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Abstract—This paper considers the problem of how to effi-
ciently share a wireless medium which is subject to harsh external
interference or even jamming. While this problem has already
been studied intensively for simplistic single-hop or unit disk
graph models, we make a leap forward and study MAC protocols
for the SINR interference model (a.k.a. the physical model).

We make two contributions. First, we introduce a new adver-
sarial SINR model which captures a wide range of interference
phenomena. Concretely, we consider a powerful, adaptive adver-
sary which can jam nodes at arbitrary times and which is only
limited by some energy budget. The second contribution of this
paper is a distributed MAC protocol which provably achieves a
constant competitive throughput in this environment: we show
that, with high probability, the protocol ensures that a constant
fraction of the non-blocked time periods is used for successful
transmissions.

I. INTRODUCTION

The problem of coordinating the access to a shared medium
is a central challenge in wireless networks. In order to solve
this problem, a proper medium access control (MAC) protocol
is needed. Ideally, such a protocol should not only be able
to use the wireless medium as effectively as possible, but
it should also be robust against a wide range of interfer-
ence problems including jamming attacks. Currently, the most
widely used model to capture interference problems is the
SINR (signal-to-interference-and-noise ratio) model [18]. In
this model, a message sent by node u is correctly received
by node v if and only if Pv(u)/(N +

∑
w∈S Pv(w)) ≥ β

where Px(y) is the received power at node x of the signal
transmitted by node y, N is the background noise, and S is
the set of nodes w 6= u that are transmitting at the same
time as u. The threshold β > 1 depends on the desired
rate, the modulation scheme, etc. When using the standard
model for signal propagation, then this expression results
in P (u)/d(u, v)α/(N +

∑
w∈S P (w)/d(w, v)α) ≥ β where

P (x) is the strength of the signal transmitted by x, d(x, y) is
the Euclidean distance between x and y, and α is the path-
loss exponent. In this paper, we will assume that all nodes
transmit with some fixed signal strength P and that α > 2 + ε
for some constant ε > 0, which is usually the case in an
outdoors environment [30].

In most papers on MAC protocols, the background noise N
is either ignored (i.e., N = 0) or assumed to behave like a
Gaussian variable. This, however, is an over-simplification of
the real world. There are many sources of interference produc-
ing a non-Gaussian noise such as electrical devices, temporary
obstacles, co-existing networks [34], or jamming attacks. Also,
these sources can severely degrade the availability of the

wireless medium which can put a significant stress on MAC
protocols that have only been designed to handle interference
from the nodes themselves. In order to capture a very broad
range of noise phenomena, one of the main contributions of
this work is the modeling of the background noise N (due
to jamming or to environmental noise) with the aid of an
adversary ADV(v) that has a fixed energy budget within a
certain time frame for each node v. More precisely, in our
case, a message transmitted by a node u will be successfully
received by node v if and only if

P/d(u, v)α

ADV(v) +
∑
w∈S P/d(w, v)α

≥ β (1)

where ADV(v) is the current noise level created by the ad-
versary at node v. Our goal will be to design a MAC protocol
that allows the nodes to successfully transmit messages under
this model as long as this is in principle possible. Prior to our
work, no MAC protocol has been shown to have this property.

Model. We assume that we have a static set V of n wireless
nodes that have arbitrary fixed positions in the 2-dimensional
Euclidean plane so that no two nodes have the same position.
The nodes communicate over a wireless medium with a
single channel. We also assume that the nodes are backlogged
in the sense that they always have something to broadcast.
Each node sends at a fixed transmission power of P , and
a message sent by u is correctly received by v if and only
if P/d(u, v)α/(ADV(v) +

∑
w∈S P/d(w, v)α) ≥ β For our

formal description and analysis, we assume a synchronized
setting where time proceeds in synchronized time steps called
rounds. In each round, a node u may either transmit a message
or sense the channel, but it cannot do both. A node which is
sensing the channel may either (i) sense an idle channel, (ii)
sense a busy channel, or (iii) receive a packet. In order to
distinguish between an idle and a busy channel, the nodes use
a fixed noise threshold ϑ: if the measured signal power exceeds
ϑ, the channel is considered busy, otherwise idle. Whether a
message is successfully received is determined by the SINR
rule described above.

Physical carrier sensing is part of the 802.11 standard, and is
provided by a Clear Channel Assessment (CCA) circuit. This
circuit monitors the environment to determine when it is clear
to transmit. The CCA functionality can be programmed to be
a function of the Receive Signal Strength Indication (RSSI)
and other parameters. The ability to manipulate the CCA rule
allows the MAC layer to optimize the physical carrier sensing
to its needs. Adaptive settings of the physical carrier sensing
threshold have been used, for instance, in [35] to increase
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spatial reuse.
In addition to the nodes there is an adversary that controls

the background noise. In order to cover a broad spectrum of
noise phenomena, we allow this adversary to be adaptive, i.e.,
for each time step t the adversary is allowed to know the state
of all the nodes in the system at the beginning of t (i.e., before
the nodes perform any actions at time t) and can set the noise
level ADV(v) based on that for each node v. To leave some
chance for the nodes to communicate, we restrict the adversary
to be (B, T )-bounded: for each node v and time interval I of
length T , a (B, T )-bounded adversary has an overall noise
budget of B · T that it can use to increase the noise level at
node v and that it can distribute among the time steps of I as
it likes. This adversarial noise model is very general, since in
addition to being adaptive, the adversary is allowed to make
independent decisions on which nodes to jam at any point in
time (provided that the adversary does not exceed its noise
budget over a window of size T ). In this way, many noise
phenomena can be covered.

