3G regardless of how good is the channel.
based on the different scenarios as Proposition 5 points Ofis is traduced in the figure 3 by a linear increase of the
Secondly, we indeed observe that in the centralized cagmA.
no matter the number of interacting users, the base statiomhese price of anarchy results offer hope that such a robust
always drive the users to selectC' for any value of U. and accurate modeling can be designed around competition,
Meanwhile, as claimed in Prop. 5, we find that for low valugisecause Stackelberg behavior does not arbitrarily degtee
of n < k¥, the hierarchical framework drives the users tghechanism’s performance like the selfish does. However we
select theCC' strategy when the channel quality thresholflave identified a threshold number of users above which no
satisfies the inequality condition of the proposition. Iltamge successful coordination can be achieved.
that when the channel is good enough to have better utility
all users should select to attach with the base station for lo VI. CONCLUSION
number of users. Agl increases, users tends to connect to Motivated by the fact that in game theory it is well known
3G using policyW C. Asymptotically, when¥ grows large, that performance at equilibrium is not monotone increasing
users choose policg’C at the equilibrium. This is illustrated in the amount of information, we have proposed a hierar-
in Figure 1 that depicts the load of both systems when chical association method that combines benefits from both
increases. decentralized and centralized design in which the network
It can be observed that a8 increases users choose tmperator dynamically chooses the offset about the statkeof t
connect to 3G, increasing abruptly 3G load. This is due to tliebannel. The results of this study lead naturally to several
fact that for low values of’, users may know that the channelines of future investigation. The users’ decision makisg i
is in a really bad state when the channel state is "bad” but 8ased on partial information that is signaled to the mobiles
not know much about the quality of the channel when the stdig the base station. A central design aspect is then for the
is "good”. On the other way, wheW is very high, "good” base stations to decide how to aggregate information which



then determines what to signal to the users. In this settimg,
have shown that, in order to maximize its revenue, the nétw
operator rather than increasing its offered throughputi¢wvh
is costly) has an incentive to choose channel quality irtdice
thresholds either very low or very high. This may make t
information given to the user when attempting to conn
misleadingsince the throughput of a user cannot be direc
inferred from the quality of his channel but also dependden
channel quality indicator thresholds (offsets) the baadast

broadcasts. In particular, there may be different equdikt
(so different outcomes) depending on what information !
base station broadcasts to users. We have finally anal
the global performance indicators of the network. It sho
that exactly the same procedure, used to find the equilibr
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policies, can be applied to evaluate the performance of the

network. Typically, we have characterized the price of ahgr

Fig. 1. Load of both WiFi and 3G systems as functiondaof Casen = 9 <

on which we have derived an upper bound. It has been shofrF= 12
that the proposed approach provides a reasonable trade-off

between centralized vs decentralized optimization in seofr
the signaling overhead and the resulting network throug
performance.
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APPENDIX
A. Proof of Proposition 3

Proof:
1) is obvious and needs no explanation.
2) Since when¥; — oo and ¥y — oo, Ch(1)(Pq, ¥s) —
Ch(o0) for i = 1,2, whenCi . (o0) > v, then for¥; large
enough alsoCt~(0)(¥,,¥,) > v for ¢+ = 1,2. But this
means tha{ CC,CC) is an equilibrium in the game at the
second stage. Thus whenewer < U7* and W, < U3* with
U satisfying CL - (1)(05*, U5*) = v, the outcome of the
Stackelberg game is that both players use 3G with probgbilit
1, which gives the biggest value possible of the base station
utility. Now suppose thaCf(c0) < v. Then for any value



U3 satisfying (11). Let us construct functidn@-(\lfj) =
{0, : ¢y (W) (T;) = v} It is immediate to see that since

9f ,
, , all the functionscj, are nondecreasingj; are non-increasing
st — Hiereachical . . . .
= Centralized functions from [0,cc) to itself. It is then obvious that the

7T graphs of these two functiong(¥:, Vs) : Wy = W;(¥2)}

6l and{(¥1,¥3) : Uy = \112( 1)} intersect, and thus (11) has a
S solution. m
o 5f

