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Abstract—Most peer-to-peer content distribution sys- the rate of downloads. A server offers a file to down-
tems require the peers to privilege the welfare of the load, which is divided in a number of chunks. Peers
overall system over greedily maximizing their own utility. (or |eechers) join in the system, request chunks from
When downloading a file broken up into multiple pieces, poth the server and other peers. Then, once a peer has

peers are often asked to pass on some possible download, ineq 4|l the chunks from the requested file, it leaves
opportunities of common pieces in order to favor rare the system

pieces. This is to avoid the missing piece syndrome, which
throttles the download rate of the peer-to-peer system to  HOwever, for some peer-to-peer systems, the expected

that of downloading the file straight from the server. In benefit from the participation of peers turns out to be
other situations, peers are asked to stay in the system evenelusive [12] [13]. The so-callethissing chunk syndrome
though they have collected all the file’s pieces and have anends up restricting the download rate to that of the server.
incentive to leave right away. _ In this case, there is no gain from the peer diversity,

We propose a mechanism which allows peers to actgjnce the rate of download is the same as if all peers
greedily and yet stabilizes the peer-to-peer content shar- \are pulling the file from the server.
ing system. Our mechanism combines a fountain code g, o sotions to alleviate this problem have been
at the server to generate innovative new pieces, and a . .

recently proposed [14] [15] [16]. These solutions work

prioritization for the server to deliver pieces only to new ] o -
peers. While by itself, neither the fountain code nor the DY €ither restricting which chunk a peer can download

prioritization of new peers alone stabilizes the system, we (Say, constraining the peer to download only rare pieces
demonstrate that their combination does, through both first) or forcing the peers to stay longer in the system
analytical and numerical evaluation. (as a seeder). Either way, the peer ends being coerced
into a behavior that is good for the system as a whole,
but not necessarily for each of the individuals.

New network architectures are being studied to facil- We propose a mechanism which lets the peer function
itate content distribution_[1]=[8]. In many of these proin a greedy manner, namely download any chunk that
posals, the mechanisms to implement content distributiindoes not have upon each contact with another peer;
propose to take advantage of cached copies of the contemdi leave the system as soon as it has received the
located in distributed locations in the network, includingvhole target file. We also consider a pure random peer
end users and other peers. Some CDNSs [9] even haeection, meaning that peers do not need to poll multiple
started using P2P distribution systems in order to reduseighbors, nor need to maintain some chunk lists for
downloading costs. Those new usages of P2P systetmsir neighbors. In essence, we consider the simplest
would come on top of the existing popularity of P2RBelection mechanism from the peer’s point of view. Our
systems such as BitTorrent [10] or eMule [11], whicimethod combines two improvements, which do not work
account for a significant fraction of the overall Interneéhdependently of each other. Namely, we suggest to use
traffic already. a fountain code[ [17] at the server to insert chunks with

The point of using peers to share content is thatore degrees of freedom, and to have the server push
the multiplicity of the potential peers would allow thechunks preferentially to new peers, when the rate of
content distribution to scale: the more peers, the highanrivals of new peers into the system exceeds the server’s
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download capacity.
Fountain codes (or rateless erasure codes) take the
file to be downloaded as input and produce a sequence poers
of chunks such that obtaining anly elements of the
sequence allows to reconstruct the original file. The O ek et omty
use of coding in content distribution networks [18]
and information-centric networks [19] has demonstrated —
positive benefits, and our peer-to-peer system proves to ’ P
be no exception. ,/ !
We demonstrate that the simple combination of coding Piet&» \
and prioritizing of the server’'s download does indeed v S
increase the capacity of the peer-to-peer system while !
imposing no restrictions on the behavior of the peers. o
We show that by proper dimensioning of its parameters,':'g' 1. The Missing Chunk Syndrome (reproduced from [13])
any peer workload can be stabilized. While our result
is primarily theoretical, we confirm these findings b _
simulating our proposed mechanism and verify that e_rarg_st chunk. This adds an oyerhead t_o share the
does increase the system’s download capacity. availability of chunks to the peers m t.he n_elghbor set.
The paper is organized as follows: in Sectioh II, wEurther, Oguz [[14] mentions that it is still an open
discuss the related work and offer some background. JHeStion to know if BitTorrent protocol is stabilizing.
Section[Il, we describe the model of our peer-to-peer [14] does provide a stabilizing protocol which re-
system and state our main theorem. In Sedfich IV, \f&!iIres to poll only three peers. It work; by asl_<|ng peers
offer the proof of the Theorem. We visualize these resuldth no pieces to hold on downloading a piece until
using Matlab in SectiofiVI and finally provide somdhey find a rare piece, where a rare piece is defined by