Our goal is to design a symmetric local-control MAC
protocol (i.e., there is no central authority controlling the
nodes, and all the nodes are executing the same protocol)
that has a constant competitive throughput against any (B, T )-
bounded adversary as long as certain conditions (on B etc.)
are met. In order to define what we mean by “competitive”,
we need some notation. The transmission range of a node v is
defined as the disk with center v and radius r with P/rα ≥ βϑ.
Given a constant ε > 0, a time step is called potentially busy
at some node v if ADV(v) ≥ (1 − ε)ϑ (i.e., only a little bit
of additional interference by the other nodes is needed so that
v sees a busy channel). For a not potentially busy time step,
it is still possible that a message sent by a node u within v’s
transmission range is successfully received by v. Therefore,
as long as the adversary is forced to offer not potentially busy
time steps due to its limited budget and every node has a least
one other node in its transmission range, it is in principle
possible for the nodes to successfully transmit messages. To
investigate that formally, we use the following notation. For
any time frame F and node v let fv(F ) be the number of time
steps in F that are not potentially busy at v and let sv(F ) be
the number of time steps in which v successfully receives
a message. We call a protocol c-competitive for some time
frame F if

∑
v∈V sv(F ) ≥ c

∑
v∈V fv(F ). An adversary is

uniform if at any time step, ADV(v) = ADV(w) for all nodes
v, w ∈ V , which implies that fv(F ) = fw(F ) for all nodes.
Note that the scope of this paper is not restricted to the case
of a uniform jammer (cf Theorem 1.1).

Since the MAC protocol presented in this paper will be
randomized, our performance results typically hold with high
probability (short: w.h.p.): this means a probability of at least
1− 1/nc for any constant c > 0.

Our Contribution. The contribution of this paper is
twofold. First of all, we introduce a novel extension of the
SINR model in order to investigate MAC protocols that
are robust against a broad range of interference phenomena.

Second, we present a MAC protocol called SADE1 which can
achieve a c-competitive throughput where c only depends on ε
and the path loss exponent α but not on the size of the network
or other network parameters. (In practice, α is typically in the
range 2 < α < 5, and thus c is a constant for fixed ε. [30]) Let
n be the number of nodes and let N = max{n, T}. Concretely,
we show:

Theorem 1.1: When running SADE for at least
Ω((T logN)/ε + (logN)4/(γε)2) time steps, SADE

has a 2−O((1/ε)2/(α−2))-competitive throughput for any
((1− ε)ϑ, T )-bounded adversary as long as (a) the adversary
is uniform and the transmission range of every node contains
at least one node, or (b) there are at least 2/ε nodes within
the transmission range of every node.

On the other hand, we also show the following.
Theorem 1.2: The nodes can be positioned so that the

transmission range of every node is non-empty and yet no
MAC protocol can achieve any throughput against a (B, T )-
bounded adversary with B > ϑ, even if it is 1-uniform.

The two theorems demonstrate that our SADE protocol
is basically as robust as a MAC protocol can get within
our model. However, it should be possible to improve the
competitiveness. We conjecture that a polynomial dependency
on (1/ε) is possible, but showing that formally seems to be
hard. In fact, a different protocol than SADE would be needed
for that.

To complement our formal analysis and worst-case bounds,
we also report on the results of our simulation study. This
study confirms many of our theoretical results, but also shows
that the actual performance is often better than in the worst-
case. For instance, it depends to a lesser extent on ε.

Paper Organization. The remainder of this paper is or-
ganized as follows. We present our algorithm in Section II,
and subsequently analyze its performance in Section III.
Simulation results are presented in Section IV. After reviewing
related work in Section V, we conclude our paper with a
discussion in Section VI.

II. ALGORITHM

The intuition behind SADE is simple: Each node v maintains
a parameter pv which specifies v’s probability of accessing the
channel at a given moment of time. That is, in each round,
each node u decides to broadcast a message with probability
pv . (This is similar to classical random backoff mechanisms
where the next transmission time t is chosen uniformly at
random from an interval of size 1/pv .) The nodes adapt their
pv values over time in a multiplicative-increase multiplicative-
decrease manner, i.e., the value is lowered in times when the
channel is utilized (more specifically, we decrease pv whenever
a successful transmission occurs) or increased during times
when the channel is idling. However, pv will never exceed p̂,
for some constant 0 < p̂ < 1 to be specified later.

In addition to the probability value pv , each node v main-
tains a time window threshold estimate Tv and a counter cv for

1SADE stands for SINR JADE, the SINR variant of the jamming defense
protocol in [31].



Tv . The variable Tv is used to estimate the adversary’s time
window T : a good estimation of T can help the nodes recover
from a situation where they experience high interference in the
network. In times of high interference, Tv will be increased
and the sending probability pv will be decreased.

With these intuitions in mind, we can describe SADE in full
detail.

Initially, every node v sets Tv := 1, cv := 1, and pv := p̂. In
order to distinguish between idle and busy rounds, each node
uses a fixed noise threshold of ϑ.

The SADE protocol works in synchronized rounds. In every
round, each node v decides with probability pv to send a
message. If it decides not to send a message, it checks the
following two conditions:
• If v successfully receives a message, then pv := (1 +
γ)−1pv .

• If v senses an idle channel (i.e., the total noise created by
transmissions of other nodes and the adversary is less than
ϑ), then pv := min{(1+γ)pv, p̂}, Tv := max{1, Tv−1}.

Afterwards, v sets cv := cv + 1. If cv > Tv then it does the
following: v sets cv := 1, and if there was no idle step among
the past Tv rounds, then pv := (1+γ)−1pv and Tv := Tv +2.

In order for SADE to be constant competitive in terms of
throughput, the parameter γ needs to be a sufficiently small
value that depends very loosely on n and T . Concretely, γ ∈
O(1/(log T + log log n)).