4+

3,

2,

1

0 10 20 30 40 50

Increasing number of users

Fig. 3. Price of anarchy between hierarchical and cenedligcheme. B. Proof of Proposition 4

of ¥;, playing (CC,CC) is not an equilibrium in the game  Before we prove Proposition 4, we need an auxiliary lemma.
of the second stage. Thus, to maximize the expected number

of players using 3G, the base station has to chooselthe | ayyma 1. For anys = 0,1 the functlonsC ( )(1)
and¥; in such a way that the equilibrium in the game of the

second stage was eithéW C, W) or (CC,WC) and the
3G BS utility functionUps (equal toBie Y1  Boe—r2¥2
in the first case and; + B;e=*¥i in the second one) is
the highest possible. This is done by solving the optimizati (b) satlsfyC[k+1 l]( s)(P) < C[k z+1]( s)(0),
problems defined in the proposition (the first problem for the

(a) are decreasing irk, I,

case(WC, W (), the second one fofCC, WC)). (c) are increasing in®.
3) First note that wheneve¥} and W3 are chosen as in (11), _
(WC,WC) is an equilibrium. This is becausé;,(0) is Proof: First note that

the conditional expectation of,;,(h;) over the setd_ :=
{clyc(hi) < v}, so it is definitely smaller than. Similarly,
ivo(1) is the conditional expectation af,, . (h;) over the
setH, = {ciy-(h;) > v}, so it is bigger tharv Thus the  —4 (g \n-1
condition for (WC,WC) to be an equilibrium is definitely (ra) = 320= () /[\I,_Oo)vqulx[o @ya—v
satisfied. ' 7
Now note that whenever playérchoosesl; < U} at the log (1 +
first stage, but continues to use polidyC in the second, he
loses

i ) by dho

vy ,
/ (v = e (hi))hie™ > 0.
w; is decreasing im.

Similarly, when he choose$; > U} he loses Next, we need to show tiat

v, )
/ (ciye(hi) —v) e M > 0,

On the other hand, when he changes bothlthand the policy ~ F(r+1,q) < F(r,q+1) < F(r,q) for anyr,q > 0 (18)
at the second stage, his utility is eithefwhen he playsv’ V)

or E[c}y - (h:)] (when he uses polic¢’C), which are clearly

both less than his current utility

P(h; € H_)v+ P(h; € H)E[chyo(hi)|h; € Hy), "Here we use a convention that in the second bracket we giveatbe of
player j’s threshold, which appears in the definitionscpf but was omitted
so far.

S0 (\Ill’ \IIQ) IS_ an equ”lb”um ch0|ce.. 8The first inequality will be used to prove part (b) of the lemmihe second
The last thing we need to show is that there @f and one is the monotonicity of in g.



for any i > 0. But, asCy; ;(0) and Cy, (1) are conditional
ol o expectations oa%zk ;1 (h) over some fixed sets, this immediately
F(r,qg+1) = Z <q ) / A"~L. implies that they are both decreasingkinThe fact that they
=0\ Y [¥,00)" xR =42 x [0, W)= v+1 are decreasing ihis proved analogously — the only difference
is that the monotonicity of in ¢ (instead of the monotonicity

log (1 + W)e”‘zy;l hidhy...dh,_, inr)is used.
To prove (b) first note that for any,! > 0
q k+1
n— i o (k+1
> (1) w ) =871 5 (T 6,
=0 \U/ J[¥ co)vxRn—a-2x[0,T)a—v =0 p
. k 1
" ) ) where Glp. k1) = St Bl Py - a).
1og( b Ve Mreerigh, P ;")
0 o2 +pZT+” "tv*1 Note however thatG(p,k,l) is the expected value of

