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Abstract

We propose a unified methodology to analyze the performafh@aahes (both isolated and interconnected), by extending
and generalizing a decoupling technique originally knownChe’s approximation, which provides very accurate resatitiow
computational cost. We consider several caching policiesluding very attractive one, called-LRU), taking into account
the effects of temporal locality. In the case of intercortedccaches, our approach allows us to do better than thedroiss
approximation commonly adopted in prior work. Our reswadjdated against simulations and trace-driven experisygrovide
interesting insights into the performance of caching syste

I. INTRODUCTION AND PAPER CONTRIBUTIONS

In the past few years the performance of caching systems,obmiee most traditional and widely investigated topic in
computer science, has received a renewed interest by theonkétg research community. This revival can be essemtiall
attributed to the crucial role played by caching in new coh@istribution systems emerging in the Internet. Thankaro
impressive proliferation of proxy servers, Content Dealybletworks (CDN) represent today the standard solutiorptetbby
content providers to serve large populations of geografiispread users [1]. By caching contents close to the psess
jointly reduce network traffic and improve user-perceivegezience.

The fundamental role played by caching systems in the lategwes beyond existing content delivery networks, as
consequence of the gradual shift from the traditional hegtest communication model to the new host-to-contenagigm.
Indeed, a novel Information-Centric Networking (ICN) aitebture has been proposed for the future Internet to bettgrond
to the today and future (according to predictions) traffiareleteristics[[2]. In this architecture, caching becomeslgquitous
functionality available at each router.

For these reasons it is of paramount importance to develfigest tools for the performance analysis of large-scale
interconnected caches for content distribution. Unfaaitely, evaluating the performance of cache networks is, leanasidering
that the computational cost to exactly analyse just a sihe (Least Recently Used) cache, grows exponentially withb
the cache size and the number of contents [3], [4]. Nevextiselseveral approximations have been proposed over the yea
[4], [B], [6], [7], [B], [8] which can accurately predict che performance at an affordable computational cost.

The main drawback of existing analytical techniques isrthegiher limited scope. Indeed, many of them target only ifipec
caching policies (mainly LRU and FIFO) under simplifyingffic conditions (most of previous work relies on the Indegbemt
Reference Model[10]), while the analysis of cache netwdrés only recently been attempted (essentially for LRU) — see
related work in Sed_VI.

The main contribution of our work is to show that the decaouglprinciple underlying one of the approximations suggkste
the past (the so called Che approximation) has much brogqdicability than the particular context in which it was girially
proposedi(e. a single LRU cache under IRM traffic), and can actually plevihe key to develop a general methodology to
analyse a variety of caching systems.

In particular, in this paper we show how to extend and geimrdhe decoupling principle of Che’s approximation along
three orthogonal directions: i) a much larger set of cachiiggrithms than those analysed so far (under Che’s appadiom),
implementing different insertion/eviction policies (lnding a multi-stage LRU scheme, LRU with probabilisticentson, FIFO
and RANDOM); ii) more general traffic model than the tradit IRM, so as to capture the effects of temporal localityhia t
requests arrival process (in particular, we consider argénenewal traffic model for all the above-mentioned cagtpnlicies);

iii) a more accurate technique to analyse interconnectelesathat goes beyond the standard Poisson assumptioreddsapt
far, and permits considering also smart replication sgiate(such as leave-copy-probabilistically and leaveyedpwn).

Although in this paper we cannot analyse all possible coatlns of the above extensions, we provide sufficient exaden
that a unified framework for the performance analysis of sagkystems is indeed possible under the Che approximation a
low computational cost. Our results for the consideredesyistturn out to be surprisingly good when compared to sinaugt
(model predictions can be hardly distinguished from simaifaresults on almost all plots).

Furthermore, under the small cache regime.(cache size small with respect to the content catalogug, sidgch is of
special interest for ICN, our expressions can be furthepkiiad, leading to simple closed-form formulas for the oadtit
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probability, revealing interesting asymptotic propeste the various caching policies. The insights gained fram rmodels
are also (qualitatively) confirmed by trace-driven expeits.

To the best of our knowledge, we are the first to propose a dnifienple and flexible approach that can be used as the
basis of a general performance evaluation tool for cachystems.

This paper extends the previous conference version underaeaespects: i) our modeling approach has been genedaliz
and successfully applied to cache networks with generasiin@pology; ii) new material concerning the asymptotibdngor
of some of the considered caching policies has been addgdgieral parts of have been modified to improve the overall
clarity.

Il. SYSTEM ASSUMPTIONS
A. Traffic model

We first recall the so-called Independent Reference Mod&jl which is de-facto the standard approach adopted in the
literature to characterize the pattern of object requeasigrag at a cache [10]. The IRM is based on the following fantental
assumptions: i) users request items from a fixed catalogud abject; ii) the probabilityp,,, that a request is for object,

1 <m < M, is constanti(e., the object popularity does not vary over time) @andependendf all past requests, generating
an i.i.d. sequence of requests.

By construction, the IRM completely ignores all temporatretations in the sequence of requests. In particular, @&sdo
not take into account an important feature often observe@ah content request traces, and typically referred tteagporal
locality: requests for a given content become denser over shortdsesictime. The important role played by temporal locality,
especially its beneficial effect on cache performance, i km®wn in the context of computer memory architecture [46H
web traffic [11]. Several extensions of IRM have been alrgatposed to reproduce content temporal locality [10]] [J12],
[13], [14], [15]. The majority of the proposed approache8][J11], [12], [13], [1E] share with the IRM the following tav
assumptions: i) the content catalog is fixed; ii) the reqpestess for each content is stationary (typically it is assd to be
either a renewal process or a semi-Markov-modulated Poissacess). Recently [14] a new traffic model, named ShotéNois
Model (SNM), has been proposed as a viable alternative thtimaal traffic models to capture macroscopic effectstezleao
content popularity dynamics. The basic idea of the SNM iseforesent the overall request process as the superpositimn o
potentially infinite population of independent inhomogeng Poisson processes (shots), each referring to an individntent.
The definition of analytical models for the evaluation of magerformance under the SNM[14], [16], however, is sigaifity
challenging, as discussed in [15], especially when non-ldathes and networks of caches are analyzed. Moreoveér, jn [15
it has been shown that the performance of caching systenr tinele<SNM traffic model can predicted with high accuracy by
adopting a fixed-size content catalogue, and modeling ttieabprocess of each content by a renewal process with afgpec
inter-request time distribution.

For the above reasons in this paper we will consider the vatig traffic model which generalizes the classical IRM.
The request process for every contentis described by an independent renewal process with askigner-request time
distribution. LetFr(m,t) be the cdf of the inter-request tiniefor objectm. The average request rakg, for contentm is
then given by\,,, = 1/ fooo(l — Fr(m,t))dt. LetA = an‘le A be the global arrival rate of requests. Note that, by adgptin
an object popularity law analogous to the one considerecheyRM, we also have,,, = Ap,,.

As a particular case, our traffic model reduces to the clas$kRM when inter-arrival request times are independently,
exponentially distributed, so that requests for objecare generated according to a homogeneous Poisson proceds bf, .

In the following, we will refer to our generalized traffic meldasrenewaltraffic.

B. Popularity law

Traffic models like the IRM (and its generalizations) are coonly used in combination with a Zipf-like law of object
popularity, which is frequently observed in traffic measneats and widely adopted in performance evaluation studiéls
[18].

In its simplest form, Zipf's law states that the probability request the-th most popular item is proportional tb/:,
where the exponent depends on the considered system (especially on the typbjefts), and plays a crucial role on the
resulting cache performande [6]. Estimatesnofeported in the literature for various kinds of systems eahgtween .65 and
1 [19].

In our work, we will consider a simple Zipf’'s law as the objedpularity law, although our results hold in geneia,, for
any given distribution of object request probabilitigs,, } ...

