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Abstract

We study a multi-class time-sharing discipline with relative pri-
orities known as Discriminatory Processor Sharing (DPS), which pro-
vides a natural framework to model service differentiation in systems.
The analysis of DPS is extremely challenging and analytical results
are scarce. We develop closed-form approximations for the mean con-
ditional and unconditional sojourn times. The main benefits of the
approximations lie in its simplicity, the fact that it applies for general
service requirements with finite second moments, and that it provides
insights into the dependency of the performance on the system parame-
ters. We show that the approximation for the mean (un)conditional so-
journ time of a customer is decreasing as its relative priority increases.
We also show that the approximation is exact in various scenarios, and
that it is uniformly bounded in the second moments of the service re-
quirements. Finally we numerically illustrate that the approximation
is accurate across a broad range of parameters.

1 Introduction

The Discriminatory Processor Sharing queue (DPS) is a versatile queue-
ing model providing a natural framework to model service differentiation in
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systems. It is a multi-class extension of the well-studied egalitarian Pro-
cessor Sharing (PS) policy, where the various classes are assigned positive
weight factors. The service capacity is shared simultaneously among all
customers present in proportion to the respective class-dependent weights.
More precisely, given there are K classes of customers, if at time t there
are nk(t) class-k customers present in the system, k = 1, . . . ,K, under DPS
each class-k customer is served at rate gk/

∑K
j=1 gjnj(t), where g1, . . . , gK ,

are the class-dependent weights. The DPS queue has received lot of atten-
tion due to its application to model the impact of service differentiation in
systems.
When all the weights are equal, the DPS queue is equivalent to the PS
queue. The PS queue has gained a prominent role in evaluating the per-
formance of a variety of resource allocation mechanisms (see for example
[18, 14, 27]), and in recent years it has received renewed attention as a con-
venient abstraction for modeling the flow-level performance of bandwidth-
sharing protocols in packet-switched networks, in particular TCP, see for
example [10, 23]. In multiple practical situations, the actual service shares
that users obtain may show substantial variation among users with hetero-
geneous characteristics. For example, TCP flows that share a common bot-
tleneck link but traverse distinct routes, may experience diverse packet loss
rates and round-trip delays. Besides TCP-related effects, the heterogeneity
in bandwidth shares may also be due to deliberate service differentiation
among competing flows (for example different quality-of-service in the In-
ternet). For instance packet scheduling algorithms, such as Weighted Fair
Queueing (WFQ) and Weighted Round-Robin (WRR), have been proposed
as potential instruments to implement differentiated bandwidth sharing.
In this context, the Discriminatory Processor-Sharing (DPS) provides a
natural approach for modeling the flow-level performance of TCP. The DPS
model was introduced by Kleinrock in [17]. Despite the simplicity of the
model description and the fact that the properties of the egalitarian PS
queue are quite thoroughly understood, the analysis of DPS has proven to
be extremely difficult. For example, results on an important basic metric
like the mean sojourn time in the system have only been derived in a very
implicit manner or under certain limiting regimes (time-scale decomposition,
heavy-traffic, overload etc.).
In a seminal paper Fayolle, Mitrani & Iasnogorodski [9] studied the mean
conditional (on the service requirement) and unconditional sojourn time.
For general service time distributions, the authors obtained the mean con-
ditional sojourn time as the solution of a system of integro-differential equa-
tions. In addition, the authors provided a thorough analysis for the case of
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exponentially distributed service requirements. However, except for the case
of two classes, no closed-form expression is available and numerical analysis
is needed in order to calculate the mean sojourn times. Since we use the
results of [9] in order to evaluate the accuracy of our approximation, we
will give further details on them in Section 2. Avrachenkov et al. [3] estab-
lished that the mean queue lengths of all classes are finite under the usual
stability condition, regardless of the higher-order moments of the service re-
quirements. Asymptotics of the sojourn time have also received considerable
attention for example in [5] and [4]. An important result in this area estab-
lishes the asymptotic equivalence between the sojourn time distribution and
the service time distribution. Time-scale separations have been studied in
[24] and [6]. In particular, the authors of [6] approximate the distribution
of the sojourn time for a DPS queue with admission control. However the
expressions derived in [6] need to be solved numerically. The performance
of DPS in overload and its application to model TCP flows is considered
in [2]. The application of DPS to analyse the performance of TCP is also
considered in [16]. For more applications of DPS in communication net-
works see [7, 8, 13]. DPS under a heavy-traffic regime (when the traffic
load approaches the available capacity) was analysed in Grishechkin [11]
assuming finite second moments of the service requirement distributions.
Subsequently, assuming exponential service requirement distributions, a di-
rect approach to establish a heavy-traffic limit for the joint queue length
distribution was described by Rege & Sengupta [19] and extended to phase-
type distributions in [25]. We refer to the next section for more details on
heavy-traffic results. Game-theoretic aspects of DPS have been studied in
[26] and [12]. For an extensive overview of the literature on DPS we refer
to the survey [1].
Motivated by the difficulty in analyzing the system in exact form, in this
paper we derive a closed-form approximation for the mean (un)conditional
sojourn time in the system. We first obtain a light-traffic approximation
using the framework obtained in [11]. To the best of our knowledge, we are
the first to obtain a light-traffic approximation of a time-sharing system,
that is, when all users in the system simultaneously get served. We then use
results from the heavy-traffic literature in order to obtain a polynomial ap-
proximation for any value of the load of the mean conditional sojourn time
for service requirements with finite second moments. Unconditioning on the
service time distribution, this allows us to readily obtain an approximation
for the mean unconditional sojourn time. We will show that in some cases
our approximation becomes exact, namely when there is only one class in the
system or when all the weights are the same. The approximation provides
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insights into the performance of the system. We show that the approxima-
tion for the mean conditional sojourn time of a class-k user is decreasing
(resp. increasing) as the weight gk (resp. gj , j 6= k) increases. Another
important observation is that the approximation is uniformly bounded in
the second moments of the service requirements. This was a major property
of PS, which is in sheer contrast with FCFS queues, where the mean waiting
time explodes as the second moment grows. Finally, we numerically inves-
tigate the accuracy of the approximation by comparing it with the exact
results obtained in [9]. We consider different service time distributions, and
our results show that our approximation works extremely well across var-
ious parameter values. An important benefit of the approximation is that
it provides insights into the dependency of the performance on the system
parameters (weights, service time distributions, etc), and we thus believe it
will provide an interesting tool in order to implement service-differentiation
in real systems.
The remainder of the paper is organized as follows. In Section 2 we provide
a detailed model description and gather results from Fayolle et al. [9] and
Grishechkin [11] that will be used in the paper. In Section 3 we develop a
light-traffic analysis. The light-traffic interpolation approximation for the
(un)conditional sojourn time is presented in Section 4. In Section 5 we
numerically test the accuracy of the obtained approximations.