F(a,p — a) when a is a random variable with the hy-
0o oh pergeometric distribution Hypergeomettic+ [, k, p). Since
+/ log (1 + = R )Aemr““dhrﬂﬂl Hypergeometrigk + [ 4+ 1,k + 1,p) strictly stochastically
¥ o2 +pd s dominates Hypergeometfiet+1+1, k, p), andF'(a, p—a) is by
o (18) a decreasing function affor any fixedp, G(p, k +1,1),
e A Xi=t hidhy L dhygodhygogs . . dBy—1 which is the expected value &#(a, p— a) with respect to that
first distribution is not bigger tha&(p, k, [+ 1), which is the

q ) expected value of'(a,p — a) with respect to the second one.
> A L . ; .
§ , v But this immediately implies that also
v=0 W,00)? xR =4=2 x[0,W)a=® _ Bi
S h ka-l-l,l] (h> = E” N(k+1+1.6) [G(pv k+1, l)]
p —Ahrio ~Bin 1 j
10g<1+ L )Ae Ty < BB Gkl 1) = L ().
/0 o2 JFPZ]';H hj ot = (G(p )] = ey (h)

The same arguments as in part (a) imply that this inequality

AT P gl dhesdh dh is preserved by, . L (8)(¥ )andCZk 111 (8) ().
¢ ’ ! rofirtot2 n-t To prove the last part of the Iemma take < ¥, and

. define for anyg anda € {0, 1,2}¢
Z(q)/ AL Sa(\Ifl,\Ifg) :{(hl,...,hn_l)ERn71 :
v=0 v [¥,00)Y xR =a=1x[0,W)a-v 0< h,j < U, if a5 = 0,¥; < hj < U, if Qj = 1,
Uy < hy if a; =2}

__pr 7)‘27}:711 h;
log (1 + 02+Pzr+v+l hj) =t Wdhy . dhny Note thatR"~* =, Sa(¥1, ¥2). Next note that (r, q)(¥1)
is the integral ovelR"~! of the functionf; defined on each
=F(r+1,q) Sa(¥1, ¥y) separately, as
The second inequality in (18) is proved analogously, only log (1 4 ph ))\nqeﬂz;;; hy
the inequality o2 +py sy
- On the other hand”(r, q)(¥2) is the integral oveiR"~! of
1 1+7r e Mortorigh, . D
UO O:g( o2 +p 3t h) ‘ ot the functionf, defined on eacl$, (¥, ;) separately, as
p —\h
log (1 A Tt dh gy h 1 _asonel
+/p og( +02—|—pz;if+1hj) e + +1} 10g(1+2+p—2h))\n 1,=AYp -l h
>~ ph Ah 7 P2zl
- r+v+1
: /o tog 1+ 52 +pzr+vh.)*e T dhon Clearly fi < f», and SOF(r,q)(¥1) < F(r,q)(¥) for any
_ _ g=1"4 r and ¢. This immediately implies that alsq'k MOICIES
is used instead of the one used above. ch z](h)(‘l’2) However, note that smcefk ) (h ) are also in-

Now, to prove (@) of the lemma note thaf;ﬁl] (h) is the c[reasmg ink: Similarly
expected value of! _ 89(1 — B)'=9(')F(r,q) whenr is CE OV W) =Bt (B)(U)|h < U
a random value with the binomial distribution Bin 3). As (e (0)(%1) e () ()] 1
distribution Bink + 1, /) strictly stochastically dominates
Bin(k, ), the expected value with respect to Bint 1, 3)

of any decreasing function is smaller than that with respect i
Bin(k, 5) and thus < Elcf y(h)(¥2)|h < Wy