concluding remarks in Sectiéi V. sampling three neighbors and if a chunk appears only in
one of the three neighbors’ chunk lists, then it is rare. A
Il. RELATED WORK similar rule applies to peers missing only one chunk.

Consider a system where the server does not use anyl13] proves the stability of the P2P system when the
coding and delivers one of thefile pieces to the peers.peers are asked to stay in the system for some time after
More precisely, the peers contact at random another p&iwnload completion that depends on the peer arrival
including the server, and download a chunk if the oth@focess and download rate. As in the previous system,
peer has an innovative piece. The peers leave the sysfgfirs are asked to stay longer, either explicitly or by
as soon as they complete the download. This will serve\§ghholding download, in order to stabilize the system.
our baseline systepwhich we will use as a benchmark. [20] models a BitTorrent P2P network and studies

The missing chunk syndrome [12] [13] arises whenits scalability using a fluid model. It also models the
disproportionate number of peers in the system have pgier selection mechanism and shows the convergence
the same chunks but one. These nodes are denotedfaiéie peer selection mechanism to a Nash equilibrium
the ‘one-club’ peers. under some incentive structure. The paper only analyzes

In this case, the last chunk is a rare chunk, arifie BitTorrent protocol, and does not propose a novel
nodes with a rare chunk will leave the system fasfechanism. The fluid model was also studied_in [21].
as they can get all the other pieces from the ‘one-Yang [22] [23] also analyzes the service capacity of
club’ peers. Thus, nodes with the rare chunk will depapeer to peer networks in both a transient and a stationary
from the system, leaving only the server to provide thregime, and demonstrates that in both regimes the system
rare chunk. And each ‘one-club’ peer that receive thig scalable. However, it does not consider the missing
"missing chunk” will depart the system right away sincehunk syndrome but only an aggregate capacity over
it will have completed the download of the whole file. Asnultiple files.

a consequence, the download performance of the system[24] generalizes the peer-to-peer setup to coupon
boils down to that of the server. collection, and studies the asymptotic behavior of such

BitTorrent alleviates this issue by asking peers to palstems with respect to the sojourn time in the system
a set of neighbors for their chunk list, and downloadnder different types of encounters, including random



File split in K chunks: chunks are encoded using

encounters (which is what we consider in this paper). . foran code: any  distict chunko can recover Bserlfinesm
This work also considers the missing chunk syndrome ™™, at rate lambda
but under a closed system. ﬁDDI /

[25] studies the stability in the case of two-chunks Q
systems. This is complementary to our works, as the ben- seed

. . . l
efit of our approach depend on having a file decomposed Pushes chunk
atrate 7 to

into a large number of chunks (namely, as the available latest arrival
bandwidth scales with the number of churikto a file).