Our protocol SADE is an adaption of the MAC protocol
described in [31] for Unit Disk Graphs that works in more
realistic network scenarios considering physical interference.
The main difference in the new protocol is that in order to
use the concepts of idle and busy rounds, the nodes employ
a fixed noise threshold ϑ to distinguish between idle (noise
< ϑ) and busy rounds (noise ≥ ϑ): in some scenarios the
threshold may not be representative, in the sense that, since the
success of a transmission depends on the noise at the receiving
node and on β, it can happen that a node senses an idle or
busy channel while simultaneously successfully receiving a
message. In order to deal with this problem, SADE first checks
whether a message is successfully received, and only otherwise
takes into account whether a channel is idle or busy. Another
change to the protocol in [31] is that we adapt Tv based on
idle time steps which allows us to avoid the upper bound on
Tv in the protocol in [31] so that our protocol is more flexible.

III. ANALYSIS

While the MAC protocol SADE is very simple, its stochastic
analysis is rather involved: it requires an understanding of the
complex interplay of the nodes following their randomized
protocol in a dependent manner. In particular, the nodes’
interactions depend on their distances (the geometric setting).
In order to study the throughput achieved by SADE, we will
consider some fixed node v ∈ V and will divide the area
around v into three circular and concentric zones.

Let DR(v) denote the disk of radius R around a given node
v ∈ V . In the following, we will sometimes think of DR(v)
as the corresponding geometric area on the plane, but we will
also denote by DR(v) the set of nodes located in this area.
The exact meaning will be clear from the context. Moreover,
whenever we omit R we will assume R1 as radius, where R1

is defined as in Definition 3.1.
Definition 3.1 (Zones): Given any node v ∈ V , our analysis

considers three zones around v, henceforth referred to as
Zone 1, Zone 2, and Zone 3: Zone 1 is the disk of radius
R1 around v, Zone 2 is the disk of radius R2 around v
minus Zone 1, and Zone 3 is the remaining part of the plane.
Concretely:

1) Zone 1 covers the transmission range of v, i.e., its radius
R1 is chosen so that P/Rα1 ≥ βϑ, which implies that
R1 = α

√
P/(βϑ). Region DR1

(v) has the property that
if there is at least one sender u ∈ DR1

(v), then v will
either successfully receive the message from u or sense
a busy channel, and v will certainly receive the message
from u if the overall interference caused by other nodes
and the adversary is at most ϑ.

2) Zone 2 covers a range that we call the (critical) inter-
ference range of v. Its radius R2 is chosen in a way
so that if none of the nodes in Zone 1 and Zone 2
transmit a message, then the interference at any node
w ∈ DR1

(v) caused by transmitting nodes in Zone 3
is likely to be less than εϑ. Hence, if the current time
step is potentially non-busy at some w ∈ DR1

(v) (i.e.,
ADV(w) ≤ (1 − ε)ϑ), then the overall inference at w
is less than ϑ, which means that w will see an idle
time step. It will turn out that R2 can be chosen as
O
(
(1/ε)1/(α−1)R1

)
.

3) Everything outside of Zone 2 is called Zone 3.
Whenever it is clear from the context, we use D1, D2, and
D3 instead of DR1

, DR2
, and the area covered by Zone 3,

respectively.
The key to proving a constant competitive throughput is

the analysis of the aggregate probability (i.e., the sum of
the individual sending probabilities pv) of nodes in disks
D1(v) and D2(v): We will show that the expected aggregate
probabilities of D1(v) and D2(v), henceforth referred to by
p1 and p2, are likely to be at most a constant. Moreover, our
analysis shows that while the aggregate probability p3 of the
potentially infinitely large Zone 3 may certainly be unbounded
(i.e., grow as a function of n), the aggregated power received
at any node w ∈ D1(v) from all nodes in Zone 3 is also
constant on expectation.

A. Zone 1

To show an upper bound on p1 =
∑
u∈D1(v)

pu, i.e., the
aggregate probability of the nodes in Zone 1 of v, we can
follow a strategy similar to the one introduced for the Unit
Disk Graph protocol [31].

In the following, we assume that the budget B of the
adversary is limited by (1 − ε′)ϑ for some constant ε′ = 2ε.
In this case, B is at most (1 − ε)2ϑ. We first look at a



slightly weaker form of adversary. We say that a round t
is open for a node v if v and at least one other node w
within its transmission range are potentially non-busy, i.e.,
ADV(v) ≤ (1 − ε)ϑ and ADV(w) ≤ (1 − ε)ϑ (which also
implies that v has at least one node within its transmission
range). An adversary is weakly (B, T )-bounded if it is (B, T )-
bounded and in addition to this, at least a constant fraction of
the potentially non-busy rounds at each node is open in every
time interval of size T . We will show the following result:

Theorem 3.2: When running SADE for at least
Ω((T logN)/ε′ + (logN)4/(γε′)2) time steps, SADE

has a 2−O((1/ε′)2/(α−2))-competitive throughput for any
weakly ((1− ε′)ϑ, T )-bounded adversary.

In order to prove this theorem, we focus on a time frame
I of size F consisting of δ logN/ε subframes I ′ of size f =
δ[T + (log3N)/(γ2ε)] each, where f is a multiple of T , δ is
a sufficiently large constant, and N = max{T, n}. Consider
some fixed node v. We partition D1(v) into six sectors of
equal angles from v, S1, ..., S6. Note that for any sector Si it
holds that if a node u ∈ Si transmits a message, then its signal
strength at any other node u′ ∈ Si is at least βϑ. Fix a sector
S and consider some fixed time frame F . Let us refer to the
sum of the sending probabilities of the neighboring nodes of
a given node v ∈ S by p̄v :=

∑
w∈S\{v} pw. The following

lemma, which is proven in [31], shows that pv will decrease
dramatically if p̄v is high throughout a certain time interval.

