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Energy-Aware Wireless Scheduling with Near
Optimal Backlog and Convergence Time Tradeoffs

Michael J. Neely
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Abstract— This paper considers a wireless link with randomly
arriving data that is queued and served over a time-varying
channel. It is known that any algorithm that comes within ε of the
minimum average power required for queue stability must incur
average queue size at least Ω(log(1/ε)). However, the optimal
convergence time is unknown, and prior algorithms give conver-
gence time bounds of O(1/ε2). This paper develops a scheduling
algorithm that, for any ε > 0, achieves the optimal O(log(1/ε))
average queue size tradeoff with an improved convergence time
of O(log(1/ε)/ε). This is shown to be within a logarithmic factor
of the best possible convergence time. The method uses the simple
drift-plus-penalty technique with an improved convergence time
analysis.

I. INTRODUCTION

This paper considers power-aware scheduling in a wireless
link with a time-varying channel and randomly arriving data.
Arriving data is queued for eventual transmission. The trans-
mission rate out of the queue is determined by the current
channel state and the current power allocation decision. Specif-
ically, the controller can make an opportunistic scheduling
decision by observing the channel before allocating power.
For a given ε > 0, the goal is to push average power to within
ε of the minimum possible average power required for queue
stability while ensuring optimal queue size and convergence
time tradeoffs.

A major difficulty is that the data arrival rate and the
channel probabilities are unknown. Hence, the convergence
time of an algorithm includes the learning time associated with
estimating probability distributions or “sufficient statistics”
of these distributions. The optimal learning time required to
achieve the average power and backlog objectives, as well
as the appropriate sufficient statistics to learn, are unknown.
This open question is important because it determines how
fast an algorithm can adapt to its environment. A contribution
of the current paper is the development of an algorithm
that, under suitable assumptions, provides an optimal power-
backlog tradeoff while provably coming within a logarithmic
factor of the optimal convergence time. This is done via the
existing drift-plus-penalty algorithm but with an improved
convergence time analysis.

Work on opportunistic scheduling was pioneered by Tas-
siulas and Ephremides in [1], where the Lyapunov method
and the max-weight algorithms were introduced for queue
stability. Related opportunistic scheduling work that focuses
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on utility optimization is given in [2][3][4][5][6][7][8][9] using
dual, primal-dual, and stochastic gradient methods, and in [10]
using index policies. The basic drift-plus-penalty algorithm of
Lyapunov optimization can be viewed as a dual method, and
is known to provide, for any ε > 0, an ε-approximation to
minimum average power with a corresponding O(1/ε) tradeoff
in average queue size [9][11]. This tradeoff is not optimal.
Work by Berry and Gallager in [12] shows that, for queues
with strictly concave rate-power curves, any algorithm that
achieves an ε-approximation must incur average backlog of
Ω(
√

1/ε), even if that algorithm knows all system probabili-
ties. Work in [13] shows this tradeoff is achievable (to within
a logarithmic factor) using an algorithm that does not know
the system probabilities. The work [13] further considers the
exceptional case when rate-power curves are piecewise linear.
In that case, an improved tradeoff of O(log(1/ε)) is both
achievable and optimal. This is done using an exponential
Lyapunov function together with a drift-steering argument.
Work in [14][15] shows that similar logarithmic tradeoffs are
possible via the basic drift-plus-penalty algorithm with Last-
in-First-Out scheduling.

Now consider the question of convergence time, being the
time required for the average queue size and power guarantees
to kick in. This convergence time question is unique to prob-
lems of stochastic scheduling when system probabilities are
unknown. If probabilities were known, the optimal fractions
of time for making certain decisions could be computed
offline (possibly via a very complex optimization), so that
system averages would “kick in” immediately at time 0. Thus,
convergence time in the context of this paper should not
be confused with algorithmic complexity for non-stochastic
optimization problems.

