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Abstract—We study the effect of external infection sources
on phase transitions in epidemic processes. In particular, we
consider an epidemic spreading on a network via the SIS/SIR
dynamics, which in addition is aided by external agents - sources
unconstrained by the graph, but possessing a limited infection
rate or virulence. Such a model captures many existing models
of externally aided epidemics, and finds use in many settings
- epidemiology, marketing and advertising, network robustness,
etc. We provide a detailed characterization of the impact of
external agents on epidemic thresholds. In particular, for the
SIS model, we show that any external infection strategy with
constant virulence either fails to significantly affect the lifetime
of an epidemic, or at best, sustains the epidemic for a lifetime
which is polynomial in the number of nodes. On the other hand, a
random external-infection strategy, with rate increasing linearly
in the number of infected nodes, succeeds under some conditions
to sustain an exponential epidemic lifetime. We obtain similar
sharp thresholds for the SIR model, and discuss the relevance of
our results in a variety of settings.

I. INTRODUCTION

We study epidemic processes on large graphs in the presence
of external agents - i.e., settings in which information/infection
spreads in a network via an intrinsic infection process (i.e.,
along the edges of the graph), but in addition, is aided in
its spread by external sources unconstrained by the graph
topology. More specifically, we focus on characterizing phase
transition behaviour in SIS/SIR epidemic processes in the
presence external infection sources of bounded virulence, but
whose position is unconstrained by the graph.

Epidemic processes are widely used as an abstraction for
various real-world phenomena – human infections, computer
viruses, rumors, information broadcast, product advertising,
etc. Though there are many models for such epidemic pro-
cesses, at a high level they can be divided in two groups –
those in which nodes once infected remain forever in such a
state, and those in which nodes can recover from the infection.
Henceforth, to distinguish between the two, we refer to the
former as spreading processes, reserving the term epidemic
process for the latter. Spreading processes help understand
the dynamics of one-way dissemination of some object in a
network – for example: a rumor, a software update, a fitter
genetic mutation, etc. On the other hand, epidemic processes
are used to study transient infection processes, i.e., those which
spread for a while but eventually die out in finite networks.

A standard model for a spreading process is the SI
(Susceptible-Infected) dynamics, wherein a ‘susceptible’ node
(S) transitions to being ‘infected’ (I) at a rate proportional
to the number of infected neighboring nodes. An important

metric here is the spreading time, i.e., the time taken for all
nodes to get infected. In our earlier work [1], it was shown that
external agents can dramatically shorten the spreading time of
the SI process in some graphs - further this remains true even
if the agents infect in a random manner.

On the other hand, the metric of interest in epidemic
processes is usually the extinction time – the time when
the infection dies out in the system. A non-trivial aspect
of epidemic processes is that they exhibit phase transition
phenomena - when the infection rate exceeds a threshold,
then the infection abruptly switches from being short-lived
to being persistent (i.e., with a very large extinction time; in
case of infinite graphs, they never die out). This aspect makes
them interesting from a mathematical perspective, and also
is important for understanding real-life settings, wherein such
threshold phenomena have been observed empirically.

The two most widely-used models for epidemic processes
are the Susceptible-Infected-Susceptible (SIS) [2], and the
Susceptible-Infected-Resistant (SIR) dynamics [3]. In both
models, as in the SI model, a node in the susceptible state (S)
transitions to the infected state (I) at a rate equal to an infection
rate times the number of infected neighbors – however nodes
do not remain infected forever. In the SIS model, an infected
node transitions back to the susceptible state (S) according to
a cure rate – the critical parameter herein is the ratio of the
infection to cure rate, denoted as β1. In the SIR dynamics,
a node in state (I) upon being cured enters a resistant state
(R), whereupon it is removed from the system. Note that
the absorbing states of the SIS/SIR models correspond to the
epidemic becoming extinct – for the SIS process, this is when
all nodes are in state (S), while for the SIR process it is
when all nodes are either in state (S) or (R)2. In this work, we
characterize the impact of external sources on phase transition
phenomena in SIS/SIR epidemics..

In addition to technical contributions to the understanding of
epidemic processes (in terms of new techniques and intuition
for threshold phenomena), our results are significant in terms
of their interpretation for certain real-world settings. Our
analysis captures both the worst-case perspective (by how
much can the extinction time of a ‘harmful’ epidemic be
extended via an adversarial external agent?) and the design
perspective (how can we design the external policy to prolong

1It turns out that without loss of generality, we can normalize the cure rate
to 1 – the ratio of the two is sufficient to characterize the system.

2Specifically, an absorbing state of the SIR model consists of any connected
component of nodes in state (R), and the rest in state (S)
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the lifetime of ‘useful’ epidemic). In particular, it is instructive
to keep in mind two particular examples:
• Epidemiology - Characterizing the spread of a human

disease/computer worm in a network, aided by external
agents. Here the aim is to understand the worst case
scenario that could be induced by external agents un-
constrained by locality/geography. In human diseases,
the external agents correspond to long-distance travellers;
for the propagation of computer viruses spreading on a
local network, long-range jumps are via the Internet, or
sometimes, through portable disks.

• Product advertising - Enhancing brand recall amongst
consumers via viral means (word-of mouth, viral ads
on online social networks, etc.) coupled with long-range
‘broadcast’ advertising (TV advertising, targeting cus-
tomers for special offers, etc.). The aim here is the exact
opposite of the previous case – how can product aware-
ness be sustained for a longer time via well-designed
advertising strategies.

A. Our Contributions

We consider graphs Gn = (V,E), parametrized by the
number of nodes |V | = n, in which an epidemic commences
spreading through two interacting processes: an intrinsic
spread, and an additional external infection. The intrinsic
spread follows either the SIS or SIR dynamics (refer Section
I for an informal description, and Section II for details). For
the external infection process, similar to the model in [1], each
node becomes infected (if susceptible) at a different (zero or
non-zero) exponential rate at each instant in addition to the
intrinsic process; thus at time t, the external infection can
be represented as a |V |-dimensional vector L̄(t) of external
infection-rates for each node. We allow the external rates
to be chosen as a function of the network state and history
(omniscience) and further, potentially designed to maximize
the extinction time (adversarial) – the only constraint on the
external process is that it has bounded virulence, i.e., the
total external rate at any instant is less than some parameter
µ (which can be a function of n). Further, we assume that
the external source exists if and only if there is at least one
infected node in the network, ensuring that our process has
the same absorbing states as the original epidemics.

We focus on characterizing the expected time to extinction
E[TSIS ] (and in case of the SIR model, the number of eventual
infected nodes) as a function of four factors: (i) the intrinsic
infection rate β (with intrinsic cure rate normalized to 1), (ii)
the external virulence µ, (iii) the graph topology, and iv. the
external infection policy. Our main results are as follows:

1) (Subcritical SIS epidemic): Under the SIS dynamics
with µ = O(1) (constant external infection), for any
graph G with maximum degree dmax, and any external
infection policy, if βdmax < 1, then E[TSIS ] = O(1),
i.e., the epidemic dies out in constant time.
For comparison, the critical threshold for subcritical
epidemics without external infection is βλ1 < 1 [2],

where λ1 is the leading eigenvalue of the graph adjacency
matrix; note that davg ≤ λ1 ≤ dmax.