C. Policies for individual caches

There exists a tremendous number of different policies tnaga a single cache, which differ either for the insertiofioor
the eviction rule. We will consider the following algorittsnas a representative set of existing policies:
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Fig. 1. lllustration of k-LRU policy.

« LFU: the Least Frequently Used policy statically stores in thehe the” most popular contents (assuming their popularity
is known a-priori); LFU is known to provide optimal performze under IRM.

o LRU: upon arrival of a request, an object not already stored énctiche is inserted into it. If the cache is full, to make
room for a new object théeast Recently Useilem is evicted,i.e.,, the object which has not been requested for the
longest time.

o g-LRU: it differs from LRU for the insertion policy: upon arrivaff @ request, an object not already stored in the cache
is inserted into it with probability;. The eviction policy is the same as LRU.

o FIFO: it differs from LRU for the eviction policy: to make room fa& new object, the item inserted the longest time
ago is evicted. Notice that this scheme differs from LRU iis ttespect: requests finding an object in the cache do not
‘refresh’ the arrival time associated to it.

« RANDOM: it differs from LRU for the eviction policy: to make room fa new object, a random item stored in the
cache is evicted.

o k-LRU: this strategy provides a clever insertion policy by exuhgj the following idea: before arriving at the (physical)
cache which is storing actual objects, indexedihyequests have to advance through a chaik ef1 (virtual) caches
put in front of it, acting as filters, which store only objedipters performing caching operations on them (see[Eig. 1).
Specifically, upon arrival of a request, a content/pointer be stored in cachie> 1 only if its pointer is already stored
in cachei — 1 (i.e. the arrival request has produced a hit in cachel). The eviction policy at all caches is LRU. We
remark that this politﬂ/can be seen as a generalization of the two-stages policyopedpin [20], called there LRU-2Q.

« k-RANDOM: it works exactly like k-LRU, with the only difference thaté eviction policy at each cache is RANDOM.

We remark that LRU has been widely adopted, since it provigiesd performance while being reasonably simple to
implement. RANDOM and FIFO have been considered as vialbderative to LRU in the context of ICN, as their hardware
implementation in high-speed routers is even simpler. ThdRg policy and multi-stage caching systems similar to our k
LRU have been proposed in the past to improve the performahtd&RU by means of a better insertion policy. We have
chosen g-LRU in light of its simplicity, and the fact that &rc be given an immediate interpretation in terms of prolxsiluil
replication for cache networks (see next section). The rma@ngth of k-LRU, instead, resides in the fact that it reggijust
one, traffic-independent parametdéthe number of cachek), providing significant improvements over LRU even for very
small & (much of the possible gain is already achievediby 2).

D. Replication strategies for cache networks

In a system of interconnected caches, requests producingsanone cache are typically forwarded along one or more
routes toward repositories storing all objects. After tequest eventually hits the target, we need to specify howobject
gets replicated back in the network, in particular along rthete traversed by the request. We will consider the folhmvi
mechanisms [22]:

« leave-copy-everywhere (L CE): the object is sent to all caches of the backward path.

« leave-copy-probabilistically (L CP): the object is sent with probability to each cache of the backward path.

« leave-copy-down (LCD): the object is sent only to the cache preceding the one intwitie object is found (unless the

object is found in the first visited cache).

Notice that LCP, combined with standard LRU at all cacheshéssame as LCE combined with g-LRU at all caches.

IIl. THE CHE APPROXIMATION

We briefly recall Che’s approximation for LRU under the clagsIRM [5]. Consider a cache capable of stori@gobjects.
Let T(m) be the time needed beforg distinct objects (not includingn) are requested by users. Therefdfe,(m) is the

1in the most general case one could individually specify tize f all caches along the chain; however, for simplicity,this paper we will restrict
ourselves to the case in which all caches have the same sizeegsed either in terms of objects or pointers), since migaleexplorations suggest that no
significant performance gains can be obtained by tuning ittes ©f individual caches.

2More sophisticated insertion policies such as the pergistecess-caching algorithri_[21] obtain a filtering effenilar to k-LRU but require more
parameters which are not easy to set, requiring a-priorivlerige of the traffic characteristics.



cache eviction timéor contentm, i.e., the time since the last request after which objectvill be evicted from the cache (if
the object is not again requested in the meantime).

Che’s approximation assumé&3:(m) to be a constant independent of the selected conterithis assumption has been
given a theoretical justification recently inl [6], wherestshown that, under a Zipf-like popularity distributiongtboefficient
of variation of the random variable representifig(m) tends to vanish as the cache size grows. Furthermore, tlendepce
of the eviction time onm becomes negligible when the catalogue size is sufficiematlyd. For completeness we wish to
remark that an indirect proof of Che’s approximation asyatiptvalidity has been provided earlier in[23] far> 1.

The reason why Che’s approximation greatly simplifies thalyeis of caching systems is because it allows to decouple th
dynamics of different contents: interaction among the eot#t is summarized by, which acts as a single primitive quantity
representing the response of the cache to an object request.

More in detail, thanks to Che’s approximation, we can stagt &n objectn is in the cache at time, if and only if a time
smaller thanl has elapsed since the last request for object.e., if at least one request fon has arrived in the interval
(t — T, t]. Under the assumption that requests for objecarrive according to a Poisson process of rgtg the time-average
probability pin(m) that objectm is in the cache is then given by:

pin(m) =1 — e nTe @

As immediate consequence of PASTA property for Poissowas:i observe thatiy(m) represents, by construction, also the
hit probability pnit(m), i.e., the probability that a request for objeet finds objectm in the cache.
Considering a cache of siz&, by construction:

C= Z I[{m in cache

After averaging both sides, we obtain:

C = ZE[H{m in cachq] = Zpin(m). (2)

The only unknown quantity in the above equalityis, which can be obtained with arbitrary precision by a fixednpoi
procedure. The average hit probability of the cache is:

Dhit = Z Pm phit(m) 3)

IV. EXTENSIONS FOR SINGLE CACHE

We will show in the next sections that Che’s idea of summagzhe interaction among different contents by a single
variable (the cache eviction time) provides a powerful dgtiog technique that can be used to predict cache perfazenan
also underenewaltraffic, as well as to analyze policies other than LRU.

A. LRU undemrenewaltraffic

The extension of Che’s approximation to tfenewaltraffic model is conceptually simple although it requiresnsocare.
Indeed, observe that, under a general request process, weotaapply PASTA anymore, identifyingi,(m) with phit(m).
To computepin(m) we can still consider that an objeat is in the cache at time if and only if the last request arrived in
[t — T, t). This requires that thagesince the last request for objeet is smaller tharilc:

pin(m) = Fr(m, Tc)

where Fr(m,t) = A\, jg(l — Fr(m,7))dr is the cdf of theage associated to objeet: inter-request time distribution.
On the other hand, when computipg:(m), we implicitly condition on the fact that a request arrivédime ¢. Thus, the
probability that the previous request occurred[in- T¢,t) equals the probability that the last inter-request timesdoet
exceedl s, yielding:
phit(m) = Fr(m,Tc).

B. g-LRU under IRM andenewaltraffic

We now analyse the g-LRU policy (LRU with probabilistic im8en), considering first the simpler case of IRM traffic. In
this casepin(m) andppii(m) are equal by PASTA.

