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Abstract—Most peer-to-peer content distribution sys-
tems require the peers to privilege the welfare of the
overall system over greedily maximizing their own utility.
When downloading a file broken up into multiple pieces,
peers are often asked to pass on some possible download
opportunities of common pieces in order to favor rare
pieces. This is to avoid the missing piece syndrome, which
throttles the download rate of the peer-to-peer system to
that of downloading the file straight from the server. In
other situations, peers are asked to stay in the system even
though they have collected all the file’s pieces and have an
incentive to leave right away.

We propose a mechanism which allows peers to act
greedily and yet stabilizes the peer-to-peer content shar-
ing system. Our mechanism combines a fountain code
at the server to generate innovative new pieces, and a
prioritization for the server to deliver pieces only to new
peers. While by itself, neither the fountain code nor the
prioritization of new peers alone stabilizes the system, we
demonstrate that their combination does, through both
analytical and numerical evaluation.

I. INTRODUCTION

New network architectures are being studied to facil-
itate content distribution [1]–[8]. In many of these pro-
posals, the mechanisms to implement content distribution
propose to take advantage of cached copies of the content
located in distributed locations in the network, including
end users and other peers. Some CDNs [9] even have
started using P2P distribution systems in order to reduce
downloading costs. Those new usages of P2P systems
would come on top of the existing popularity of P2P
systems such as BitTorrent [10] or eMule [11], which
account for a significant fraction of the overall Internet
traffic already.

The point of using peers to share content is that
the multiplicity of the potential peers would allow the
content distribution to scale: the more peers, the higher

the rate of downloads. A server offers a file to down-
load, which is divided in a number of chunks. Peers
(or leechers) join in the system, request chunks from
both the server and other peers. Then, once a peer has
obtained all the chunks from the requested file, it leaves
the system.

However, for some peer-to-peer systems, the expected
benefit from the participation of peers turns out to be
elusive [12] [13]. The so-calledmissing chunk syndrome
ends up restricting the download rate to that of the server.
In this case, there is no gain from the peer diversity,
since the rate of download is the same as if all peers
were pulling the file from the server.

Some solutions to alleviate this problem have been
recently proposed [14] [15] [16]. These solutions work
by either restricting which chunk a peer can download
(say, constraining the peer to download only rare pieces
first) or forcing the peers to stay longer in the system
(as a seeder). Either way, the peer ends being coerced
into a behavior that is good for the system as a whole,
but not necessarily for each of the individuals.

We propose a mechanism which lets the peer function
in a greedy manner, namely download any chunk that
it does not have upon each contact with another peer;
and leave the system as soon as it has received the
whole target file. We also consider a pure random peer
selection, meaning that peers do not need to poll multiple
neighbors, nor need to maintain some chunk lists for
their neighbors. In essence, we consider the simplest
selection mechanism from the peer’s point of view. Our
method combines two improvements, which do not work
independently of each other. Namely, we suggest to use
a fountain code [17] at the server to insert chunks with
more degrees of freedom, and to have the server push
chunks preferentially to new peers, when the rate of
arrivals of new peers into the system exceeds the server’s
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download capacity.
Fountain codes (or rateless erasure codes) take the

file to be downloaded as input and produce a sequence
of chunks such that obtaining anyk elements of the
sequence allows to reconstruct the original file. The
use of coding in content distribution networks [18]
and information-centric networks [19] has demonstrated
positive benefits, and our peer-to-peer system proves to
be no exception.

We demonstrate that the simple combination of coding
and prioritizing of the server’s download does indeed
increase the capacity of the peer-to-peer system while
imposing no restrictions on the behavior of the peers.
We show that by proper dimensioning of its parameters,
any peer workload can be stabilized. While our result
is primarily theoretical, we confirm these findings by
simulating our proposed mechanism and verify that it
does increase the system’s download capacity.

The paper is organized as follows: in Section II, we
discuss the related work and offer some background. In
Section III, we describe the model of our peer-to-peer
system and state our main theorem. In Section IV, we
offer the proof of the Theorem. We visualize these results
using Matlab in Section VI and finally provide some
concluding remarks in Section VII.

II. RELATED WORK

Consider a system where the server does not use any
coding and delivers one of thek file pieces to the peers.
More precisely, the peers contact at random another peer,
including the server, and download a chunk if the other
peer has an innovative piece. The peers leave the system
as soon as they complete the download. This will serve as
our baseline system, which we will use as a benchmark.