2) (Critical SIS epidemic): Under the SIS dynamics with
µ = O(1), for any graph if 1

dmax
� β < 1

λ1
, i.e., order-

wise greater than (dmax)−1, but less than (λ1)−1, then
there exists an external infection policy resulting in an
extinction time which is at least polynomial in n.
Furthermore, this is tight in that for any graph with
sufficiently large maximum-degree, and any infection
policy with the above choices of β and µ, the extinction
time is also bounded by a polynomial in n. To the best
of our knowledge, this is the first rigorous demonstration
of such a polynomial-lifetime regime in SIS epidemics.

3) (Supercritical SIS epidemic): Next, we consider the
problem of designing an external infection strategy so
as to result in a supercritical epidemic, i.e., E[TSIS ] =

en
Ω(1)

. Without external infection, the best-known suffi-
cient condition for this is βη ≥ 1 [2], where η is the
graph conductance3. We show that if the external rate µ
grows with the number of infected nodes |I| as γ|I|, for
some constant γ > 0, and up to some |I| = nα, then even
a random external infection strategy ensures exponential
epidemic lifetime provided βη + γ ≥ 1.

4) (Subcritical SIR epidemic): Finally, we show that µ =
Θ(1) is a tight threshold for subcritical epidemics –
if βdmax < 1, then the number of infected nodes is
sub-polynomial in n, whereas if β is orderwise greater,
then it is possible to infect a polynomial number of
nodes independent of where the infection starts spreading.
A unique feature of our analysis is that unlike most
existing work on the SIR epidemic which essentially
reduce the problem to studying a static process, our model
necessitates an understanding of the dynamics of the SIR
model – we achieve this via a coupling between the SIS
and SIR models.

We formally state these results in Section III. In addition,
in Section III-E, we highlight the importance of our results
through detailed analyses of several important settings – we
discuss both the import of our results in real-world examples,
as well as apply them to characterize epidemic lifetimes in
some important classes of networks.

B. Related Work
The spread of processes over graphs/networks has been

studied in various contexts (e.g., epidemiology [4], [5], [6],
sociology [7], [8], applied probability [9], [10], [11]).

The SIS/SIR processes has been widely studied to char-
acterize its phase transitions. The foundational work in the
probability community focused on infinite regular graphs,
in particular, grids and trees [10]. For finite graphs, phase
transitions were first characterized via empirical [12], [13],
and also approximate (mean-field) techniques [14], [15]. Other
works have provided a more rigorous analysis of phase tran-
sition – in particular, Ganesh et al. [2] for general graphs,

3More specifically, the local conductance, i.e., the isoperimetric number of
all sets of size ≤ nα for some α > 0.
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and some specific families, and Berger et al. [16] for the
preferential attachment graph. These papers provide conditions
for subcritical and supercritical regimes under the SIS model.
Draief et al. [3] undertake a similar program for the SIR model.
Our work follows in the line of these results, providing a
rigorous characterization for epidemics with external sources.

The role of external sources in epidemic spread has been
studied under different models. In the context of human
disease spread, works include [17] (airline effects), [18] (geo-
graphic effects) and [19] (multiscale effects). This is paralleled
by studies of epidemics on computer/mobile phone networks
[20], [21], [22]. Finally, in the context of social networks,
Myers et al. [23] consider a model similar to our model of
random external infection, and use Twitter data to estimate
the extent of external influence.

Several studies in literature consider network intervention to
modify spread properties. The authors in [24] study enhancing
epidemics via designing the seed set. In [14], the authors
change the graph topology via additional edges; this in some
sense is an optimization view of the famous ‘small-world’
graph constructions [25], [26]. Wagner and Anantharam [27]
consider redistributing edge infection-rates in a line network so
as to ensure long-lasting epidemics. A complementary setting
to this is considered by Borgs et al. [28], wherein the cure-rate
can be redistributed among nodes to minimize the infection
spread. All of these works only consider static (or one-shot)
policies – we instead allow our external agents to dynamically
change their policies.

Finally, our earlier work [1] considers the same model of
external infection, but for spreading processes (in particular,
the SI dynamics). However, unlike spreading processes, where
external agents always speed up spreading, this work shows
that the situation is much more subtle for epidemic processes.

II. MODEL

Intrinsic infection: As mentioned before, we consider epi-
demic processes on an underlying graph G(V,E) (with |V | =
n). The process evolves in continuous-time t following either
the SIS or the SIR dynamics.

In the SIS model, a node exists in one of the two states:
susceptible (0) or infected (1). The state of the network at
any time t is given by X(t) ∈ {0, 1}n (with Xi(t) the state
of node i at time t). Infected nodes propagate the epidemic to
neighboring susceptible nodes at rate β, and revert to being
susceptible at a rate 1. Hence at a time t the transition for
a node j in the network follows a Markov process with
transitions:

0→ 1 : at rate β
∑

i:(i,j)∈E

Xi(t), 1→ 0 : at rate 1.

In the SIR model, a node can take 3 states: susceptible (0),
infected (1) or resistant (e). Now an infected node, i.e., with
state (1), upon recovering transitions to a resistant state (e)
– subsequently it plays no further part in the dynamics. Thus

the transition for node j follows a Markov process:

0→ 1 : at rate β
∑

i:(i,j)∈E,Xi(t)6=e

Xi(t),

1→ e : at rate 1.

Note that state (e) is an absorbing state for a node.
External infection: Our model for external infections is the

same as in [1]. We formally model the external infection as a
time-varying vector L(t) = {Li(t) : i ∈ V }, where Li(t) ≥ 0
is the extra rate (i.e., in addition to any intrinsic infection
rate) at which the external source tries to infect node i at time
t. We define the external virulence as ||L(t)||1 ≤ µ – one
way to visualize this is that the external source’s infection
times follow a Poisson process with rate µ, and during each
infection event (say at time t), the external source infects a
single node j with probability Lj(t)

µ . The external infection-
rate vector L(t) (and the virulence µ) can vary with time t
and can depend on the state of the network S(t).

Our external infection model generalizes several models for
long-range infection spreading, in particular:
• µ = 0 reduces to the underlying SIS/SIR process.
• Static long-range edges: µ is the number of additional

edges added; Li(t) at time t is the number of long-range
edges incident on node i that have an infected node at
the other end.

• Dynamic long-range edges: Same as above, but the set
of additional edges can be changed over time.

• Mobile agents: One/several mobile agents spread the
infection (and which can move arbitrarily over the graph).
This can also model targeted advertising, giving ‘special
offers’ for individuals, etc.

• Broadcasting with bandwidth constraints: An external
source with bandwidth µ, which can be shared across
any set of nodes. Such a model can be used for broadcast
advertising (eg., TV/magazine ads), or dissemination of
software updates from a central server, etc.