To computepi,(m) we exploit the following reasoning: an objeetis in the cache at timeprovided that: i) the last request
arrived atr € [t — T¢, t) and ii) either atr— objectm was already in the cache, or its insertion was triggered byrélguest
arriving atr (with probability ¢). We obtain:

phit(m) = pin(m) = (1 — e 7Y [pin(m) + q(1 — pin(m))] 4)



Solving the above expression fpp(m), we get:

q(1 — e AmTe
phit(m) = pin(m) = e_kai i e_)kaC) (5)

Underrenewaltraffic, pin(m) andppit(m) differ by the same token considered for LRU. Repeating timesarguments as
before, we get:

prit(m) = F(m, Tc)[phit(m) + q(1 — phit(m))] (6)
which generalized{4). Thagedistribution must be instead used to compgtgm):
pin(m) = F(m, Tc)[prit(m) + q(1 — prir(m))] ()

Regarding the g-LRU policy, Che’s approximation allows sablish the following interesting property as— 0, whose
proof is reported in AppendixJA (IRM case) ahd A (non-IRM case

Theorem 4.1The g-LRU policy tends asymptotically to LFU as the insertirobability goes to zero both under IRM and
under renewal traffic under the following conditions: folyan, andms with A,,, < \,,, eitherlim;_, % =00 or
aT can be found such that— F(m4,7) > 0 and1 — F(mg,T) = 0. 7
Remark: Note that the above condition is satisfied whenek¢m,¢) has an exponential tail, i.eF(m,t) ~ e~ %! with
parametery,, monotonically dependent on the average raig instead, it is not satisfied whenever distributidrign, ¢) are

power-law, i.e.,F(m,t) ~ (q,t)~F .

C. RANDOM and FIFO

The decoupling principle can be easily extended to RANDOWNZF caching policies by reinterpretirif-(m) as the (in
general random) sojourn time of contentin the cache. In the same spirit of the original Che’s appmation, we assume
Te(m) = Te to be a primitiverandomvariable (not any more a constant) whose distribution dagésiepend onn.

Under IRM traffic the dynamics of each contentin the cache can be described by an M/G/1/0 queuing modetekhd
observe that objeat:, when not in the cache, enters it according to a Poissonaapiocess, then it stays in the cache for a
duration equal tdl, after which it is evictedndependentlyf the arrival of other requests for content during the sojourn
time.

The expression ofin(m) andpnir(m) can then be immediately obtained from Erlang-B formula leitipg PASTA):

phit(m) = pin(m) = AnE[Tc]/ (1 + AnE[Tc])

Notice that we still employ[{2) to compuie[T¢].

As immediate consequence of Erlang-B insensitivity propgr the distribution of service time, we conclude that,

Proposition 1:Under IRM traffic, the performance of RANDOM and FIFO (in teymof hit probability) are the same.

This result was originally obtained formally by Gelenbe][24ing a totally different approach that does not resort e'€
approximation.

Note that, under FIFO policy, we can assuffie to be a constant, in perfect analogy to LRU. Inde&d, is still equal
to the time needed to observe the requestsCfatistinct objects arriving at the cache. On the other handeuiRANDOM
policy, it is natural to approximate the sojourn time of ajegbin the cache with an exponential distribution. Indeaagler
RANDOM an object is evicted with probability/C upon arrival of each request for an object which is not in thehe.

Underrenewaltraffic the dynamics of each object under FIFO and RANDOM cardéscribed, respectively, by a G/D/1/0
and a G/M/1/0 queuing model. Observe that, under genefttirdne performance of FIFO and RANDOM are not necessarily
the same.

We now show how the RANDOM policy can be analysed, urrdaewal traffic employing basic queuing theory. Probability
phit can be obtained as the loss probability of the G/M/1/0 qu&iraply put, the hit probabilityppi(m) of a given content
m equals the probability that the content has not been evigstddre the arrival of the next request for content Having
approximated the sojourn time in the cache by an exponetisaibution, we can easily compute:

phit(m) = /OOO e /BTl dFp(r) = Mp(m, —1/E[Tc])

where Mgr(m,-) is the moment generating function of objegtinter-request time.

Probabilitypi,(m) can also be obtained exploiting the fact that the dynami@s®fM/1/0 system are described by a process
that regenerates at each arrival. On such a process we damperstandard cycle analysis as follows (we drop the depend
of random variables om: to simplify the notation). We denote ¥y the duration of a cycle (which corresponds to an
inter-request interval). Observe that, by constructibe, dbject is surely in the cache at the beginning of a cyclerlee the
residual time spent by the object in the cache, since a cyadestarted, andon be the time spent by the object in the cache
within a cycle.
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Fig. 3. DTMC describing the dynamics of an object in 2-LRUngéed at request arrival times

By definition, Ton = min{r, Teycie}. Thus, by standard renewal theory we haygm) = E[Ton]/E[T¢yce. Figure[2
illustrates the two cases that can occur, depending on whéik object is evicted or not before the arrival of the neguest.
Now, we know thatE[Ttycie] = 1/A,,. For E[Ton], we obtain:

E[Ton] = / (E[Ton - I <» | Toyte = 1] + E[Ton - Iy | Teyete = 1]) dFr(r) =
0

o0 T T . _ B .
= /0 (/0 BT /ETel dg + e r/EIT ]) dFg(r) (8)
In the end, we gepin(m) = A\, E[T¢] (1 — Mg(m, —1/E[T¢])).

D. 2-LRU

We now move to the k-LRU strategy, considering first the sengse oft = 2. For this system, we derive both a rough
approximation based on an additional simplifying assuamp{iwhich is later used to analyse the more general k-LRU)and
more refined model that is based only on Che’s approximakonboth models we consider either IRM @newaltraffic.

Let T/, be the eviction time of cache We start observing that meta-cache 1 behaves exactly litaralard LRU cache,
for which we can use previously derived expressions. UnB&,Ipi,(m) and pnit(m) (which are identical by PASTA) can
be approximately derived by the following argument: objectis found in cache 2 at time if and only if the last request
arrived inT € [t — TZ,t) and either objectn was already in cache 2 at time” or it was not in cache 2 at time™, but its
hash was already stored in meta-cache 1. Under the addiappeoximation that the states of meta-cache 1 and cache 2 ar
independent at time—, we obtain:

phie(m) = pin(m) & (1 — T8 [prig(m) + (1 — e 7€) (1 = phin(m)) 9)

Observe that the independence assumption between cachrBeda-cache 1 is reasonable under the assumptiorf tha
significantly larger tharT}, (which is typically the case when the two caches have the sieg Indeed, in this case the states
of cache 2 and meta-cache 1 tends to de-synchronize, sinbasinis expunged by meta-cache 1 before the corresponding
object is evicted by cache 2, making it possible to find an athije cache 2 and not in meta-cache 1 (which otherwise would
not be possible ifl}, > T2).

An exact expression fopnit(mm) (under Che’s approximation) that does not require any ieddpnce assumption can be
derived observing that the dynamics of objeectin the system, sampled at request arrivals, can be deschbpdtie four
states Discrete Time Markov Chain (DTMC) represented in [Bigvhere each state is denoted by a pair of binary variables



Fig. 4. CTMC describing the dynamics of an object in 2-RANDOWe denotedu; = 1/Té, Ho = 1/Tg.

indicating the presence of objegt in meta-cache 1 and cache 2, respectively. Solving the DTWKEget:

(14 g4)a

Qa + Qb (10)

phit(m) = pin(m) =1 —
with ¢, =1 — e AmTE q = e~ nTe and ge =1—(qa + @).
The extension taenewaltraffic can be carried out following the same lines as befomeder the additional independence
assumption between the two caches, we obtain:

phit(m) =~ Fr(m,T) [pnit(m) + Fr(m, T¢&)(1 — phir(m))]
pin(m) ~ Fr(m,TZ) [prit(m) + Fr(m, T&)(1 — phi(m))]

Also the refined model can be generalizedrémewal traffic, observing that objeet: dynamics in the system, sampled
at request arrivals (i.e., logically just before a requestal), are still described by a Markov Chain with exacthetsame
structure as in Fid.]3 (only the expressions of transitiopbpbilities change in an obvious way). Thus we obtain:

_ - (1+qa)an
phlt(m) - da + b
with ¢, = F(m,T}) andg, = 1 — F(m, T2)
To computepi,(m) we can resort to a cycle analysis, whose details are reportégpendix[A.