Lemma 3.3: Consider any node w in S. If p̄w > 5 − p̂
during all rounds of a subframe I ′ of I and at the beginning
of I ′, Tw ≤

√
F , then pw will be at most 1/n2 at the end of

I ′, w.h.p.
Given this property of the individual probabilities, we can

derive an upper bound for the aggregate probability of a Sector
S. In order to compute pS =

∑
v∈S pv , we introduce three

thresholds, a low one, ρgreen = 5, one in the middle, ρyellow =
5e, and a high one, ρred = 5e2. The following three lemmas
provide some important insights about these probabilities. The
first lemma is shown in [31].

Lemma 3.4: Consider any subframe I ′ in I . If at the
beginning of I ′, Tw ≤

√
F for all w ∈ S, then there is at

least one round in I ′ with pS ≤ ρgreen w.h.p.
Lemma 3.5: For any subframe I ′ in I it holds that if pS ≤

ρgreen at the beginning of I ′, then pS ≤ ρyellow throughout
I ′, w.m.p.2 Similarly, if pS ≤ ρyellow at the beginning of I ′,
then pS ≤ ρred throughout I ′, w.m.p. The probability bounds
hold irrespective of the events outside of S.

Proof: It suffices to prove the lemma for the case that
initially pS ≤ ρgreen as the other case is analogous. Consider
some fixed round t in I ′. Let pS be the aggregate probability
at the beginning of t and p′S be the aggregate probability at the
end of t. Moreover, let p(0)S denote the aggregate probability
of the nodes w ∈ S with a total interference of less than ϑ
in round t when ignoring the nodes in S. Similarly, let p(1)S
denote the aggregate probability of the nodes w ∈ S with

2With moderate probability, or w.m.p., means a probability of at least 1−
log−Ω(1) n.

a single transmitting node in D1(w) \ S and additionally an
interference of less than ϑ in round t, and let p(2)S be the
aggregate probability of the nodes w ∈ S that do not satisfy the
first two cases (which implies that they will not experience an
idle channel, no matter what the nodes in S will do). Certainly,
pS = p

(0)
S + p

(1)
S + p

(2)
S . Our goal is to determine p′S in this

case. Let q0(S) be the probability that all nodes in S stay
silent, q1(S) be the probability that exactly one node in S is
transmitting, and q2(S) = 1−q0(S)−q1(S) be the probability
that at least two nodes in S are transmitting.

First, let us ignore the case that cv > Tv for a node v ∈ S
at round t. By distinguishing 9 different cases, we obtain the
following result: E[p′S ] ≤ q0(S)· [(1+γ)p

(0)
S +(1+γ)−1p

(1)
S +

p
(2)
S ] +q1(S) · [(1 + γ)−1p

(0)
S + p

(1)
S + p

(2)
S ] +q2(S) · [p(0)S +

p
(1)
S +p

(2)
S ] Just as an example, consider the case of q0(S) and

p
(1)
S , i.e., all nodes in S are silent and for all nodes in w ∈ S

accounted for in p(1)S there is exactly one transmitting node in
D1(w) \ S and the remaining interference is less than ϑ. In
this case, w is guaranteed to receive a message, so according
to the SADE protocol, it lowers pw by (1 + γ).

The upper bound on E[p′S ] certainly also holds if cv > Tv
for a node v ∈ S because pv will never be increased (but
possibly decreased) in this case. For the rest of the proof we
refer the reader to [31].

Lemma 3.6: For any subframe I ′ in I it holds that if there
has been at least one round during the past subframe where
pS ≤ ρgreen, then throughout I ′, pS ≤ ρred w.m.p., and the
probability bound holds irrespective of the events outside of
S.

Proof: Suppose that there has been at least one round
during the past subframe where pS ≤ ρgreen. Then we know
from Lemma 3.5 that w.m.p. pS ≤ ρyellow at the beginning of
I ′. But if pS ≤ ρyellow at the beginning of I ′, we also know
from Lemma 3.5 that w.m.p. pS ≤ ρred throughout I ′, which
proves the lemma.

Now, define a subframe I ′ to be good if pS ≤ ρred
throughout I ′, and otherwise I ′ is called bad. With the help
of Lemma 3.4 and Lemma 3.6 we can prove the following
lemma.

Lemma 3.7: For any sector S, the expected number of bad
subframes I ′ in I is at most 1/polylog(N), and at most εβ′/6
of the subframes I ′ in I are bad w.h.p., where the constant
β′ > 0 can be made arbitrarily small depending on the constant
δ in f . The bounds hold irrespective of the events outside of
S.

The proof can be found in [31]. Since we have exactly
6 sectors, it follows from Lemma 3.7 that apart from an
εβ′-fraction of the subframes, all subframes I ′ in I satisfy∑
v∈D1(u)

pv ≤ 6ρ throughout I ′ w.h.p.

B. Zone 3

Next, we consider Zone 3. We will show that although the
aggregate probability of the nodes in Zone 3 may be high (for
some distributions of nodes in the space it can actually be as
high as Ω(n)), their influence (or noise) at node v is limited



if the radius of Zone 2 is sufficiently large. Thus, probabilities
recover quickly in Zone 1 and there are many opportunities
for successful receptions.

In order to bound the interference from Zone 3, we divide
Zone 3 into two sub-zones: Z−3 , which contains all nodes from
Zone 3 up to a radius of O

(
log2 n

)
, and Z+

3 , which contains
all remaining nodes in Zone 3. For Zone Z−3 we can prove
the following lemma.