Unfortunately, prior work that treats stochastic scheduling
with unknown probabilities, including the basic drift-plus-
penalty algorithm as well as extensions that achieve square
root and logarithmic tradeoffs, give only O(1/ε2) convergence
time guarantees. Recent work in [16] treats convergence time
for a related problem of flow rate allocation and concludes that
constraint violations decay as c(ε)/t, where c(ε) is a constant
that depends on ε and t is the total time the algorithm has been
in operation. While the work [16] does not specify the size
of the c(ε) constant, it can be shown that c(ε) = O(1/ε).
Intuitively, this is because the c(ε) value is related to an
average queue size, which is O(1/ε). The time t needed
to ensure constraint violations are at most ε is found by
solving c(ε)/t = ε. The simple answer is t = O(1/ε2),
again exhibiting O(1/ε2) convergence time! This leads one
to suspect that O(1/ε2) is optimal.

This paper shows, for the first time, that O(1/ε2) con-
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vergence time is not optimal. Specifically, under the same
piecewise linear assumption in [13], and for the special case of
a system with just one queue, it is shown that the existing drift-
plus-penalty algorithm yields an ε-approximation with both
O(log(1/ε)) average queue size and O(log(1/ε)/ε) conver-
gence time. This is an encouraging result that shows learning
times for power-aware scheduling can be pushed much smaller
than expected.

The next section specifies the problem formulation. Section
III shows a lower bound on convergence time of Ω(1/ε).
Section IV develops an algorithm that achieves this bound
to within a logarithmic factor.

II. SYSTEM MODEL

Consider a wireless link with randomly arriving traffic. The
system operates in slotted time with slots t ∈ {0, 1, 2, . . .}.
Data arrives every slot and is queued for transmission. Define:

Q(t) = queue backlog on slot t
a(t) = new arrivals on slot t
µ(t) = service offered on slot t

The values of Q(t), a(t), µ(t) are nonnegative and their units
depend on the system of interest. For example, they can take
integer units of packets (assuming packets have fixed size), or
real units of bits. Assume the queue is initially empty, so that
Q(0) = 0. The queue dynamics are:

Q(t+ 1) = max[Q(t) + a(t)− µ(t), 0] (1)

Assume that {a(t)}∞t=0 is an independent and identically
distributed (i.i.d.) sequence with mean λ = E [a(t)]. For sim-
plicity, assume the amount of arrivals in one slot is bounded
by a constant amax, so that 0 ≤ a(t) ≤ amax for all slots t.

If the controller decides to transmit data on slot t, it uses
one unit of power. Let p(t) ∈ {0, 1} be the power used on
slot t. The amount of data that can be transmitted depends on
the current channel state. Let ω(t) be the amount of data that
can be transmitted on slot t if power is allocated, so that:

µ(t) = p(t)ω(t)

Assume that ω(t) is i.i.d. over slots and takes values in a
finite set Ω = {ω0, ω1, ω2, . . . , ωM}, where ω0 = 0 and ωi is
a positive real number for all i ∈ {1, . . . ,M}. Assume these
values are ordered so that:

0 = ω0 < ω1 < ω2 < · · · < ωM

For each ωk ∈ Ω, define π(ωk) = Pr[ω(t) = ωk].
Every slot t the system controller observes ω(t) and then

chooses p(t) ∈ {0, 1}. The choice p(t) = 1 activates the
link for transmission of ω(t) units of data. Fewer than ω(t)
units are transmitted if Q(t) < µ(t) (see the queue equation
(1)). The largest possible average transmission rate is E [ω(t)],
which is achieved by using p(t) = 1 for all t. It is assumed
throughout that 0 ≤ λ ≤ E [ω(t)].

A. Optimization goal

For a real-valued random process b(τ) that evolves over
slots τ ∈ {0, 1, 2, . . .}, define its time average expectation
over t > 0 slots as:

b(t)M
=

1

t

t−1∑
τ=0

E [b(τ)] (2)

where “M
=” represents “defined to be equal to.” With this

notation, µ(t), p(t), Q(t) respectively denote the time average
expected transmission rate, power, and queue size over the first
t slots.