E. k-LRU

Previous expressions obtained for 2-LRU (under the indép@ece assumption between caches) can be used to iteratively
compute the hit probabilities of all caches in a k-LRU systéfar example, under IRM, we can udg (9) to relate the hit
probability of objectm in cachei, pnit(i, m), to the hit probabilitypnit(i — 1,m) of objectm in the previous cache, obtaining:

phie(i,m) = pin(i,m) &~ (1 — e 7)) [pri(i, m) + (prie(i — 1,m))(1 — prie(i, m))] (11)

The generalization teenewaltraffic is straightforward.

At last, for largek we can state:

Theorem 4.2:According to [I1)k-LRU tends asymptotically to LFU a8 — oc under IRM andrenewaltraffic, as long
as the support of the inter-request time distribution isaurtded and for anyn; and msq, with \,,, < A, it holds
limy—s o0 w > 1.

The proof is reported in Appendix]A.

F. K-RANDOM

Also k-RANDOM can be analysed under Che’s approximationuiamisg exponential sojourn times in the caches. As an
example, the dynamics of an object in 2-RANDOM (under IRMfith are described by the simple four-states continuous
time Markov chain depicted in Fi@] 4. More in general, k-RAGIM can be exactly analyzed by solving a continuous time
Markov chain with2* states. We omit the details of such standard analysis here.
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Fig. 5. Hit probability vs cache size, for various cachindiges, under IRM.

G. Small cache approximations

Small cache approximations can be obtained by replacingxpeessions opnii(m) andpin(m) with their truncated Taylor
expansion (with respect tb- — 0). This is especially useful to understand the dependengy, @ndpri: on the object arrival
rate )\, (and thus its popularity), obtaining interesting insigimt® the performance of the various caching policies. Werics
ourselves to IRM traffic, however we emphasize that a singfgroach can be generalizedremewaltraffic. We obtain:

AmTo — QmTe) LRU

AT — (AmTe)? RANDOM/FIFO
phit(m) =pin(m) ~ ) )

qAmTo + q(§ —q)(AnTc) g-LRU

(A)* T, TG k-LRU

Previous expressions permit us immediately to rank theopmidnce of the considered policies in the small cache regime
Specifically, better performance is achieved by cachingpoinder whichpnit(m) exhibits stronger dependency ap,. Indeed,
recall that (under IRMppi = >, )‘[{”phit(m), while >~ phie(m) = >, pin(m) = C. Hence, the stronger the dependency
of prit(m) on \,,, the more closely a policy tends to approximate the behaidFU (the optimal policy), which statically
places in the cache th& top popular contents.

Therefore, k-LRU turns out to be the best strategy, sincedéfendency betweenni:(m) and content popularity,, is
polynomial of orderk > 2, in contrast to other policies (includingLRU for fixed ¢) for which pnir(m) depends linearly
on \,,. The coefficient of the quadratic term further allows us tokr@olicies other than k-LRUy-LRU is the only policy
exhibiting a positive quadratic term (for small, which makes the dependencym@f:(m) on A\, slightly super-linear. At last
LRU slightly outperforms RANDOM/FIFO because its negatiygadratic term has a smaller coefficient.

H. Model validation and insights

The goal of this section is twofold. First, we wish to valielgireviously derived analytical expressions against straiis,
showing the surprising accuracy of our approximate modelsli considered cases. Second, we evaluate the impact of
system/traffic parameters on cache performance, obtaimpgrtant insights for network design.

Unless otherwise specified, we will always consider a cgtaosize ofM = 10°, and a Zipf's law exponent = 0.8.

Fig.[3 reports the hit probability achieved by the differeathing strategies that we have considered, under IRMdraffi-
alytical predictions are barely distinguishable from diation results, also for the 3-LRU system, for which our apgmation
(1) relies on an additional independence assumption artiegaches.

As theoretically predicted, gq-LRU (k-LRU) approaches LF&Jga— 0 (k — o0). Interestingly, the introduction of a single
meta-cache in front of an LRU cache (2-LRU) provides hugeelits; getting very close to optimal performance (LFU).

Differences among the hit probability achieved by the uasicaching policies become more significant in the small €ach
regime (spanning almost 1 order of magnitude). In this camsertion policies providing some protection against ympar
objects largely outperform policies which do not filter amguest. The impact of the eviction policy, instead, appéatse
much weaker, with LRU providing moderately better perfonceathan RANDOM/FIFO.

Fig.[8 shows the impact of temporal locality on caching penfance: LRU is evaluated undemewaltraffic in which object
inter-arrival times are distributed according to a secordephyper-exponential with brancheg, = z\,,, and \2, = \,,, /=2
(hereinafter, we will call hypeg- such distribution), so that increasing values:zofesults into stronger temporal locality in
the request process. We observe that temporal locality esa & dramatic (beneficial) impact on hit probability, heiids
crucial to take it into account while developing analyticabdels of cache performance.
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Fig. 7. Hit probability vs cache size, for various cachindiges, under hyper-10 traffic, in the case @f= 0.7 (left plot) or o = 1 (right plot).

Fig.[8 also shows that LFU is no longer optimal when trafficgoet satisfy the IRM. This because LFU statically places
in the cache th& most popular objects (on the basis of #neeragerequest rate of contents), hence the content of the cache
is never adapted to instantaneous traffic conditions, tiaguihto suboptimal performance.

Fig.[d compares the performance of LFU, LRU, g-LRU and 2-LRUHhe case in which traffic exhibits significant temporal
locality (hyper-10). We also change the Zipf's law exponeoinsidering eithery = 0.7 (left plot) or o = 1.0 (right plot).

We observe that-LRU performs poorly in this case, especially for small wsdwf g (in sharp contrast to what we have
seen under IRM). This becaugd RU with very smallg tends to behave like LFU (keeping statically in the cachey diné
objects with the largestveragearrival rate), which turns out to be suboptimal as it doeshmatefit from the temporal locality
in the request process.

On the contrary, a simple 2-LRU system provides very goodop@ance also in the presence of strong temporal locality.
This because, while 2-LRU is able to filter out unpopular eoig, its insertion policy is fast enough to locally adapt to
short-term popularity variations induced by temporal liiga

To further validate the design insights gained by our anglyge have also run a trace-driven experiment, using a racét
of Youtube video requests collected inside the network @frgd Italian ISP, offering Internet access to residentist@mers.
The trace has been extracted analysing TCP flows by meanstatf & open-source traffic monitoring tool developed at
Politecnico di Torino[[2b]. During a period of 35 days in yed12, from March 20th to April 25th, we recorded in total 3.8M
of requests, for 1.76M of videos, coming from 31124 distilRiaddresses.

Fig.[8 reports the hit probability achieved by different loiag schemés We observe that most considerations drawn under
synthetic traffic (in particular, the policy ranking) stiiiold when the cache is fed by real traffic taken from an opamati
network. We summarize the main findings: i) the insertiongyoplays a crucial role in cache performance, especialltha
small-cache regime; ii) a single meta-cache (2-LRU systsigmificantly outperforms the simple LRU and its probalbiis

3The largest cache size that we could consider was limitechbyfihite duration of the trace.
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Fig. 8. Hit probability vs cache size, for various cachindigies, under real trace of Youtube video requests.

version (g-LRU), while additional meta-caches provideyomiinor improvements; iii) the impact of the eviction policy not
significant, especially when caches are small with respgethé catalogue size.

V. CACHE NETWORKS

In a typical cache network, caches forward their miss stréam requests which have not found the target object) to other
caches. Let us briefly recall the standard approach that &@s proposed in the literature to analyse this kind of system

We first introduce some notation. Letii(i,m) be the hit probability of objectn in cachei, and pin(i,m) be the (time
average) probability that objeet is in cachei. We denote by, the eviction time of caché Furthermore, lef,, (i) be the
total averagearrival rate of requests for objegt at cachei. This rate can be immediately computed, provided that wevkno
the hit probability of objectn at all caches sending their miss stream to cachesee later equatiofi (I14).