2 Model description and preliminaries

We consider a multi-class single-server queue with K classes of customers.
Class-k customers, k = 1, . . . ,K, arrive according to independent Pois-
son processes with rate λk ≥ 0. We denote the overall arrival rate by
λ =

∑K
k=1 λk. A class-k customer has a generally distributed service re-

quirement denoted by Bk and we assume E[B2
k] < ∞, k = 1, . . . ,K. The

traffic intensity for class-k customers is denoted by ρk := λkE[Bk] and the
total traffic intensity is denoted by

ρ :=

K∑
k=1

ρk =

K∑
k=1

λkE[Bk] = λ

K∑
k=1

αkE[Bk] = λE[B],

where αk = λk/λ denotes the probability that an arrival is of class k and
the random variable B is the service requirement of an arbitrary arriving
customer.
The K customer classes share a common resource of capacity one. There
are strictly positive weights g1, . . . , gK associated with each of the classes.
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Whenever there are nk class-k customers, k = 1, . . . ,K, in the system, each
class-k customer is served at rate

gk∑K
j=1 njgj

.

We denote by Sk(λ, b) the conditional sojourn time of a tagged class-k cus-
tomer with a given service requirement b, when the arrival rate is λ. We
are interested in approximating Sk(λ, b) := E[Sk(λ, b)], the mean condi-
tional sojourn time of the tagged class-k customer. We further denote by
Sk(λ) :=

∫∞
0 Sk(λ, b)dFk(b), the mean unconditional sojourn time of the

tagged class-k customer, where P(Bk ≤ b) = Fk(b) is the distribution func-
tion of Bk.
The analysis of DPS is extremely difficult compared to that of egalitarian
PS, which arises as a special case when all gk are equal. Fayolle et al. [9]
obtained that the derivatives of the mean conditional sojourn times of the
various classes satisfy the following system of integro-differential equations:

S
(1)
k (λ, b)

= 1 +
K∑
j=1

∫ ∞
0

λj
gj
gk
S
(1)
j (λ, y)[1− Fj(y +

gj
gk
b)]dy

+

∫ b

0
S
(1)
k (λ, y)

K∑
j=1

λj
gj
gk

[1− Fj(
gj
gk

(b− y))]dy, (1)

for k = 1, . . . ,K, where S
(1)
j (λ, b) :=

∂Sj(λ,b)
∂b . The natural boundary condi-

tions are Sk(λ, 0) = 0, k = 1, . . . ,K.
The only known analytical solution for this system of equations has been
obtained under the assumption of exponentially distributed service require-
ments. In this case we denote by µj := 1/E[Bj ], ∀j. In [9] it is proved
that

Sk(λ, b) =
b

1− ρ
+

m∑
j=1

gkcjβj + dj
β2j

(
1− e−βjb/gk

)
, (2)

where −βj , j = 1, 2, . . . ,m, are the m distinct negative roots of

K∑
j=1

λjgj
µjgj + s

= 1, (3)

and where cj and dj , j = 1, . . . ,m, are a function of the input parameters
and βj , j = 1, . . . ,m.
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Furthermore, for the mean unconditional sojourn time with exponentially
distributed service requirements, it is shown in [9] that Sk(λ), k = 1, . . . ,K,
is the unique solution of the following system of equations:

Sk(λ)

1−
K∑
j=1

λjgj
µjgj + µkgk

− K∑
j=1

λjgjSj(λ)

µjgj + µkgk
=

1

µk
. (4)

A closed-form solution for this system of equations (4) is available only for
the case of K = 2, and is given by

S1(λ) =
1

µ1(1− ρ)

(
1 +

µ1ρ2(g2 − g1)
µ1g1(1− ρ1) + µ2g2(1− ρ2)

)
, (5)

and

S2(λ) =
1

µ2(1− ρ)

(
1 +

µ2ρ1(g1 − g2)
µ1g1(1− ρ1) + µ2g2(1− ρ2)

)
. (6)

The above shows how hard and challenging it is to study analytically the
DPS model. For this reason, as mentioned in the introduction, research has
focused on analysing the DPS queue in limiting regimes, like tail asymp-
totics, heavy-traffic limits, fluid limits etc. In this paper, we take a differ-
ent approach, and we develop light-traffic interpolation based approxima-
tions for Sk(λ, b) and Sk(λ). In the numerical section we will use Equa-
tions (2), (4)-(6) in order to numerically verify the accuracy of our light-
traffic interpolation approximations.
The approximation is obtained by interpolating the mean sojourn times
obtained in both a light-traffic regime and a heavy-traffic regime.
The light-traffic regime consists in letting ρ ↓ 0, or equivalently λ ↓ 0. Hence,
it concerns the performance when the system is almost empty. No results
are available for the DPS queue. Therefore, in Section 3 we analyze the
mean conditional sojourn time in the light-traffic regime.
The heavy-traffic regime consists in letting ρ ↑ 1, or equivalently λ ↑ 1/E[B].
Hence, it concerns the performance when it is close to congestion. Heavy-
traffic results have been obtained in [11, 19, 25]. For our analysis, we use the
results by Grishechkin [11, Theorem 4.1] who studied a general M/G/1/GPS
system of which our model is a particular case. In particular, for the DPS
queue as studied in this paper Grishechkin derives the distribution of the
conditional sojourn times, scaled by 1− λE[B] = 1− ρ, as λ ↑ 1/E[B]. In
particular, the mean of this distribution is given by

E[ lim
λ↑1/E[B]

(1− λE[B])Sk(λ, b)] =
b

gk

E[B2]∑K
j=1 αjE[B2

j ]/gj
. (7)
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For our interpolation result, we are interested in limλ↑1/E[B](1− λE[B])Sk(λ, b) =
limλ↑1/E[B](1− λE[B])E[Sk(λ, b)]. Although we cannot verify that the limit
and expectation can be interchanged, we use the expression in (7) as an
approximation for limλ↑1/E[B](1−λE[B])Sk(λ, b). Numerical experiments as
performed in [25] indicate that indeed the limits can be interchanged.

3 Light-traffic analysis

In this section we analyse the mean conditional sojourn time of the tagged
class-k customer under the light-traffic regime. The light-traffic regime con-
cerns the performance of the system for small values of the arrival rate λ,
i.e., when the system is almost empty. We will approximate Sk(λ, b) by
a Taylor series expansion of Sk(λ, b) at λ = 0. Assuming that the first n
derivatives of Sk(λ, b) with respect to λ at λ = 0 exist we have the following
approximation for the mean conditional sojourn time of a class-k customer
when λ is close to zero:

S
LT
k (λ, b) := Sk(0, b) + λS

(1)
k (0, b) + · · ·+ λn

n!
S
(n)
k (0, b). (8)

Here S
(m)
k (0, b),m = 1, . . . , denotes the m-th derivative of Sk(λ, b) with re-

spect to λ at λ = 0, i.e., ∂mSk(λ,b)
∂λm

∣∣∣
λ=0

. In this paper we set n = 1 in (8)

as this will already provide us with an accurate approximation of the per-
formance. We note that in previous literature higher order approximations
have been obtained for non-preemptive systems, see [20].
We have based our analysis on Reiman and Simon [22] where it is shown how
to obtain the derivatives of arbitrary order m ≥ 0 at λ = 0 under a general
admissibility condition. It can be seen that our model, being based on an
M/G/1, satisfies this condition. Hence, we consider the system in steady
state. We assume the system starts at t = −∞, and Sk is the sojourn time
of the tagged class-k customer who arrives in the system at time t = 0.
Using [22] we have Sk(0, b) = ψ(∅) and

S
(1)
k (0, b) =

∫
R

(ψ({t})− ψ(∅))dt, (9)

where

ψ(∅) := E[Sk| no arrivals on R], (10)

ψ({t}) := E[Sk| exactly one arrival on R at t]. (11)
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Equation (10) represents the situation where nobody enters the system ex-
cept the tagged customer. Therefore, ψ(∅) is equal to the service requirement
of the tagged customer, which we denote by b. Hence,

Sk(0, b) = b. (12)