Note that we do not claim our results are the tightest possible
under all models of infection via external sources. Some of the
above have been studied before, and it is sometimes non-trivial
to analyze particular models of external infection, such as
additional long-range links [14] or agents performing random
walks on the graph [29]. However, our model and analysis
does capture many of the salient features of these models,
reproducing some existing results, and more importantly, help-
ing characterize many new settings. At a higher level, our
work suggests that such models for external infection exhibit
a certain dichotomy – external infection sources either do not
affect the phase transition points (if µ is insufficient), or if
they do change the threshold (i.e., if µ is large enough), then
they do so even if the strategy is random.
Notation: We denote Z0 to be the collection of non-negative
integers, and R0 to be the real numbers. Further, we use the
Landau notation (O, Θ, Ω) to describe the growth rate of
functions. We use {≥st,≤st} to denote stochastic dominance
relations between random variables; specifically Y ≥st X
implies that P[Y > r] ≥ P[X > r] for all r.
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III. MAIN RESULTS AND DISCUSSION

We now state our main results, and discuss their implica-
tions for different graphs, and different external agent models.
We present the results and discussions here, with brief proof
outlines. In Section IV, we discuss in more detail some of
the technical novelty of our analysis. The complete proofs are
presented in the appendix.

A. Subcritical SIS Epidemic

For an SIS epidemic X(t) = {Xi(t) : i ∈ V }, the metric
of interest is the extinction time, given by:

TSIS = inf{t : X(t) = 0}.

Note that this definition remains consistent under our model
of external agents, as we define the external infection vector
L(t) to be 0 when X(t) = 0. Note also that the distribution
of TSIS depends on the initial condition X(0).

Recall that the subcritical regime is one wherein the extinc-
tion time of an epidemic is small (usually O(1) or O(log n)).
Our main result for subcritical SIS epidemics in the presence
of external infection agents is as follows:

Theorem 1. Given an SIS epidemic with intrinsic infection
rate β on a graph G with maximum degree dmax, if the initial
number of infected nodes is O(1) (arbitrarily chosen) and
βdmax < 1, then for any external infection strategy with rate
µ = O(1), we have:

E[TSIS ] = O(1).

Prior work for the intrinsic SIS epidemic (i.e., without
external agents) reveals that the subcritical threshold for β is
related to 1

λ1
, where λ1 is the largest eigenvalue (or spectral

radius) of the adjacency matrix. This fact, though earlier
known empirically and via mean-field approximations, was
formally established by Ganesh et al. [2], who showed that
if βλ1 < 1, then E[TSIS ] = O(log n)4. Note that for any
graph, davg ≤ λ1 ≤ dmax (where davg is the average degree).
Thus for d-regular graphs, the spectral radius is equal to the
maximum degree; moreover, for any graph, βdmax < 1 is a
sufficient condition for the sub-critical regime.

What Theorem 1 shows is that under constant external
infection (i.e., µ = O(1)), βdmax < 1 remains a sufficient
condition for sub-critical epidemics – as long as the initial
infected set is of size O(1), the epidemic has O(1) extinc-
tion time, under an arbitrary choice of the initial infected
nodes, and arbitrary external infection strategies (including
omniscient and adversarial strategies).

Proof outline: We first embed the multi-dimensional
Markov chain in a suitable 1-dimensional Markov chain – we
do this by considering the total number of infected nodes in
the network and embedding it in a Markov chain via stochastic
domination arguments. Similar techniques were used to show
supercritical behavior in [2], [16] – however the resulting

4Note that this result does not make any restrictions on the size of the
initial infected set. The logn factor is then inevitable – essentially, it is the
expected time for n isolated infected nodes to recover.

Markov chains in those works have an absorbing state at 0
(i.e., if there are no infected nodes in the network). A critical
contribution of our work is to show that it is possible to further
embed the process in an ergodic Markov Chain, by adding
some virtual transitions, while preserving the quantities of
interest (in this case, the time to absorption). This technique
allows us to easily compute closed-form bounds for the
absorbing time,even under complex external-infection policies.
The complete proof is given in Section A in the Appendix.

Comparing with the bounds for the intrinsic infection raises
the following natural question – what happens in settings
where µ is still O(1), but d−1

max � β < λ−1
1 (i.e., β is

orderwise greater than d−1
max, but below the subcriticalilty

threshold). We focus on this in the next section where we show
that such a setting does in fact make a difference – it leads
to a regime where the resulting epidemic has a polynomial
lifetime.

B. Critical SIS Epidemic

Suppose now µ is still O(1), but d−1
max � β < λ−1

1 – in
other words, it is not large enough to escape the subcritical
regime without external aid, but larger than the sufficient
condition in Theorem 1 for O(1) extinction time with ex-
ternal aid. The question now is whether this regime is also
subcritical, or if there is a fundamental shift in the epidemic
lifetime in this region brought about by the external agents.
This is particularly important in settings where dmax and λ1

differ greatly – for example, graphs with a power law degree
distribution.

In this section we show that there is in fact a fundamental
shift in this regime – for a large class of graphs, the presence
of the external source causes an orderwise change in the
epidemic lifetime, which we characterize in a tight manner.
First, existing results for subcritical epidemics without external
aid (in particular, Theorem 3.1 in [2]) can be bootstrapped to
derive the following upper bound on the extinction time:

Theorem 2. For an SIS epidemic with βλ1 < 1, originating
from any set of initially infected nodes, and aided by any
external infection strategy with µ = O(1), we have

E[TSIS ] = nO(1),

i.e., the lifetime is at most polynomial in the number of nodes.

Proof Outline: The main intuition behind this result is
that within any time interval that is O(log n), the external
infection has a n−λ (for some λ = Θ(1)) probability of failing
to infect even a single node. Furthermore, existing results
indicate that for any initial set of infected nodes, a subcritical
epidemic has O(log n) expected extinction-time. Now we can
combine these two facts to create a stochastically dominating
process, wherein whenever the external agent successfully
infects a node, we instead assume all the nodes in the system
are infected – however by our previous observation, this can
happen at most a polynomial number of times. The complete
proof is given in Section B in the appendix.
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Thus we know that the epidemic can last for a time at most
polynomial in n - however can this be achieved? The answer
to this is provided in the following result:

Theorem 3. For SIS epidemics on graphs with dmax = Ω(nα)
for some α > 0, suppose β = Ω

(
n−α(1−ε)) for some ε > 0.

Then, for any initial infected set, there exists external infection
policies with µ = O(1) such that, for some λ = Θ(1):

E[TSIS ] = Ω(n−λ).

The implication of this theorem is as follows: if we con-
sider any graph with sufficiently large maximum degree (i.e.,
scaling polynomially with n), then an intrinsic infection rate
of β >> d−1

max coupled with a constant external infection
is sufficient to ensure that the epidemic lifetime is at least
polynomial in n. Now the first eigenvalue of the adjacency
matrix satisfies max{davg,

√
dmax} ≤ λ1 ≤ dmax – thus it can

be order-wise less than dmax. For example, for the star graph
on n nodes, we have λ1 =

√
n while dmax = n. The above

theorem now implies that for such graphs, it is possible to
choose an intrinsic infection rate such that d−1

max � β < λ−1
1 ,

and then design an appropriate external infection strategy to
ensure polynomial lifetime. Note that this is not unique to the
star graph – for many graphs, like power-law and other heavy-
tailed degree distributions, it is known that the maximum
degree is polynomial in number of nodes, and further, there is
an order-wise difference between λ1 and dmax (see also [2]).
The above theorem implies that constant external-infection can
cause a polynomial-lifetime critical regime in such networks.