[26] studies the impact of peer-selection and piece-

selection policies. Sophisticated peer- and/or piece- /
selection requires the publisher of the file and/or the Peers depart ke TN oo
peers to maintain track of the different chunks in the

swarm, in order to enable most-deprived peer selection
and rarest-first piece selection. These selection mecha-
nisms improve the performance of the system, but we
consider an orthogonal problem, namely we impose a
random piece- and peer- selection. enough Galois fielfl)

[16] observes that missing chunk syndrome leads t0The peers exchange chunks according to the following
a bandwidth bottleneck at the seed that can lead to thchanism. It is a slotted system, where a slot corre-
underutilization of the aggregate capacity, and proposgsonds to the exchange of one chunk. During each slot,
t_o share this capacity across the download of multipgapeerp selects at random a pegramong all the other
files. peers in the system. lif has one or more pieces of the

[27] studies the stability of P2P system, but takinflle thatp does not have, them downloads one of these
into account the locality of the peers and the RTpieces, selecting at random if there are several matches.
between them to observe that P2P system might exhibie download occurs immediately.dthas no innovative
what they denote as super-scalability, namely a reductiglkment forp, then no download occurs.
of the delays as the number of peers grow.
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Peer 4
Peers
exchange chunks
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SUNREE

Fig. 2. P2P System Description

i ) A ~ Whenp has collectedk distinct pieces, then it can
We describe our model in more details in the followingecode the target file, and it leaves the system right away.
Section. According to this policy, every timg can download any
chunk, it does so; and it leaves the system at the first
1. M ODEL opportunity. The mechanism is myopic fpy asp only
maximizes its own utility and does not worry about the

We consider the following system. Lét be the total overall system’s welfare.

number of peers in the system. Peers join the systemThe server follows a different policy: when a new
according to a process with intensity We make the peer joins the system, it pushes a new chunk to this
following assumptions: We consider slotted arrivals, witeer. However, the server is bandwidth constrained, and
on average\ arrivals per slot. We also assume that thean only do this up to a rate of 1. This means, when
number of arrivals in a time slot is greater than 1 and > 1, we decompose the peer arrival process into two
less than somel > 0. These are technical assumptionstreams: one of rate 1 and one of rate- 1 (this is
which can be relaxed, but makes our proof simpler thieved by tossing a coin selecting the first stream with
explain. Peers come into the system empty. There geobability 1/ for the first one, and\ — 1)/ for the

only one file in the system to download (multiple filesecond one). The elements in the former process receive
can be considered independently). The server generaifsnnovative chunk from the server, while the latter ones

chunks from the file USiﬂg a fountain code such thﬁsin the system empty and follow the peer process as
retrieving anyk chunks allows to decode the file. With

a perfect fountain code, the server could generate a

limitless sequence of such chunks. In our .evaluatlon’ WelWe ignore here the issues of efficient decoding inherent itagus
assume that the server creaf€s>> k possible chunks j trye fountain code vs a random linear code, as those aregorthl
(say, using linear random network coding over a large the stability aspects we investigate.



described abo¥e We only considen > 1 as otherwise, provides allk elements at rate 1. Nodes which receives
the stability of the system is known frorn_[15]. no chunk or a chunk that is not rare from the server will
Each peer downloads a chunk at rate 1 if it finds eventually join the ‘one-club’ by downloading pieces
valid piece. On average, each peer is probed at rate oinem this predominant group.
so both upload and download bandwidth at each peer aréfter a node with no chunk receives the rare element
identical and equal to one on average. from the server, it will download the other elements.
Our system describes a Markov process with sta®nce most of the peers belong to the ‘one-club’, the
defined by the peer chunk profiles. Using the typicalode with the rare chunk will acquire thike- 1 elements
notation, denote by(x, 2’) the generator of this Markov from the ‘one-club’. The rate at which nodes in the ‘one-
process. As in [15][14], we will use the Foster-Lyapunoglub’ acquire the rare chunk from peers with the rare
criterion to show that the Markov process is positivehunk andi — 1 other chunks is:,; * C,./S where S
recurrent. is the total number of peers, ; is the number of nodes
Recall the following definition [28]. LeV : S — R,  with the rare chunk and — 1 other chunks, for a total
be some function on the state spageof the Markov of i chunks, and’,. is the number of nodes in the ‘one-

chain: club’. This is becausé€’,. nodes select a node with the
Definition 3.1: The drift AV (x) of V(z) is defined rare chunk and pieces with probability:, ;/S. However,
as: this rate also approximates the rate at which peers with

the rare chunk go from chunks toi+1 by downloading

AV(x) = Borzaq(z,2) V(@) = V(@) 1) a piece from the ‘one-club’.
We enounce the following Theorem (Foster- Because nodes with the rare chunks never join the
Lyapunov) [28]: ‘one-club’ by definition, nodes inserted by the server