Lemma 3.8: At most an εβ-fraction of the subframes I ′ in
I are bad for some R1-disk in Zone Z−3 w.h.p., where the
constant β′ > 0 can be made arbitrarily small depending on
the constant δ in f .

Proof: The claim follows from the fact that the radius
of Zone Z−3 is O

(
log2 n

)
and hence d = O

(
log4 n

)
disks

of radius R1 are sufficient to cover the entire area of Z−3 .
According to Lemma 3.7, over all of these disks, the expected
number of bad subframes is at most 1/polylog(N). Using
similar techniques as for the proof of Lemma 3.7 in [31],
it can also be shown that for each disk D, the probability
for D to have k bad subframes is at most 1/polylog(N)k

irrespective of the events outside of D. Hence, one can use
Chernoff bounds for sums of identically distributed geometric
random variables to conclude that apart from an εβ′/d-fraction
of the subframes, all subframes I ′ in I satisfy

∑
v∈D pv ≤ 6ρ

throughout I ′ w.h.p. This directly implies the lemma.
Suppose that R2 = c·R1. Lemma 3.8 implies that in a good

subframe the expected noise level at any node w ∈ D1(v)
created by transmissions in Zone Z−3 is upper bounded by

6ρred ·
O(log2 n)∑
d=(c−1)

2π(d+ 1)√
2(dR1)α

≤ 12πρred
α− 1

· 1

(c− 2)α−2Rα1

which is at most εϑ/4 if c = O((1/ε)1/(α−2)) is sufficiently
large. In order to bound the noise level at any node w ∈ D1(v)
from Zone Z+

3 , we prove the following claim.
Claim 3.9: Consider some fixed R1-disk D. If at the begin-

ning of time frame I , Tw ≤
√
F for all w ∈ D, then for all

time steps except for the first subframe in I , pD ∈ O(log n),
w.h.p.

Proof: Lemma 3.4 implies that there must be a time step
t in the first subframe of I with pD ≤ 6ρgreen w.h.p. Since for
pD ∈ Ω(log n) at least a logarithmic number of nodes in D
transmit and therefore every node sees a busy channel, w.h.p.,
and pD can only increase if a node sees an idle channel, pD
is bounded by O(log n) for the rest of I w.h.p.

The claim immediately implies the following result.
Lemma 3.10: If at the beginning of time frame I , Tw ≤√
F for all w, then for all time steps except for the first

subframe in I , the interference at any node w ∈ D1(v) due to
transmissions in Z+

3 is at most εϑ/4 w.h.p.
Hence, we get:
Lemma 3.11: If at the beginning of time frame I , Tw ≤√
F for all w, then at most an εβ-fraction of the subframes in

I contain time steps in which the expected interference at any
node w ∈ D1(v) due to transmissions in Zone 3 is at least
εϑ/2.

C. Zone 2

For Zone Z2 we can prove the following lemma in the same
way as Lemma 3.8.

Lemma 3.12: At most an εβ-fraction of the subframes I ′

in I are bad for some R1-disk in Zone 2, w.h.p., where the
constant β > 0 can be made arbitrarily small depending on
the constant δ in f .

D. Throughput

Given the upper bounds on the aggregate probabilities and
interference, we are now ready to study the throughput of
SADE. For this we first need to show an upper bound on Tv
in order to avoid long periods of high pv values. Let J be a
time interval that has a quarter of the length of a time frame,
i.e., |J | = F/4. We start with the following lemma whose
proof is identical to Lemma III.6 in [32].

Lemma 3.13: If in subframe I ′ the number of idle time
steps at v is at most k, then node v increases Tv by 2 at most
k/2 +

√
f many times in I ′.

Next, we show the following lemma.
Lemma 3.14: If at the beginning of J , Tv ≤

√
F/2 for all

nodes v, then every node v has at least 2−O((1/ε)2/(α−2))|J |
time steps in J in which it senses an idle channel, w.h.p.

Proof: Fix some node v. Let us call a subframe I ′ in J
good if in Zone 1 and in any R1-disk in Zone 2 of v, the
aggregate probability is upper bounded by a constant, and the
expected interference due to transmissions at v induced from
Zone 3 is at most εϑ/2 throughout I ′. From Lemmas 3.7, 3.12,
and 3.11 it follows that there is an (1 − ε)-fraction of good
subframes in J . Since R2 = O

(
(1/ε)1/(α−2)R1

)
, for any time

step t in a good subframe I ′ the total aggregate probability
in Zones 1 and 2 of v is upper bounded by O

(
(1/ε)2/(α−2)

)
.

Hence, the probability that none of the nodes in Zones 1 and
2 of v transmits is given by∑
w∈Z1∪Z2

(1− pw) ≥ e−2
∑
w∈Z1∪Z2

pw = 2−O((1/ε)2/(α−2))

Due to the Markov inequality, the probability that the inter-
ference due to transmissions in Zone 3 is at least εϑ is at
most 1/2. These probability bounds hold independently of the
other time steps in I ′. Moreover, the total interference energy
of the adversary in I ′ is bounded by |I ′|(1 − ε)2ϑ, which
implies that at most a (1− ε)-fraction of the time steps in I ′

are potentially busy, i.e., ADV(v) ≥ (1 − ε)ϑ. Hence, for at
least a 2−O((1/ε)2/(α−2))-fraction of the time steps in I ′, the
probability for v to sense an idle channel is a constant, which
implies the lemma.

This allows us to prove the following lemma.
Lemma 3.15: If at the beginning of J , Tv ≤

√
F/2 for all

v, then also Tv ≤
√
F/2 for all v at the end of J , w.h.p.

