
J. Parallel Distrib. Comput. 90–91 (2016) 52–66
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Joint scheduling of MapReduce jobs with servers: Performance
bounds and experiments
Xiao Ling a, Yi Yuan b, Dan Wang b, Jiangchuan Liu c, Jiahai Yang a,∗

a Tsinghua National Laboratory for Information Science and Technology, Institute for Network Sciences and Cyberspace, Tsinghua University, Beijing, China
b Department of Computing Science, The Hong Kong Polytechnic University, Hong Kong
c Department of Computing Science, Simon Fraser University, British Columbia, Canada

h i g h l i g h t s

• We investigate a schedule problem for MapReduce-like frameworks by taking server assignment into consideration.
• We formulate the MapReduce server-job organizer problem (MSJO) and show that it is NP-complete.
• We propose a 3-approximation algorithm and a fast heuristic design to address the MSJO problem.
• We implement our algorithms and some state-of-the-art algorithms on Amazon EC2 with deploying schedulers in Hadoop.
• By comprehensive simulations and experiments, the results show that our algorithm outperforms other classical strategies.

a r t i c l e i n f o

Article history:
Received 29 August 2015
Received in revised form
31 December 2015
Accepted 21 February 2016
Available online 2 March 2016

Keywords:
MapReduce
Scheduling
Server assignment
NP-complete
Fast heuristic

a b s t r a c t

MapReduce-like frameworks have achieved tremendous success for large-scale data processing in data
centers. A key feature distinguishing MapReduce from previous parallel models is that it interleaves
parallel and sequential computation. Past schemes, and especially their theoretical bounds, on general
parallelmodels are therefore, unlikely to be applied toMapReduce directly. There aremany recent studies
on MapReduce job and task scheduling. These studies assume that the servers are assigned in advance.
In current data centers, multiple MapReduce jobs of different importance levels run together. In this
paper, we investigate a schedule problem for MapReduce taking server assignment into consideration
as well. We formulate a MapReduce server-job organizer problem (MSJO) and show that it is NP-
complete. We develop a 3-approximation algorithm and a fast heuristic design. Moreover, we further
propose a novel fine-grained practical algorithm for general MapReduce-like task scheduling problem.
Finally, we evaluate our algorithms through both simulations and experiments on Amazon EC2 with an
implementation with Hadoop. The results confirm the superiority of our algorithms.

© 2016 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Recently the amount of data of various applications has in-
creased beyond the processing capability of single machines. To
cope with such data, scale out parallel processing is widely ac-
cepted. MapReduce [11], the de facto standard framework in
parallel processing for big data applications, has become widely
adopted. Nevertheless, MapReduce framework is also criticized

∗ Corresponding author.
E-mail addresses: lxcernet@gmail.com (X. Ling), robertyi@163.com (Y. Yuan),

csdwang@comp.polyu.edu.hk (D. Wang), jcliu@cs.sfu.ca (J. Liu),
yang@cernet.edu.cn (J. Yang).

http://dx.doi.org/10.1016/j.jpdc.2016.02.002
0743-7315/© 2016 The Authors. Published by Elsevier Inc. This is an open access artic
0/).
for its inefficiency in performance and as ‘‘a major step back-
ward’’ [14]. This is partially because that, performance-wise, the
MapReduce framework has not been deeply studied enough as
compared to decades of study and fine-tune of other conventional
systems. As a consequence, there are many recent studies in im-
proving MapReduce performance.

MapReduce breaks down a job into map tasks and reduce tasks.
These tasks are parallelized across server clusters.1 Although map
tasks and reduce tasks overlap partly in the real Hadoop scheduling
mechanism, researchers [18,19] generally assume that reduce

1 The server clusters here are meant to be general; it can either be data center
servers or cloud virtual machines.

le under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.

http://dx.doi.org/10.1016/j.jpdc.2016.02.002
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2016.02.002&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:lxcernet@gmail.com
mailto:robertyi@163.com
mailto:csdwang@comp.polyu.edu.hk
mailto:jcliu@cs.sfu.ca
mailto:yang@cernet.edu.cn
http://dx.doi.org/10.1016/j.jpdc.2016.02.002
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

X. Ling et al. / J. Parallel Distrib. Comput. 90–91 (2016) 52–66 53
Machine 1

Machine 2

Machine 3

0 100 200 100 200

Time
(s)

Time
(s)

Task of job 1 Task of job 2

M1 M1

M2 M2

M3

M3

M1 M1

M4 M4R1 R1

R2 R2

R1 R1

a b

Fig. 1. Impact of server assignment. (a) Without server assignment, Hadoop default strategy. (b) Joint considering of server assignment.
Fig. 2. Design space of MarS.
tasks will not start until the accomplishment of map tasks because
reduce tasks rely on intermediate data produced by the map tasks.
This is a parallel–sequential structure. In current practice, multiple
MapReduce jobs are scheduled simultaneously to efficiently utilize
the computation resources in the data center servers. It is a non-
trivial task to find a good schedule for multiple MapReduce jobs
and tasks running on different servers. There are a great number
of studies on general parallel processing scheduling in the past
decades. Nevertheless, whether these techniques can be applied
directly in the MapReduce framework is not clear; and especially,
their results on theoretical bounds are unlikely to be translated.

In this paper, we conduct research in this direction. There are
recent studies on MapReduce scheduling [7,8]. As an example, an
algorithm is developed in [8] for joint scheduling of processing
and shuffle phases and it achieves an 8-approximation. To the best
of our knowledge, previous studies commonly assume that the
servers are assigned. That is, they assume that tasks in MapReduce
jobs are first assigned to the servers, and their scheduling is
conducted tomanage the sequences of themap and reduce tasks in
each job. It is not clear whether the scheduling on map and reduce
tasks will be affected in a situation where the server assignment
is ‘‘less good’’. We illustrate this impact by a toy example in Fig. 1.
There are three machines and two jobs. Job 1 has 4 map tasks and
2 reduce tasks. Job 2 has 1 map task and 1 reduce task. Assume the
processing time to be 75 s for every single map task and 100 s for
every single reduce task. If server assignment is not considered, it
will result in Fig. 1(a), which follows the default FIFO strategy of
Hadoop [3]. However, if we jointly consider server assignment, we
can achieve a schedule shown in Fig. 1(b). It is easy to see that the
completion time of job 2 in Fig. 1(a) is 250 s and in Fig. 1(b) is 175 s,
a 30% improvement.

In this paper, we fill in this blank by jointly consider server
assignments and MapReduce jobs (and the associated tasks). To
systematically study this problem, we formulate a unique MapRe-
duce server-job organizer problem (MSJO). Note that the MSJO
we discuss is the general case where the jobs can have different
weights. We show that MSJO is NP-complete and we develop a 3-
approximation algorithm. This approximation algorithm, though
polynomial, has certain complexity in solving an LP-subroutine.
Therefore, we further develop a fast heuristic. We evaluate our
algorithm through extensive simulations. Our algorithm can out-
performs the state-of-the-art algorithms by 40% in terms of total
weighted job completion time. We further implement our algo-
rithm in Hadoop and evaluate our algorithm using experiments in
Amazon EC2 [1]. The experiment results confirm the advantage of
our algorithm.

The rest of the paper is organized as follows. We discuss
background in Section 2. We formulate the MSJO problem and
analyze its complexity in Section 3. In Section 4, we present several
algorithms. We evaluate our algorithms in Section 5. In Section 6,
we show an implementation of our scheme in Hadoop and our
evaluation inAmazonEC2. Finally, Section 7 summarizes the paper.

2. Related work

Due to the wide usage of MapReduce systems, there is a
flourish of studies on understanding MapReduce performance and
many developed various improvement schemes. One classification
divides the view point by system and algorithm. Our work belongs
to algorithm research and we categorize this in Fig. 2.

From system point of view: (1) Framework. There are many
valuable advances on improving MapReduce framework. For
example, Apache YARN [5] is a new kind of Hadoop resource
manager, which can provide unified resource management and
scheduling for the above big data applications. Mesos [4] is
built using the same principles as the Linux kernel and provides
applications (e.g., Hadoop, Spark, Kafka) with APIs for resource
management and scheduling across entire datacenter and cloud
environments. However, these open source programs focus on

54 X. Ling et al. / J. Parallel Distrib. Comput. 90–91 (2016) 52–66
the cloud resource management and system implementation, but
not the optimal job/task scheduling issues. Zhang et al. [40]
identified useful functional properties for user-defined functions
and proposed an optimization framework SUDO that reasons
about data-partition partition properties, functional properties,
and data shuffling. Costa et al. [9] built a MapReduce-like system
Camdoop to decrease the traffic by using a direct-connect network
topology with servers. Zhang et al. [39] designed MIMP, a
minimal interference, maximal progress scheduling system which
manages both VM CPU scheduling and Hadoop job scheduling to
reduce interference and increase overall efficiency. Li et al. [24]
presented an efficient scheduling framework WOHA for deadline-
aware MapReduce workflows. Literature [23] introduces the
technique of packing server to convert independent task set
schedulability bounds to MapReduce workflows schedulability
bounds for real-time analytic applications. Our attention is focused
on another aspect, whichmeanswe try to optimize theMapReduce
performance bound in terms of the total weighted job completion
time based on LP relaxation. (2) Resource Management. For
example, Xie et al. [35] observed that the MapReduce applications
havedifferent network bandwidth requirements at different stages
of the job execution, then proposed a model network bandwidth
requirements of MapReduce jobs and a system PROTEUS to
maximize number of accommodated jobs. Herodotou et al. [20]
developed Elastisizer to which users can express their cluster
sizing problems as queries in a declarative fashion, and can
provide reliable answers to these queries using an automated
technique and provide nonexpert users with a good combination
of cluster resource and job configuration settings to meet their
needs. In [13], Quasar, a cluster management system, is proposed
to increase resource utilization while providing consistently high
application performance. It uses fast classification techniques
to determine the impact of different resource allocations and
assignments on workload performance. (3) Heterogeneity. Zaharia
et al. [38] designed a robust scheduling algorithm LATE to address
the performance issues incurred by speculative execution in
heterogeneous environment. In [12], Paragon, an online and QoS-
aware scheduler proposed for heterogeneous clusters, includes
a greedy server scheduler which minimizes interference and
increases server utilization. Besides, outliers are considered
in [2], which proposed Mantri to monitor tasks and cull outliers
using cause- and resource-aware techniques. However, none of
the above mentioned studies consider MapReduce jobs/tasks
scheduling problem.