Theorem 3.1:Let L be a function on the state spac&ith the rare chunk at raté/k will transition from i
with drift AL with L > 0 and {L < [} finite for any chunks toi + 1 chunks at the same rate. The rate at
[ > 0. If there existsS, > 0 ande > 0 such that, for which these rare nodes transition frano i + 1 chunks

S > S,, AL < —¢, then the underlying Markov procesds equal to the rate at which they "knock down” peers

is positive recurrent. to leave the ‘one-club’ and thus the system. As there are
We can now state our main result: k steps for a rare peer to go from 1 chunkit@hunks,
Theorem 3.2.For A < k, the peer-to-peer modelit will reduce the size of the ‘one-club’ by« 1/k = 1,

described above is stable that is the server capacity. It is thus equivalent for the

Before proving the theorem in the next Section, w@ne-club’ to download straight from the server as in the
make a few observations, namely that neither the foupaseline system.
tain code nor the prioritization independently increase The fountain code by itself is not enoughConsider
the stability region of the baseline system. Both need @e more time the baseline system, but now, the server
be combined to achieve the increased stability regiodways provides innovative packets under some fountain
We describe this intuitively. code. Again, this is a Markov process that is irreducible,
The “server prioritizes peers with no chunks” and there is a positive probability of reaching a ‘one-
policy is not enough: Consider again the baselineclub’ state, namely a state where all the peers have the
system wherek chunks are required to complete théame identicak—1 packets. These peers cannot find new
download. Assume now that the server only serves nod#inks in between themselves, so only peers connecting
with no chunks, while the peers proceed according to the server will acquire &-th packet, which allows
the baseline mechanism. Again, when a ‘one-club’ arisé¥m to decode the file with the already obtairied 1
(it will happen at some point as the Markov process Rieces. These peers leave the system immediately.
irreducible and there is a positive probability of reaching New peers on the other hand will join the ‘one-
an unbalanced state), all nodes are missing one eleméhtb’ state with high likelihood, since most candidate
The server will provide this element at rat¢k as it peers to download from already belong to the ‘one-club’.
This re-creates the missing chunk syndrome, as each
2Even though there is a restriction on which peers the semer cchunk downloaded from the server corresponds to a peer

serve, there is no "withholding download” since for an atikate of leaving the system, and thus for the system to be stable
A > 1, there is almost always a new peer for the server to serve. ﬁ ! ’

there is no such new peer, the server can always pick anotwr pV€ need\ < 1.
at random. We now prove Theoren 3.2.



IV. PROOF OFTHEOREM[3.2 within the previousk steps present at any time in the
ystem. m

Assume we haveS peers in the system. We denoté . .
P y Lemma 4.3:If for ¢ > 0 andS >> A, if there exists

by «; the fraction of theS peers that have chunks. | 1 h th ) then th ¢ loast
That is, oS peers have no chunks; S have received v < ~k—1suc ala; > 1 —¢, then there f'”e at leas
one, etc. Denote by// the number of chunks Which_ﬁi(k — 1) secondary seeds arfij(k — 1) tertlazry seeds
need to be downloaded to satisfy all the customers ipy the system, wherg; = (a; — (2k +24)/5)". .

the system. Namely)/ — 2;?__01%(]{: i), asapS peers Proof: There a_rek - 1 primary seeds per th(_a previous
needk distinct chunks to iéave the systemn, S need lemma at any time in the system. Therefore, if we denote
k — 1, etc. We denote by’; the set of peers with the current time by 0, there wede— 1 primary seeds