The basic stochastic optimization problem of interest is:

Minimize: lim supt→∞ p(t) (3)
Subject to: lim inft→∞ µ(t) ≥ λ (4)

p(t) ∈ {0, 1} ∀t ∈ {0, 1, 2, . . .} (5)

The assumption λ ≤ E [ω(t)] ensures the above problem is
always feasible, so that it is possible to satisfy constraints (4)-
(5) using p(t) = 1 for all t. Define p∗ as the infimum average
power for the above problem. An algorithm is said to produce
an ε-approximation at time t if, for a given ε ≥ 0:

p(t) ≤ p∗ + ε

λ− µ(t) ≤ ε

An algorithm is said to produce an O(ε)-approximation if the
ε symbols on the right-hand-side of the above two inequalities
are replaced by some constant multiples of ε.

Fix ε > 0. This paper shows that a simple drift-plus-penalty
algorithm that takes ε as an input parameter (and that has no
knowledge of the arrival rate or channel probabilities) can be
used to ensure there is a time Tε, called the convergence time,
for which:
• The algorithm produces an O(ε)-approximation for all
t ≥ Tε.

• The algorithm ensures the following for all t ∈
{0, 1, 2, . . .}:

Q(t) ≤ O(log(1/ε)) (6)

• Tε = O(log(1/ε)/ε).
The average queue size bound (6) is known to be optimal,

in the sense that no algorithm can provide a sub-logarithmic
guarantee [13]. The next section shows that the convergence
time O(log(1/ε)/ε) is within a logarithmic factor of the
optimal convergence time.

III. A LOWER BOUND ON CONVERGENCE TIME

A. Intuition

One type of power allocation policy is an ω-only policy that,
every slot t, observes ω(t) and independently chooses p(t) ∈
{0, 1} according to some stationary conditional probabilities
Pr[p(t) = 1|ω(t) = ω] that are specified for all ω ∈ Ω. The
resulting average power and transmission rate is:

E [p(t)] =
∑M
k=0 π(ωk)Pr[p(t) = 1|ω(t) = ωk]

E [µ(t)] =
∑M
k=0 π(ωk)ωkPr[p(t) = 1|ω(t) = ωk]
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It is known that the problem (3)-(5) is solvable over the class
of ω-only policies [9]. Specifically, if the arrival rate λ and
the channel probabilities π(ωk) were known in advance, one
could offline compute an ω-only policy to satisfy:

E [p(t)] = p∗ (7)
E [µ(t)] = λ (8)

This is a 0-approximation for all t ≥ 0. However, such an
algorithm would typically incur infinite average queue size
(since the service rate equals the arrival rate). Further, it
is not possible to implement this algorithm without perfect
knowledge of λ and π(ωk) for all ωk ∈ Ω.

Suppose one temporarily allows for infinite average queue
size. Consider the following thought experiment (similar to
that considered for utility optimal flow allocation in [16]).
Consider an algorithm that does not know the system proba-
bilities and hence makes a single mistake at time 0, so that:

E [p(0)] = p∗ + c

where c > 0 is some constant gap away from the optimal av-
erage power p∗. However, suppose a genie gives the controller
perfect knowledge of the system probabilities at time 1, and
then for slots t ≥ 1 the network makes decisions to achieve
the ideal averages (7)-(8). The resulting time average expected
power over the first t > 1 slots is:

p(t) =
p∗ + c

t
+

(t− 1)p∗

t
= p∗ +

c

t

Thus, to reach an ε-approximation, this genie-aided algorithm
requires a convergence time t = c/ε = Θ(1/ε).

B. An example with Ω(1/ε) convergence time

The above thought experiment does not prove an Ω(1/ε)
bound on convergence time because it assumes the algorithm
makes decisions according to (7)-(8) for all slots t ≥ 1, which
may not be the optimal way to compensate for the mistake
on slot 0. This section defines a simple system for which
convergence time is at least Ω(1/ε) under any algorithm.