Once we know the average arrival rates(i), we can simply assume that the arrival process of requestsafth object at
any cache is Poisson, and thus independently solve eaclke caafg its IRM model. A multi-variable fixed-point approaish
then used to solve the entire system ($ee [7] for a disseofidine errors introduced by this technique).

We now explain how Che’s approximation can be exploited tmioba more accurate analysis of the cache network, under
the three replication strategies defined in $ec.ll-D. Tacdes our improved technique, it is sufficient to consides gimple
case of just two caches (tandem network). Indeed, the arten$ our method to general network is straightforward.

Moreover, we will limit ourselves to the case of networks &UL caches in which the traffic produced by the users satisfies
the IRM model {.e., the exogenous process of requests for each object is Rpigsw general idea is to try to capture (though
still in an approximate way) the existing correlation amdhg states of neighboring caches, which is totally negteateder
the Poisson approximation. To do so, a different approxonas needed for each considered replication strategyxplsieed
in the following sections.

A. Leave-copy-everywhere

Focusing on the basic case of a tandem network, the arrisakgs of requests for objeet at the first cache is an exogenous
Poisson process of ratg, (1). The first cache (which is not influenced by the second onejtembe solved using the standard
IRM model, giving

prit(1,m) = pin(1,m) = 1 — e A (D7e, (12)

The arrival process of request for objectat the second cache is not Poisson. It is, instead, an ON-Qiehulated Poisson
process, where the ON state corresponds to the situatiorichvobjectm is not stored in cache 1, so that requests for this
object are forwarded to cache 2. Instead, no requests fecbhj can arrive at cache 2 when is present at cache 1 (OFF
state).

The standard approximation would be to compute the averagelarate \,,(2) = A, (1)(1 — pnir(1,m)) and to apply
the IRM model also to the second cache. Can we do better this Actually, yes, at least to compute the hit probability
phit(2, m), which can, in practice, be very different fropy (2, m) since PASTA does not apply.

We observe that a request for can arrive at timeg at cache 2, only if object: is not stored in cache 1 at. This implies
that no exogenous requests can have arrived in the intgrvall}, t] (otherwisern would be present in cache 1 at time t),
hence, a fortiori, no requests fet can have arrived at cache 2 in the same interval.
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Fig. 9. Comparison between Poisson approximation and oprowed approximation, in the case of a tandem network of t®tJIcaches, under IRM traffic

Now, provided thatl2 > T}, objectm is found in cache 2 at time if and only if at least one request arrived at cache
2 within the interval(t — TZ,t — T/]. During this interval, the arrival process at cache 2 is nmis$on (it depends on the
unknown state of cache 1), and we resort to approximating & Poisson process with rag,(2), obtaining:

phit(2,m) & 1 — e m@TE-TE) a3

Essentially, the improvement with respect to the standppiaximation consists in the teri2 — 77} in the above equation,
in place of TZ. If, instead, T2 < T/, we clearly havep,i(2,m) = 0.

Note that the above reasoning cannot be applied to compi{te m) (which is necessary to estimaté,), thus we simply
express B

pin(2,m) & 1 — e~ AT
as in the standard IRM model.

To show the significant gains in terms of accuracy that canlieired by applying our simple improved approximation
with respect to the Poisson approximation, we consider detannetwork in which the first cache is fed by IRM traffic
with catalogue size\/ = 10° and Zipf's law exponenty = 0.8. Figure[® reports both the total hit probability and the hit
probability on the second cache, under the two considergdoapnations, against simulation results. We observe that
Poisson approximation tends to overestimate the totalfeibability, essentially as a consequence of a large ovarats of
the hit probability on the second cache. Our improved apipration, which, recall, essentially leads to substitutifigy with
TZ — T} in the standard formula to compute the hit probability of #eeond cache, brings back the analytical prediction of
total hit probability very close to simulation results, mka to a much better model of the behavior of the second cache.

B. Leave-copy-probabilistically

Also in this case the first cache is not influenced by the sedoece we can use the IRM formula of g-LRU (5) to analyze
its behavior.

To evaluatepnit(2, m), we observe that a request for contenthat arrives at time at cache 2 produces a hit if, and only if,
at timet~ contentm is stored at cache 2 but not in cache 1. For this to happengicdsel 2 > T/ there are two sufficient
and necessary conditions related to fineviousrequest form arriving at cache 2: i) this request produced a hit at cacle 2,
it triggered an insertion here; ii) it arrived at cache 2 eit the intervalt — T2, ¢ —T/], or in the intervalt — T}, ¢] without
triggering an insertion in cache 1. We remark that, in cattta the LCE case, now it is possible that the previous reques
arrived in the intervalt — T/, ¢]: indeed, the previous request can arrive in this intervadpce a miss in cache 1 (and thus
be forwarded to cache 2) anwbt trigger an insertion in cache 1, so that we can really obsanaher request arriving at
cache 2 at time. To evaluate the probability of this event, we model theastreof requests arriving at cache 2 (i.e. producing
a miss at cache 1) without triggering an insertion in cache & ®oisson process with intensiy, (2) - (1 — ¢). We obtain:

phit(27m) ~ [phit(2, m) + q(1 —phit(2, m))] . (1 _ efxm(Q)(Té*Té) . efim(2)(1—q)Té) .

In the above expression, the first term of the product refersondition i), whereas the second term account for condifjo
going through the complementary event that no requesteeaati cache 2 either in the intenvidl— 7}, ¢] nor in the interval
[t — TZ,t —T/]. Note that this expression reduces[iol (13) when 1 (i.e., LCE).
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If, instead, T2 < TZ, the formula simplifies to
N 2
Phe(2,m) = [pe(2,m) + a(1 = pue(2,m))] (1 — e @O-0TE )
To estimatepi, (2, m), we resort to the standard Poisson approximation:

pin(2,m) & (1 — e TE) [pa(2,m) + g(1 — pin(2,m))] -

C. Leave-copy-down

This strategy is more complex to analyse, since now the digsaaf cache 1 and cache 2 depend mutually on each other.
Indeed, it is possible to insert a content in cache 1 only wihés already stored in cache 2. Probabiliiy (1, m) can be
computed considering that object is found in cache 1 if, and only if, the last request arrivedtin- T/, ¢] and either i) it
hit the object in cache 1 or ii) it found the object in cache @d@ot in cache 1). Since PASTA holds, we have:

pin(L,m) ~ phie(1,m) = [(1 — pin(1,m)) prie(2,m) + pin(1,m)] - (1 — e~ A Te))

Observe in the previous expression that we have assumedaties f cache 1 and cache 2 to be independent; on the other
hand, similarly to what we have done before, we write:

Pin(2,m) &~ (1 — e (DT

Note that, sincepin(1,m) and pin(2,m) are interdependent, a fixed-point iterative procedure exded to jointly determine
them.
It remains to approximate the hit probability at cache 2. Wig > T}, we write:

phit(2,m) & (1 — e A DTE-TE)) o= Am DTS 4 (] — o= Am()(A=pr(Zm))TE

Indeed, since at time~ cache 1 does not store the object by construction, eithgsrthdous request arrived iin— T2, t — T2]
at cache 2, or it arrived ift — T}, ] (again at cache 2) but it did not trigger an insertion in catlbecause objeet was not
found in cache 2. As before, we model the stream of requestsnar at cache 2 (i.e. producing a miss at cache 1) without
triggerring an insertion in the first cache as a Poisson guéth intensity\,,(2) - (1 — pnit(2,m)).
Similarly, if T2 < T}:
phi(2,m) & (1 = 7m0 )T

D. Extension to general cache networks

Our approach, which has been described above for the simagke af a tandem network, can be easily generalized to any
network. We limit ourselves to explaining how this can be ééor the leave-copy-everywhere scheme. Lgtbe the fraction
of requests for objecitn which are forwarded from cachgto cachei (in the case of a miss in cachg Observe thafr; ;]
depends on the routing strategy of requests adopted in tereand can be considered as a given input to the model.
The average arrival rate of requests farat i is then

Am (i) = ZXm(j><1 — phit(j, m))75i (14)

and we can immediately express: 3 _
pin(i,m) =1 — e~ AT
resorting to the standard Poisson approximation.