; YR ; tep -1 and -2. The — 1 seeds gave chunks to peers
chunks (as well as its cardinality in a slight abuse & > :
notation)( y g (?I’rlt C; at rate at leasfa; — (24 + k)/S)(k — 1), since

We will prove that the drift ofA/ is negative forS there were at least — (24 + k) peers at step -2 in the

large enough (sincé < M < kS, we can indifferently system which would be irC; at step 0 (not counting

consider a bound ot or M) and then apply Theo- the & _.1 secondary seeds,_ and since less tha_lpeers
rem33). can arrive per step) and primary seeds can give chunks

We now prove a series of Lemmas. to any other older peer by the property of the fountain

Lemma 4.1:For ¢ > 0, if there existsi > 0 such that code.. Furthe_r, since < k —1, giving a chunk to a
peer inC; will move this peer toC;., therefore the
e<a; <1—¢ then

secondary seeds will not leave the system. Thus there
AM < Mk — €28 (2) are(a; — (24 +k)/S)(k— 1) secondary seeds at step 0
and -1. The(a; — (24 + k)/S)(k — 1) secondary seeds
Proof: Consideri > 0 such that < a; < 1—¢. Thenthe at step -1 can all give chunks to older peers in the set
peers inC; can exchange chunks with all the peers not igf peers that will end up irC; at step 0 (excludin@k
C; (either by giving a chunk to the peersdry for j <i primary and secondary seeds), and there are at least a
or by receiving a chunk fronC;,j > i). This means fraction a; — (A + 2k)/S at step -1, therefore there are
that at each time step, the rate of exchange is at |ea’§teast(ai—(A+2)/S)(ai—(2A+k)/S)(k:—1) at step 0.
a;(1—a;)S. By the Lemma’s conditionsy; (1—a;) > €2, Sinces; < (a;—(A+2k)/S)(c; — (2A+k)/S) < (c; —
therefore the rate of chunk downloads (i.e. the rate pfA + k)/S), this completes the proof of the Lemma.
decrease fonM) is greater thar?S. (]
The rate of increase ¥/ is kA, therefore concluding  Note that fori = k£ — 1, the secondary seeds might
the proof of the Lemma. M be leaving the system right away, so we cannot make a
We introduce some definitions needed for the neximilar statement foi = k£ — 1.
Lemmas. Lemma 4.4:For k& > 2, there existsS” > 0 such that
Definition 4.1: We call aprimary seeda peer which for S > §’, if there exists < k—1 such thaty; > 1—¢
received a chunk directly from the server. We call at time 0, then
secondary seed peer which received a chunk directly .
from a primary seed. Finally, we call trtiary seeda AM < (k—19)(2 - k) ()
peer which received a chunk directly from a secondaPtoof: We are satisfying the conditions of Lemimal4.3,
seed. therefore we have in the systefh — 1) primary seeds
Lemma 4.2:At any time in the system, there areand at leasp;(k — 1) secondary and tertiary seeds. That
alwaysk —1 primary seeds in the system which receiveaheans there arg: — 1)(1 + 23;) seeds at any time step
their chunks within the: previous steps. with chunks that are less thansteps old. Since there
Proof: Per our technical assumption, there is alwaysaae at mosttA chunks in the system that are less than
new primary seed created at each time step. A primakysteps old, and these have exchanged at rate 1 during
seed will then stay at least another— 1 steps in the thesek steps, there are at mok2* peers with chunks
system, as it receives at most one chunk per step desls thark steps old. This means that at leést- k2~ A
needs to find anothér — 1 chunks to leave the systempeers have chunks that are older thasteps at time 0.
Therefore at any time step, the primary seed createdvéé now considerS’ > 0 such thatk2¥A/S’ < e.
this step and at the previois-2 steps are in the system. At steps—(k—i—2),...,—1, the primary, secondary
Therefore there are always— 1 primary seeds createdand tertiary chunks will exchange with they; — €)S



nodes that have chunks older thansteps which will ~ We can now prove our Theorem. Set> 0 small
end up inC; at time 0. These exchanges will lead t@nough andS’ large enough so that the drift df/ is
peers that will have at most- 1 chunks, and therefore negative in all the Lemmas. At any point in time, either
will stay in the system at leagt— i — 1 steps. Therefore one of theq; satisfiese < o; < 1 — ¢ (case 1), or there
all these peers will be in the system at time 0. existsj such thata; > 1 — e ando; < e for all i # j