Proof outline: The proof proceeds in three steps. First,
given any initial infected set, the external source can infect the
node with degree dmax with at least constant probability (by
focusing its entire virulence at that node). Next, by coupling
arguments, the process subsequently can be stochastically
dominated by considering an SIS process on a single star of
degree dmax. The main technical ingredient is showing that the
SIS infection on a star on dmax = nα nodes lasts for a time
that is at least polynomial in n if aided by an external source
of at least constant virulence; note that this is not true if the
external source is absent (from existing results in [2], [16]).
The complete proof is given in Section B in the appendix.

C. Supercritical SIS Epidemic

The results in the previous two sections indicates that O(1)
external infection is insufficient to push an epidemic from the
subcritical to the supercritical regime - it can at most increase
the lifetime to a polynomial function of n, but not to an
exponential. The question we address now is what conditions
on µ are sufficient to ensure exponential epidemic lifetimes –
i.e. E[TSIS ] = en

Ω(1)

.
More specifically, we want to design an external-infection

scheme that guarantees that epidemic is in the supercritical
regime; ideally, this policy should work for any graph/initial
infected set/intrinsic infection rate β. The results from the
previous section show that we need µ to grow with n to have
any chance of reaching the supercritical regime. In fact, it

turns out that just scaling with n is not sufficient, as we prove
the following refinement of Theorem 1, that demonstrates
that even if µ grows slowly with n, it can not escape sub-
exponential extinction times:

Theorem 4. For the SIS epidemic on graph G, if βdmax < 1
and the initial infected set is O(1), then:

1) µ = o
(

logn
log logn

)
5 results in sub-polynomial lifetime, i.e.,

E[TSIS ] = no(1).
2) µ = O (polylog(n)) results in sub-exponential lifetime,

specifically E[TSIS ] = O(epolylog(n)).

Thus, in order to achieve exponential epidemic lifetimes,
it would appear that we need µ to be at least polynomial in
n. However this is impractical for real-world settings – for
example, it implies having a very high advertising budget, or
a large number of infected long-distance travelers. Further,
such an assumption is somewhat trivial from a mathematical
point of view, as essentially the external infection dominates
any effects of the intrinsic infection.

However, it turns out we can circumvent this problem in
the following way: instead of considering a fixed, large µ, we
allow µ to scale with the size of the infected population (upto
some maximum size). Note that from the previous theorem, it
is clear that we need the maximum size to be polynomial in
n, however the required external rate over time may be much
smaller. This is the situation we consider next; in Section III-E,
we discuss the relevance of this assumption in various settings.

To state our results, we first need to recap the best known
conditions for the supercritical regime for the SIS epidemic
without external infection. For this, we need to introduce the
generalized isoperimetric constant η(m) of a graph G [2],
defined as follows:

η(m) = min
S⊆V :|S|≤m

|E(S, Sc)|
|S|

,

where S is any subset of nodes (of size ≤ m, with its
complement Sc = V \ S), and E(S, Sc) is the set of edges
with one endpoint in S and one in the complement. The
isoperimetric constant captures the notion of a bottleneck
set: one which has the smallest number of edges exiting it,
normalized by the number of nodes in the set. It is related to
the notion of expansion on graphs – in particular, the above
definition is equivalent to a (mn , η(m))-expander [16]. Further,
via Cheeger’s inequality, it is also related to the second largest
eigenvalue λ2 of the adjacency matrix. Finally, it is known [2]
that if βη(nα) > 1, then for any initial set of infected nodes,
we have E[TSIS ] = Ω(en

α

). We now show how this can be
improved with external sources.

Suppose we define the set of infected nodes at time t as
I(t) ⊆ V . Now we have the following sufficient condition for
the epidemic to enter the supercritical regime:

Theorem 5. Consider the SIS epidemic on graph G: given any
α > 0, suppose the external infection rate µ scales linearly

5Recall f(n) = o(g(n)) means that limn→∞
f(n)
g(n)

= 0.
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with the number of infected nodes |I| as µ = γ|I| for |I| < nα.
Now if the intrinsic infection rate satisfies βη(|I|) + γ > 1,
then under an external infection strategy which infects nodes
uniformly at random, we have

E[TSIS ] ≥ en
α

.

We can unravel this result as follows – to achieve supercrit-
icality, we require:
• The external infection-rate scale linearly with the number

of infected nodes |I| upto a maximum limit which is at
least polynomial in n (though it can be of as small an
order as we desire).

• The slope of the line γ must obey γ > 1 − βη(nα):
essentially, it must compensate for the gap between the
intrinsic rate and the critical threshold.

• The external infection need not be specifically designed –
in fact, it can be random. More specifically, it is sufficient
to try to infect each node at a rate µ

n , irrespective of
whether it is already infected or not.

We give an outline of the proof in Section IV-A; the complete
proof is provided in Section C of the appendix.

Combining all the previous theorems, we get the following
summary for the SIS epidemic with external agents: suppose
we have an intrinsic infection with rate β which is below the
critical threshold, then adding a constant amount of additional
external infection will either leave the extinction time unaf-
fected (in a scaling sense, if βdmax < 1), or at best, if designed
carefully, improve it to a polynomial in n (if βdmax >> 1). If
however, we want to push the epidemic into the supercritical
regime, we can do so by making the external rate grow linearly
with the number of infected nodes, at a rate equal to how much
β is below the threshold. The three regimes are summarized in
Figure 1. We interpret these results in more detail via several
examples in Section III-E.

Fig. 1. Illustration of the 3 regimes in SIS epidemics with external infection
sources: For µ = O(polylog(n)), we get subcritical and critical regimes,
depending on β; µ scaling linearly with |I| results in a supercritical epidemic.

D. Subcritical SIR Epidemic

Next we turn to the case of the SIR epidemic (see Section
II for definitions). Recall that in this model, an absorbing state
consists of a connected set of nodes in state (e), and the
rest in state (0). We define the time to extinction TSIR of
the epidemic as before. However a more important object of
study here is the number of nodes eventually infected by the
epidemic – we denote this as NSIR = |I(TSIR)|.

We assume throughout that the initial number of infected
nodes is O(1), and they are chosen arbitrarily – this can
be generalized, but since we are interested in the number
eventually infected, this assumption is appropriate. We also
note that there are two models which are referred to as the
SIR model in literature – the one we define in Section II,
wherein the nodes transition from state (1) to (e) according
to an Exponential(1) clock, and an alternate model wherein
the nodes transition from (1) to (e) after a deterministic
time (usually 1 unit). We consider only the former model in
this work; the results can be generalized to the latter in a
straightforward way.

Sufficient conditions for subcritical SIR epidemics, i.e.,
with small E[NSIR], have been (rigorously) established –
in particular, Driaef et al. [3] show that βdmax < 1, then
E[NSIR] = O(1)6. Our main result in this section is a
generalization of this result for the setting with external agents:

Theorem 6. For the SIR epidemic on graph G with external
infection-rate µ = O(1), if β(dmax − 1) < 1, then for any
external infection policy, we have:

E[NSIR] = O(1).