From algorithmic point of view: people are looking into
MapReduce jobs/tasks scheduling with various considerations in
different scenarios. (1) Fairness. Isard et al. [21] introduced Quincy
for scheduling concurrent distributed jobs with fine-grain re-
source sharing and Quincy can get better fairness. Delay schedul-
ing [37] is proposed to divide resources using max–min fair
sharing to achieve statistical multiplexing. (2) Data locality. Wang
et al. [33] proposed ActCap which uses a method based on Markov
chain to do node-capability-aware data placement for the con-
tinuous incoming data in ever-growing heterogeneous clusters.
Wang et al. [34] presented a new queueing architecture and pro-
posed a map task scheduling algorithm constituted by the JSQ pol-
icy together with the MaxWeight policy under heavy traffic. Tan
et al. [31] formulated a stochastic optimization framework to im-
prove the data locality for reduce tasks with the optimal place-
ment policy exhibiting a threshold-based structure. Purlieus [25]
allocated VMs for MapReduce cluster in a data-locality manner to
optimize performance of data access in MapReduce system. Be-
sides, Omega [30] is proposed to support cooperation of multiple
schedulers in large computer clusters. Zheng et al. [41] propose a
MapReduce scheduler with provable efficiency on total flow time.
Sandholm et al. [28] provided automatic application-independent
optimization strategies by prioritizing users, stage in a job, and bot-
tleneck components within a stage. However, the goals of these
studies are not so much finding an optimal solution, or even un-
derstanding how close to the optimal their schemes are.

For the objective of fast completion time, two most closely re-
lated works of our work are [7,8]. In [7], Chang et al. focused
on a theoretical model for determining which MapReduce jobs to
schedule at what times, and formulated a linear program and sev-
eral approximation algorithms like OFFA for minimizing the total
job completion times. In [8], Chen et al. investigated precedence
constraints between map tasks and reduce tasks in MapReduce
jobs, and proposed an 8-approximation algorithm MARES, which
is an advanced work and has currently the best theoretical perfor-
mance upper bound, to solve the joint scheduling problem. How-
ever, they assume that tasks are assigned to processors/servers in
advance. As shown in Fig. 1, scheduling of jobs without consider-
ing server assignment may result in less optimal solutions. We fill
in this gap in this paper.

General scheduling of parallel machines has decades of studies.
There are many works with inspiring ideas and analytical tech-
niques [22,29,17,10]. In particular, the polyhedron of necessary
conditions for the single machine problem was derived in [26].
And [29] used this result to derive approximation algorithms for
single machine weighted completion time with additional side
constraints. For minimizing total weighted job completion time
with precedence constraints on multi-machines, the best known
work is a 4-approximation algorithm in [27]. However, theseworks
focus on the general case.

3. MapReduce server-job organizer: the problem and complex-
ity analysis

3.1. Problem formulation

Let J be a set of MapReduce jobs. Let M be a set of identical
machines. Let the release time of job j be rj. This release time is the
time a job is entering the system; note that it differs from the job
start timewhere the job scheduler can schedule a job to be started
later than this release time. Let T(M)

j and T(R)
j be the set of map

tasks and reduce tasks for each job j. Let T be the set of all tasks
of J. For each task u ∈ T, let pu be its processing time. We assume
that a task cannot be preempted. In our assumption, MapReduce
jobs can be preempted; only tasks cannot. In the current operation
of MapReduce job scheduling, a job with high priority does not
preempt running tasks. It waits until the processors are released.
This is because that the number of processors is large and the tasks
are relatively small. Thus, the high priority job can be put into
execution quickly. We also assume that for any job j, processing
times of its map tasks are smaller than that of its reduce tasks. We
admit that this is a key assumption for our bounding development.
Yet this is true in current situation. Every map task simply scatters
a chuck of data while the reduce tasks need to gather, reorganize
and process data produced by map tasks. To make the situation
worse, the number of reduce task is always configured to be much
less than the number of map tasks. As a result, processing times
of reduce tasks are much longer than that of map tasks. We also
validate this assumption in our experiment.

Let duv be the delay between a map task u ∈ T(M)
j and a reduce

task v ∈ T(R)
j (e.g., introduced by shuffle phase). Let Su be the start

time of task u. Let S be set of Su,∀u ∈ T. Let Cj be completion time
of job j, which is the time when all reduce tasks v ∈ T(R)

j finish.
Let C be set of Cj, ∀j ∈ J. There is a weight wj associated with
job j and our objective is to find a feasible schedule to minimize
total weighted job completion time


j∈J wjCj subject to following

X. Ling et al. / J. Parallel Distrib. Comput. 90–91 (2016) 52–66 55
Table 1
Summary of key notations.

Notation Definition Notation Definition

J Set of all jobs Su Start time of task u
T Set of all tasks in J pu Processing time of task u
|T| Task number in T duv Delay between task u and

task v

M Set of machines S Set of start times of tasks
|M| Machine number in M Mu Middle finish time of task u
Cj Completion time of

job j
G Precedence graph of all

tasks
C Set of job completion

time
B Any subset of all tasks set T

wj Weight of job j Ĉu Completion time of task u
rj Release time of job j Ĉ Set of task completion time
T(M)
j Map task set of job j ŵu Weight of task u

T(R)
j Reduce task set of job j r̂u Release time of task u

constraints for every job j. We can write the linear programmodel
as follows (see Table 1):

min

j∈J

wjCj

s.t.

Su ≥ rj ∀u ∈ T(M)
j (1)

Sv ≥ Su + duv + pu ∀u ∈ T(M)
j , v ∈ T(R)

j (2)

Cj ≥ Sv + pv ∀v ∈ T(R)
j . (3)

3.2. Problem complexity

Theorem 1. MSJO is NP-complete.

Proof. It is easy to verify that calculating total weighted job
completion time of a schedule result is NP. Therefore, MSJO is in
NP class. To show MSJO is NP-complete, we reduce a job schedule
problem (problem SS13 in [15]) to it. Problem SS13 is proven
NP-complete to determine a feasible schedule for minimizing the
total weighted job completion time. Given every instance (J, M)
of problem SS13, where J is a set of jobs and M is a set of identical
machines. We can construct an instance (JM , MM) of MSJO. M and
MM are same. For every job j ∈ J, there is a job jM ∈ JM . j and jM
have same job weight. jM has one map task with processing time
0 and one reduce task with processing time of job j. Release time
of jM is 0. Thus, if MSJO can be solved optimally with a polynomial
algorithm, problem SS13 can be solved by this algorithm. Because
problem SS13 is NP-complete, MSJO is NP-complete. �

4. Algorithm development and theoretical analysis

We outline our approach described in next three subsections:
(1) We introduce a linear programming relaxation to give a lower
bound of the optimal solution for MSJO. This LP-based solution
may not be a feasible solution. (2) Although there is a polynomial
time algorithm for solving this LP relaxed problem in theory, the
high complexity associated makes it impractical to solve the LP-
relaxed problem when problem size is large. Therefore, inspired
by this classic linear programming relaxation, we develop a
novel constraint generation algorithm to produce another relaxed
solution which provides lower bound to MSJO. (3) We develop
algorithm MarS to generate a feasible solution from this relaxed
solution. We prove that this solution is within 3 factors of the
optimal solution for MSJO.
4.1. Classical linear programming relaxation

Since MSJO is NP-complete, we adopt a linear programming
relaxation of the problem to give a lower bound on the optimal
solution value. Constraints of this LP relaxation are necessary
conditions that task start times in a feasible schedule result have
to satisfy. The relaxation constraints are shown as follows:


u∈B

puSu ≥
1

2|M|


u∈B

pu

2

−
1
2


u∈B

p2u ∀B ⊆ T (4)

where |M| is number of machines in M, B is any subset of T.
Then our linear programming relaxation problem isminimizing
j∈J wjCj subjected to constraints in Eqs. (1)–(4). We call this

problem Classical LP Relaxation Problem (CLS-LPP). Note that the
decision variables in this CLS-LPP are Su and Cj; so a solution can be
presented as (S, C).

Constraints in Eq. (4) describe a polyhedron where task
start times of a feasible schedule lie in. We give a simple
example to explain the intuition. Consider 3 machines with
6 tasks t1, t2, . . . , t6 whose processing times are p1, p2, . . . , p6
respectively. Consider an assignment result where t1 and t2 are
assigned to machine 1, t3 and t4 to machine 2, t5 and t6 to machine
3. Start times of t1 and t2 can be S1 = 0 and S2 = p1. Or S1 = p2
and S2 = 0 if t2 is scheduled first. Then, we have p1S1 + p2S2 =
p1p2 = 1

2 ((p1 + p2)2 − (p21 + p22)). Tasks on other machines
have similar equations. Adding these equations together, we have6

i=1 piSi =
1
2 (p1+p2)2+ 1

2 (p3+p4)2+ 1
2 (p5+p6)2− 1

2

6
i=1 p

2
i ≥

1
2×

1
3 (
6

i=1 pi)
2
−

1
2

6
i=1 p

2
i where equality holds when p1+p2 =

p3 + p4 = p5 + p6 = 1
3

6
i=1 pi. Note that this argument can

be extended to any feasible task schedule results. When additional
constraints are added, the sum of task start times will increase. As
a result, the left part of Eq. (4) increases and the relation still holds.