There argk—1)(1+20;)(k—i—1)(o; —€) such peers (case 2).
at time 0O, plus thg1 + 23;)(k — 1) primary, secondary In case 1, apply Lemma_4.1; in case 2,ik k —
and ternary seeds. Therefore, at time\Dwill decrease 1, apply Lemma_4l4; otherwise, if = k& — 1, apply
by (k—1)(1+28;)(k—i)(a; —€)? chunks. This is equal Lemmal[4.b. In all cases, there exist> 0 such that
to 3(k—1)(k—1i)(1—0) whered can be chosen arbitrarily AM < —§ < 0 for S > S’. Applying Theoren_3]1
close to 0 by selecting the propsf ande. concludes the proof of our Theorem.

Empty peers arrived in the system at rgte— 1).
All the peers that have arrived since timgi — 1) have
less thani chunks (they can receive at most one pé¥. Important Observations
step) and therefore will exchange with peersdn at The first important observation is as follows: foe
rate o;. Therefore)M decreases from these peers at rate— 1, we have seen that the drift dff is bounded by

V. PRACTICAL CONSIDERATIONS

a;(A —1)i. A —k in Lemmal4.b. This means that< k is not only

M increases with rateak. Summing all the contribu- a sufficient condition for stability, but also a necessary
tions, we have: condition.
AM = Me—a;(A—1)i — 3(k — D)(k — i)(1 — 4) The second important observation is that the paral-

o . lelism of the system is conditioned by the number of
= Ak 1) +i=3(k - 1)(k —1) chunks. The more chunks are needed to retrieve the file,
= (k—=i)(A=2(k—-1)+i—(k—1) the more peers can be served concurrently by the system.
(k—iYA—k)+(k—9)2—k)+(G—k+1) This is a qualitatively different stability than the typica

4) system where, due to the "missing chunk” syndrome,

the bottleneck is the rate at which the server can deliver
The Lemma results from the fact that< £ andi < chunks.

k—1. o We state a corollary of Theorelm B.2.
Lemma 4.5:For i = k — 1, ay1 > 1 —c implies  Corollary 5.1: As the server seed and selectsk,
AM <X —k+e. it can always pick a value such that the system is

Proof: By Lemma 4.2, we havgk —1) primary seeds in stable. This thus demonstrates that any workload can

the system at time 0. Therefosg, 1 (k— 1) chunks will pe stabilized by the proper selection of the encoding
be downloaded from those seeds. The server will proviggrametet.

one chunkto a peer at rate 1. Therefore, the rate of chunkrhis is true of the system that is limited by the
download from the primary seedsist aj—1(k —1) > "missing chunk” syndrome as well. But the relationship
k — €. The primary seeds will upload to peers@i_; betweenk and the performance of the system is different.
at rate(a; — k/S)(k — 1) since at least; — k/S peers  Consider the basic system (without the fountain en-
in C—1 have innovative chunks. Therefore, there awding and the server-prioritizes-empty-peers policy).
2k — 1 — o(€) exchange to/from the primary seeds. |ts bottleneck is the rate at which peers can download
At step—(k—2), —(k—3),...,0, empty peers arrived chunks from the server, namely one arrival per each time
at rate (A — 1) and these peers are still in the systen. takes to download a chunk from the server € 1
Thus they will download chunks with peers @;_; at chunk download time). If the bandwidth from the server
rate oy,—1. Therefore, the rate of chunk exchange froy the peer isB, and if the chunk size is'/k for a

these peers is thus; (A — 1)(k — 1). o file of size F divided in k& chunks, then the server can
The rate of increase o/ is Ak — 1. Putting it all serve Ck/F chunks per second, and the arrival rate
together: of customers has to be less thafk/F. Increasingk