The missing chunk syndrome [12] [13] arises when a
disproportionate number of peers in the system have all
the same chunks but one. These nodes are denoted as
the ‘one-club’ peers.

In this case, the last chunk is a rare chunk, and
nodes with a rare chunk will leave the system fast,
as they can get all the other pieces from the ‘one-
club’ peers. Thus, nodes with the rare chunk will depart
from the system, leaving only the server to provide the
rare chunk. And each ‘one-club’ peer that receive the
”missing chunk” will depart the system right away since
it will have completed the download of the whole file. As
a consequence, the download performance of the system
boils down to that of the server.

BitTorrent alleviates this issue by asking peers to poll
a set of neighbors for their chunk list, and download

Fig. 1. The Missing Chunk Syndrome (reproduced from [13])

the rarest chunk. This adds an overhead to share the
availability of chunks to the peers in the neighbor set.
Further, Oguz [14] mentions that it is still an open
question to know if BitTorrent protocol is stabilizing.

[14] does provide a stabilizing protocol which re-
quires to poll only three peers. It works by asking peers
with no pieces to hold on downloading a piece until
they find a rare piece, where a rare piece is defined by
sampling three neighbors and if a chunk appears only in
one of the three neighbors’ chunk lists, then it is rare. A
similar rule applies to peers missing only one chunk.

[15] proves the stability of the P2P system when the
peers are asked to stay in the system for some time after
download completion that depends on the peer arrival
process and download rate. As in the previous system,
peers are asked to stay longer, either explicitly or by
withholding download, in order to stabilize the system.

[20] models a BitTorrent P2P network and studies
its scalability using a fluid model. It also models the
peer selection mechanism and shows the convergence
of the peer selection mechanism to a Nash equilibrium
under some incentive structure. The paper only analyzes
the BitTorrent protocol, and does not propose a novel
mechanism. The fluid model was also studied in [21].

Yang [22] [23] also analyzes the service capacity of
peer to peer networks in both a transient and a stationary
regime, and demonstrates that in both regimes the system
is scalable. However, it does not consider the missing
chunk syndrome but only an aggregate capacity over
multiple files.

[24] generalizes the peer-to-peer setup to coupon
collection, and studies the asymptotic behavior of such
systems with respect to the sojourn time in the system
under different types of encounters, including random
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encounters (which is what we consider in this paper).
This work also considers the missing chunk syndrome
but under a closed system.

[25] studies the stability in the case of two-chunks
systems. This is complementary to our works, as the ben-
efit of our approach depend on having a file decomposed
into a large number of chunks (namely, as the available
bandwidth scales with the number of chunksk to a file).

[26] studies the impact of peer-selection and piece-
selection policies. Sophisticated peer- and/or piece-
selection requires the publisher of the file and/or the
peers to maintain track of the different chunks in the
swarm, in order to enable most-deprived peer selection
and rarest-first piece selection. These selection mecha-
nisms improve the performance of the system, but we
consider an orthogonal problem, namely we impose a
random piece- and peer- selection.

[16] observes that missing chunk syndrome leads to
a bandwidth bottleneck at the seed that can lead to the
underutilization of the aggregate capacity, and proposes
to share this capacity across the download of multiple
files.

[27] studies the stability of P2P system, but taking
into account the locality of the peers and the RTT
between them to observe that P2P system might exhibit
what they denote as super-scalability, namely a reduction
of the delays as the number of peers grow.

We describe our model in more details in the following
Section.

III. M ODEL

We consider the following system. LetS be the total
number of peers in the system. Peers join the system
according to a process with intensityλ. We make the
following assumptions: We consider slotted arrivals, with
on averageλ arrivals per slot. We also assume that the
number of arrivals in a time slot is greater than 1 and
less than someA > 0. These are technical assumptions
which can be relaxed, but makes our proof simpler to
explain. Peers come into the system empty. There is
only one file in the system to download (multiple files
can be considered independently). The server generates
chunks from the file using a fountain code such that
retrieving anyk chunks allows to decode the file. With
a perfect fountain code, the server could generate a
limitless sequence of such chunks. In our evaluation, we
assume that the server createsK >> k possible chunks
(say, using linear random network coding over a large

Fig. 2. P2P System Description

enough Galois field)1.