Regarding (11), we denote by Sk,t,ut,but the sojourn time of the tagged class-
k customer when there is exactly one arrival at time t on R, ut describing
the class of the customer arriving at time t and but denoting the service re-
quirement of the customer arriving at time t. Hence, ψ({t}) = E[Sk,t,Ut,BUt

],
where Ut and BUt are dependent random variables and are distributed as
follows: with probability αi we have Ut = i and BUt is distributed as Bi,
i = 1, . . . ,K. We can write Sk,t,ut,but as follows:

Sk,t,ut,but =

t+ but + b if t ≤ 0 ≤ t+ but and b
gk
>

t+but
gut

gk+gut
gk

b if t ≤ 0 ≤ t+ but and b
gk
≤ t+but

gut
b if t+ but < 0

b+ but if 0 < t < b and b−t
gk

>
but
gut

t+ (b− t)gk+gutgk
if 0 < t < b and b−t

gk
≤ but

gut
b if 0 < b < t,

(13)

which can be seen as follows: The first expression describes the case where
the customer arrives before the tagged customer and leaves after the tagged
customer arrives, but before the tagged customer leaves. Hence, by the work
conserving property, the tagged customer stays in the system until all the
work present at time 0 is done, that is, but − (−t) + b. We recall that the
work-conserving property states that as long as the system is non-empty, the
server does not idle. The second term describes the case where the other
customer is in the system at time 0 and is still present as the tagged customer
departs. Hence, the tagged class-k customer is served at rate gk

gk+gut
, so that

its sojourn time is b
(

gk
gk+gut

)−1
. The fourth expression describes the case

where the customer arrives after the tagged customer and leaves before the
tagged customer. Hence, by the work-conserving property of the system, the
sojourn time of the tagged class-k customer is given by the total amount of
work that needs to be done, that is, b+but . The fifth term describes the case
where the customer arrives after the tagged customer, and departs after the
tagged customer departs. Then, the sojourn time of the tagged customer
is composed of t, the time it was in the system until the customer arrived,
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plus (b− t)
(

gk
gk+gut

)−1
, the remaining service requirement multiplied by the

inverse of the rate at which the the tagged class-k customer is served. The
third and sixth case is when the tagged customer does not coincide with the
other customer. Hence, the sojourn time is given by its service requirement,
b.
From Equations (9) and (13) we then obtain the following expression for the
first derivative.

Lemma 3.1. We have

S
(1)
k (0, b) (14)

=

∫
R

(ψ({t})− ψ(∅))dt =

∫
R

(E[Sk,t,Ut,BUt
]− b)dt

= E

[
1

2

(
1 +

gk
gUt

)
min{BUt , b

gUt

gk
}2

−
(
b
gUt

gk
+

gk
gUt

BUt

)
min{BUt , b

gUt

gk
}+

gk + gUt

gk
bBUt

]
.

Proof: To calculate S
(1)
k (0, b) we need to calculate

∫∞
−∞ E[Sk,t,Ut,BUt

]dt,
where Sk,t,ut,but is as given in Equation (13). We first focus on the cal-
culation corresponding to the first term of (13), that is, the case when
t ≤ 0 ≤ t + BUt and t <

gUt
gk
b − BUt , (where the inequalities of the random

variables hold sample-path wise). We have∫ 0

−∞
E

[
1

[
−BUt ≤ t <

gUt

gk
b−BUt

](
t+BUt + b

)]
dt

=

∫ ∞
0

E

[
1

[
BUt ≥ t > BUt −

gUt

gk
b

](
− t+BUt + b

)]
dt

= E

[∫ ∞
0

1

[
BUt ≥ t > BUt −

gUt

gk
b

](
− t+BUt + b

)
dt

]
,
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as we make use of Tonelli’s Theorem. It follows that∫ ∞
0

1

[
BUt ≥ t > BUt −

gUt

gk
b

](
− t+BUt + b

)
dt

=

∫ BUt(
BUt−

gUt
gk

b
)+ (− t+BUt + b

)
dt

=

[
− t2

2
+BUtt+ bt

]BUt(
BUt−

gUt
gk

b
)+ . (15)

We can now consider two cases. If BUt −
gUt
gk
b > 0, then Equation (15) is

equal to 1
2

(
gUtb

gk

)2

+
gUtb

2

gk
. If BUt −

gUt
gk
b < 0, then Equation (15) is equal

to
B2

Ut
2 + bBUt , and we thus get

E
[∫ ∞

0
1

[
BUt ≥ t > BUt −

gUt

gk
b

](
− t+BUt + b

)
dt

]
= E

[
1

2
min{BUt , b

gUt

gk
}2 + bmin{BUt , b

gUt

gk
}
]
.

The other five cases in (13) can be calculated in a similar way and this will
give us the result as stated in (14). �
From (8) and (14) we now derive the following approximation for the mean
conditional sojourn time when λ is small.