Further, if µ = o
(

logn
log logn

)
then the number of nodes

eventually infected is sub-polynomial – i.e., E[NSIR] = no(1).

This means that any infection with intrinsic rate less than
d−1
max can infect only a vanishing fraction of the nodes if the

external infection strength is less than logn
log logn .

Proof Outline: As existing bounds on the SIR epidemic
are obtained by observing the structure of the infection as
t → ∞[3], it is difficult to take the same approach to
incorporate external infection. We instead build on our results
for the SIS epidemic spread via a coupling argument. The main
observation is that for SIS and SIR epidemics on the same
graph, with identical intrinsic rate β, as well as external rate µ
(and identical external infection strategies), the extinction time
for the SIS infection stochastically dominates that of the SIR
infection. Using this, we can use various coupling arguments
to get the result. The complete proof is given in Section D of
the appendix.

These conditions, in particular, for ensuring sub-polynomial
number of infected nodes, are again tight in case of graphs
with sufficiently large (polynomial) maximum degree. In par-
ticular we have the following result:

Lemma 7. Consider a graph G with maximum degree
dmax = Ω(nα) for some α > 0. For an SIR epidemic with
β = Ω (nε−α) for 0 < ε < α, aided by external infection-rate
µ = Ω(1), then there exists an external infection policy such
that E[NSIR] = Ω(nk) for some k > 0.

Thus constant external infection does not significantly
change the number of infected nodes when the underlying

6One can also get results for the case when βλ1 < 1, but the bounds are
in terms of the eigenvectors of the adjacency matrix, making them harder to
interpret in general.
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epidemic is subcritical.

E. Discussion and Examples

We conclude the presentation of our results by showing how
they can be applied to various settings.
Epidemiology: Both the SIS and SIR models are widely
used to model human epidemics [13], and also computer
viruses/worms [12]. SIR dynamics is used in cases where re-
covery from an infection prevents re-infection (e.g., resistance
in humans, patches for computer viruses); the SIS dynamics
more closely models cases where an infection may return via
mutations in the parasite (in fact this is true even for computer
worms, which have been known to circumvent patches by
exploiting multiple vulnerabilities). Finally, external sources
have long been known to promote the spread of such epi-
demics, be it via long-distance air travel/shipping propagating
human diseases, or worms spreading via the Internet.

What do our results imply for such settings? On the positive
side, Theorems 1 and 2 show that an external source of
constant virulence can not cause an infection to become
supercritical – further, Theorem 3 reaffirms the intuition
that the critical nodes that need to be defended against the
infection are the ones which have high-degree. This is in
a sense complementary to the results of Borgs et al. [28],
who show that an effective strategy for distributing antidotes
(i.e., augmenting recovery rates) is to provide it to nodes
proportional to their degree. Our result can be viewed in terms
of designing preventive measures – to control epidemic spread,
one should vaccinate/quarantine nodes with a high degree.

However, it can be argued that in many cases, the number
of external agents actually does scale as γ|I| - for example
in case of long-distance travel, if we assume that the people
traveling are randomly chosen (irrespective of whether infected
or not), then the number of infected people traveling does scale
linearly as the number of infected people. In such a regime,
the import of Theorem 5 is more grim – it suggests that an
infection can become supercritical if such travel is not curbed
before a certain point, and further this is not affected if the
travel is random. This matches the empirical observation that
epidemics which have a long incubation period (i.e., do not
show symptoms in carriers till long after infection) often tend
to become more widespread.
Advertising: It is widely accepted that the recall of a product
in the minds of consumers is jointly affected by its prevalence
in social circles (e.g., if many your friends use a certain
product, then you would tend to use it as well) and the
use of advertising. Moreover, advertising can be both via
broadcast media (e.g., TV/magazine ads, billboards) and also,
increasingly, viral media (e.g., word of mouth, videos on
Youtube, etc.). This scenario is very well modeled by the
SIS/SIR epidemic – the epidemic represents the recall of a
brand, which is strengthened by local interactions, and also
by broadcast advertising; further, the rate of TV/magazine ads
are subject to advertising budgets.

In this domain, our results make very clear recommenda-
tions – for any brand, a constant advertising budget is not

sufficient to ensure long-lasting recall. However, increasing
the advertising budget proportional to the number of customers
(which is viable since the revenues also increase) can achieve
supercritical behavior. In terms of advertising strategy, our
results suggest that if the budget is small, then targeted
advertising, biased towards highly-networked consumers, is
more beneficial - however, if the budget is large enough (and
scaling linearly with the number of customers), then broadcast
advertising (which can be thought of as a random infection
strategy) is sufficient.
Popular Models for Network Formation: Our results can
be applied to specific graph families to obtain thresholds for
the different regimes – however, they may not be the tightest
in all graph families. Such a program is carried out in [2],
who characterize λ1 and η(m) for several families of graphs,
including random graph families such as the G(n, p) and
certain families of power-law graphs – since our thresholds
are also in terms of the same quantities, these results carry
over to our setting, and in addition we get additional results
for the case of external infection; for example, for graphs with
sufficiently high maximum degree, we show that O(1) external
infection rate is sufficient to push the lifetime to poly(n).

However, our results allow for analysis of more sophisti-
cated models of external infection. To illustrate this, consider
the example of Kleinberg’s small-world network construction
[25] – this consists of a 2-dimensional grid, where each node
has an additional long range link, the other end of which
is selected according to some given distribution. Viewing
these long-range links as external-infection sources, we see
that the external infection rate increases roughly as β|I| (in
particular, if the long-range link is chosen uniformly, then
µ = β

(
|I| − n−1+α

)
as long as |I| ≤ nα). Now, using

Theorem 5, we have that if β > 1, then the epidemic is
supercritical.

IV. PROOFS OF SELECTED RESULTS

Due to lack of space, we defer complete proofs to the ap-
pendix. Instead, we outline some of the main technical novelty
behind our results; these ideas may be of independent interest
for tackling other questions regarding epidemic processes.

A. Embedding in a Dominating Ergodic Markov Chain

The main idea for the results in the subcritical and super-
critical regimes is to study the dynamics of the total number
of infected nodes in the network at time t. This depends on the
exact network topology; however it is possible to stochastically
dominate it via appropriate 1−dimensional Markov Chains.

Similar techniques have been used before [2], [16]; however
in all prior work, state 0 is an absorbing state, and the
absorption time is estimated via Martingale techniques. A
technical novelty in our proof is that we embed the chain in an
ergodic Markov chain, in a way that preserves the absorption
time. This allows us to obtain closed-form expressions for
the absorption time, and also consider more complex external
infection strategies. We now outline this technique.
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Fig. 2. Dominating chain for the total number of infected nodes. The
transition rates {r(i)} are appropriately chosen to over/under dominate the
underlying process. A ‘virtual’ 0→ 1 transition makes the chain ergodic.