4.2. Conditional LP relaxation and constraint generation algorithm

Note that there are an exponential number of constraints in
Eq. (4) due to the exponential number of B. To the best of our
knowledge, algorithms for solving LP problems need to handle
all constraints. Their computing complexities are at least O(n)
where n is the number of constraints in the problem because
algorithms need to check whether all constraints are satisfied. In
our LP-relaxed problem, the exponential number of constraints
makes the computing complexity unacceptable. We derive a new
LP-relaxation problem which has a small subset of constraints
in Eq. (4). The optimal result of this new LP-relaxation problem
also leads to the 3-approximation algorithm to be developed in
Section 4.3. Because this new problem is built by iteratively adding
constraints based on checking certain property of its solution, we
call it Conditional LP-relaxation problem (CND-LPP).

Before developing our algorithm for building CND-LPP, we
introduce a property of the solutions that satisfy Eq. (4). Given start
time Su of task u, let Mu = Su + 1

2pu be middle finish time of task u.
The property is described as follows:

Property 1. Given S satisfying Eq. (4), we sort tasks in non-
descending order of their middle finish times. We use a permutation π
to represent the sorting result, whereMπ(1) ≤ Mπ(2) ≤ · · · ≤ Mπ(|T|).
We have following inequation for all i ∈ [2 . . . |T|]:

1
|M|

i−1
k=1

pπ(k) ≤ 2Mπ(i). (5)

56 X. Ling et al. / J. Parallel Distrib. Comput. 90–91 (2016) 52–66
Fig. 3. Illustration of optimal solutions of CLS-LPP and CND-LPP. Fine black lines
represent constraints in Eq. (4). Thick black lines represent constraints in Eqs. (1)–
(3). Blue lines represent boundary of P L . Red lines represent boundary of P PC . (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Proof. For a given permutation π and task π(i), we create a task
set B = {π(1), π(2), . . . , π(i− 1)}. We rewrite Eq. (4) as:

i−1
k=1

pπ(k)


Mπ(k) −

pπ(k)

2



≥
1

2|M|


i−1
k=1

pπ(k)

2

−
1
2

i−1
k=1

p2π(k). (6)

Then we have

i−1
k=1

pπ(k)Mπ(k) ≥
1

2|M|


i−1
k=1

pπ(k)

2

.

BecauseMπ(1) ≤ Mπ(2) ≤ · · · ≤ Mπ(i), we have:

Mπ(i)

i−1
k=1

pπ(k) ≥

i−1
k=1

pπ(k)Mπ(k) ≥
1

2|M|


i−1
k=1

pπ(k)

2

.

Finally, we have Eq. (5) by eliminating
i−1

k=1 pπ(k). �

Given a solution of CLS-LPP, if we schedule tasks in non-
descending order of their middle finish time, Property 1 gives us
a basic relation between the total processing time of previous
scheduled tasks and the middle finish time of the unscheduled
tasks. We will use this property to prove the theoretical bound
of our algorithm MarS. Note that this property holds for any
solution satisfying constraints in Eq. (4). If we can build a CND-LPP
whose optimal solution also has this property, MarS has the same
theoretical bound based on this CND-LPP.

Recall that the intuition behind Eq. (4) is to describe a
polyhedron where the task start times of a feasible schedule lie
in. We denote this polyhedron as P L. Given a specific CLS-LPP, its
constraints define a polyhedron, denoted as P CLS . All precedence
constraints in Eqs. (1)–(3) define another polyhedron, denoted as
P PC . We know that P CLS

= P L
∩ P PC (see Fig. 3). Objective

function of the problem defines a hyperplane. Solving CLS-LPP is
searching for a point in P CLS which has the smallest distance to
this hyperplane. Instead of finding the optimal point inP CLS (point
A in Fig. 3), we search a solution inP PC (point B in Fig. 3) which has
Property 1. We start with an initial CND-LPP which only contains
all precedence constraints in Eqs. (1)–(3). By iteratively adding fine
chosen constraints in Eq. (4), we approach the desirable solution.

To check whether an optimal solution satisfies Property 1, we
can check whether constraints in Eq. (6) are satisfied by this
optimal solution for every task π(i). We formally define these
constraints as follows:
Definition. Performance Guarantee Constraint for given π and
index i, denoted as PGC(π, i), is defined as follows:

i−1
k=1

pπ(k)Sπ(k) ≥ R(π, i)

where R(π, i) = 1
2|M|

i−1
k=1 pπ(k)

2
−

1
2

i−1
k=1 p

2
π(k).

We call them performance guarantee constraints because if an
optimal LP satisfies PGC(π, i) for∀i ∈ [2 . . . |T|], MarS can produce
a feasible solution with guaranteed performance.

We first describe the main process of our constraint generation
algorithm (COGE) (see Algorithm 1). First we build an initial CND-
LPP. In this initial CND-LPP, all precedence constraints in Eqs. (1)–
(3) are included. Its objective function is same asMSJO. Then, there
are 3 main steps. In step 1, we solve CND-LPP and get an optimal
solution (SLP , CLP) for current CND-LPP. In step 2, we use SLP to
produce π and build PGCs based on π . In step 3, we check whether
SLP satisfies PGC(π, i) for ∀i ∈ [1 . . . |T|]. If SLP satisfies all PGCs,
we are done. Otherwise, we add the violated PGCs to CND-LPP and
repeat steps 1–3 until we produce an optimal solution that satisfies
all PGCs.

Because finding an optimal solution satisfying all PGCs may
still involve large computation complexity in large problems, given
a threshold ϵ we can terminate computation if current solution
(SLP , CLP) is within (1− ϵ) of optimal solution satisfying all PGCs.
Unfortunately, optimal solution is hard to compute. Instead, we
construct a feasible solution (SNV , CNV) which satisfies all PGCs
(NV means no-violation). When PGC(π, i) is not satisfied, we cal-
culate an offset which indicates how much Sπ(i) should increase
to satisfy PGC(π, i). Function ViolationOffset(PGC(π, i), SLP) calcu-
lates this offset as follows:

offset =
1

pπ(i−1)


R(π, i)−

i−1
k=1

pπ(k)SLPπ(k)


.

Thus, we can build a feasible solution by adding this offset to SNVπ(k)
for k ∈ [i− 1 . . . |T|]. Finally, after all PGCs are checked, we check
whether (SLP , CLP) reaches the stop threshold. COGE is a heuristic-
based solution for the LP-relaxed problem. In practice, COGE can
produce satisfactory result in less than 10 iterations.

Algorithm 1 COGE()
Input: 1) Job set J; 2) Machine set M; 3) Stop threshold ϵ

Output: A solution (SLP , CLP).
1: Build initial CND-LPP with Eq. (1)–(3);
2: repeat
3: Solve CND-LPP with a linear programming solver;
4: Let (SLP , CLP) be optimal solution of current CND-LPP;
5: Let violated PGC number vn be 0;
6: (SNV , CNV)← (SLP , CLP);
7: π ← Sort tasks by middle finish time according to SLP ;
8: for all i ∈ [1 . . . |T|] do
9: if PGC(π, i) is satisfied by SLP then
10: continue;
11: Add PGC(π, i) to CND-LPP;
12: vn = vn+ 1;
13: offset = ViolationOffset(PGC(π, i), SLP)

14: for all k ∈ [i− 1 . . . T] do
15: SNVπ(k) = SNVπ(k) + offset;

16: Update CNV according to SNV ;
17: if


j∈J wjC LP

j ≥ (1− ϵ)


j∈J wjCNV
j then

18: return (SLP , CLP);
19: until vn is 0
20: return (SLP , CLP);

X. Ling et al. / J. Parallel Distrib. Comput. 90–91 (2016) 52–66 57
4.3. MarS algorithm

In this section, we describe MarS. MarS is a heuristic algorithm
which derives feasible schedule result from the optimal solution
of the linear relaxation problem. Let (SLP , CLP) denote the optimal
result of our LP relaxation problem. Let MLP

u denote the middle
finish time of task u in the LP optimal result. We have MLP

u =

SLPu +pu/2, ∀u ∈ T. Let SH be set of task start times in final schedule
result.

Our algorithmMarS is shown inAlgorithm2.We first produceπ
based on SLP . Thenwe schedule tasks fromπ(1) toπ(|T|), meaning
we schedule tasks in non-descending order of their middle finish
time. In each iteration i, we first check the earliest possible start
time Searliest of task π(i) to make sure that precedence constraints
are satisfied. Then we choose a machinem∗ which has the earliest
idle time among all machines. We schedule π(i) to machine m∗
with start time max{Searliest , em∗} and update em∗ as finish time of
π(i).

Because MarS schedules tasks in non-descending order of their
middle finish times, Property 1 gives us a basic relation between
the total processing time of previous scheduled tasks and middle
finish time of unscheduled tasks. When release time constraints
and precedence constraints exist, there may be idle time intervals
between tasks. Thus, we introduce Lemma 2 to give an upper
bound to the total length of these intervals.

Lemma 2. Given schedule result after tasks π(k), k ∈ [1 . . . (i− 1)],
are scheduled by MarS, if we choose any machine m and start π(i)
as soon as possible after machine m is idle, it results in a start time
SHπ(i) for π(i). Let g(m, π(i)) be total length of idle time interval on
machine m before SHπ(i). We have:

g(m, π(i)) ≤ MLP
π(i). (7)

Proof. We outline our idea first. In our schedule result, there is an
idle time interval before a task because this task cannot start earlier
due to certain precedence constraints. These constraints are tight
in our schedule result but may not be tight in LP optimal result.
For example, there is an idle time interval between tasks u2 and v3
in Fig. 4 because SHu2 = SHu1 + du1u2 + pu1 . Otherwise, task u2 can
start earlier. However, we only know SLPu2 ≥ SLPu1 + du1u2 + pu1 . Our
idea is to prove SHu2 − (SHv3 + pv3) ≤ MLP

u2 −MLP
v3

by analyzing these
tight precedence constraints in our schedule result. The left part of
this inequation is maximum length of idle time interval between
v3 and u2. We iteratively develop similar inequations for idle time
intervals before task v3. Sum up both sides of these inequations,
we have Eq. (7).