Corollary 3.2. The light-traffic approximation (of order 1) of the mean
conditional sojourn time for a tagged class-k customer with service require-
ment b is given by

S
LT
k (λ, b) = Sk(0, b) + λS

(1)
k (0, b) (16)

= b(1 + ρ) + λE

[
1

2

(
1 +

gk
gUt

)
min{BUt , b

gUt

gk
}2

−
(
b
gUt

gk
+

gk
gUt

BUt

)
min{BUt , b

gUt

gk
}+

gUt

gk
bBUt

]
.

We can infer several nice properties from (16). For instance, we will show
in Section 4 that (16) is decreasing in gk and increasing in gj , j 6= k. In
other words, the approximation for the mean sojourn time reduces as its own
weight increases, and it increases as the weight of any other class increases.
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Another interesting observation is that the light-traffic approximation of
the mean conditional sojourn time can be uniformly bounded in the second
moment. This important feature helps obtaining a good performance in the
presence of highly variable service distributions (like the ones observed in
nowadays communication systems). See Section 4.4 for details.

4 Light-traffic interpolation

In this section we present the light-traffic interpolation result. This tech-
nique was popularized by Reiman and Simon [20, 21, 22] and consists in
interpolating

tk(λ) := (1− ρ)Sk(λ, b) = (1− λE[B])Sk(λ, b)

by a polynomial t̂k(λ) of order n+ 1:

t̂k(λ) = h0 + h1λ+ . . .+ hn+1λ
n+1. (17)

To determine the coefficients h0, . . . , hn we use the so-called light-traffic
conditions: t̂k(0) = tk(0), and

t̂
(m)
k (0) = t

(m)
k (0), for m = 1, . . . , n, (18)

and the heavy-traffic condition

t̂k
(
(1/E[B])−

)
= tk

(
(1/E[B])−

)
, (19)

where tk
(
(1/E[B])−

)
is given by

b

gk

E[B2]∑K
j=1 αjE[B2

j ]/gj
, see (7). Once we have

obtained the coefficients we undo the normalization so that

S
INT
k (λ, b) :=

t̂k(λ)

(1− λE[B])
, 0 ≤ λ < 1/E[B] (20)

provides an approximation for the mean conditional sojourn time Sk(λ, b).
We refer to this approximation as the light-traffic interpolation of order n+1.
Note that in the previous section we derived the light-traffic derivative of or-

der 1, S
(1)
k (0, b). Hence, this allows us to obtain the light-traffic interpolation

of order 2 as stated in the following proposition.
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Proposition 4.1. The light-traffic interpolation (of order 2) of the mean
conditional sojourn time for a tagged class-k customer with service require-
ment b is given by

S
INT
k (λ, b)

= b(1 + ρ) + λE
[

1

2

(
1 +

gk
gUt

)
min{BUt , b

gUt

gk
}2

−
(
b
gUt

gk
+

gk
gUt

BUt

)
min{BUt , b

gUt

gk
}+ b

gUt

gk
BUt

]
+

(λE[B])2

(1− λE[B])

b

gk

E[B2]∑K
j=1 αjE[B2

j ]/gj
. (21)

Proof. We have t̂k(0) = h0 and by Equation (12) tk(0) = Sk(0, b) = b.
Hence, by the light-traffic conditions this implies h0 = b. We further

have t̂
(1)
k (0) = h1 and t

(1)
k (0) = −E[B]Sk(0, b) + S

(1)
k (0, b), where we have

by Lemma 3.1 that S
(1)
k (0, b) = E

[
1
2

(
1 + gk

gUt

)
min{BUt , b

gUt
gk
}2 −

(
b
gUt
gk

+

gk
gUt
BUt

)
min{BUt , b

gUt
gk
}+ gk+gUt

gk
bBUt

]
. This implies h1 = −bE[B]+ 1

2E

[(
1+

gk
gUt

)
min{BUt , b

gUt
gk
}2 −

(
b
gUt
gk

+ gk
gUt
BUt

)
min{BUt , b

gUt
gk
}+ b

gk+gUt
gk

BUt

]
.

We have t̂k(1/E[B]) = h0+h1/E[B]+h2/E[B]2 and by (7) we have tk(1/E[B]) ≈
b

gk

E[B2]∑K
j=1 αjE[B2

j ]/gj
. Hence, from (19) we obtain h2 =

b

gk

E[B]2E[B2]∑K
j=1 αjE[B2

j ]/gj
−

E[B]

(
1

2
E[
(
1 + gk

gUt

)
min{BUt , b

gUt
gk
}2]−E[

(
b
gUt
gk

+ gk
gUt
BUt

)
min{BUt , b

gUt
gk
}] +

bE[
gk+gUt
gk

BUt ]

)
. The final expression (21) is then obtained from (h0 +h1λ+

h2λ
2)/(1− λE[B]) after a few manipulations.

From Proposition 4.1 we can make the following observations.