First, consider the continuous-time Markov chain for the
aggregate infected nodes – note that transitions from any
state (i.e., increase/decrease in the number of infected nodes)
happen at a rate at least 1 and at most βn2 +n+µ ∼ poly(n).
This allows us to consider a uniformized discrete-time Markov
chain; from the previous observation, we see that the number
of time-slots till absorption for the discrete chain is within a
poly(n) factor of the time to absorption for the continuous
chain. This is the reason this technique is most useful for the
subcritical/supercritical regimes, but not fine-grained enough
to capture the intermediate critical regime.

Now consider a DTMC Uk, k ∈ Z0 on {0, 1, · · · , n} with
state-transitions pi,i+1, pi,i−1 > 0 for 1 ≤ i ≤ n−1, pn,n−1 =
1, and remaining transitions having probability 0 – i.e., a birth-
death chain, with absorbing state at 0 and reflection at n. Next,
consider another DTMC, denoted Ũk, on the same state space
with the same transition matrix as Uk, but in addition, with
p0,1 = 1 (i.e., a reflection at 0 instead of absorption). Note
that Uk has an absorbing state and hence is not an ergodic
DTMC; Ũk, however, is an irreducible, aperiodic, finite state
Markov chain, and hence ergodic [30].

The chain Ũk is often referred to as the Ehrenfest Urn
Process [30]; we denote π̃ as the stationary distribution of Ũk.
Now let T1,0 be the time to hit 0 for the DTMC U starting
from state 1 (i.e., the time to absorption with initial state 1).
Then we have the following lemma:

Lemma 8.
E[T1,0] + 1 =

1

π̃(0)

More specifically, in terms of the transition probabilities of
Uk, with p0,1 defined to be 1, we have:

E[T1,0] =

n∑
k=1

k∏
i=1

pi−1,i

pi,i−1

Proof: First note that the distributions of T1,0 and T̃1,0

are same – this is because a sample path from state 1 to state
0 for Ũk does not experience a 0 to 1 transition. Further,
since the transition from 0 to 1 happens with probability 1,
T̃0,0 = 1+T̃1,0 a.s,. and as Ũk is an ergodic Markov chain, the
expectations for both the random variables exist, and also the
expected return time for any state i is π̃(i)−1. Putting these
together we get the first claim. For the second, observe that
for a birth-death DTMC with transition provabilities pi,i+1 and
pi,i−1, we can exactly evaluate the steady state distributions

using detailed balance equations – this gives us the closed-
form expression for E[T1,0].

The above lemma can be extended to a setting where the
initial number of infected nodes is some L > 0. As before,
we construct a Markov chain ULk that has the same transition
probabilities as Uk, but now with an additional transition
p0,k = 1 – again we have ULk is irreducible, finite state, and
hence ergodic. Let πL denote the stationary distribution for
ULk . We have the following lemma:

Lemma 9.

E[TL,0] =

L∑
k=1

fk + fL

n∑
k=L+1

k∏
i=L+1

pi−1,i

pi,i−1

where fks are quantities that depend only on the transition
probabilities for states in {0, 1, · · · , L}.

Proof: The proof is identical to that of Lemma 8 – the
only difference is that the chain is a birth-death chain for states
≥ L. Thus the expression for the stationary probability of
state 0 has additional terms which depend on transition-rates
of states between 1 and L; in our applications, the terms fk, fL
are all O(1), and do not affect the scaling.

The above lemmas allow us to get detailed characterizations
for the subcritical and supercritical regimes. For complete
proofs of Theorems 1, 4 and 5, refer Section C in the
Appendix.

B. Dynamic Analysis of the SIR Epidemic

Studying thresholds for the SIR model with external in-
fection requires understanding the transient behavior of the
process. To this end, we develop the following coupling
argument relating the dynamics of the SIR to the SIS model:

Lemma 10. Consider an SIR epidemic on graph G with
intrinsic infection-rate β and a given external infection policy
with infection-rate µ. For an SIS epidemic on the same graph
with identical external infection policy (i.e., same L(t)∀ t), we
have:

TSIS ≥st TSIR.

Proof: The result follows from a simple coupling argu-
ment, wherein when a node gets recovered in the SIR model,
it becomes susceptible in the SIS model. Now, given that
the external infection policies are identical, the SIS epidemic
dominates the SIR epidemic with respect to extinction time.
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APPENDIX

A. Subcritical SIS Epidemics with External Agents

We now prove Theorems 1 and 4, using the techniques
discussed in Section IV-A.

Proof of Theorem 1: As transitions in X(t) are via
exponential clocks, hence the system is a continuous time
Markov chain – further TSIS , the time when X(t) hits 0,
is a stopping time with respect to this Markov chain. Our aim
is to upper-bound the time E[TSIS ].

To do so, we study the one-dimensional chain induced
by the number of infected nodes in the network – more
specifically, we stochastically dominate the total number of
infected nodes as follows: Consider a Markov chain Z(t) ∈
{0, 1, 2, . . .} with Z(0) = |X(0)| and the state transition rates
being the following:

i→ i+ 1 at a rate βdmaxi+ µ for i > 0

i→ i− 1 at a rate i for i > 0

We claim that Z stochastically dominates |X(t), and con-
sequently, the time to hit 0 for Z is a.s. larger than TSIS .
This can be formally argued via a coupling argument, but
essentially it arises from the fact that for any state X(t),
the maximum rate at which the infection can grow (i.e at
which |X(t)| can increase) is β|X(t)|dmax + µ – this is
because a node can try to infect at most dmax nodes and the
external infection can increase the number of infected nodes at
a maximum rate of µ. Also note that for the original process
|X(t)| is the rate at which infection decreases, since each node
recovers at rate 1. Thus whenever Z(t) = |X(t)| = i, the rate
of growth for Z is higher than that for |X|, while the rate of
decrease are the same for both the processes. Hence, we can
instead focus on finding an upper bound on time to hit zero
for the process Z.

Note that Z is a process on a finite state space [n] and is
irreducible, with an absorbing state at 0 – hence the expected
time to hit state 0 is finite. We next consider ZD, the embedded
discrete-time chain (i.e., jump chain) of Z, whose transitions
(∀ i > 0) are given by:

pi,i+1 =
βdmaxi+ µ

(βdmax + 1)i+ µ
, pi,i−1 =

i

(βdmax + 1)i+ µ

Note that as the rate of jumps for any state i > 0 is lower
bounded by 1 – hence the expected time spent in any state
is O(1), and the time to absorption in the discrete time chain
is orderwise equivalent to the absorption time in the original
chain. Now we can use Lemma 9 to compute the expected
hitting time to zero for ZD, given initial state is 1 (or some
fixed K). Note that for any fixed K > 0, the transition
probabilities of ZD do not scale with n for states in [K];
hence for the stated result, it is sufficient to show that the
contribution due to the states i ∈ {K,K + 1, . . . , n} is O(1).



10

We have:
n∑

k=K

k∏
i=1

pi,i+1

pi,i−1
≤

n∑
k=1

k∏
i=1

βdmaxi+ µ

i

≤
n∑
k=1

(βdmax)k exp

(
k∑
i=1

µ

iβdmax

)

≤
∞∑
k=1

(βdmax)k(k + 1)(
µ

βdmax
).