< E[ka,z](h)(‘l’lﬂh < Uy

o1 () < el y(h) = Cf, 1 (0)(W2),



which ends the proof of lemma. D. Proof of Corollary 5

u Proof:
Now we are able to prove Proposition 4. Let us assume that
Proof: First note that it is clear from the definition of k> 2 41 (22)
cfy. 5 (h) that this is an increasing function éfand thus B
; ; First note thatC/, _, .(o0) is
Clhoy(0) < Cfy (1) (19) - [k=1.0]
for any values ofk and [. Next it is enough to check Zﬂ?“ufﬂ)k*lﬂ“ (k 1>E[log (1+2#)]
the definition of Bayes-Nash equilibrium (inferring (19)dan ;=9 r o2 +pdliihy
Lemma 1 if needed) that the sets of inequalities appearin% _ (23)
in the proposition define respective equilibria. What ist lefvherehr andhy, ..., hy—, are independent exponentially dis-
to show is that cases (a—f) cover all the possible situatiofdbuted ran?om(gg&es with common parameter
Suppose that case (e) does not hold. Then, either Next letr* = “====. Now (23) can be rewritten as
; (k=1 ph
i T _ k—1—r
b0 0) < @ S s (0w (14 )
or there exists & such that
(k=1 ph
_ . +) Br(1-p)F! < )E[log 1+ 5—=—)]
Cloc1,n-1(0) =2 v = Cfy, 1, _—1)(0). (21) 7§ " ( o2 +piio hj)

Clearly (20) is covered by cases (a—c) of Proposition 4. Gfjnce the functioriE[log (1 + thhj)] is clearly posi-

the other hand (21) implies either case (d) of Propositiom 4 §e decreasing, the first element of this 'sum can be bounded
the following inequality (here (19) is used): from above by

Cli-1,n-1(0) 2 v > G -1 (1), Proljr < *]E[log (1 + %)],
) . . g

which is exactly the case (f) of the proposition. " where Prob- < r*] is the probability that a random value
C. Proof of Proposition 5 with binomial distributionBin(k — 1, 3) is smaller than-*.

Proof This probability, using Hoeffding’s inequality [17] can be

roor: (k=1)82

Part 1) is obvious. 2) Since whelh — oo, Cf, _; (0)(¥) — ?Ol(’kﬁ?gg above bléeh >~ and thus the whole term by
Cl,_y g(00), then if C, _, (c0) > v, for ¥ large enough 3¢ 7 Ellog gl + i—z)]-
also C’f g (0)(®) > v, which means that all the players Analogously, the second element of the sum can be bounded

apply policy CC in equilibrium at the second stage of thdrom above by
game. Thus wheneveb is big enough, the outcome of the .
Stackelberg game is that all the players use 3G with proibabil Protir > r*]E{log (1 +

1, which gives the biggest value possible of the base statmgmd further by

ph )
o +p>liihy

utility.
Now suppose thaC, , ;(c0) < v. Then for any value Eflog (1 N h )]. (24)
of W, not every player uses poliayC' at the equilibrium of Z;Zl hj

the game of Fhe second stage. Thl.ls’ to maximizelipe, Now note thatl + is a random value with Pareto
the base station has to choose thein such a way that at =~ " Tl hy _

the equilibrium of the game of the second stage some (s@gtribution [18, Chap. 20, Sec. 12] with parameters 1 and
I) players would apply policy”’C' and some other (say — " Whose average is (for > 1, which is guaranteed by our
1) would apply WC, and that the base station’s utility wasSSumption (22)y—;. Since logarithm is a concave function,
the highest possible. This is done by solving the optimarati W€ can use Jensen's inequality to bound (24) from above by

h

s

problems of finding the smallest such that the profilgk — 1 ( r* ) _1 ( (k—1)p )
1,1] is an equilibrium in the game defined by this that is 08 —1/) (k—1)p—2/
satisfying

This implies that

Cho (@) >v>Ch (1)) and Ci_, . (0)(T) > v, A g2 [ phy _
[Lk—1 1]( )(¥) L,k z]( )(¥) [1—1,k z]( )(¥) C[k,l](OO) <§e 1 /0 log (1_‘_?)6 A g,

However, as by Lemma ‘Dll{ (s)() are increasing functions b1

of ¥ for any fixed K, this maximum is achieved fol +log (&)

satisfying (2b). When the values @fzg for each such® (k—1)8—2

are computed, and the biggest one of them is chosen, thisigl consequently that for any such that the RHS of the
certainly the biggest value of the base station’s utilitgttban above inequality equals the LHS will be smaller tham and
be obtained in the Stackelberg scenario. m thusk > k*. ]