4.1 The case of PS

For the standard Processor Sharing queue the mean conditional sojourn time
is known and is given by b/(1−ρ), [15]. If either (i) there is only one class or
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(ii) all weights are the same, our model is equivalent to a processor-sharing
queue. Below we will verify that our approximation as stated in (21) indeed
coincides with b/(1− ρ).
We first consider the case of one class, that is, αi = 0, ∀i 6= k and αk = 1.
Then Equation (21) is equal to

b(1 + ρ) + λkE

[
min{BUt , b}2 −

(
b+BUt

)
min{BUt , b}

+bBUt

]
+ b

ρ2

(1− ρ)
= b(1 + ρ+

ρ2

(1− ρ)
) =

b

1− ρ
,

where we used that min{BUt , b}2 −
(
b+BUt

)
min{BUt , b}+ bBUt = 0.

We now assume all weights are the same, i.e., gi = gk, ∀i, k = 1, . . . ,K.
Equation (21) is then equal to

b(1 + ρ) + λE

[
min{BUt , b}2 −

(
b+BUt

)
min{BUt , b}+ bBUt

]

+
bρ2

(1− ρ)

E[B2]∑K
j=1 αjE[B2

j ]
= b(1 + ρ+

ρ2

(1− ρ)
) =

b

1− ρ
.

Hence, both cases coincide with the PS queue.

4.2 Priority queue

We now consider the case when the weight of the tagged customer grows
large, i.e., gk → ∞. Hence, class k is prioritized in the limit. Then, the
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approximation simplifies to

lim
gk→∞

[
b(1 + ρ)

+
K∑

ut=1

λutE

[
1

2

(
min{But , b

gut
gk
}2 +

gk
gut

min{But , b
gut
gk
}2
)

−
(
b
gut
gk

min{But , b
gut
gk
}+But min{But

gk
gut

, b}
)

+
gut
gk
bBut

]

+
b(λE[B])2

(1− λE[B])

E[B2]

gk
∑K

j=1
j 6=k

αjE[B2
j ]/gj + αkE[B2

k]

]

= b(1 + ρ) + E

[
K∑

ut=1
ut 6=k

λut

(
1

2

(
0 + 0

)
−
(
0 + bBut

)
+ 0

)]

= b(1 + ρk).

Note that the conditional sojourn time as gk → ∞ is known and its given
by b/(1− ρk). Since 1/(1− ρk) =

∑∞
i=0 ρ

i
k, we directly see that the approxi-

mation is the first order approximation of the exact expression. The relative
error is equal to 100% (b/(1− ρk)− b(1 + ρk)) /b/(1 − ρk) = ρ2k100%, and
we thus see that the relative error increases as the load of class k increases.

4.3 Monotonicity in the weights

It can be checked that the approximation for the mean conditional sojourn

time of a tagged class-k customer, S
INT
k (λ, b), is decreasing in gk and in-

creasing in gi, i 6= k.
This can be seen as follows. Conditioning on Ut we can write

S
INT
k (λ, b)

= b(1 + ρ) +
K∑

i=1,i 6=k
λiE
[

1

2

(
1 +

gk
gi

)
min{Bi, b

gi
gk
}2

−
(
b
gi
gk

+
gk
gi
Bi
)

min{Bi, b
gi
gk
}+ b

gi
gk
Bi

]
+

(λE[B])2

(1− λE[B])

b

gk

E[B2]∑K
j=1 αjE[B2

j ]/gj
,
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where for Ut = k we used that min{Bk, b}2−
(
b+Bk

)
min{Bk, b}+ bBk = 0.

Now, if Bi ≤ gi
gk
b, then 1

2

(
1+ gk

gi

)
min{Bi, b gigk }

2−
(
b gigk + gk

gi
Bi
)

min{Bi, b gigk }+
b gigkBi = 1

2B
2
i (1 − gk

gi
), which is decreasing in gk and increasing in gi. If

Bi >
gi
gk
b, then 1

2

(
1+ gk

gi

)
min{Bi, b gigk }

2−
(
b gigk + gk

gi
Bi
)

min{Bi, b gigk }+b
gi
gk
Bi =

1
2b

2 gi
gk

(1 − gi
gk

) + bBi(
gi
gk
− 1), which is decreasing in gk and increasing in gi

(can be derived by taking the derivative and the fact that Bi >
gi
gk
b). The

monotonicity of S
INT
k (λ, b) in gk and gi now follows immediately.

4.4 Uniformly bounded in the second moment

A very relevant property of processor sharing is that the mean sojourn time
depends on the service time distribution only through its mean [14]. This has
been an important argument to claim the interest of time-sharing disciplines
with respect to more classical scheduling policies like FCFS. Indeed, the
classical Pollaczek-Khinchine formula for the mean waiting time in a FCFS
queue shows that it explodes as the second moment of the service time
distribution grows large. For a DPS queue, Equation (1) does not allow
to reach any conclusion regarding the dependence of the mean conditional
sojourn time on the moments of the service time distribution.
It then becomes interesting to observe that the approximation (21) is uni-
formly bounded in the second moments of the service time distribution. To
see this, we first note that min{BUt , b

gUt
gk
}2 ≤ BUtb

gUt
gk

, which directly implies
that the first three terms in (21) are uniformly bounded by a function that
depends on the service requirements only through its first moment. We are

now left with the heavy-traffic term
E[B2]∑K

j=1 αjE[B2
j ]/gj

. Let j∗ be such that

E[B2
j∗ ] ≥ E[B2

j ], ∀j. We then have
E[B2]∑K

j=1 αjE[B2
j ]/gj

=

∑
j αjE[B2

j ]∑K
j=1 αjE[B2

j ]/gj
≤

E[B2
j∗ ]

αj∗E[B2
j∗ ]/gj∗

=
gj∗

αj∗
. We thus finally conclude that (21) can be upper

bounded by an expression that depends only on the first moment of the
service time distributions. This indicates that the DPS queue provides a
satisfactory performance even in the presence of service time distributions
with a high variability.
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4.5 Mean unconditional sojourn time

As a corollary of Proposition 4.1, we obtain the mean unconditional sojourn
time of the tagged class-k customer.