Now note that for βdmax < 1 and µ = O(1), the RHS in
the last expression can be upper bound by a constant order
moment of a geometric random variable – hence it is O(1).
This completes the proof.

Thus we have that βdmax < 1 and µ = O(1) is a
sufficient condition for subcritical epidemics. We can also now
generalize the above argument to prove Theorem 4, wherein
we bound the extinction time for µ scaling with n.

Proof of Theorem 4: We define γ = 1
βdmax

> 1 –
further we can always assume γ = O(1), as otherwise, we
can increase β, which can only increase the extinction time.
Now following identical arguments as in those for Theorem
1, we get that

E[TSIS ] ≤
n∑
k=1

(βdmax)k(k + 1)(
µ

βdmax
) ≤ γ

n∑
k=2

γ−kkγµ

≤ γ
∫ ∞

1

γ−xxγµdx ≤ γΓ(γµ+ 1)

(log γ)γµ+1
,

where Γ(x + 1) = x!. Now using Stirling’s formula, and the
fact that γ = Θ(1), we get that E[TSIS ] = O(µ2µ). Now
suppose µ = f(n) logn

log logn , where f(n) is some function such that

limn→∞ f(n) = 0 (i.e., µ = o
(

logn
log logn

)
, and f(n) = o(1)) –

substituting, we have E[TSIS ] = O(nf(n)) = no(1) – similarly
we can show that µ = polylog(n) is not sufficient for an
exponential lifetime.

B. Critical SIS Epidemics with External Agents

Next we turn to Theorem 2, wherein we derive a polynomial
upper bound for the extinction time in the case when βλ1 < 1:

Proof of Theorem 2: From existing results (such as
Theorem 3.1 of Ganesh et al. [2]), we have that in the absence
of external agents, the time to extinction T iSIS for the intrinsic
SIS process obeys E[T iSIS ] = O(log n) for any initial set of
infected nodes, if βλ1 < 1. We now bootstrap this to obtain
our result.

Note that the external sources, under any strategy, can infect
at most at a rate µ – thus to upper-bound E[TSIS ] (the
extinction time with external sources), we can stochastically
dominate it as follows: at time 0, assume all nodes are infected,
and start an exponential clock with rate µ. Clearly the underly-
ing SIS infection expires if all nodes recover before this clock
expires; if however the clock stops before the SIS process dies,
we restart the process with all nodes infected, and start another
exponential clock with µ. By standard coupling arguments, the

time to extinction for this new process stochastically dominates
TSIS for the original process.

Given an SIS process starting with all nodes initially in-
fected, the time to extinction without external sources is T iSIS ;
further, let Zµ ∼ Exponential(µ). Then we have:

P[Zµ > T iSIS ] = E[exp(−µT iSIS)]

≥ exp(−µE[TSIS ]) ≥ n−C ,

where C > 0 is some constant (independent of n); the second
inequality above follows from Jensen’s inequality, and also we
have used the fact that E[T iSIS ] = O(log n) and µ = O(1).

Note that the above quantity lower-bounds the probability
that, in the constructed process, the infection process ex-
pires before the clock (corresponding to the external source)
stops. Hence the expected number of regenerations that take
place before the process expires is upper-bounded by O(nC).
Further, the expected time between each regeneration is
E[min{T iSIS , Zµ}] – this is upper-bounded by E[Zµ] = 1

µ =

O(1). Thus E[TSIS ] = O(nO(1)).
To complete our analysis of the critical regime, we show

that polynomial extinction-times are in fact achievable for any
graphs with sufficiently large (i.e., polynomial) degree. We
consider the following strategy: the external agent targets any
susceptible node with degree Ω(nα−ε+δ) (henceforth referred
to as a high-degree node); else it infects a susceptible node
chosen at random (in fact, for ease of exposition, we assume
in the proof that the external node only infects the maximum-
degree node; however it is easy to see that the above strategy
is sufficient to show polynomial lifetime).

A crucial result we use in our proof is as follows: note
that as β scales as nε−α, the expected number of infection
attempts due to an infected high-degree node before it recovers
is Ω(nε). Suppose now we have that a high-degree node is
infected, but none of its neighbors is infected – we show
that with high probability (i.e., at least 1 − 1

poly(n)
), the

number of neighbors in infected state at the time the first node
recovery occurs is poly(n). Subsequently, we show that given
a poly(n) number of infected neighbors, a node gets infected
with a probability at least 1 − n−Ω(1) in presence of O(1)
external infection – note that this is not true in the absence
of the external agents (when βλ1 < 1). Combining these
observations, we show that the expected time to extinction
of the epidemic is poly(n).

Lemma 11. Given a star-graph on m nodes, and an SIS
infection with β = Ω(mε−1), for some constant ε > 0.
Suppose only the hub is infected at time t = 0 – then at
the time when the first node recovery occurs, the number of
infected nodes in the system is Ω(mε/3) with probability at
least 1−O

(
1

mε/3

)
.

Proof: First, note that decreasing the value of β can only
make it less likely to have several infections before a recovery
– hence we can assume that ε < 1. Define k = mε/3. Now let
Nt be the number of infected nodes at time t (thus N0 = 1),
and T be the first time that some infected node recovers. For
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some constants c1, c2 > 0, we want to show that P[NT ≥ c1k]
with probability 1− c2k−1.

For the system at a time t < T , suppose Nt = i – note that
the hub is still infected, since no recoveries have occurred.
Then there are 2 possible events – either Nt goes to state
i+ 1 at rate β(m− i+ 1), or it stops (due to node recovery)
at rate i. Now we have:

P[NT ≥ k] ≥ P[Nt reaches k before stopping]

=

k∏
i=1

(
β(m− i+ 1)

β(m− i+ 1) + i

)

≥
(

1 +
k

β(m− k + 1)

)−k
≥ 1− k2

β(m− k + 1)

= 1− m2ε/3

mε −m5ε/3−1 +mε−1
≥ 1− m−ε/3

1− o(m)
.

Choosing m sufficiently large, we get the result
Proof of Theorem 3: We assume henceforth that the

external agent only tries to infect the (unique) node with
maximum degree – this is without loss of generality for the
scaling results. First, note that irrespective of the initial state,
the maximum-degree node gets infected with probability at
least µ

1+µ = Ω(1) – thus the expected lifetime with any initial
set of infected nodes is at least a constant fraction of the
expected lifetime if the epidemic started at the maximum-
degree node. Further, note that the lifetime of the epidemic on
graph G if some edges are removed is stochastically dominated
by the lifetime on G – this means that to complete the proof, it
is sufficient to show that the SIS epidemic has a lifetime which
is poly(n) if on a star graph with a hub and nα leaf-nodes, and
an additional infection-source of rate µ = O(1) for the hub.
We do this by analyzing cyclical epochs characterized by the
reinfection/recovery of the hub – this is similar to techniques
used in [2], [16], however the presence of external infection-
sources changes the lifetime dramatically.