Our refined approach to estimating the hit probability calh ks applied to the computation of the conditional protiapi
phit(,m | 7), which is the probability that a request for objesthits the object at cachg given that it has been forwarded
by cachej. This event occurs if, and only if, either a request arrivedfaom j in the time intervalt — Tk, t—T2] (provided
thatT¢, > T7), or at least one request arrived:ain the interval[t — T, ¢ from another cache (different frorj). Thus we
write:

phit(i,m | j)~1— e~ A
where _ } _ _ .
Aij =715 m ()1 = pin(G,m)) max(0, T = TL) + > 1t (k) (1 = pin (k, m)) T
k#j
The expression fopnit(i,m) can then be obtained de-conditioning with respecf.to

Now, in case of tree-like networks previous expressionshEapvaluated step-by-step starting from the leaves andyggin
towards the root. In case of general mesh networks, a globalti¢variate) fixed-point procedure is necessary.
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Fig. 11. Hit probability vs cache size, for various replicat strategies, in the case of a tree topology with 1365 aacloe two traffic scenarios

E. Model validation and insights

As before, our aim here is to jointly validate our analytinadels against simulation, while getting interestingghss into
system behavior.

Fig [0 compares the performance of the different replicatvategies that we have analysed, in the case of a chain of
6 identical caches. We have chosen a chain topology to validar model, because this topology is known to produce the
largest degree of correlation among caches (and thus themaaxdeviation from the Poisson approximation).

We separately show the hit probability on the first cache (&ft) and the hit probability of the entire cache netwoiiklit
plot), observing excellent agreement between analysissamdlation in all cases. We note that LCP significantly otfipens
LCE, as it better exploits the aggregate storage capacitggmetwork avoiding the simultaneous placement of theabhie
all caches. Yet, LCD replication strategy performs evenebgethanks to an improved filtering effect (LCD can be regdrds
the dual of k-LRU for cache networks).

Then, we consider a very large topology comprising 1365 esclkiorresponding to a 4-ary regular tree with 6 levels.
Such topology is extremely expensive (if not impossible}itaulate, whereas the model can predict its behavior atahees
computation cost of previous chain topology. Fig.] 11 reptine total hit probability achieved in this large netword; fwo
traffic scenarios (analytical results only).

We again observe the huge gain of LCD with respect to LCE, admethe benefits of LCP are not very significant, especially
with a = 0.7.

At last, we consider an example of mesh network comprising¢hes arranged on a ring topology. Requests can enter
the ring at any point, i.e., any of the caches along the ririg as an ingress cache. Requests are forwarded clockwisg alo
the ring. However, requests that have traversed 4 cachémutihitting the content are redirected to a remote, common
repository storing all contents. Fig. 112 shows the pathofedid by the requests arriving externally at one particutarhe
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Fig. 12. Ring topology of 9 caches. The path Fig. 13. Performance of LCE and LCP (with= 0.5 or ¢ = 0.25) in the ring topology.
followed by requests entering one particular Comparison between analysis and simulation.

cache is shown as a dashed line.

(requests entering the network at the other caches aredré@at similar way). The total external traffic of incomingjoests
is uniformly distributed over the 9 caches.

Fig.[I3 compares the performance of LCE and LCP (with either 0.5 or ¢ = 0.25) in the considered mesh network,
showing the global hit probability achieved by the cachiygtem. Here we have chosen the usual setting\fof= 10°
anda = 0.8. We have not considered in this scenario the LCD replicastoategy, which is primarily meant for hierarchical
(tree-like) caching systems and whose performance on gemetworks with cyclic topology are typically worse than R(@Z].

Observe that also in the more challenging case of cache netviacluding cycles, the application of our model leads to
pretty accurate predictions of the hit-probability. We lwi® recall that networks which do not have feed-forward togy
cannot be analyzed with existing techniques, such as tlwgoped in[[26].

VI. RELATED WORK

The literature on caching systems is vast, so we limit oueseto mentioning the papers more closely related to our work
mainly with a modeling flavour. The first attempts to chareaezgethe performance of simple caching systems date badieto t
early 70's [3], [24]. In [3] authors have shown that the congpional complexity of an exact model of a single LRU or FIFO
cache grows exponentially with both the cache gizand the catalogue siz¥ . In [24] it was proven that FIFO and RANDOM
replacement policies achieve exactly the same hit proibabihder IRM traffic. Given that an exact characterizatidmmst
caching policies is prohibitive, approximated method@sdor the analysis of these systems have been proposetheveears
[4], [5]. The work [4] proposes an approximate techniquehwibmplexity O(C M) for the estimation of the hit probability
in a LRU cache under IRM. The above technique can be extended@FIFO caches, although in this case the asymptotic
complexity cannot be precisely determined due to the iteratature of the model solution. A different approximatiiam
LRU caches under IRM was originally proposed by [5]. This rapgmation constitutes the starting point of our work and it
is explained in detail in Se€JII.

Another thread of works by Jelenkovit [27], [28[. [29], |3bas focused on the asymptotic characterization of the hit
probability in LRU caches when the catalog size and the caihe jointly scale to infinite. In particular_[27] provides
closed form expression for the asymptotic hit probabilityailarge LRU cache under IRM traffic with Zipf's exponent> 1.
Later works [28], [29] have shown that LRU, in the asymptatigime, exhibits an insensitivity property to traffic temalo
locality. At last [30] established the precise conditionsthe scaling of parameters under which the insensitivitypprty
holds. More recently, if[21], the same author proposed peesistent-access-caching” (PAC) scheme, showing tipavitides
nearly-optimal asymptotic performance under IRM with Zpéxponentr > 1. We emphasize that the idea behind the PAC
scheme shares some similarities with thé&RU scheme proposed in this work: under both schemes amtimseolicy is
added to LRU to prevent unpopular contents from entering#tthe. However, the configuration of PAC is harder as it regui
setting several parameters. The.RU scheme, instead, is simpler and self-adapting. Otkeernlizations/extensions of LRU
known as LRU-2Q, LRUk and LRFU have been proposed[in][20].][31] and [32] respelgtitdRU-2Q is essentially equivalent
to k-LRU, in the case ok = 2. Both LRU- and LRFU, instead, subsume either LRU or LFU by making theicehof the
content to be evicted dependent by the pattern ofdasibserved content-requestsLRU is somehow complementary to both
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LRU-£ and LRFU, since it enhances only the insertion policy of tlessical LRU, by restricting access to the cache only to
those contents which are sufficiently popular, while preisgrthe simplicity of LRU eviction.

In the last few years cache systems have attracted renewsréshin the context of ICN. Ii_[33] a Markovian approach
has been proposed to approximate the hit probability in LRthes under IRM. The proposed method, however, is based on
Markovian assumptions and cannot be easily extended tdRehtraffic. In [34] the approach of [27] has been extended to
analyze the chunkization effect on cache performance inGih dontext. An asymptotic characterization (for large @mh
of the hit probability achieved by the RANDOM policy is proed in [8]. The trade-off between recency and frequency in
LRFU has been studied in [35].