Corollary 4.2. The light-traffic interpolation (of order 2) of the mean un-
conditional sojourn time for a tagged class-k customer is given by

S
INT
k (λ) :=

∫ ∞
0

S
INT
k (λ, b)dFk(b)

= E[Bk](1 + ρ)

+λE
[

1

2

(
1 +

gk
gUt

)
min{BUt , Bk

gUt

gk
}2

−
(
Bk

gUt

gk
+

gk
gUt

BUt

)
min{BUt , Bk

gUt

gk
}+Bk

gUt

gk
BUt

]
+

(λE[B])2

(1− λE[B])

E[Bk]

gk

E[B2]∑K
j=1 αjE[B2

j ]/gj
. (22)

5 Numerical results

In this section we numerically investigate the accuracy of the approximations
obtained in this paper. In Section 5.1 we consider the mean conditional
sojourn time and in Section 5.2 the mean unconditional sojourn time, whose
approximations are stated in Proposition 4.1 and Corollary 4.2, respectively.
As stated in Section 2, Fayolle et al. [9] obtain analytical expressions of the
mean conditional and unconditional sojourn time under the assumption of
exponentially distributed service requirements. We recall that a random
variable Bi is exponentially distributed if P(Bi ≤ bi) = 1− e(−bi/E[Bi]). For
exponentially distributed service requirements, we will evaluate the accuracy
of the approximations by comparing the exact formulas as obtained in [9],
see Equations (2) and (4), with the approximations as given in (21) and
(22).
In order to obtain a more complete understanding on the accuracy of the
approximation, we will also consider hyperexponential distributions. We
say that Bi has a hyperexponential distribution with mi phases if P(Bi ≤
bi) = 1 −

∑mi
k=1 pike

(−bi/E[Bik]), where pik is the probability that a class-i
customer is exponentially distributed with mean E[Bik]. Hyperexponential
distributions have a decreasing hazard-rate, and their second moment can be
made arbitrarily large, and because of these features it has been proposed
as an appropriate distribution to model service time distributions in the
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Internet. In order to derive exact expressions for the mean sojourn time
when the service requirements are hyperexponentially distributed, we make
the observation that if classes k = 1, . . . ,mi are exponentially distributed
(where class k has arrival rate λk and mean service requirement E[Bk])
and have the same DPS weight, g1 = . . . = gmi , then they can be seen as a
single (merged) class i with a hyperexponential distribution with parameters
pik = λk/

∑mi
l=1 λl and E[Bik] = E[Bk], for each phase k = 1, . . . ,mi.

Throughout this section the performance criteria will be the relative er-
ror. For instance, for the mean conditional sojourn time, we will calcu-

late 100%× Sk(λ,b)−S
INT
k (λ,b)

Sk(λ,b)
, and for the mean unconditional sojourn time

100%× Sk(λ)−S
INT
k (λ)

Sk(λ)
.

Before explaining in detail the numerical results we have obtained, we sum-
marize our main conclusions:

• The approximation is accurate over a broad range of parameter values.

• For a given set of parameters, the relative error for the mean condi-
tional sojourn time increases as the service requirement of the tagged
customer increases.

• The error increases as the disparity among the weights increases.

• For any given scenario, the largest relative error occurs in an interme-
diate load between 0 and 1.

• The largest relative errors for the mean conditional sojourn time oc-
cur for service requirements b that are very unlikely to occur. This
also explains the high accuracy of our approximation for the mean
unconditional sojourn time.

5.1 Conditional sojourn time

In this section we measure the accuracy of the mean conditional sojourn
time.
Scenario 1. In Figure I we consider four classes K = 4 with exponentially
distributed service requirements. The parameters of the classes are fixed,
and we vary the total arrival rate in order for the load to cover the range
of stable values. We consider E[B1] = 2, E[B2] = 5, E[B3] = 7, E[B4] = 10,
g1 = 30, g2 = 25, g3 = 20, g4 = 10, and α1 = 10/36, α2 = 5/36, α3 = 8/36,
α4 = 13/36 such that λi = αi ∗ λ, i = 1, . . . , 4, where λ is the total arrival
rate. In Figure I we plot the relative error of our approximation for the
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Figure I: Scenario 1: Relative error for a tagged class-i customer with ser-
vice requirement bi such that P(Bi ≤ bi) = 0.01 (left), P(Bi ≤ bi) = 0.50
(middle), P(Bi ≤ bi) = 0.99 (right).