AM = Meo—1—(2k—1)— (A—1)(k —1)+o(e) therefore increases the capacity of the systieearly.
= A —k+ole) (5) In our scheme, for the same fifé divided in k£ chunks
and the same bandwidiff, k£ peers can be served per
Il slot (A < k). A slot corresponds to the time to exchange



a chunk, therefore a slot lasts/(kC') unit of times, or linear combinations. This is the encoding we use in the

converselykC/F chunks can be served per unit of timeevaluation section below.

Therefore, the arrival rate of peers in the system can beThis encoding can be used to vary the paraméter

k2C/F, which is quadraticin k. Dividing the size of as well. Consider a file split intd™ chunks. Then the

the chunks by two quadruple the capacity of the systamtwork coding coefficients of the linear combinations

(without taking into account any complexity trade-offs)can be such that sequences of 2 or 4 or 8 chunks are

We rephrase this as the following theorem: preserved. For instance, chunk 1 and 2 can receive the
Theorem 5.2:Increasing the number of chunks of aame coefficients, chunk 3 and 4, etc. This would in

given file by a factow increases the stability region byeffect split the file into2™~! chunks and allow for

a factors?. increasing the number of chunks for the same fil@'to
This has a practical impact. Assuming you haw$ later on, or decreasing it t%"~2 by merging 1 through

peers arriving to download a file, then you would warg, 5 through 8, etc.

to divide the file ink = 10? chunks so that the value® Such a scheme would allow for dynamically varying

matches the arrival rate into the system. As it turns odhe parametek without having to segregate peers into

a ninety minute movie is decomposed into 540 chunkefore and after the epoch whénhas changed. An

of 10s or 2700 chunks of 2s, which are the chunk sizastual implementation of such a varying rate file dis-

used for adaptive video streaming mechanisms suchtalsution system is for future work.

DASH [29]-[31] or Apple HTTP Live Streaming. So our

scheme is naturally tuned to support a magnitude of the

order of million of users using the current chunk size We implemented the proposed mechanism in Matlab.

VI. NUMERICAL EVALUATION

used in existing video streaming mechanisms. Rather than using an ideal fountain code, we chose a
_ _ large value ofi(, and considered Linear Network Coding
B. Algorithm Design with K >> k distinct combinations. We séf = 10, 000

We now design an algorithm to stabilize the sygwhich means that each chunk is innovative with prob-
tem: setr to be a timer window. Start at time 0. Seability 1 — 10~ rather than 1 in the ideal encoding
n = 0,a = 0. While nt < ¢t < (n + 1)7, count the case) and let the process evolve from empty initial con-
arrival of new peers. Increment for each new arrival. ditions. We implemented both theaseline mechanism
Whent = (n + 1)1, incrementn. Estimate the arrival the proposed mechanism and two intermediate variations
rate asa/7. If a/T > k — 1, then increase: until of the baseline mechanism, namely one with the server
k > a/T. Reseta to 0 and iterate. Upon increasingdelivering encoded packets to random peers, and one
k, the server has to notify the new peers arriving aftarith the server only providing non-encoded packets to
(n+1)7 to only communicate in between themselves dsmpty” peers (in our implementation, we do not even
the chunks are not compatible with the previous chunkslect an empty peer, but select the latest peer having
(they correspond to different values &J. As for the joined in the system, which has a high likelihood, but
peers in the system befofe + 1)7, the server should may not be, empty).
assess whether or not the distribution of chunks wouldWe took & = 5 for both mechanisms, and varied
allow them to leave the system. Otherwise, it drains thWe declared the system unstable and stop the simulation
pool of older peers using the capacity freed with th&the number of peers in the system grew to over 1,000.
newest peers by the increase of th@arameter. We let the system run for 10,000 units or time or until