The peers exchange chunks according to the following
mechanism. It is a slotted system, where a slot corre-
sponds to the exchange of one chunk. During each slot,
a peerp selects at random a peerq among all the other
peers in the system. Ifq has one or more pieces of the
file thatp does not have, thenp downloads one of these
pieces, selecting at random if there are several matches.
The download occurs immediately. Ifq has no innovative
element forp, then no download occurs.

When p has collectedk distinct pieces, then it can
decode the target file, and it leaves the system right away.
According to this policy, every timep can download any
chunk, it does so; and it leaves the system at the first
opportunity. The mechanism is myopic forp, asp only
maximizes its own utility and does not worry about the
overall system’s welfare.

The server follows a different policy: when a new
peer joins the system, it pushes a new chunk to this
peer. However, the server is bandwidth constrained, and
can only do this up to a rate of 1. This means, when
λ > 1, we decompose the peer arrival process into two
streams: one of rate 1 and one of rateλ − 1 (this is
achieved by tossing a coin selecting the first stream with
probability 1/λ for the first one, and(λ − 1)/λ for the
second one). The elements in the former process receive
an innovative chunk from the server, while the latter ones
join the system empty and follow the peer process as

1We ignore here the issues of efficient decoding inherent to using
a true fountain code vs a random linear code, as those are orthogonal
to the stability aspects we investigate.



4

described above2. We only considerλ > 1 as otherwise,
the stability of the system is known from [15].

Each peer downloads a chunk at rate 1 if it finds a
valid piece. On average, each peer is probed at rate one,
so both upload and download bandwidth at each peer are
identical and equal to one on average.

Our system describes a Markov process with state
defined by the peer chunk profiles. Using the typical
notation, denote byq(x, x′) the generator of this Markov
process. As in [15] [14], we will use the Foster-Lyapunov
criterion to show that the Markov process is positive
recurrent.

Recall the following definition [28]. LetV : S → R+

be some function on the state spaceS of the Markov
chain:

Definition 3.1: The drift ∆V (x) of V (x) is defined
as:

∆V (x) = Σx′ 6=xq(x, x
′)(V (x′)− V (x)) (1)

We enounce the following Theorem (Foster-
Lyapunov) [28]:

Theorem 3.1:Let L be a function on the state space
with drift ∆L with L ≥ 0 and {L ≤ l} finite for any
l > 0. If there existsSo > 0 and ǫ > 0 such that, for
S > So, ∆L < −ǫ, then the underlying Markov process
is positive recurrent.

We can now state our main result:
Theorem 3.2:For λ < k, the peer-to-peer model

described above is stable
Before proving the theorem in the next Section, we

make a few observations, namely that neither the foun-
tain code nor the prioritization independently increase
the stability region of the baseline system. Both need to
be combined to achieve the increased stability region.
We describe this intuitively.

The ”server prioritizes peers with no chunks”
policy is not enough: Consider again the baseline
system wherek chunks are required to complete the
download. Assume now that the server only serves nodes
with no chunks, while the peers proceed according to
the baseline mechanism. Again, when a ‘one-club’ arises
(it will happen at some point as the Markov process is
irreducible and there is a positive probability of reaching
an unbalanced state), all nodes are missing one element.
The server will provide this element at rate1/k as it

2Even though there is a restriction on which peers the server can
serve, there is no ”withholding download” since for an arrival rate of
λ > 1, there is almost always a new peer for the server to serve. If
there is no such new peer, the server can always pick another peer
at random.

provides allk elements at rate 1. Nodes which receives
no chunk or a chunk that is not rare from the server will
eventually join the ‘one-club’ by downloading pieces
from this predominant group.

After a node with no chunk receives the rare element
from the server, it will download the other elements.
Since most of the peers belong to the ‘one-club’, the
node with the rare chunk will acquire thek−1 elements
from the ‘one-club’. The rate at which nodes in the ‘one-
club’ acquire the rare chunk from peers with the rare
chunk andi − 1 other chunks iscr,i ∗ Coc/S whereS
is the total number of peers,cr,i is the number of nodes
with the rare chunk andi − 1 other chunks, for a total
of i chunks, andCoc is the number of nodes in the ‘one-
club’. This is becauseCoc nodes select a node with the
rare chunk andi pieces with probabilitycr,i/S. However,
this rate also approximates the rate at which peers with
the rare chunk go fromi chunks toi+1 by downloading
a piece from the ‘one-club’.