Next, we start our formal proof. For a scheduling problem, we
can build a precedence graph G = (V , L) to describe all precedence
constraints with delay. V is the set of tasks. For two tasks u and v,
directed link (u, v) ∈ L with length duv indicates that execution
of v at least waits for a time interval duv after u finishes. For our
problem, we introduce a dummy initial task t I to represent the
start point of the schedule. Then, constraints Su ≥ rj, ∀u ∈ T(M)

j
in Eq. (1) can be expressed in the form of precedence constraint
with delay: Su ≥ St I + dt Iu + pt I , ∀u ∈ T(M)

j where St I =
0, dt Iu = rj, pt I = 0. In remaining part of this proof, we only
mention precedence constraint with delay.

Given a schedule result, delay between u and v may be longer
than duv . We say a link (u, v) ∈ L is tight in this schedule result if
SHv = SHu + duv + pu. In a schedule result, there may be a tight-link
path {u1 → u2 → · · · → us} where link (uk, uk+1) ∈ L is tight
for all k ∈ [1 . . . s − 1], s ≥ 2. Fig. 4 demonstrates a three-node
tight-link path in a schedule result. If us = u, we call {u1 → u2 →

· · · → us} a tight-link path of task u. Among all tight-link paths of
Fig. 4. Demo of tight-link path v1 → v2 → v3 and u1 → u2 in a schedule result
for proof of Lemma 2.

task u, there is a tight-link path which has the maximal number
of nodes. We call it the longest tight-link path of task u, denoted as
LTLP(u). In our problem, for a map task u ∈ T (M)

j , LTLP(u) can be
empty or LTLP1 = {t I → u}. For a reduce task v ∈ T (R)

j , LTLP(v) can
be LTLP2 = {t I → u→ v} or LTLP3 = {u→ v}where u ∈ T (M)

j .
For a tight link (u, v), the following inequation holds for

the optimal result of LP relaxation problem because precedence
constraints are satisfied:

SLPv ≥ SLPu + duv + pu.

Then we have:

MLP
v ≥ MLP

u + duv + pu +
1
2

(pv − pu) .

For a tight-link path {u1 → u2 → · · · → us}, we have:

MLP
us ≥ MLP

u1 +

s−1
k=1

(dukuk+1 + puk)+
1
2


pus − pu1


.

For LTLP1, LTLP2 and LTLP3, we always have pus ≥ pu1 because
in a specific job, processing times of its reduce tasks are longer than
that of its map tasks. Then we have:

MLP
us ≥ MLP

u1 +

s−1
k=1

(dukuk+1 + puk). (8)

Because all links in a tight link path are tight, we also have:

SHus − SHu1 =
s−1
k=1

(dukuk+1 + puk). (9)

Based on Eqs. (8) and (9), we analyze lengths of idle time
intervals on machine m. After scheduling π(i) to machine h, there
are idle time intervals before SHπ(i). Considering a task û right after
a idle time interval, we find LTLP(û) = {u1 → u2 → · · · → us}.
Because u1 is the first task in LTLP(us), there must be a task v̂
scheduled on machine m where Sv̂ ≤ Su1 ≤ (Sv̂ + pv̂) (see task
v3 in Fig. 4) and MLP

v̂
≤ MLP

u1 . Otherwise, u1 can start earlier. With
Eqs. (8) and (9), we have:

Sus − (Sv̂ + pv̂) ≤ MLP
us −MLP

v̂ .

The left side of this inequation is the maximum length of idle time
interval between û and v̂. We repeat developing this inequation for
idle time interval before v̂. Finally, we end upwith t I whosemiddle
finish time is 0. By adding all these inequations together, we have
Eq. (7). �

Lemma 2 gives an upper bound for total idle time intervals in
the scheduling of task π(i). Note that, this result only holds when
tasks from π(1) to π(i−1) are scheduled according to MarS. Next,
we introduce Theorem 3.

58 X. Ling et al. / J. Parallel Distrib. Comput. 90–91 (2016) 52–66
Algorithm 2 MarS()
Input: 1) Job set J; 2) Machine set M; 3) LP optimal result SLP

Output: Scheduling result SH .
1: SH

← ∅;
2: π ← Sort tasks by middle finish time according to SLP ;
3: Let em be earliest idle time of machinesm;
4: em ← 0, ∀m ∈ M;
5: for all i ∈ [1 . . . |T|] do
6: Find job jwhere π(i) ∈ T(M)

j or π(i) ∈ T(R)
j ;

7: if π(i) ∈ T(M)
j then

8: Searlist = rj;
9: if π(i) ∈ TR

j then
10: Searlist = maxu∈T(M)

j ,SHu ∈SH {S
H
u + pu + duπ(i)};

11: Findm∗ where em∗ = minm∈M{em};
12: SHπ(i) = max{Searlist , em∗ };
13: em∗ = SHπ(i) + pπ(i);
14: SH

← SH  SHπ(i);

15: return SH ;

Theorem 3. MarS is a 3-approximation algorithm for MSJO.

Proof. Consider π(i) is scheduled to machinem. Let U(m, π(i)) be
set of tasks scheduled to machine m before π(i). Combine Eqs. (5)
and (7), we have:

1
|M|

i−1
k=1

pπ(k) + g(m, π(i)) ≤ 3MLP
π(i).

In our algorithm, we choose machine to start task π(i) as early
as possible, so we have:

SHπ(i) ≤


u∈U(m,π(i))

pu + g(m, π(i)), ∀m ∈ M.

There must exist a machine m̂ where


u∈U(m̂,π(i)) pu ≤
1
|M|i−1

k=1 pπ(k). Then, SHπ(i) ≤ 3MLP
π(i) and we have:

SHπ(i) + pπ(i) ≤ 3MLP
π(i) +

3
2
pπ(i) = 3(SLPπ(i) + pπ(i)). (10)

Eq. (10) holds for all task π(i), i ∈ [1 . . . |T|], then CH
j ≤ 3C LP

j , ∀j ∈
J . Finally, we have:
j∈J

wjCH
j ≤ 3


j∈J

wjC LP
j .

Because


j∈J wjC LP
j is a lower bound of the optimal, MarS is a 3-

approximation algorithm for MSJO. �

4.4. Extension: a fine-grained MapReduce task scheduling
algorithm(T-MarS)

In this section, we propose a fine-grained task-levelMapReduce
scheduler, that means our optimization objective is to minimize

u∈T ŵuĈu (ŵu denotes the weight of task u and Ĉu denotes the
completion time of task u, note that Ĉu = Su + pu). Generally,
instead of considering the coarse-grained submission time of a job,
we assume every task has a release time and let r̂u denote the
release time of task u, which indicates the earliest time that the
task can be scheduled. We can rewrite the LP model as follows:

min

u∈T

ŵuĈu

s.t.

Ĉu ≥ r̂u + pu ∀u ∈ T (11)

Ĉv ≥ Ĉu + pu ∀(u, v) ∈ L. (12)
Apparently, according to the previous proof in Section 3.2, we
can use the similar method to prove that it is also a NP-complete
problem. For minimizing total weighted job completion time
with precedence constraints, the best known work is an 8-
approximation algorithm in [8] without considering the impact
of processors/machines assignment. Here, we develop a fast 7-
approximation heuristic algorithm T-MarS.

Before developing our heuristic algorithm, we first adopt a
linear programming relaxation of the NP-hard problem to give a
lower bound on the optimal solution value, which are necessary
conditions that task completion times in a feasible schedule result
have to satisfy. The relaxation constraints are shown as follows:


u∈B

puĈu ≥
1

2|M|


u∈B

p2u +


u∈B

pu

2
 ∀B ⊆ T (13)

where |M| is number of machines in M, B is any subset of T.

Proof. To prove Eq. (13) we give a brief explanation. Consider a
subset I ⊆ T, we sort tasks in non-descending order of their com-
pletion times. Let I = {1, 2, . . . , u}, then task u is the last task to be
finished. Assume the performances of all the processors/machines
are identical, if task u is scheduled on machinem∗ (m∗ ∈ M), then
m∗ is the most heavily loadedmachine. So the load onmachinem∗

is at least (


i∈I pi)/|M|, and Ĉu ≥ (


i∈I pi)/|M|, we have:


u∈T

puĈu ≥
1
|M|


u∈T


pu

i∈I

pi


.

Because 1
|M|


u∈T(pu


i∈I pi) =

1
|M|


u∈T


i∈I pipu =

1
2|M|

(


u∈T p2u + (


u∈T pu)2), then we have:


u∈T

puĈu ≥
1

2|M|


u∈T

p2u +


u∈T

pu

2
 .

Therefore, when B = T Eq. (13) has been proved correct. Note that
this argument can be extended to the general case, so when B is
any subset of T, the formula is always workable. �

Next, we introduce a property of the solutions that satisfy Eq.
(13). The property is described as follows:

Property 2. Given Ĉ1, Ĉ2, . . . , Ĉ|T| satisfying Eq. (13), we sort tasks
in non-descending order of their completion times, without loss of
generality, assume Ĉ1 ≤ Ĉ2 ≤ · · · ≤ Ĉ|T|. Let B = {1, 2, . . . , i}
and j ∈ B, then we have:

Ĉi ≥
1

2|M|


j∈B

pj. (14)

Proof. Because Ĉ1, Ĉ2, . . . , Ĉ|T| satisfy Eq. (13), we have:


j∈B

pjĈj ≥
1

2|M|


j∈B

p2j +


j∈B

pj

2
 ≥ 1

2|M|


j∈B

pj

2

.

According to the hypothesis, task j is finished before task i,
obviously, we have Ĉj ≤ Ĉi, then

Ĉi


j∈B

pj ≥

j∈B

pjĈj ≥
1

2|M|


j∈B

pj

2

.