We construct the following process which under-dominates
the epidemic on the star: at time 0, we assume that only the
hub is infected; subsequently, when either the hub or any
of its neighboring leaf-nodes recovers for the first time, we
instead make the hub recover – this clearly under-dominates
the epidemic, as we have the same recovery rate, but a smaller
infection rate in the system. We then show that with probability
at least 1 − n−Ω(1), the hub gets re-infected before all the
infected leaf-nodes get recovered. If this happens, we can
again restart the system with only the hub infected (and all
leaf-nodes susceptible) – note that this implies the expected
number of such regenerations is nΩ(1), and the time spent
in each epoch is at least Ω(1), which gives us the desired
polynomial expected lifetime.

First, suppose the hub is infected at some time t – then
from Lemma 11, we have that when any infected node in
the neighborhood recovers for the first time after t, then the
number of infected nodes in the system is Ω(nαε/3) with
probability at least 1 − Ω

(
n−αε/3

)
. As we described above,

we now assume that the hub is the node which recovers first,

and thus there are ñ = Ω(nαε/3) infected neighbors.
Next, given that there are ñ infected neighbors when the

hub recovers – then the probability of the event Añ that the
hub is not re-infected before all the neighbors recover is given
by the following.

P[Añ] =

ñ−1∏
i=0

ñ− i
µ+ (ñ−−i+ 1)(1 + β)

To see this, note that if k neighbors are infected, then the
probability that one of them recovers before the hub is re-
infected is the same as that among three exponential random
variables of rate µ, kβ and k, the one with rate k is minimum,
i.e., k

µ+k(1+β) ; subsequently, we can use the memoryless
property of the exponential distribution. We can now bound
the above as follows:

P[Añ] =

ñ−1∏
i=0

ñ− i
µ+ (ñ−−i+ 1)(1 + β)

≤
ñ∏
i=1

1

1 + β + µ
i

≤ exp

(
−

ñ∑
i=1

(
β +

µ

i

)
+

ñ∑
i=1

1

2

(
β +

µ

i

)2
)
,

where we use that 1 + x ≥ ex−
x2

2 . Now, using the fact that
log n+ 1 ≤ Hn ≤ log(n+ 1), we can simplify to get:

P[Añ] ≤ C(ñ+ 1)−µ(1−β) = O
(
n−αεµ/3

)
,

where we have used the fact that βλ1 ≤ 1 and hence is
β ≤ 1. Combining the two (via the union bound), we get the
probability that the hub gets re-infected before the infection
dies in the network is at least 1−O

(
n−αεµ/3

)
= 1−n−Ω(1).

Thus, there are nΩ(1) such regenerations on average before the
infection dies in the network.

C. Supercritical SIS Epidemics with External Agents

We now give a sufficient condition for supercritical SIS
epidemics in the presence of external sources.

Proof of Theorem 5: To obtain a sufficient condition
for supercritical behavior, we need to lower bound E[TSIS ] –
for this, we stochastically under-dominate the process via the
following (one-dimensional) Markov chain: let Y (t) be a con-
tinuous time Markov chain on the state space {0, 1, · · · ,m}
with the following transition rates.

i→ i+ 1 at rate βη(i)i+ µ for i > 0,

i→ i− 1 at rate i for i > 0,

and all other transitions having rate 0. Essentially, η(i) cap-
tures the bottleneck cut for all sets of size ≤ i – standard
coupling arguments show that this process is stochastically
dominated by |X[t]|.

To lower bound the time to absorption for this chain we use
an approach similar to that in the proof of the theorem 1 – we
construct an appropriate discrete-time ergodic Markov chain,
so that we can use Lemma 8. Note that to find a lower-bound
on the expected time to hit zero, it is sufficient to consider an
initial state where only 1 node is infected.
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The embedded chain Y D corresponding to Y has transition
probabilities pi,i+1 = βη(i)i+µ

βη(i)i+µ+i and pi,i−1 = i
βη(i)i+µ+i

for all i > 0 (note we still assume i ≤ m), and all other
transition probabilities being 0. Defining TD1,0 to be the time
for the embedded chain to hit state 0 starting from 1, then
from Lemma 8), we have:

E[TD1,0] =

n∑
k=1

k∏
i=1

(
βη(i) +

µ(i)

i

)
Next, we want to lower bound the time that the system

spends in each state. Let M = βn2+n+µ – then the expected
time spent at any state of the continuous time Markov chain
Y is lower-bounded by 1

M . Hence E[TSIS ] = Ω
(
en
α

M

)
which

is en
Ω(1)

as long as M = O(poly(n)).
Thus we have that a sufficient condition for supercritical

behavior is given by E[TD1,0] = Ω
(
en

Ω(1)
)

. Now if ∀ i ∈
{1, 2, . . . , nα} for some α > 0, we have βη(i) + µ(i)

i ≥ 1 +
ε for some ε > 0, then the LHS of the above equation is
Ω
(
en

α)
, which is what we desire.

To obtain the condition given in Theorem 5, note that
random infection strategy is successful at a rate that equals
µ̃(i) = µ(i)

(
1− i

n

)
, when |I| = i. Now suppose we have

βη(nα) + γ ≥ 1 + ε for some ε > 0. Then we have:

E[TD1,0] ≥
nα∑
k=1

k∏
i=1

(
βη(nα) + γ

(
1− i

n

))

≥
nα∑
k=1

k∏
i=1

(
1 + ε− γi

n

)
.

Now we can choose n large enough such that we have
γnα−1 < ε

2 - this then ensures E[TD1,0] = en
Ω(1)

.

D. SIR Epidemics with External Agents

Finally, we utilize Lemma 10 to get conditions for subcrit-
ical SIR epidemics:

Proof of Theorem 6: We first consider a standard
technique for bounding the size of eventual infection without
external agents (for example, in [3]).The main observation
is that the probability of a node i to get infected eventually
is dependent on its being infected initially and its neighbors
N (i) = {j ∈ V |(i, j) ∈ E} being infected eventually. We
have:

P[Xi(∞) = e] ≤ P[Xi(0) = 1]+
β

β + 1

∑
j∈N (i)

P[Xj(∞) = e]

Next, to account for the external sources, we can add
an additional term to the RHS to capture the probability
that the node i is infected by external agent at some time.
Recall that we defined L(t) to be an inhomogeneous Poisson
process representing the external infection at node i – then
the probability of i being infected via the external source is
given by 1− exp(

∫ TSIR
0

Li(t)dt), which is upper-bounded by

∫ TSIR
0

Li(t)dt for each i. Adding up the inequalities for all
the nodes, we get:

n∑
i=1

P[Xi(∞) = e]

(
1− βdi

β + 1

)
≤

E[N0] + E

[
n∑
i=1

∫ TSIR

0

Li(t)dt

]
,

where N0 =
∑
i 1{Xi(0)=e} is the number of initially infected

nodes. Reorganizing, and using di ≤ dmax and β(dmax−1) <
1, we get:

E[NSIR] ≤ E[N0] + µE[TSIR]

1− βdmax
β+1

To conclude the proof, we need to bound E[TSIR] – however
from Lemma 10, we know it is sufficient to bound E[TSIS ].
Further, from Theorem 4, we have that if µ = o

(
logn

log logn

)
,

then TSIS = subpoly(n). This completes the proof.
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