Because nodes with the rare chunks never join the
‘one-club’ by definition, nodes inserted by the server
with the rare chunk at rate1/k will transition from i
chunks toi + 1 chunks at the same rate. The rate at
which these rare nodes transition fromi to i+1 chunks
is equal to the rate at which they ”knock down” peers
to leave the ‘one-club’ and thus the system. As there are
k steps for a rare peer to go from 1 chunk tok chunks,
it will reduce the size of the ‘one-club’ byk ∗ 1/k = 1,
that is the server capacity. It is thus equivalent for the
‘one-club’ to download straight from the server as in the
baseline system.

The fountain code by itself is not enough:Consider
one more time the baseline system, but now, the server
always provides innovative packets under some fountain
code. Again, this is a Markov process that is irreducible,
and there is a positive probability of reaching a ‘one-
club’ state, namely a state where all the peers have the
same identicalk−1 packets. These peers cannot find new
chunks in between themselves, so only peers connecting
to the server will acquire ak-th packet, which allows
them to decode the file with the already obtainedk − 1
pieces. These peers leave the system immediately.

New peers on the other hand will join the ‘one-
club’ state with high likelihood, since most candidate
peers to download from already belong to the ‘one-club’.
This re-creates the missing chunk syndrome, as each
chunk downloaded from the server corresponds to a peer
leaving the system, and thus for the system to be stable,
we needλ < 1.

We now prove Theorem 3.2.
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IV. PROOF OFTHEOREM 3.2

Assume we haveS peers in the system. We denote
by αi the fraction of theS peers that havei chunks.
That is,α0S peers have no chunks,α1S have received
one, etc. Denote byM the number of chunks which
need to be downloaded to satisfy all the customers in
the system. Namely,M = Σk−1

i=0
αi(k− i), asα0S peers

needk distinct chunks to leave the system,α1S need
k − 1, etc. We denote byCi the set of peers withi
chunks (as well as its cardinality in a slight abuse of
notation).

We will prove that the drift ofM is negative forS
large enough (sinceS ≤ M ≤ kS, we can indifferently
consider a bound onS or M ) and then apply Theo-
rem 3.1).

We now prove a series of Lemmas.
Lemma 4.1:For ǫ > 0, if there existsi ≥ 0 such that

ǫ < αi < 1− ǫ, then

∆M < λk − ǫ2S (2)

Proof: Consideri ≥ 0 such thatǫ < αi < 1−ǫ. Then the
peers inCi can exchange chunks with all the peers not in
Ci (either by giving a chunk to the peers inCj for j < i
or by receiving a chunk fromCj , j > i). This means
that at each time step, the rate of exchange is at least
αi(1−αi)S. By the Lemma’s conditions,αi(1−αi) > ǫ2,
therefore the rate of chunk downloads (i.e. the rate of
decrease forM ) is greater thanǫ2S.

The rate of increase ofM is kλ, therefore concluding
the proof of the Lemma.

We introduce some definitions needed for the next
Lemmas.

Definition 4.1: We call aprimary seeda peer which
received a chunk directly from the server. We call a
secondary seeda peer which received a chunk directly
from a primary seed. Finally, we call atertiary seeda
peer which received a chunk directly from a secondary
seed.

Lemma 4.2:At any time in the system, there are
alwaysk−1 primary seeds in the system which received
their chunks within thek previous steps.
Proof: Per our technical assumption, there is always a
new primary seed created at each time step. A primary
seed will then stay at least anotherk − 1 steps in the
system, as it receives at most one chunk per step and
needs to find anotherk − 1 chunks to leave the system.
Therefore at any time step, the primary seed created at
this step and at the previousk−2 steps are in the system.
Therefore there are alwaysk − 1 primary seeds created

within the previousk steps present at any time in the
system.