Consequently, we have Ĉi ≥
1

2|M|


j∈B pj. �

X. Ling et al. / J. Parallel Distrib. Comput. 90–91 (2016) 52–66 59
Let (SLP , ĈLP) denote the optimal result of our LP relaxation
problem. Let ŜH ′ be set of task start times in final schedule
result. Our algorithm T-MarS is shown in Algorithm 3. First, we
produce π̂ based on ĈLP . Second, note that the upper bound on
the length of any feasible scheduling without unforced idle time
is maxu∈T{r̂u} +


u∈T pu, we divide the time line into intervals:

[1, 1], (1, 2], (2, 4], . . . , (2N−2, 2N−1
], where N is the smallest

integer such that 2N−1 is at least maxu∈T{r̂u}+


u∈T pu. Let t0 = 1
and tn = 2n−1, n ∈ [1,N], we use Bn to denote all the tasks which
Ĉ LP

π̂(i) lie in interval (tn−1, tn], that means tn−1 ≤ Ĉ LP
π̂(i) ≤ tn. Third,

we define αn as the average load on a machine for all the tasks in
Bn, we have αn = (


u∈Bn

pu)/|M|. Let t ′n = 1+
n

k=1(tk+αk), for
any Bn, n ∈ [1,N], we schedule the tasks which belong to Bn using
Graham list-scheduling algorithm [16] in the interval (t ′n−1, t

′
n]. The

main idea of Graham algorithm can be stated as follows: All the
tasks (without release times or release time are zero) are ordered in
some list, whenever one machine becomes idle, the next available
task (where a task is available if all its predecessors have been
finished) on the list is allocated to start on themachine. Let Savailablej
denote the start time of next available task j and pre(j) be its
precedence parent node.

Algorithm 3 T-MarS()
Input: 1) Task set T; 2) Machine set M; 3) LP optimal result ĈLP

Output: Scheduling result ŜH ′ .
1: ŜH ′

← ∅;
2: π̂ ← Sort tasks by middle finish time according to ĈLP ;
3: Let em be earliest idle time of machinesm;
4: em ← 0, ∀m ∈ M;
5: N ← ⌈maxu∈T{r̂u} +


u∈T pu⌉;

6: Bn ← 0, tn ← 2n−1 , ∀n ∈ [1, ...,N];
7: for all i ∈ [1 . . . |T|] do
8: n = ⌈log2Ĉ LP

π̂(i)⌉ + 1;
9: Bn = Bn


π̂(i);

10: for all n ∈ [1 . . .N] do
11: if Bn ≠ ∅ then
12: αn = (


u∈Bn

pu)/|M|;
13: t ′n = 1+

n
k=1 (tk + αk);

14: Graham(Bn, t ′n−1, t
′
n, M, ŜH ′);

15: return ŜH ′ ;
16:
17: function Graham(Bn, t ′n−1, t

′
n, M, ŜH ′)

18: for all j ∈ [1 . . . |Bn|] do
19: em∗ = minm∈M{em};
20: Savailablej = maxSpre(j)∈ŜH′ {Spre(j) + ppre(j)};

21: SH
′

j = max{Savailablej , em∗ , t ′n−1};
22: em∗ = SH

′

j + pj;
23: ŜH ′

← ŜH ′  SH
′

j ;

24: return;

Lemma 4. Let B be the tasks subset of T. We use Graham algorithm
to schedule the tasks in B. Let Θ denote the set of tasks that form the
longest chain of precedence-constrained tasks ending with the task
that completes last in the schedule. Let Ĉmax denote themaximum time
length of the resulting scheduling, we have:

Ĉmax ≤
1
|M|


u∈(B−Θ)

pu +

u∈Θ

pu. (15)

Obviously, we can use the pigeonhole principle to prove
Lemma 4. Through the above description and analysis on
Algorithm 3, we note that: (1) regularly dividing the time
line different intervals can guarantee tasks scheduling relative
independence; (2) in each interval scheduling the tasks using
Graham algorithm can guarantee performance (a theoretical tight
upper bound). Next, by applying both Property 2 and Lemma 4 we
derive Theorem 5.
Theorem 5. T-MarS is a 7-approximation algorithm for minimizing
total weighted task completion times.

Proof. We first show that Algorithm 3 can give a feasible
scheduling result. Eq. (12) ensures that the precedence constraints
are enforced, since for each task i ∈ Bn, each of its predecessors is
assigned to Bk for some k ∈ {1, 2, . . . , n}. We also need to show
that the schedule respects the release time constraints. For any
i ∈ Bn and n ∈ {1, 2, . . . ,N}, we have:

r̂i ≤ Ĉ LP
i ≤ tn.

According to the definition of t ′n above, we can write

t ′n−1 = 1+
n−1
k=1

(tk + αk) ≥ 1+
n−1
k=1

tk = tn.

Hence r̂i ≤ t ′n−1, it means that the scheduling rule in each interval
(t ′n−1, t

′
n] reduces to the case without release times. According to

Lemma 4, it implies that the length of the schedule constructed
for Bn can be bounded by the average load on each machine, plus
the maximum length of any precedence chain. The average load in
any interval is exactly αn. Let βi denote the maximum length of a
chain that ends with task i. Obviously, βi is at most Ĉ LP

i , that means
βi ≤ Ĉ LP

i . Therefore,

ĈH ′
i ≤ t ′n−1 + αn + βi = 1+

n−1
k=1

(tk + αk)+ αn + βi.

Because 1+
n−1

k=1(tk+αk)+αn+βi = 1+
n−1

k=1 tk+
n

k=1 αk+βi

and 1+
n−1

k=1 tk = tn, then we have

ĈH ′
i ≤ tn +

n
k=1

αk + βi ≤ tn +
n

k=1

αk + Ĉ LP
i .

According to the definition of αn, we can rewrite
n

k=1 αk as
follows:
n

k=1

αk =

n
k=1


1
|M|


u∈Bk

pu


=

1
|M|


u∈(B1∪B2∪···∪Bn)

pu.

Let Ĉ LP
i(n) denote the largest value whose i(n) ∈ B1 ∪ B2 ∪ · · · ∪ Bn.

Applying Property 2, we have

1
|M|


u∈(B1∪B2∪···∪Bn)

pu ≤ 2Ĉ LP
i(n) ≤ 2tn.

Since tn−1 ≤ Ĉ LP
i and 2tn−1 = tn, then tn ≤ 2Ĉ LP

i . Thus,

ĈH ′
i ≤ tn + 2tn + Ĉ LP

i ≤ 2Ĉ LP
i + 4Ĉ LP

i + Ĉ LP
i = 7Ĉ LP

i .

This result holds for all task i ∈ T, finally, we have
i∈T

ŵiĈH ′
i ≤ 7


i∈T

ŵiĈ LP
i . (16)

Because


i∈T ŵiĈ LP
i is a lower bound of the optimal, T-MarS is

a 7-approximation algorithm for minimizing total weighted task
completion times. �

5. Simulation

5.1. Simulation setup

5.1.1. Background
We use synthetic workloads to study the performance of our

algorithm, following similar simulation setup in [7,8].We generate

60 X. Ling et al. / J. Parallel Distrib. Comput. 90–91 (2016) 52–66
jobs as follows: (1) Job release times are randomly generated
following Bernoulli with probability 1

2 . (2) Number of tasks in
a job are generated (a) uniformly or (b) randomly. For a job
with uniformly generated tasks, the number of map tasks is
set to 30 and the number of reduce tasks is set to 10. For a
job with randomly generated tasks, the number of map tasks
follows Poisson distribution with a mean of 30 and the number
of reduce tasks is uniformly chosen between 1 and the number of
map tasks. (3) Task processing times are generated (a) uniformly
or (b) randomly. For the tasks with uniform processing time,
processing times of map tasks are 10 and processing times of
reduce tasks are 15. For the tasks with random processing time,
processing times of map tasks are normally distributed with a
mean of 10 and a standard deviation of 5. Processing times of
reduce tasks are normally distributed with a mean 15 and a
standard deviation 5. (4) Weights of jobs/tasks are generated
randomly in normal distribution with a mean 30 and standard
deviation 10. (5) Delays between map tasks and reduce tasks are
proportional to the processing time of map tasks. This indicates
that a long map task will generate more data and these data will
need longer time to be transmitted to the reduce tasks. The default
number of machines is set to 50.

5.1.2. Evaluation metric
The key to compare different algorithms is total weighted

job completion time (TWJCT) of the result of the algorithms. To
make comparison under different configurations more illustrative,
we would like to compare TWJCT of different algorithms with
the optimal solution. However, computing the optimal solutions
requires exponential time. Therefore, we use the LP lower bound
as a substitute. We define TWJCT ratio as our evaluation metrics:

TWJCT ratio =
TWJCT of Algorithm X result

LP lower bound
.

TWJCT ratio indicates how close the schedule result is to the
theoretical lower bound. The smaller the TWJCT ratio is, the better
the schedule result is. All results in our simulation are measured
by TWJCT ratio.

Similarly, to compare performance of different algorithms
designed for minimizing total weighted task completion times
(TWTCT), we use TWTCT ratio as our evaluation metric:

TWTCT ratio =
TWTCT of Algorithm X result

LP lower bound
.

5.1.3. Comparisons strategies
We compare performance of our algorithms with the following

scheduling strategies:
MARES: MARES [8] is a LP-based algorithm considering

precedence constraints in MapReduce jobs. In evaluation of [8],
MARES outperforms other algorithms with a factor of 1.5 to the
lower bound. To offer a fair comparison, we adopt a workload-
based assignment strategy where tasks are evenly allocated in
order to balance total processing time of tasks on every processor.
According to [29], when there is not release time and precedence
constraints, LP relaxation constraints in Eq. (4) and constraints
in [8] have same lower bound if workloads on every processor
are same. Moreover, workload-based assignment strategy is also
widely adopted in practice.

High unit weight first (HUWF): Unit weight (UW) of a job is
calculated by dividing weight of the job by total processing time
of tasks in the job. All tasks are sorted in descending order of unit
weights of the jobs they belong to. We also maintain an available
task list where all tasks in the list do not have any unscheduled
precedent task. In each iteration, we choose the task with highest
unit weight and assign it to a machine where it can start as early
Fig. 5. Stop threshold vs. TWJCT ratio.