Proof: From the previous lemma we know that every node
v senses an idle channel for Ω(|J |) time steps in J for any
constants ε > 0 and α > 2. Tv is maximized at the end of
J if all of these idle time steps happen at the beginning of
J , which would get Tv down to 1 at some point. Afterwards,



Tv can rise to a value of at most t for the maximum t with∑t
i=1 2i ≤ |J | (because v increases Tv by 2 each time it sees

no idle channel in the previous Tv steps), which is at most√
|J |. Since

√
|J | =

√
|F |/2, the lemma follows.

Since Tv can be increased at most (F/4)
√
F/2 many times

in J , we get:
Lemma 3.16: If at the beginning of a time frame I , Tv ≤√
F/2 for all v, then throughout I , Tv ≤

√
F for all v, and

at the end of I , Tv ≤
√
F/2 for all v, w.h.p.

Hence, the upper bounds on Tv that we assumed earlier are
valid w.h.p. We are now ready to prove Theorem 3.2.

of Theorem 3.2: Recall that a time step is open for a node
v if v and at least one other node in D1(v) are not potentially
busy. Let J be the set of all open time steps in I . Furthermore,
let k0 be the number of times v senses an idle channel in J
and let k1 be the number of times v receives a message in I .
From Lemma 3.14 and the assumptions in Theorem 3.2 we
know that k0 = 2−O((1/ε)2/(α−2))|I|.

Case 1: k1 ≥ k0/6. Then our protocol is 2−O((1/ε)2/(α−2))-
competitive for v and we are done.

Case 2: k1 < k0/6. Then we know from Lemma 3.13 that pv
is decreased at most k0/2+

√
F times in I due to cu > Tu. In

addition to this, pv is decreased at most k1 times in I due to a
received message. On the other hand, pv is increased at least
k0 times in J (if possible) due to an idle channel w.h.p. Also,
we know from our protocol that at the beginning of I , pv = p̂.
Hence, there must be at least (1 − 1/2 − 1/6)k0 −

√
|F | ≥

k0/4 rounds in J w.h.p. at which pv = p̂. Now, recall the
definition of a good subframe in the proof of Lemma 3.14.
From Lemmas 3.7, 3.12, and 3.11 it follows that at most a
εβ-fraction of the subframes in I is bad. In the worst case, all
of the time steps in these subframes are open time steps, which
sums up to at most k0/8 if β is sufficiently small. Hence, there
are at least k0/8 rounds in J that are in good subframes,
w.h.p., and at which pv = p̂, which implies that the other not
potentially busy node in D1(v) has a constant probability of
receiving a message from v. Using Chernoff bounds, at least
k0/16 rounds with successfully received transmissions can be
identified for v, w.h.p.

If we charge 1/2 of each successfully transmitted message
to the sender and 1/2 to the receiver, then a constant com-
petitive throughput can be identified for every node in both
cases above. It follows that our protocol is 2−O((1/ε)2/(α−2))-
competitive in F .

Now, let us consider the two cases of Theorem 1.1. Recall
that we allow here any ((1− ε)ϑ, T )-bounded adversary.

of Theorem 1.1:

Case 1: the adversary is 1-uniform and ∀v : D1(v) 6= ∅.:
In this case, every node has a non-empty neighborhood and
therefore all non-jammed rounds of the nodes are open. Hence,
the conditions on a weakly ((1 − ε)ϑ, T )-bounded adversary
are satisfied. So Theorem 3.2 applies, which completes the
proof of Theorem 1.1 a).

Case 2: |D1(v)| ≥ 2/ε for all v ∈ V .: Consider some
fixed time interval I with |I| being a multiple of T . For every
node v ∈ D1(u) let fv be the number of non-jammed rounds
at v in I and ov be the number of open rounds at v in I . Let J
be the set of rounds in I with at most one non-jammed node.
Suppose that |J | > (1 − ε/2)|I|. Then every node in D1(u)
must have more than (ε/2)|I| of its non-jammed rounds in J .
As these non-jammed rounds must be serialized in J to satisfy
our requirement on J , it holds that |J | >

∑
v∈D1(u)

(ε/2)|I| ≥
(2/ε) · (ε/2)|I| = |I|. Since this is impossible, it must hold
that |J | ≤ (1− ε/2)|I|.

Thus,
∑
v∈D1(u)

ov ≥ (
∑
v∈D1(u)

fv) − |J | ≥
(1/2)

∑
v∈D1(u)

fv because
∑
v∈D1(u)

fv ≥ (2/ε)·ε|I| = 2|I|.
Let D′(u) be the set of nodes v ∈ D1(u) with
ov ≥ fv/4. That is, for each of these nodes, a
constant fraction of the non-jammed time steps is
open. Then

∑
v∈D1(u)\D′(u) ov < (1/4)

∑
v∈D1(u)

fv ,
so
∑
v∈D′(u) ov ≥ (1/2)

∑
v∈D1(u)

ov ≥ (1/4)
∑
v∈D1(u)

fv .
Consider now a set U ⊆ V of nodes so that

⋃
u∈U D1(u) =

V and for every v ∈ V there are at most 6 nodes u ∈ U with
v ∈ D1(u). Note U is easy to construct in a greedy fashion for
arbitrary UDGs, and therefore for D1(u) in the SINR model,
and also known as a dominating set of constant density. Let
V ′ =

⋃
u∈U D

′(u). Since
∑
v∈D′(u) ov ≥ (1/4)

∑
v∈D1(u)

fv
for every node u ∈ U , it follows that

∑
v∈V ′ ov ≥

(1/6)
∑
u∈U

∑
v∈D′(u) ov ≥ (1/24)

∑
u∈U

∑
v∈D1(u)

fv ≥
(1/24)

∑
v∈V fv . Using that together with Theorem 3.2, which

implies that SADE is constant competitive w.r.t. the nodes in
V ′, completes the proof of Theorem 1.1 b).