The work [6] provides a theoretical justification to Che’spegximation for LRU, and introduces a first attempt to apply
Che’s approach to non-LRU caches, considering the RANDOMyander IRM. We emphasize that the approach proposed
in [6] to analyse RANDOM differs substantially from ours,ibg significantly more complex and hardly extendible to nBiM
traffic. At last, we wish to mention that Che’s approximatfon LRU has been very recently][9] extended to non-IRM traffic
in special cases, adopting a dual approach with respectrg ou

With respect to all of the above-mentioned works, the goabof paper is different, in that here we show that the
decoupling principle underlying Che’s approximation is anumore general and flexible than what originally thought] an
can be successfully applied to a broad set of caching pslieieler different traffic conditions, within a unified franmb.

For what concerns cache networks, we mention [3€], [7], T8le work [36] explores ergodicity conditions for arbitrary
(mesh) networks. The models [ [7] and [8] rely on the indejegite assumption among caches, assuming that requegtsgarri
at each cache satisfy the IRM assumptions. In contrast, weoge a methodology to capture the existing correlationngmo
the states of neighboring caches, in a computationallyiefficmanner, considerably improving the accuracy of art
predictions. Our approach also permits analyzing cachearks adopting tightly coordinated replication stratsggich as
leave-copy-down. We remark that cache networks implemgritiCD have been previously considered[inl[37] for the specia
case of tandem topologies. Our methodology provides afiigntly simpler and higher scalable alternative to the appin
devised in [[37], by capturing in a simple yet effective waysérg correlations between caches’ states, while redutie
number of parameters that must be estimated through fixed-pmcedure.

Finally an alternative approach to ours has been recentpgsed in[[26][38]l[39] for cache networks with feed-fand
topology, implementing TTL-based eviction policies. Thapproach, which can be used to analyse the performance 0f LR
RANDOM and FIFO under the Che approximation, essentiallysegis in characterizing the inter-request process agiai
non-ingress caches through a two steps procedure: i) the strisam of (ingress) caches is exactly characterized aseva¢
process with given distribution; ii) by exploiting knownsidts on the superposition of independent renewal prosesise
exact inter-request time distribution at non-ingress eadh obtained. Observe, however, that the request procass-dangress
caches are, in general, non-renewal (since the supeqositindependent renewal processes is not guaranteed tnbwal).
Thus, while the procedure proposed inl[26] is exact for netwaf TTL caches with linear topology, it can be applied to
network of caches with tree-structure only by approxingthre request processes at non-ingress caches with ren@eabpes.
Recently a nice refinement of the approach followed by| [26] baen proposed i [40], where it has shown that the miss
stream of TTL-based caches is a Markovian arrival processR)Mprovided that the request process is MAP. In light of the
fact that the superposition of independent MAPs is also a MA®] has derived an exact analytical method for the analysi
of feed-forward networks of TTL caches under MAP traffic.

Although the approach i [26] and[40] is very elegant, and ba potentially extended to renewal traffic, it suffers from
the following two limitations: i) it becomes computatiotyavery intensive when applied to large networks; ii) it cam tardly
generalized to general mesh networks (non feed-forward). &proach is somehow complementary to the one followed
by [26] and [40] since, while it applies only to IRM traffic, i& much more scalable and readily applicable to networkh wit
general topology.

VII. CONCLUSIONS

The main goal of this paper was to show that a variety of cachystems (both isolated and interconnected caches) opgrat
under various insertion/eviction policies and traffic citioths, can be accurately analysed within a unified framé&based on
a fairly general decoupling principle extending the orai€he’s approximation. We have also shown that many prigseof
cache systems can be obtained within our framework in a siraptl elegant way, including asymptotic results which would
otherwise require significant efforts to be establishednithe point of view of system design, our study has revedied t
superiority of the k-LRU policy, in terms of both simplicignd performance gains. Still many extensions and refinesregnt
possible, especially for cache networks under generdidraf
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APPENDIX
APPENDIX
We first prove thatim, o Tc = +oco. Consider functionf (Tc,q) £ 3, pin(m), From [2), f(Tc,q) = C. Recalling [(5),

we have: (1 — e~ AnTe)
fTc,q) = ; e—nTo ¢ g(1 — e nlc)

where previous sum extends over all contents in the catalddck is assumed to be of finite sizZd). Deriving the above
formula, we obtain:

Z (1— ) :c—i—q(l—:zc))—q(l—gc)2

(1—2)x
= >0 15
2 o+ a(i— ) e ; ot a1l =2y (19
and
PR de—rnTe —Za< g(1 - ) )/(% (e nTe) =
¢ e 0r|,_ - smre Olc — x+q(l —x) oA Te m
—q(z +¢( 1—55))—61(1—55)(1—61) o AmToy
- Z R R (—Ame ) =
7)\mTc

Z _>\7nTC +q 1 _ e_>\7nTC))2 > O (16)

m

By the implicit function theorem, we have
aTC o _fq(TCaQ)

8q B fTC(T07q)

We can conclude thdl- is a decreasing function with respect ¢p thus we have that the limiim,_., T exists and

equalssup, Tc. We prove now that this limit is indeed equal to infinity. Wefide Tc,supé suquc(q) = limy0 T, and
we suppose by contradiction that this is a finite quantitythiis case, we would have

. (1 —enTe)
hm f(Te,q) = hm me = glg% . e mTo 4 (1 — e mTo)

<0

207

in contrast with the fact that the previous sum is equal’tdy definition. Thus,TC,supé lim, 0 T (q) = +oo. We prove
now that7T(q) asymptotically behaves aﬂog% for somec > 0 asq — 0. We can write:

limg—0 >, Pin(m) 1: Ao Te

limg 50, efAqu(c _:;(1 - e))‘)mTC) B

limg 0> °,, ef,\mgc—’—f;q-)k 0(q) B 0
limg0 )

1+4+0(1)
qu_)o Z

mq 4 e*AmTC/q + 0(1) -
1+o0(1)
m ] 4 o= OmTe—log(1/q)) + o(1)

We note that, ifi—=5— 1/ 0 becomes arbitrarily large as— 0, every term in[(1l7) tends to 1, and the sum would be equal to the

number of contents whereas we know that it has to be equal 6, on the other handﬁ becomes arbitrarily small

asq — 0, every term in the sum i {17) would tend to 0. We can thus eafeithat—<— (1/ 3 is bounded away from both 0
and infinite.

Thus assuming for the moment tHat,_, log(l/q)) exists, it must necessarily be equalcto- 0. Now, by setting\* = 1/c¢
we have:

lim pi(m) = lim 1+o(1) 1 i A, >N
qﬁopln - q—0 771 +1 +0(1) - 0 if Am < \*
Note that previous argument still holds whim,_ log(l/ ) does not exist, provided that the foIIowing condition is mgt
* * T
no \,, can be found, with\* < \,,, < A*, such tha) < liminf, .o 1og(1c/q)) A* < limsup,_,o m — < 00.

At last we show, by contradiction, that eithiem, mgaﬁ exists or condition i) above is met. Indeed assume thaether
is anm such that\* < \,, < A*. Then, denoting witl 4, the indicator function associated to the evéAt, by construction
it must be bothy ", Iy, >ay =C and)’ Iy >a-p = C. Thus:y . Ty >a-) = >, Iia,.>a+}, Which is in contradiction
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with the assumption.

To simplify the proof we assume the support of the inter-esjiime pdf to be simply connected. As consequehtey, y)
(F(m,y)) is a strictly increasing function with respect to variabl€y) on its relevant range, i.e, for any such that0 <
F(m,z) <1(Vyst0< F(m,y) < 1). First we consider to the case in whiéim, x) (F(m, y)) has an infinite support for
anym. In this case we first prove théitn, .o 7 = +oc. Consider functiory (Tc, q) £ Y, pin(m). From [2), f(Tc,q) = C.
Recalling [T) and[{6), we have:

qF(ma TC)
1— F(m,Tc)(1—q)

Phit(m) =
and

pin(m) = F(m, Tc) [pie(m) + g(1 — prie(m))] =

7 qF(mvTC) . qF(maTC) _ T m q
FonTe) [ r=fn =g 1 (- TP =g = P T T Ry @9
Thus, X
f(Tc,q) = ZF(m,Tc)l —F(m g”c)(l —q)
Deriving this formula, we obtain:
—N"Fim 1—F(m,Tc)(1—q)—quTc - 1 - F(m,Tc)
_;F( 7TC) [1_F(m7TC)(1_q) ;F F(maTC)(l_Q)]2
and
s Of N~ OF(m,Te) q . 0 q B
Jre = g7, = 2 T [1 —F(m, To)(1 - q)] +Em To) greq— Fm,To)(1—q)

B 8F (m,T¢) q S (m q(1—q) OF(m,Tc)
Z o L—F(m,Tc)(l—Q)} +H ’TC)[l—F(m,Tc)(l—q)]2 oo

since bothE'(m, T¢) and F'(m, T¢) are increasing with.