Fig. 6. Stop threshold vs. iteration number.

as possible. Then we check whether there is any unscheduled task
whose precedent tasks are all scheduled and put these tasks into
available task list. We iterate until all tasks are scheduled.

High job weight first (HJWF): This algorithm works similar to
HUWF. The difference is that tasks are sorted according to weight
of the jobs they belong to.

In the fine-grained task-level scenario, we add the following
three scheduling strategies to compare their performance with T-
MarS:

H-MARES: A simple heuristic implementation of MARES which
we call H-MARES schedules tasks in the order of LP completion
time without waiting for it to become available. The only reason
for a task to wait is if some of its predecessors have not been
completed. In H-MARES, it is assumed that tasks are assigned to
machines in advance.WeuseH-MARES to evaluate effect of release
time and precedence constraints.

Shortest task first (STF): When a machine is idle, we consider
the available tasks set where all tasks have arrived and their
predecessors have been finished, then we assign the task whose
processing time is the shortest to the idle machine first. This
strategy appears to be a reasonable greedy algorithm minimizing
the completion time, so we take it into account.

High task weight first (HTWF): Similar to HJWF algorithm, the
difference is that tasks are sorted according to their own weights.

In MarS, we need to choose a stop threshold ϵ for COGE. We
run MarS with 100 jobs and change value of stop thresholds (see
Figs. 5 and 6). We see that when ϵ changes from 0.1 to 0.5, there is
a small performance degradation for MarS while iteration number
decreases rapidly. Thus, we choose ϵ = 0.3. MARES also needs a
stop threshold in solving its LP-relaxation problem. To offer a fair
comparison, we choose ϵ = 0.3 for MARES instead of 0.5 in the
original paper [8].

In our simulation, we assume that the task processing time and
delays between a map task and a reduce task are known to the

X. Ling et al. / J. Parallel Distrib. Comput. 90–91 (2016) 52–66 61
Fig. 7. Randomized scenario.

scheduler. There are many studies on accurate processing time
prediction [32,36] and trace study [6] shows that the majority of
map tasks and reduce tasks are highly recurrentmaking prediction
feasible. We plan a future work here.

5.2. Simulation result

We first discuss the most randomized scenario where all pa-
rameters are generated in randomly. Based on this scenario, we
evaluate impacts of different job parameters when our optimiza-
tion objective is to minimize total weighted job completion times.

Performances in the most randomized scenario. Fig. 7
shows results where all job parameters are in random category.
We see MarS constantly offers efficient solutions when job
number changes. In theory, we proved that MarS represents a
3-approximation of the theoretical lower bound, meaning that
TWJCT ratios of MarS are at most 3. In practice, MarS represents
an increase less than 0.4 in terms of TWJCT ratio, compared with
theoretical lower bound. More specifically, starting at 1.32, MarS
increases to 1.39 when job number is 20 and stays at about 1.38
with a variance less than 0.02 when job number further grows.
This is because LP relaxation always produces an optimized task
schedule order.MARES shows stable performance after jobnumber
reaches 20. However, we see a constant performance difference
betweenMARES andMarS.We consider it as improvement by joint
scheduling.

We see that MarS outperforms other algorithms by over 40%
in most cases. The only exception happens when job number is 10
whereMarS is 1.32whileMARES is 1.58, HUWF is 1.77 and HJWF is
1.86. After job number rises to 20, MARES increases to 1.96, HUWF
and HJWF jump to 2.17 and 2.25 respectively. This is because
when there are less jobs, machines are not extensive loaded.
Thus, different schedule algorithms can gain close performances.
However, when job number increases and machines are fully
utilized, algorithm results differ from each other. We also notice
that MARES outperforms HUWF and HJWF in all cases. This is
because workload-based allocation performs well and MARES
benefits from optimized task order generated by LP relaxation
conditions.

Impact of task number in job. Next, we examine the effect of
task number in a job. We generate jobs with uniform task number
category while other job parameters are in random category. The
results are shown in Fig. 8. Compared with results in Fig. 7, we
see that all algorithms gain better performance. MarS stays at
about 1.15 which is 0.17 lower in terms of TWJCT ratio. MARES
gradually increases from 1.48 to 1.88. HUWF and HJWF still have
larger performance variance but TWJCT ratio of both algorithms
decreases by 0.2 on average. It is also shown that there is only a
tiny performance difference between HUWF and HJWF.
Fig. 8. Uniform task number.

Fig. 9. Uniform task processing time.

Fig. 10. Impact of machine number.

Impact of task processing time. We generate jobs with
uniform task processing time category while other job parameters
are in random category. MarS is very close to the theoretical lower
bound. Its maximum distance to the lower bound is 0.08 when job
number is 10. When job number rises, this distance decreases to
less than 0.02. The gap between MarS and MARES is reduced to
0.35 on average.

It is worth noticing that comparing results in Figs. 8 and 9,
all algorithms gain better performance in uniform task processing
time category. This result indicates that it is more effective to
have uniform task processing time than to have same task number
in all jobs. It also shows the importance of solving skewed task
processing time problem in a parallel computing framework.

Impact of machine number. We change machine number to
100 and examine all algorithms in most randomized scenario (see
Fig. 10). We see that MarS performs extremely well. Starting at
1.09 when job number is 10, its TWJCT ratio gradually declines

62 X. Ling et al. / J. Parallel Distrib. Comput. 90–91 (2016) 52–66
Fig. 11. Increasing UW category.

Fig. 12. Decreasing UW category.

to 1.01 which can be considered as optimal. Other algorithms
also gain better performance than same scenario when machine
number is 50 (see Fig. 7). Different fromMarS, TWJCT ratios of other
algorithms increase with job number. When job number reaches
100, MarS outperform MARES, HUWF and HJWF by 0.42, 0.75 and
0.79 respectively.

Impact of job weight. We investigate impact of job weight by
generating jobs with different unit weight distribution. We first
generate jobs with increasing UW category (see Fig. 11). We see
that MarS and MARES do not have obvious change while both
HUWF and HJWF show a 10% performance degradation. This is
because in increasing UWcategory, later-released jobs have higher
unitweight than jobs released earlier. Intuitively, tasks in later jobs
should preempt the processing of tasks in earlier jobs. In order to
gain better TWJCT ratio, sequence of tasks must be planned more
carefully. Otherwise, a performance degradation is introduced.

Next, we generate jobs with decreasing UW category (see
Fig. 12). Performances of MarS and MARES are similar in Figs. 7
and 12. However, HUWF and HJWF show opposite trends.
HUWF outperforms MARES while HJWF suffers a performance
degradation. Because schedule order of tasks in HUWF is same to
release time order of their jobs, HUWF does not need to schedule
tasks in later-released jobs to preempt tasks in earlier-released
jobs while HJWF needs to take care of this because later-released
jobmayhavehigherweight due to total processing timeof its tasks.

Impact of prediction error. In order to investigate impact of
prediction error, we inject errors to precessing times of tasks. All
algorithms schedule jobswith error-injected informationwhilewe
calculate a LP-lower bound based on no-error information. The
result is shown in Fig. 14. x-axis ismaximumprediction error to no-
error precessing time.We see that all algorithmsdonot showgrade
performance degradation. TWJCT ratios of four algorithms increase
slightly. However themaximumperformance degradation is a 0.09
performance degradation in terms of TWJCT ratio whenmaximum
prediction error is 100%.

Next, in the fine-grained task-level MapReduce scheduling
scenario, which means the optimization objective is to minimize
total weighted task completion times, we further compare our T-
MarS scheduler with other algorithms.

Varying total task number. To evaluate the impact of total task
number on performance change under different algorithms, we
vary the total task number from 100 to 1000 andwe generate tasks
randomly each time. The results are shown in Fig. 15. We note that
when total task number is 100, TWTCT ratios of T-MarS, H-MARES,
STF and HTWF are 1.03, 1.19, 1.31 and 1.42 respectively, T-MarS is
0.16 less than H-MARES in terms of TWTCT ratio. However, with
the growth of total task number, T-MarS is at most 1.21, while H-
MARES increases to 1.6 when task number is 1000, STF and HTWF
are both more than 2.2. We observe that T-MarS is closer to the
theoretical lower bound than other algorithms practically, because
it has strict performance guarantee constraints.

Relative waiting time. We define the waiting time of a task
to be the time interval between the submission and completion
time. And the relative waiting time is the ratio of the task waiting
time to the longest waiting time. As shown in Fig. 16, particularly,
we note that T-MarS finishes 71% of all tasks at median relative
waiting time, whereas H-MARES, STF and HTWF only finish 62%,
58% and 51% respectively. The results also explain the reason that
T-MarS outperforms other classical algorithms from a different
perspective.

5.3. Discussion: semi-online MarS algorithm

In our above assumptions, the release time (arrival time) of all
the jobs is known in advance. This is clearly not true in practice
where the jobs arrive one at a time, and the arrival times cannot
be known in advance in the running MapReduce platforms. In the
single processor case there are some competitive algorithms for
scheduling jobs online. These algorithms use the fact that schedul-
ing the job with the highest proportion of weight to processing
time canminimize theweighted completion timewhen all jobs are
available at time zero. This is not true for our problem. However,
to make our algorithm into an online version, we can use the ap-
proach as following: During a batch interval time, when a new job
arrives into the system, we take all the jobs currently in the system
along with the new job, when the batch interval is finished, we get
all the arrival jobs’ information and runMarS scheduler to give a so-
lution. In the next batch interval, the schedule can be implemented
in the same manner. We refer to this approach as Semi-Online
MarS Algorithm (SO-MarS). Sincewe have designed a fast heuristic
algorithm and run the LP model periodically, as long as we set an
appropriate batch interval, the overhead is not big. To demonstrate
this approach works extremely well and is very robust to varying
job characteristics, we compare our algorithm with other strate-
gies using the same simulation setup in Section 5.1. Besides, the
batch interval time is set from 10 to 100 s. As shown in Fig. 17, we
can see that when the batch interval is 50 s, the average TWJCT ra-
tios of SO-MarS, MARES, HUWF and HJWF are 1.09, 1.35, 1.63, 1.75
respectively. But when the batch interval increases to 100 s, the
average TWJCT ratio of SO-MarS is still less than 1.19, while that
of other strategies is over 1.53. According to the results, we con-
clude that our Semi-OnlineMarS algorithm still outperforms other
classical algorithms.