Lemma 4.3:If for ǫ > 0 andS >> A, if there exists
i < k − 1 such thatαi > 1 − ǫ, then there are at least
βi(k − 1) secondary seeds andβi(k − 1) tertiary seeds
in the system, whereβi = (αi − (2k + 2A)/S)2.
Proof: There arek − 1 primary seeds per the previous
lemma at any time in the system. Therefore, if we denote
the current time by 0, there werek − 1 primary seeds
at step -1 and -2. Thek − 1 seeds gave chunks to peers
in Ci at rate at least(αi − (2A + k)/S)(k − 1), since
there were at leastS − (2A+ k) peers at step -2 in the
system which would be inCi at step 0 (not counting
the k − 1 secondary seeds, and since less thanA peers
can arrive per step) and primary seeds can give chunks
to any other older peer by the property of the fountain
code. Further, sincei < k − 1, giving a chunk to a
peer inCi will move this peer toCi+1, therefore the
secondary seeds will not leave the system. Thus there
are(αi − (2A+ k)/S)(k− 1) secondary seeds at step 0
and -1. The(αi − (2A+ k)/S)(k − 1) secondary seeds
at step -1 can all give chunks to older peers in the set
of peers that will end up inCi at step 0 (excluding2k
primary and secondary seeds), and there are at least a
fractionαi − (A+ 2k)/S at step -1, therefore there are
at least(αi−(A+2)/S)(αi−(2A+k)/S)(k−1) at step 0.
Sinceβi < (αi−(A+2k)/S)(αi−(2A+k)/S) < (αi−
(2A + k)/S), this completes the proof of the Lemma.

Note that fori = k − 1, the secondary seeds might
be leaving the system right away, so we cannot make a
similar statement fori = k − 1.

Lemma 4.4:For k > 2, there existsS′ > 0 such that
for S > S′, if there existsi < k−1 such thatαi > 1− ǫ
at time 0, then

∆M < (k − i)(2− k) (3)

Proof: We are satisfying the conditions of Lemma 4.3,
therefore we have in the system(k − 1) primary seeds
and at leastβi(k− 1) secondary and tertiary seeds. That
means there are(k− 1)(1 + 2βi) seeds at any time step
with chunks that are less thank steps old. Since there
are at mostkA chunks in the system that are less than
k steps old, and these have exchanged at rate 1 during
thesek steps, there are at mostk2k peers with chunks
less thank steps old. This means that at leastCi−k2kA
peers have chunks that are older thank steps at time 0.
We now considerS′ > 0 such thatk2kA/S′ < ǫ.

At steps−(k− i−2), . . . ,−1, the primary, secondary
and tertiary chunks will exchange with the(αi − ǫ)S
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nodes that have chunks older thank steps which will
end up inCi at time 0. These exchanges will lead to
peers that will have at mosti+ 1 chunks, and therefore
will stay in the system at leastk− i−1 steps. Therefore
all these peers will be in the system at time 0.

There are(k−1)(1+2βi)(k−i−1)(αi−ǫ) such peers
at time 0, plus the(1 + 2βi)(k − 1) primary, secondary
and ternary seeds. Therefore, at time 0,M will decrease
by (k−1)(1+2βi)(k− i)(αi− ǫ)2 chunks. This is equal
to 3(k−1)(k−i)(1−δ) whereδ can be chosen arbitrarily
close to 0 by selecting the properS′ andǫ.

Empty peers arrived in the system at rate(λ − 1).
All the peers that have arrived since time−(i− 1) have
less thani chunks (they can receive at most one per
step) and therefore will exchange with peers inCi at
rateαi. ThereforeM decreases from these peers at rate
αi(λ− 1)i.

M increases with rateλk. Summing all the contribu-
tions, we have:

∆M = λk − αi(λ− 1)i− 3(k − 1)(k − i)(1− δ)

= λ(k − i) + i− 3(k − 1)(k − i)

= (k − i)(λ − 2(k − 1)) + i− (k − 1)

= (k − i)(λ − k) + (k − i)(2− k) + (i− k + 1)

(4)

The Lemma results from the fact thatλ < k and i <
k − 1.

Lemma 4.5:For i = k − 1, αk−1 > 1 − ǫ implies
∆M < λ− k + ǫ.
Proof: By Lemma 4.2, we have(k−1) primary seeds in
the system at time 0. Thereforeαk−1(k−1) chunks will
be downloaded from those seeds. The server will provide
one chunk to a peer at rate 1. Therefore, the rate of chunk
download from the primary seeds is1 + αk−1(k − 1) >
k − ǫ. The primary seeds will upload to peers inCk−1

at rate(αi − k/S)(k − 1) since at leastαi − k/S peers
in Ck−1 have innovative chunks. Therefore, there are
2k − 1− o(ǫ) exchange to/from the primary seeds.

At step−(k−2),−(k−3), . . . , 0, empty peers arrived
at rate(λ − 1) and these peers are still in the system.
Thus they will download chunks with peers inCk−1 at
rateαk−1. Therefore, the rate of chunk exchange from
these peers is thusαk−1(λ− 1)(k − 1).