In order to achieve a proper code in a practical mannan unstable behavior is detected, whichever came first.
it is possible to split the file intck chunks and use Figurel3 shows the behavior of the baseline system for
random linear codes over some Galois field, and generate- 2 which is well above the server download capacity
the coefficient randomly for a linear combination of thef 1 of the baseline mechanisnbut well belowk = 5.
k chunks. Thenk network coded packets will yieldé As a consequence, the system diverges right away. One
degrees of freedom with high probability (dependingan observe that the rate of growth for the number of
on the size of the Galois field). We can generafe peers is roughly 1 peer per unit of time, thatis- 1,
different combinations, as the probability of collisioras expected.
for £ combinations will correspond to the probability of Figure[4 has the server prioritize the elements:of
drawing k different packets out of< possible packets. for chunk download. This is one of the mechanisms we
The server complexity then reduces to generating thasge in our proposed P2P protocol. We have discussed



Peer Instability: The Missing Chunk Problem Creates a Bottleneck in Typical Scheme P2P system with Content Publisher Sharing Exclusively with Empty Peers
T T T T T T T T T T T T T T T T T

1000

1000

900+ - 900

800+ = 800
700+ = 700
BOO 600 -

S00F 500 -

Number of Peers

400+ 400

300+ i 300

Murnker of Peers in the System

200+ il 200

100+

0

L . L . ! L ! L L I I I I I I I I .
0 100 200 300 400 500 600 700 600 900 1000 0 100 200 300 400 500 600 700 800
Time Time

Fig. 3. Random Peer Contact with No Fountain Code (Baselilfég. 4. Random Peer Contact with Content Server Only Serving
Mechanism)\ > 1 Peers inCy, 1 < A < k

Fountain Code and Youth Prioritization Solve the Bottleneck
T T T T T T T

why it should not improve the stability in Sectignllll, &
and the simulations obviously confirm this: it has n
consequence on the stability of the system. We «
not include a similar plot with only the fountain code
implemented (without the prioritization) as it is very
similar: using only "baseline + fountain code” does nc
have an impact on the system performance as well.
Figure[% shows now the system corresponding to o
proposal under the same assumptioks=(2, £ = 5 and

50+ =

=
o
T
I

)
o

MNumber of Peers in the System
w
&
I

server rate equal 1). The number of peers in the syst i
stays roughly constant. It is clear that the systerr
behavior is dramatically different under this policy a T mw Wm0 Sm B0 7D s D o

Time

opposed to the baseline policy, as the number of pec..
!n one case grows linearly with tlm_e’ Whll(—.? in the oth‘\eq'—’ig. 5. Random Peer Contact with Fountain Code and Server-
it stays stable for an extended period of time. Prioritizes-Empty-Peers policy fox < k
Note that this is only an indication, not a proof of
stability, as it might take a long time for the system to

reach a missing chunk syndrome state from its initigfoper choices of the system parameters, can arbitrarily
conditions. To illustrate this last point, we refer t¢,andie the peer arrival process.

Figure[8, where our proposed mechanism is sir_nulatedWe have demonstrated the properties of our mecha-
gnder_)\ = 5.5> 5. We can see that' for a Iong perloo_l Ofﬂsm through analysis and through some Matlab simula-
time, it does look stable, until a situation finally ariseg ) o

that the mechanism cannot counteract. o . .
Future work directions include generalizing the system
VII. CONCLUSION to heterogenous peers with different bandwidth capa-

We have proposed a simple peer-to-peer mechaniBifity and to assess the time spent in the system as
which shifts the complexity of stabilizing the systenfompared to other P2P mechanisms.
away from the peer-selection and piece-selection mecha-
nism, by using fountain code and a simple prioritization ACKNOWLEDGMENT
of the content publisher downloads. While this mecha-
nism allows for a greedy behavior from the peers andThe author wishes to extend his thanks to Stratis
a random selection of the contact points for downloathannidis (Technicolor Labs, Palo Alto) for fruitful con-
it improves the stability region of the system, and forersations on the topic.
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