Finally, we show that SADE is self-stabilizing, i.e., it can
recover quickly from any set of pv- and Tv-values.

E. Optimality

Obviously, if a jammer has a sufficiently high energy
budget, it can essentially block all nodes all the time. In the
following we call a network dense if ∀v ∈ V : D1(v) ≥ 1.

Theorem 3.17: The nodes can be positioned so that the
transmission range of every node is non-empty and yet no
MAC protocol can achieve any throughput against a (B, T )-
bounded adversary with B > ϑ, even if it is 1-uniform.

Proof: Let us suppose the jammer uses an energy budget
B > ϑ. If every node v only has nodes right at the border of its
disk D1(v) and the adversary continuously sets ADV(v) = B,
then v will not be able to receive any messages according to
the SINR model. Thus the overall throughput in the system is
0.

IV. SIMULATIONS

To complement our formal analysis and to investigate the
average-case behavior of our protocol, we conducted a simula-
tion study. In the following, we consider two scenarios which
differ in the way nodes are distributed in the 2-dimensional
Euclidean space. In the first scenario, called UNI, the nodes
are distributed uniformly at random in the 2-dimensional plane
of size 25× 25 units. In the second scenario, called HET, we
first subdivide the 2-dimensional plane of size 25 × 25 units



into 25 sub-squares of size 5×5 units. For each sub-square we
then choose the number of nodes λ uniformly at random from
the interval [20, 1000] and distribute said nodes (uniformly at
random) in the corresponding sub-square. Consequently, each
sub-square potentially provides a different density, where the
attribute density represents the average amount of nodes on a
spot in the plane of the corresponding scenario. In order to
avoid boundary effects, for both UNI and HET, we assume
that the Euclidean plane “wraps around”, i.e., distances are
computed modulo the boundaries.

While our formal throughput results in Section III hold for
any adversary which respects the jamming budget constraints,
computing the best adversarial strategy (i.e., the strategy which
minimizes the throughput of SADE) is difficult. Hence, in
our simulations, we consider the following two types of
adversaries: (1) Regular (or random) jammer (REG): given
an energy budget B per node, a time interval T , and a
specific 1 > ε > 0, the adversary randomly jams each node
every εth round (on average) using exactly B

ε energy per
node. Additionally we make sure that the overall budget B is
perfectly used up at the end of T . (2) Bursty (or deterministic)
jammer (BUR): For each time period T , the adversary jams
all initial rounds at the node, until the budget B is used up.
The remaining rounds in T are unjammed. In other words,
the first εT many rounds are jammed by the adversary using
exactly B

ε energy per node.
If not stated otherwise, we use the jammer REG and param-

eters α = 3, ε = 1
3 , β = 2, Π = 8, T = 60, B = (1−ε)·β and

run the experiment for 3000 rounds. We will typically plot the
percentage of successful message receptions, averaged over all
nodes, with respect to the unjammed time steps. If not specified
otherwise, we repeat each experiment ten times with different
random seeds, both for the distribution of nodes in the plane as
well as the decisions made by our MAC protocol. By default,
our results show the average over these runs; the variance of
the runs is low.

Impact of Scale and α. We first study the throughput as a
function of the network size. Therefore we distribute n nodes
uniformly in the

√
n ×
√
n plane. Figure 1 (top left) shows

our results under the REG (or random) jammer and different
α values. First, we can see that the competitive throughput
is around 40%, which is higher than what we expect from
our worst-case formal analysis. Interestingly, for α = 3, we
observe a small throughput decrease for larger networks; but
for α > 3, the throughput is almost independent of the network
scale. (In the literature, α is typically modeled as 3 or 4.)

This partially confirms Theorem 1.1: a higher α renders the
transmissions and power propagation more local. This locality
can be exploited by SADE to some extent.

Impact of Density. Next, we investigate how the perfor-
mance of SADE depends on the node density. We focus on
α = 3 and study both the REG jammer as well as the BUR
(deterministic) jammer. Figure 1 (top right) shows that results
for the UNI scenario (n nodes distributed uniformly in the
25× 25 plane, i.e., density n/625). The throughput is similar
under both jammers, and slightly declines for denser networks.

This effect is very similar to the effect of having larger (but
equidistant) networks.

However, SADE suffers more from more heterogenous den-
sities. The results for the scenario HET are shown in Figure 1
(bottom left). While the throughput is generally lower, the
specific sub-square density plays a minor role.

Convergence Time. SADE adapts quite fast to the given
setting, as the nodes increase and decrease their sending
probabilities in a multiplicative manner. Being able to adapt
quickly is an important feature, in particular in dynamic or
mobile environments where nodes can join and leave over
time, or where nodes are initialized with too high or low send-
ing probabilities. Our distributed MAC protocol will adjust
automatically and “self-stabilize”.

Figure 1 (bottom right) shows representative executions
over time and plots the aggregate probability. Initially, nodes
have a maximum sending probability p̂ = 1/24. This will
initially lead to many collisions; however, very quickly, the
senders back off and the overall sending probabilities (the
aggregated probability) reduce almost exponentially, and we
start observing successful message transmissions. (Observe
that the aggregated “probability” can be higher than one, as it
is simply the sum of the probabilities of the individual nodes.)