The rate of increase ofM is λk − 1. Putting it all
together:

∆M = λk − 1− (2k − 1)− (λ− 1)(k − 1) + o(ǫ)

= λ− k + o(ǫ) (5)

We can now prove our Theorem. Setǫ > 0 small
enough andS′ large enough so that the drift ofM is
negative in all the Lemmas. At any point in time, either
one of theαi satisfiesǫ < αi < 1− ǫ (case 1), or there
existsj such thatαj > 1 − ǫ andαi < ǫ for all i 6= j
(case 2).

In case 1, apply Lemma 4.1; in case 2, ifi < k −
1, apply Lemma 4.4; otherwise, ifi = k − 1, apply
Lemma 4.5. In all cases, there existδ > 0 such that
∆M < −δ < 0 for S > S′. Applying Theorem 3.1
concludes the proof of our Theorem.

V. PRACTICAL CONSIDERATIONS

A. Important Observations

The first important observation is as follows: fori =
k − 1, we have seen that the drift ofM is bounded by
λ− k in Lemma 4.5. This means thatλ < k is not only
a sufficient condition for stability, but also a necessary
condition.

The second important observation is that the paral-
lelism of the system is conditioned by the number of
chunks. The more chunks are needed to retrieve the file,
the more peers can be served concurrently by the system.
This is a qualitatively different stability than the typical
system where, due to the ”missing chunk” syndrome,
the bottleneck is the rate at which the server can deliver
chunks.

We state a corollary of Theorem 3.2.
Corollary 5.1: As the server seesλ and selectsk,

it can always pick a value such that the system is
stable. This thus demonstrates that any workload can
be stabilized by the proper selection of the encoding
parameterk.

This is true of the system that is limited by the
”missing chunk” syndrome as well. But the relationship
betweenk and the performance of the system is different.

Consider the basic system (without the fountain en-
coding and the server-prioritizes-empty-peers policy).
Its bottleneck is the rate at which peers can download
chunks from the server, namely one arrival per each time
it takes to download a chunk from the server (λ < 1
chunk download time). If the bandwidth from the server
to the peer isB, and if the chunk size isF/k for a
file of sizeF divided in k chunks, then the server can
serve Ck/F chunks per second, and the arrival rate
of customers has to be less thanCk/F . Increasingk
therefore increases the capacity of the systemlinearly.

In our scheme, for the same fileF divided ink chunks
and the same bandwidthC, k peers can be served per
slot (λ < k). A slot corresponds to the time to exchange
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a chunk, therefore a slot lastsF/(kC) unit of times, or
conversely,kC/F chunks can be served per unit of time.
Therefore, the arrival rate of peers in the system can be
k2C/F , which is quadratic in k. Dividing the size of
the chunks by two quadruple the capacity of the system
(without taking into account any complexity trade-offs).
We rephrase this as the following theorem:

Theorem 5.2:Increasing the number of chunks of a
given file by a factorδ increases the stability region by
a factorδ2.

This has a practical impact. Assuming you have106

peers arriving to download a file, then you would want
to divide the file ink = 103 chunks so that the valuek2

matches the arrival rate into the system. As it turns out,
a ninety minute movie is decomposed into 540 chunks
of 10s or 2700 chunks of 2s, which are the chunk sizes
used for adaptive video streaming mechanisms such as
DASH [29]–[31] or Apple HTTP Live Streaming. So our
scheme is naturally tuned to support a magnitude of the
order of million of users using the current chunk size
used in existing video streaming mechanisms.

B. Algorithm Design

We now design an algorithm to stabilize the sys-
tem: setτ to be a timer window. Start at time 0. Set
n = 0, a = 0. While nτ ≤ t < (n + 1)τ , count the
arrival of new peers. Incrementa for each new arrival.
When t = (n + 1)τ , incrementn. Estimate the arrival
rate asa/τ . If a/τ > k − 1, then increasek until
k > a/τ . Reseta to 0 and iterate. Upon increasing
k, the server has to notify the new peers arriving after
(n+1)τ to only communicate in between themselves as
the chunks are not compatible with the previous chunks
(they correspond to different values ofk). As for the
peers in the system before(n + 1)τ , the server should
assess whether or not the distribution of chunks would
allow them to leave the system. Otherwise, it drains this
pool of older peers using the capacity freed with the
newest peers by the increase of thek parameter.