6. Implementation and results of experiment

6.1. Implementation

We implement a MSJO framework in Hadoop-1.2.0 and run the
implementation on Amazon EC2. The implementation framework

X. Ling et al. / J. Parallel Distrib. Comput. 90–91 (2016) 52–66 63
Fig. 13. Processing of a job in MarS implement with Hadoop.

is described in Fig. 13. To run in Hadoop, MSJO needs to cooperate
with two components of Hadoop: JobTracker and TaskTracker.
JobTracker manages all jobs in a Hadoop cluster and, as jobs are
split into tasks, TaskTracker is used to manage tasks on every
machine.

We register MSJO to JobTracker so that JobTracker can call
MSJO to make schedule decisions. MSJO makes schedule decisions
according to different algorithm modules. Currently, we imple-
mented four job-level algorithm modules including MarS, MARES,
HUWF, HJWF, and four task-level algorithm modules including T-
MarS, H-MARES, STF, HTWF in our experiments. Of course, other
algorithm modules can be added in our implementation. When
a job is submitted to Hadoop, JobTracker notifies MSJO that a
job is added. MSJO puts the job into a queue. MSJO scheduler is
event driven from JobTracker.WhenHadoop is running, JobTracker
keeps notifying MSJO on TaskTracker status. If a machine is idle,
MSJO assigns a task to the TaskTracker of this machine. After a task
is finished, the TaskTracker will tell JobTracker, which will further
notify MSJO and MSJO updates job information. Accordingly, if all
tasks in a job finish, MSJO removes the job and JobTracker sends a
job-completion event to user application.

Here we also have a Processing Time Predictor module. This
module can be based on a prediction algorithmor history recording
of the completion time of past jobs. We leave such a prediction
module to our future work. In this experiment, we run jobs one
by one with default scheduler of Hadoop and collect data to train
our predictor.

In current implementation, all algorithms are offline algo-
rithms. They need full information about the job set before
scheduling. To fulfill this requirement, we develop a job set gen-
erator. In each experiment, job set generator submits a set of jobs
to Hadoop at the beginning of the experiment. These jobs carry re-
lease time and weight information with them. After MSJO collects
all information for the job set, MSJO calls an algorithm module to
make a schedule. After that, MSJO schedules jobs accordingly.

6.2. Experiment setup

We evaluate the algorithms with experiments on a 16-node
cluster. This cluster is built on Amazon EC2. We choose virtual
machines of typem1.small which have a 1-ECU cpu (1 ECU roughly
equals to 1.0 GHz), 1.7 GB memory and 160 GB disk. According to
ourmeasurement, the inter-node network bandwidth is 400Mbps.

We employ Wordcount as the MapReduce program in our
experiments. Wordcount aims to count the frequency of words
appearing in a data set. It is a benchmarkMapReduce job and serves
as a basic component ofmany Internet applications (e.g. document
clustering, searching, etc.). In addition, many MapReduce jobs
have aggregation statistics closer to Wordcount [9]. We use a
document package from Wikipedia as input data of jobs. This
package contains all English documents in Wikipedia since 30th
Fig. 14. Impact of prediction error.

Fig. 15. Impact of total task number.

January 2010 with uncompressed size of 43.7 GB. In this package,
there are 27 individual files, of which the sizes range from 149 MB
to 9.98 GB. For every file, we create a MapReduce job to process it.
Thenumber ofmap tasks is determinedby input data size. Onemap
task is created for 64 MB input data. We set the number of reduce
tasks to half of the number of map tasks. The release time and job
weights are generated in the same way as in the simulation.

We build two job sets: (1) Job set 1. It contains 10 jobs where
input data size of every job is less than 1 GB. We use this job set to
evaluate the performance of our algorithms when jobs are small.
(2) Job set 2. This job set contains all 27 jobs.

6.3. Experiment result

Performance of different algorithms. For the job-level
scenario, the result is shown in Fig. 18. In job set 1, we see that
MarS outperforms the other algorithms. MarS increases 0.416 to
the lower bound while MARES, HUWF and HJWF increase 0.539,
0.81 and 0.672 respectively. In job set 2, we see that MarS still
outperforms rest of the algorithms. Compared with results in job
set 1, we see TWJCT ratios of all algorithms increase. The trend is
also reflected in simulation results. We notice that HJWF suffers
more performance degradation than other algorithms. The reason
may be that in job set 2, these jobs process data as large as 9.98 GB.
Most of them are bigger than the jobs in job set 1. HJWF scheduled
big jobs first because their weights are big. However, these jobs
have big weights but their unit weights are small because they
take a long time to process these data. As a result, small jobs with
big unit weights are delayed. By considering the relation between
weight and processing time, MarS, MARES and HUWF do not suffer
from this mixture of different size jobs.

Furthermore, for the task-level scenario, as shown in Fig. 19,
in both job sets 1 and 2, we observe that T-MarS outperforms the

64 X. Ling et al. / J. Parallel Distrib. Comput. 90–91 (2016) 52–66
Fig. 16. Relative waiting time.

Fig. 17. Semi-Online MarS.

Fig. 18. TWJCT ratio in job level.

Fig. 19. TWTCT ratio in task level.

other algorithms. In particular, in job set 1, the difference of TWTCT
ratio between T-MarS and H-MARES is small, and the performance
Fig. 20. Task processing time in experiment.

Fig. 21. Local server cluster experiment.

of STF is close to that of HTWF. In job set 2, we see that T-MarS still
outperforms rest of the algorithms. Compared with results in job
set 1, we see that all algorithms suffer performance degradation.
However, the percentage of increasing TWTCT ratio of T-MarS is
3.9%, which is smaller than that of other algorithms. Moreover,
compared to T-MarS, the difference of performance under job set
2 is larger than that under job set 1 for H-MARES, STF and HTWF.

Processing times of map tasks and reduce tasks. We show
precessing times of map tasks and reduce tasks. Training data and
MarS results are shown in Fig. 20. Both of them have 950 tasks. In
training data, there is a clear processing time difference between
reduce tasks and map tasks. Processing times of map tasks stay
around 80 s while most of reduce task are over 150 s. We also
see that there are gaps between training data and MarS result. The
main reason is that training data is produced by running jobs in
turn and the cluster is not fully utilized. Meanwhile, MarS sched-
ules multiple jobs simultaneously to fully utilize the cluster. Inten-
sive utilization of the cluster introduce cost from competitions on
resources such as disk I/O, network bandwidth, etc.

6.4. Real server cluster experiment

To avoid the probable impact of virtual environment on the re-
sults, except for the above experiments on Amazon EC2, in this
section we try to redo the experiment in a local real server cluster
and perform comprehensive evaluations to demonstrate the supe-
riority and reliability of our algorithm. The implementation is the
same as Section 6.1, we evaluate the algorithms with experiments
on a 12-server cluster. All the servers are connected with a 1 Gbps
switch. Every server has 2 CPU cores, 80 GB RAM and 1 TB disk. We
use the same workload and job sets as Section 6.2 in our experi-
ments. As shown in Fig. 21, we can see that in job set 1, the TWJCT
ratios of MarS, MARES, HUWF and HJWF are 1.36, 1.45, 1.68, 1.59
respectively; In job set 2, we see that MarS still outperforms rest of

X. Ling et al. / J. Parallel Distrib. Comput. 90–91 (2016) 52–66 65
the algorithms. Particularly, compared toMARES, the gain percent-
age of TWJCT ratio of MarS is 6.7%. This experiment indicates that
our MarS scheduler still works extremely well when MapReduce
framework runs on real server cluster.

7. Conclusion

In this paper, we studied MapReduce job scheduling with
consideration of server assignment. We showed that without
such joint consideration, there can be great performance loss.
We formulated a MapReduce server-job organizer problem. This
problem is NP-complete and we developed a 3-approximation
algorithm MarS. Moreover, we further propose a novel fine-
grained practical algorithm for generalMapReduce task scheduling
problem. Finally, we evaluated our algorithm through extensive
simulation. The results show that MarS can outperform state-of-
the-art strategies by as much as 40% in terms of total weighted
job completion time. We also implement a prototype of MarS
in Hadoop and test it with experiment on Amazon EC2. The
experiment results confirm the advantage of our algorithm.

Acknowledgments

This work is supported by the National Basic Research Program
of China under Grant No. 2012CB315806, the National Natural Sci-
ence Foundation of China under Grant Nos. 61432009, 61170211,
61161140454, Specialized Research Fund for the Doctoral Pro-
gram of Higher Education under Grant No. 20130002110058,
and Joint Research Fund of MOE-China Mobile under Grant No.
MCM20123041.

References

[1] Amazon EC2, 2012. http://aws.amazon.com/cn/ec2.
[2] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu, B. Saha, E.

Harris, Reining in the outliers in map-reduce clusters using Mantri, in: Proc.
of USENIX OSDI, 2010.

[3] Apache Hadoop, 2012. http://hadoop.apache.org.
[4] Apache Mesos, 2015. http://mesos.apache.org.
[5] Apache YARN, 2015.

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-
site/YARN.html.

[6] E. Bortnikov, A. Frank, E. Hillel, S. Rao, Predicting execution bottlenecks inmap-
reduce clusters, in: Proc. of USENIX HotCloud, 2012.

[7] H. Chang, M. Kodialam, R.R. Kompella, T.V. Lakshman, M. Lee, S. Mukherjee,
Scheduling in MapReduce-like systems for fast completion time, in: Proc. of
IEEE INFOCOM, 2011.

[8] F. Chen,M. Kodialam, T.V. Lakshman, Joint scheduling of processing and shuffle
phases in MapReduce systems, in: Proc. of IEEE INFOCOM, 2012.