The sum of all sending probabilities also converges quickly
for any other Π. However, for smaller powers, the overall
probability is higher. This is consistent with the goal of SADE:
because for very large sending powers, also more remote nodes
in the network will influence each other and interfere, it is
important that there is only a small number of concurrent
senders in the network at any time—the aggregated sending
probability must be small. On the other hand, small powers
allow for more local transmissions, and to achieve a high
overall throughput, many senders should be active at the same
time—the overall sending probability should be high.

802.11a and Impact of Epsilon. We also compared the
throughput of SADE to the standard 802.11 MAC protocol
(with a focus on 802.11a). For simplicity, we set the unit slot
time for 802.11 to 50 µs. The backoff timer of the 802.11
MAC protocol implemented here uses units of 50 µs. We
omit SIFS, DIFS, and RTS/CTS/ACK. Our results show that
802.11a suffers more from the interference, while it yields a
similar throughput for large ε. In fact, we find that for ε close
to 0, 802.11a can even slightly outperform SADE.

When varying ε, we find that the worst-case bound of
Theorem 1.1 may be too pessimistic in many scenarios, and
the throughput depends to a lesser extent on the constant ε.

V. RELATED WORK

Traditional jamming defense mechanisms typically operate
on the physical layer [25], [27], [36], and mechanisms have
been designed to both avoid jamming as well as detect jam-
ming. Especially spread spectrum technology is very effective
to avoid jamming, as with widely spread signals, it becomes
harder to detect the start of a packet quickly enough in order
to jam it. Unfortunately, protocols such as IEEE 802.11b use
relatively narrow spreading [20], and some other IEEE 802.11
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Fig. 1. Throughput as a function of network size (top left), density (top right), sub-grid density (bottom left), and power (bottom right).

variants spread signals by even smaller factors [5]. Therefore,
a jammer that simultaneously blocks a small number of
frequencies renders spread spectrum techniques useless in
this case. As jamming strategies can come in many different
flavors, detecting jamming activities by simple methods based
on signal strength, carrier sensing, or packet delivery ratios
has turned out to be quite difficult [24].

Recent work has investigated MAC layer strategies against
jamming in more detail, for example coding strategies [6],
channel surfing and spatial retreat [1], [38], or mechanisms to
hide messages from a jammer, evade its search, and reduce
the impact of corrupted messages [37]. Unfortunately, these
methods do not help against an adaptive jammer with full
information about the history of the protocol, like the one
considered in our work.

In the theory community, work on MAC protocols has
mostly focused on efficiency. Many of these protocols are
random backoff or tournament-based protocols [4], [7], [17],
[19], [23], [29] that do not take jamming activity into account
and, in fact, are not robust against it (see [2] for more details).
The same also holds for many MAC protocols that have been
designed in the context of broadcasting [8] and clustering [22].
Also some work on jamming is known (e.g., [9] for a short

overview). There are two basic approaches in the literature.
The first assumes randomly corrupted messages (e.g. [28]),
which is much easier to handle than adaptive adversarial
jamming [3]. The second line of work either bounds the
number of messages that the adversary can transmit or disrupt
with a limited energy budget (e.g. [16], [21]) or bounds the
number of channels the adversary can jam (e.g. [10], [11],
[12], [13], [14], [15], [26]).

The protocols in [16], [21] can tackle adversarial jamming
at both the MAC and network layers, where the adversary
may not only be jamming the channel but also introducing
malicious (fake) messages (possibly with address spoofing).
However, they depend on the fact that the adversarial jamming
budget is finite, so it is not clear whether the protocols would
work under heavy continuous jamming. (The result in [16]
seems to imply that a jamming rate of 1/2 is the limit whereas
the handshaking mechanisms in [21] seem to require an even
lower jamming rate.)

In the multi-channel version of the problem introduced
in the theory community by Dolev [13] and also studied
in [10], [11], [12], [13], [14], [15], [26], a node can only
access one channel at a time, which results in protocols
with a fairly large runtime (which can be exponential for



deterministic protocols [11], [14] and at least quadratic in the
number of jammed channels for randomized protocols [12],
[26] if the adversary can jam almost all channels at a time).
Recent work [10] also focuses on the wireless synchronization
problem which requires devices to be activated at different
times on a congested single-hop radio network to synchronize
their round numbering while an adversary can disrupt a certain
number of frequencies per round. Gilbert et al. [15] study
robust information exchange in single-hop networks.

Our work is motivated by the work in [3] and [2]. In [3] it
is shown that an adaptive jammer can dramatically reduce the
throughput of the standard MAC protocol used in IEEE 802.11
with only limited energy cost on the adversary side. Awerbuch
et al. [2] initiated the study of throughput-competitive MAC
protocols under continuously running, adaptive jammers, but
they only consider single-hop wireless networks. Their ap-
proach has later been extended to reactive jamming environ-
ments [32], co-existing networks [34] and applications such
as leader election [33].

The result closest to ours is the robust MAC protocol for
Unit Disk Graphs presented in [31]. In contrast to [31], we
initiate the study of the more relevant and realistic physical
interference model [18] and show that a competitive through-
put can still be achieved. As unlike in Unit Disk Graphs,
in the SINR setting far-away communication can potentially
interfere and there is no absolute notion of an idle medium,
a new protocol is needed whose geometric properties must be
understood. For the SINR setting, we also introduce a new
adversarial model (namely the energy budget adversary).

VI. CONCLUSION

This paper has shown that robust MAC protocols achieving
a constant competitive throughput exist even in the physical
model. This concludes a series of research works in this area.
Nevertheless, several interesting questions remain open. For
example, while our theorems prove that SADE is as robust as
a MAC protocol can get within our model and for constant ε,
we conjecture that a throughput which is polynomial in (1/ε)
is possible. However, we believe that such a claim is very
difficult to prove. We also plan to explore the performance of
SADE under specific node mobility patterns.
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