In order to achieve a proper code in a practical manner,
it is possible to split the file intok chunks and use
random linear codes over some Galois field, and generate
the coefficient randomly for a linear combination of the
k chunks. Thenk network coded packets will yieldk
degrees of freedom with high probability (depending
on the size of the Galois field). We can generateK
different combinations, as the probability of collision
for k combinations will correspond to the probability of
drawing k different packets out ofK possible packets.
The server complexity then reduces to generating those

linear combinations. This is the encoding we use in the
evaluation section below.

This encoding can be used to vary the parameterk
as well. Consider a file split into2m chunks. Then the
network coding coefficients of the linear combinations
can be such that sequences of 2 or 4 or 8 chunks are
preserved. For instance, chunk 1 and 2 can receive the
same coefficients, chunk 3 and 4, etc. This would in
effect split the file into2m−1 chunks and allow for
increasing the number of chunks for the same file to2m

later on, or decreasing it to2m−2 by merging 1 through
4, 5 through 8, etc.

Such a scheme would allow for dynamically varying
the parameterk without having to segregate peers into
before and after the epoch whenk has changed. An
actual implementation of such a varying rate file dis-
tribution system is for future work.

VI. N UMERICAL EVALUATION

We implemented the proposed mechanism in Matlab.
Rather than using an ideal fountain code, we chose a
large value ofK, and considered Linear Network Coding
with K >> k distinct combinations. We setK = 10, 000
(which means that each chunk is innovative with prob-
ability 1 − 10−4 rather than 1 in the ideal encoding
case) and let the process evolve from empty initial con-
ditions. We implemented both thebaseline mechanism,
the proposed mechanism and two intermediate variations
of the baseline mechanism, namely one with the server
delivering encoded packets to random peers, and one
with the server only providing non-encoded packets to
”empty” peers (in our implementation, we do not even
select an empty peer, but select the latest peer having
joined in the system, which has a high likelihood, but
may not be, empty).

We took k = 5 for both mechanisms, and variedλ.
We declared the system unstable and stop the simulation
if the number of peers in the system grew to over 1,000.
We let the system run for 10,000 units or time or until
an unstable behavior is detected, whichever came first.

Figure 3 shows the behavior of the baseline system for
λ = 2 which is well above the server download capacity
of 1 of the baseline mechanism, but well belowk = 5.
As a consequence, the system diverges right away. One
can observe that the rate of growth for the number of
peers is roughly 1 peer per unit of time, that isλ − 1,
as expected.

Figure 4 has the server prioritize the elements ofc0
for chunk download. This is one of the mechanisms we
use in our proposed P2P protocol. We have discussed
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Fig. 3. Random Peer Contact with No Fountain Code (Baseline
Mechanism)λ > 1

why it should not improve the stability in Section III,
and the simulations obviously confirm this: it has no
consequence on the stability of the system. We do
not include a similar plot with only the fountain code
implemented (without the prioritization) as it is very
similar: using only ”baseline + fountain code” does not
have an impact on the system performance as well.

Figure 5 shows now the system corresponding to our
proposal under the same assumptions (λ = 2, k = 5 and
server rate equal 1). The number of peers in the system
stays roughly constant. It is clear that the system’s
behavior is dramatically different under this policy as
opposed to the baseline policy, as the number of peers
in one case grows linearly with time, while in the other,
it stays stable for an extended period of time.

Note that this is only an indication, not a proof of
stability, as it might take a long time for the system to
reach a missing chunk syndrome state from its initial
conditions. To illustrate this last point, we refer to
Figure 6, where our proposed mechanism is simulated
underλ = 5.5 > 5. We can see that for a long period of
time, it does look stable, until a situation finally arises
that the mechanism cannot counteract.

VII. C ONCLUSION

We have proposed a simple peer-to-peer mechanism
which shifts the complexity of stabilizing the system
away from the peer-selection and piece-selection mecha-
nism, by using fountain code and a simple prioritization
of the content publisher downloads. While this mecha-
nism allows for a greedy behavior from the peers and
a random selection of the contact points for download,
it improves the stability region of the system, and for
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proper choices of the system parameters, can arbitrarily
handle the peer arrival process.

We have demonstrated the properties of our mecha-
nism through analysis and through some Matlab simula-
tions.

Future work directions include generalizing the system
to heterogenous peers with different bandwidth capa-
bility and to assess the time spent in the system as
compared to other P2P mechanisms.
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