By the implicit function theorem, we have
8TC o _fq(TCaQ)

dq  fro(Tc,q)

We can conclude thaf is a decreasing function with respectdpthus we have that the limlim,_.o 7 exists and equals
sup, Tc . We prove now that this limit is indeed equal to infinity. Wefide Tc sup = supzTc(q) = limg—0 Tc, and we
suppose, by contradiction, that this is a finite quantitythis case, we would have

lim f(Te, q) = lim > " pn(m) = lim > - F(m, To)

<0

q
= F(m,Te)(1 - q)

:O7

in contrast with the fact that the previous sum is equal’tdoy definition. Thus, sincém, .o Tc(q) = +oo we have:
1
[1—=F(m,Tc)(1-q)l/q’

now, observe that it — F(m,T¢) = o(q), the previous limit becomes equal tpwhereas, ifl — F'(m,T¢) = w(q), the limit
is equal to0.

Then, with similar arguments as for the exponential casgeuour assumptions (i.e., the fact that we asslimg., ., % =
oo whenever\,,, < A,,) we can easily show that there necessarily exists samsuch thatl — F'(m, T¢) = o(q) form < myg
and1l — F(m,T¢) = w(q) for m > my. Indeed observe that, by hypothesis, the asymptotic beha¥il — F'(m,T¢) as
Te — oo depends omn (i.e., on arrival rates\,,,’s, which are assumed to be different for differeny.

Fig.[14 provides a numerical confirmation of our theoretjmadictions (see also Remark after Theoten 4.1), plotteg t
hit probability as function of the insertion probability gfLRU under different inter-request time distributiongpenential,
hyper-10, Pareto (with exponent= 2). This experiment suggests that both the exponential aparhi0 curves approach
LFU asq — 0, while the curve corresponding to the Pareto case tends iffeaedit limit.

The case in whiclF(m, T¢) has a bounded support for somecan be treated similarly. However if the number of contents
with finite support exceed€', T does not tend anymore tec. Observe indeed that fromh (19) we can deduce that every
content whose inter-request time has a maximum value, wilisgmaller thatl'c s, Will be necessarily found in the cache
with a probability tending to 1 when — 0, while every other content will be found with a probabiligntling to 0. Thus,
since by construction we have,  Pn(m) = C, only C' contents can have maximum inter-request time smaller faq,

(19)

Jim pin(m) = C}gr(l);F(m,Tc)
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Fig. 14. Hit probability vs insertion probability of g-LRUor different inter-request time distributions, fixed cackize equal to 10,00@y = 0.7.
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Fig. 15. lllustration of the cycle analysis used for denyif®0d).Vertical arrows represent incoming requests forcietent.

This concludes the proof.
For simplicity in this appendix, whenever not strictly nesary, we omit the dependency of variablesronWe define as
cycle the time interval between two visits at statelf (i.e., the time interval between two requests for objecthat bring
the system to statd (1)). Observe that, by construction, the cycles are i.i.d. \dfesader a generic cycle starting at tihe- 0
(thus by construction a request for arrives at timet = 0). Let R; be the time of the first request for objeet after¢ = 0.
We have the following possibilities:
« Ry <T}:attimeR; the system is still in statel(1), and consequentliE[Teycie | R1 < T3] = E[Ry | Ry < T}
e T < Ry <TZ:in this case, at time¢ = T/ the system enters staté, {), where it is found at?] ; thus the request at
R; brings the system again in statg (). In this caseE[Toyce | T4 < R1 < TZ] =E[Ry | TS < Ry < TE].

« Ry > TZ: in this last case the analysis is more complicated. At tifpethe system goes to state, (), and at timeZ2
it enters state((, 0). At time ¢t = Ry, for effect of the arrival of the first request, the systemeestf(, 0). Now, if the
following request arrives befor&, + T}, the system goes back to state ) and the cycle terminates; otherwise, the
system at timeR; + T enters again staté),(0) and the following request brings it again to state0). The cycle ends
upon the arrival of the first request for objentthat follows the previous one by less th@p. Figure[Ib better illustrates
this situation.

Thus, if we denote byR; the i-th inter-request time, and with ~ Geon(p;), p1 = P(R < T}) = 1 — e~ T and
pp=P(R<TZ)=1- e~ Té we can write in this case:

n—1
E[Teyce | R1 > T¢] = E[Ry | Ry > T3] + E[Ry | Ry < TS+ E[> R | Ri > T
1=0
=E[Ry | Ry > T3]+ E[R,, | R, < T} +E[R]E[R; | R; > T3]
E[Rn, R, < Té«] 1—p1 E[Rl, R; > Té«]

=E[Ry | Ry > TZ] +

P(R, <T}) p1 PR >T})

ERH,RH<T1 1-— ERi,Ri>T1

=E[Ry | Ry > T3]+ [ o cl plpl [ T c]
E[R]

=E[R|R>TE +—
P
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Considering also the other cases, we have:

ElR
E[Toyud = E[R1 | R < T2|P(Ry < T2) + (E[Rl Ry >T2] + %) P(Ry > T2)

E[R
— 5]+ 2 ) 20)
P
Turning our attention td€[Ton], which is the average time within a cycle during which contenis stored in the second
(physical) cache, we have:

E[Ton] = E[min(R1,T2)] = E[R; | Ry < T2|P(Ry < T3) + TZP(Ry > T2) (21)
At last we can obtaini,(m) as:
pn(m) = E[Ton(m)]
" E[Tcycle(m)]

For simplicity we limit ourselves to the IRM traffic model. Aamalogous result can be derived undmmewaltraffic along
the same lines. First we recall that sequefi€g}*_, is increasing. We prove that: = sup,_,., T& = +o0. Indeed, assume
by contradiction thatl, is finite. Now, a necessary condition for contentto be in the cache at timeis that a request
arrived atr; € (t — Tk, t]; this request in turn must have necessarily generated dthéren cachek or in cachek — 1. As
consequence, a previous request must have arrivegdatr; — 75, 71]. Iterating back we generate a chainfofequests for
objectm requests with inter-request time smaller tHgf, which is necessary for objeet to be found in caché at time
t. The probability of observing such a chain is bounded by- e=*~7¢)*, and this probability goes to zero whén— oo,
independently on\,,,, leading to a contradiction. Indeed recall that, by corggtom, > pin(m, k) = C. Thus, we can conclude
thatlimy_, ., Tc = +oo. Recalling the expression ifi(11):

pin(m, i) = (1= e~ 7)) [pin(m, i) + (pin(m, i = 1)) (1 = pin(m, )]

we can easily prove thatin(m, ) is increasing with respect ta,, for any: (by induction over:); ii) (II), for sufficiently
large T/, is a contraction mapping ovér, 1] for anye > 0 .

Thus,limg_; pin(m, k) exists and it is necessarily the fixed pojrjf(m) of (I1). The assertion immediately follows, since
pin(m) € {0,1}.

The extension to the non-IRM case,under the assumptiorittbatupport of the inter-request time distribution is unimed,

and that for anym,; andmsg, with A, < Ay, limy oo % > 1, follows the same lines.
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