[9] P. Costa, A. Donnelly, A. Rowstron, G. O’Shea, Camdoop: Exploiting in-network
aggregation for big data applications, in: Proc. of USENIX NSDI, 2012.

[10] M.E. Crovella, M. Harchol-Balter, C.D. Murta, Task assignment in a distributed
system: Improving performance by unbalancing load, in: Proc. of ACM
SIGMETRICS, 1998.

[11] J. Dean, S. Ghemawat, MapReduce: Simplified data processing on large
clusters, in: Proc. of USENIX OSDI, 2004.

[12] C. Delimitrou, C. Kozyrakis, Paragon: QoS-aware scheduling for heterogeneous
datacenters, in: Proc. of ACM ASPLOS, 2013.

[13] C. Delimitrou, C. Kozyrakis, Quasar: Resource-efficient and QoS-aware cluster
management, in: Proc. of ACM ASPLOS, 2014.

[14] D. DeWitt, M. Stonebraker, MapReduce: Amajor step backwards, 2008. http://
homes.cs.washington.edu/∼billhowe/mapreduce_a_major_step_backwards.
html.

[15] M.R. Garey, D.S. Johnson, Computers and Intractability; A Guide to the Theory
of NP-Completeness, W. H. Freeman & Co., 1990.

[16] R.L. Graham, Bounds onmultiprocessing timing anomalies, SIAM J. Appl. Math.
17 (2) (1969) 416–429.

[17] M. Harchol-Balter, Task assignment with unknown duration, J. ACM 49 (2)
(2002) 260–288.

[18] C. He, Y. Lu, D. Swanson, Matchmaking: A new MapReduce scheduling
technique, in: Proc. of IEEE CloudCom, 2011.

[19] C. He, Y. Lu, D. Swanson, Real-time scheduling inMapReduce clusters, in: Proc.
of IEEE HPCC and EUC, 2013.

[20] H. Herodotou, F. Dong, S. Babu, No one (cluster) size fits all: Automatic cluster
sizing for data-intensive analytics, in: Proc. of ACM SoCC, 2011.
[21] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, A. Goldberg, Quincy:
Fair scheduling for distributed computing clusters, in: Proc. of ACM SOSP,
2009.

[22] B.W. Lampson, A scheduling philosophy for multiprocessing systems,
Commun. ACM 11 (5) (1968) 347–360.

[23] S. Li, S. Hu, T. Abdelzaher, The packing server for real-time scheduling of
MapReduce workflows, in: Proc. of IEEE RTAS, 2015.

[24] S. Li, S. Hu, S. Wang, L. Su, T. Abdelzaher, I. Gupta, R. Pace, WOHA: Deadline-
awareMap-Reduce workflow scheduling framework over hadoop clusters, in:
Proc. of IEEE ICDCS, 2014.

[25] B. Palanisamy, A. Singh, L. Liu, B. Jain, Purlieus: Locality-aware resource
allocation for mapreduce in a cloud, in: Proc. of ACM SC, 2011.

[26] M. Queyranne, Structure of a simple scheduling polyhedron, Math. Program.
58 (2) (1993) 263–285.

[27] M. Queyranne, A. Schulz, Approximation bounds for a general class of
precedence constrained parallel machine scheduling problems, SIAM J.
Comput. 35 (5) (2006) 1241–1253.

[28] T. Sandholm, K. Lai, Mapreduce optimization using regulated dynamic
prioritization, in: Proc. of ACM SIGMETRICS, 2009.

[29] A.S. Schulz, et al. Polytopes and scheduling, Technical University of Berlin,
1996.

[30] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, J. Wilkes, Omega: Flexible,
scalable schedulers for large compute clusters, in: Proc. of ACM EuroSys, 2013.

[31] J. Tan, S. Meng, X. Meng, L. Zhang, Improving reducetask data locality for
sequential mapreduce jobs, in: Proc. of IEEE INFOCOM, 2013.

[32] A. Verma, L. Cherkasova, R.H. Campbell, ARIA: Automatic resource inference
and allocation for mapreduce environments, in: Proc. of ACM ICAC, 2011.

[33] B. Wang, J. Jiang, G. Yang, ActCap: Accelerating mapreduce on heterogeneous
clusters with capability-aware data placement, in: Proc. of IEEE INFOCOM,
2015.

[34] W. Wang, K. Zhu, L. Ying, J. Tan, L. Zhang, Map task scheduling in mapreduce
with data locality: Throughput and heavy-traffic optimality, in: Proc. of IEEE
INFOCOM, 2013.

[35] D. Xie, N. Ding, Y.C. Hu, R. Kompella, The only constant is change: Incorporating
time-varying network reservations in data centers, in: Proc. of ACMSIGCOMM,
2012.

[36] Y. Yuan, H. Wang, D. Wang, J. Liu, On interference-aware provisioning for
cloud-based big data processing, in: Proc. of IEEE/ACM IWQoS, 2013.

[37] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, I. Stoica, Delay
scheduling: A simple technique for achieving locality and fairness in cluster
scheduling, in: Proc. of ACM EuroSys, 2010.

[38] M. Zaharia, A. Konwinski, A.D. Joseph, R. Katz, I. Stoica, Improving MapReduce
performance in heterogeneous environments, in: Proc. of USENIX OSDI, 2008.

[39] W. Zhang, S. Rajasekaran, T. Wood, M. Zhu, MIMP: Deadline and interference
aware scheduling of hadoop virtual machines, in: Proc. of IEEE/ACM CCGrid,
2014.

[40] J. Zhang, H. Zhou, R. Chen, X. Fan, Z. Guo, H. Lin, J.Y. Li, W. Lin, J. Zhou, L. Zhou,
Optimizing data shuffling in data-parallel computation by understanding
user-defined functions, in: Proc. of USENIX NSDI, 2012.

[41] Y. Zheng, N. Shroff, P. Sinha, A new analytical technique for designing provably
efficient mapreduce schedulers, in: Proc. of IEEE INFOCOM, 2013.

Xiao Ling received the B.Sc. degree fromBeijingUniversity
of Posts and Telecommunications. He is now a Ph.D.
candidate at the Department of Computer Science and
Technology in Tsinghua University. He was a visiting Ph.D.
student at the Hong Kong Polytechnic University between
2014 and 2015. His major research interests include cloud
computing, distributed system and big data processing
applications. He is a student member of IEEE.

Yi Yuan received the B.Sc. degree and the M.Sc. degree
from University of Electronic Science and Technology of
China, Chengdu, China. He received the Ph.D. degree from
The Hong Kong Polytechnic University, Hong Kong. He is
currently a technical engineer in Cloud Computing De-
partment, Tencent Company. His major research interests
include cloud computing, distributed system and green
building. He is a student member of IEEE.

Dan Wang received the B.Sc. degree from Peking Univer-
sity, Beijing, China, the M.Sc. degree from Case Western
Reserve University, Cleveland, Ohio, USA, and the Ph.D. de-
gree from Simon Fraser University, Burnaby, B.C., Canada;
all in computer science. He is an Assistant Professor of De-
partment of Computing, The Hong Kong Polytechnic Uni-
versity, Hong Kong. His research interests includewireless
sensor networks, Internet routing and cloud computing.
He is a senior member of IEEE.

http://aws.amazon.com/cn/ec2
http://hadoop.apache.org
http://mesos.apache.org
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html
http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html
http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html
http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html
http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html
http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html
http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html
http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html
http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html
http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html
http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html
http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html
http://refhub.elsevier.com/S0743-7315(16)00017-4/sbref15
http://refhub.elsevier.com/S0743-7315(16)00017-4/sbref16
http://refhub.elsevier.com/S0743-7315(16)00017-4/sbref17
http://refhub.elsevier.com/S0743-7315(16)00017-4/sbref22
http://refhub.elsevier.com/S0743-7315(16)00017-4/sbref26
http://refhub.elsevier.com/S0743-7315(16)00017-4/sbref27

66 X. Ling et al. / J. Parallel Distrib. Comput. 90–91 (2016) 52–66
Jiangchuan Liu received the B.Sc. degree from Tsinghua
University, Beijing, China, and the Ph.D. degree from The
Hong Kong University of Science and Technology, Hong
Kong. From 2003 to 2004, he was an Assistant Professor in
the Department of Computer Science and Engineering at
The Chinese University of Hong Kong. He was a Microsoft
Research Fellow, and worked at Microsoft Research Asia
(MSRA) in the summers of 2000, 2001, 2002, 2007, and
2011. He is a Full Professor in the School of Computing
Science at Simon Fraser University, Canada, and an EMC-
Endowed Visiting Chair Professor of Tsinghua University,

Beijing, China. His research interests include multimedia communications, peer-
to-peer networking, cloud computing, online gaming, social networking, big data
networking, and wireless sensor/mesh networking. He is a senior member of IEEE.
Jiahai Yang received the B.Sc. degree from Beijing
Technology and Business University, the M.Sc. degree and
Ph.D. degree from Tsinghua University, Beijing, China; all
in Computer Science. He is a Professor of the Institute for
Network Sciences and Cyberspace, Tsinghua University,
Beijing, China. His research interests include network
management, networkmeasurement, Internet routing and
applications, cloud computing and big data applications.
He is a member of IEEE & ACM.

	Joint scheduling of MapReduce jobs with servers: Performance bounds and experiments
	Introduction
	Related work
	MapReduce server-job organizer: the problem and complexity analysis
	Problem formulation
	Problem complexity

	Algorithm development and theoretical analysis
	Classical linear programming relaxation
	Conditional LP relaxation and constraint generation algorithm
	MarS algorithm
	Extension: a fine-grained MapReduce task scheduling algorithm(T-MarS)

	Simulation
	Simulation setup
	Background
	Evaluation metric
	Comparisons strategies

	Simulation result
	Discussion: semi-online MarS algorithm

	Implementation and results of experiment
	Implementation
	Experiment setup
	Experiment result
	Real server cluster experiment

	Conclusion
	Acknowledgments
	References