Figure II: Scenario 2. Largest absolute relative error as a function of P(Bi ≤
bi).

mean conditional sojourn time of a tagged class-i customer, for i = 1, . . . , 4,
where the size of the tagged class-i customer, bi, is selected such that the
probability of the event is P(Bi ≤ bi) = 0.01, P(Bi ≤ bi) = 0.50 and
P(Bi ≤ bi) = 0.99, respectively. As can be seen, the relative error for the
mean conditional sojourn time remains small and always below 6%.
Scenario 2. In Figure II we consider two classes K = 2 with exponen-
tially distributed service requirements. We fixed the parameters E[B1] = 2,
E[B2] = 1, g1 = 1, g2 = 3, α1 = 0.415, α2 = 0.585 and λi = αi ∗ λ. We
let the service requirement of the class-i tagged customer span between 0
and bi,max where P(Bi ≤ bi,max) = 0.99 and for each b we plot the largest
absolute relative error that can be found for a ρ ∈ [0, 1). We observe a
largest error of at most 6%.
Scenario 3. In Figure III we consider again two classes with exponentially
distributed service requirements. As parameters we fix: E[B1] = 2, E[B2] =
1, λ1 = 0.2, λ2 = 1.5λ1 and b = 1. We chose g2 = 1 − g1 and let g1
vary on the horizontal axis. In the figure we plot the mean conditional
sojourn time and our approximation. We see that the property stated in

Section 4.3 is satisfied, namely as g1 increases S
INT
1 (λ, b) decreases and
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Figure III: Scenario 3: Mean conditional sojourn time as a function of g1

Figure IV: Scenario 4: Relative error for a tagged class-i customer with
service requirement bi such that P(Bi ≤ bi) = 0.01 (left), P(Bi ≤ bi) = 0.50
(middle), P(Bi ≤ bi) = 0.99 (right).

S
INT
2 (λ, b) increases. Besides, it can be observed from the figure that the

approximation looses accuracy as one class is given more priority, i.e., g1 → 0
or g1 → 1.
Scenario 4. In Figure IV we consider two classes with hyperexponential
distributed service requirements with E[B1] = 2, E[B2] = 6. Each of the
hyperexponential distributions has 3 phases. The parameters are as follows:
for class 1 we take E[B11] = 3.5, E[B12] = 2, E[B13] = 5, p11 = 10/21,
p12 = 5/21, p13 = 6/21, and for class 2 we take E[B21] = 10, E[B22] = 15,
E[B23] = 20, p21 = 4/15, p22 = 8/15, p23 = 3/15. The weights are set to
g1 = 2 and g2 = 5. We assume that an arriving customer is of class 1 (class
2) with probability α1 = 21/36 (α2 = 15/36). As in Scenario 1, we select the
service requirement of the tagged customer such that P(Bi ≤ bi) = 0.01, 0.5
and 0.99. We see that the error increases as the size of the tagged customer
increases. However it is remarkable how accurate the approximation is.
In Figure V we consider Scenario 4. We vary the service requirement of the
class-i tagged customer between 0 and bi,max where P(Bi ≤ bi,max) = 0.99
and for each b we plot the largest absolute relative error that can be found
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Figure V: Scenario 4. Largest absolute relative error as a function of P(Bi ≤
bi).

for a ρ ∈ [0, 1). We observe that the error increases as the size of the tagged
customer increases. The largest absolute relative error is of the order of 22%
for the class with the smallest weight and of the order of 3% for the class
with the highest weight.

5.2 Unconditional sojourn time

In this section we evalute the accuracy of the mean unconditional sojourn
time.
In Figure VI we consider the same parameter setting as in Scenario 1, and
we observe that the largest relative error for the mean unconditional sojourn
time is less than 3.5%.
In Figure VII we consider two classes with hyper-exponentially distributed
service requirements. The parameters are the ones considered in Scenario
4. We conclude that the largest relative error for the mean unconditional
sojourn time is around 3%.
As pointed out in the beginning of the section, we observe that the relative
error for the mean unconditional sojourn time tends to be smaller than the
ones observed for the mean conditional sojourn time. This can be explained
by noting that the largest errors in the mean conditional sojourn time tend
to occur for service requirements that happen with a very low probability.
In Figure VIII we consider two classes with hyper-exponentially distributed
service requirements. The parameters are the same as in Scenario 4. We
chose g2 = 1 − g1 and let g1 vary on the horizontal axis. For each given g1
we calculate the largest absolute relative error for the mean unconditional
sojourn time as we let ρ range from 0 to 1. We observe that the relative
error for the unconditional sojourn time is at most of 30%, and that this
happens when class 2 receives full priority.
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Figure VI: Relative error for the mean unconditional sojourn time in Sce-
nario 1.

Figure VII: Relative error for the mean unconditional sojourn time in Sce-
nario 4

Figure VIII: Largest absolute relative error with respect to the weight g1 in
Scenario 4
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