Consider a system with deterministic arrivals of 1 packet
every slot (so λ = 1). There are three possible channel states
ω(t) ∈ {1, 2, 3}, with probabilities:

π(3) = y, π(2) = z, π(1) = 1− y − z

For each slot t > 0, define the system history H(t) =
{(a(0), ω(0), p(0)), . . . , (a(t− 1), ω(t− 1), p(t− 1))}. Define
H(0) = 0. For each slot t, a general algorithm has conditional
probabilities θi(t) defined for i ∈ {1, 2, 3} by:

θi(t) = Pr[p(t) = 1|ω(t) = i, a(t),H(t)]

On a single slot, it is not difficult to show that the minimum
average power E [p(t)] required to achieve a given average
service rate µ = E [µ(t)] is characterized by the following
function h(µ):

h(µ)M
=

 µ/3 if 0 ≤ µ ≤ 3y
y + (µ− 3y)/2 if 3y ≤ µ ≤ 3y + 2z
µ− 2y − z if 3y + 2z ≤ µ ≤ 2y + z + 1

There are two significant vertex points (µ, h(µ)) for this
function. The first is (3y, y), achieved by allocating power if
and only if ω(t) = 3. The second is (3y+2z, y+z), achieved
by allocating power if and only if ω(t) ∈ {2, 3}.

Define R as the set of points (µ, p) that lie on or above the
curve h(µ):

R = {(µ, p) ∈ R2|0 ≤ µ ≤ 2y + z + 1, h(µ) ≤ p ≤ 1}

The set R is convex. Under any algorithm one has:

(E [µ(τ)] ,E [p(τ)]) ∈ R ∀τ ∈ {0, 1, 2, . . .}

For a given t > 1, the following two vectors must be in R:

(µ0, p0) M
= (E [µ(0)] ,E [p(0)])

(µ1, p1) M
=

1

t− 1

t−1∑
τ=1

(E [µ(τ)] ,E [p(τ)])

That (µ1, p1) is inR follows because it is the average of points
in R, and R is convex. By definition of (µ(t), p(t)):

(µ(t), p(t)) =
1

t
(µ0, p0) +

1− t
t

(µ1, p1) (9)

Fix ε such that 0 < ε < 1/64. The algorithm must ensure
(µ(t), p(t)) is an ε-approximation to the target point (1, h(1)),
so that:

µ(t) ≥ 1− ε , p(t) ≤ h(1) + ε

The algorithm has no knowledge of the probabilities y and
z at time 0, so θ1(0), θ2(0), θ3(0) are arbitrary. Suppose
a genie reveals y and z on slot 1, and the network makes
decisions on slots {1, . . . , t−1} that result in a (µ1, p1) vector
that optimally compensates for any mistake on slot 0. Thus,
(µ1, p1) is assumed to be the vector in R that ensures (9)
produces an ε-approximation in the smallest time t.

The following proof considers two cases: The first case
assumes θ2(0) ≤ 1/2, but considers probabilities y and z for
which minimizing average power requires always transmitting
when ω(t) = 2. The second case assumes θ2(0) > 1/2, but
then considers probabilities y and z for which minimizing
average power requires never transmitting when ω(t) = 2. In
both cases, the nonlinear structure of the h(µ) curve prevents
a fast recovery from the initial mistake.
• Case 1: Suppose θ2(0) ≤ 1/2. Consider y = 0, z = 1/4.

Then ω(t) ∈ {1, 2} for all t, π(1) = 3/4, π(2) = 1/4,
and ω(t) = 2 is the most efficient state. The h(µ) curve is
shown in Fig. 1. The minimum average power to support
λ = 1 is h(1) = 3/4, and so the target point is X =
(1, 3/4). The point (µ0, p0) = (E [µ(0)] ,E [p(0)]) is:

(µ0, p0) =

(
θ2(0)

2
+

3θ1(0)

4
,
θ2(0)

4
+

3θ1(0)

4

)
The set of possible (µ0, p0) is formed by considering all
θ2(0) ∈ [0, 1/2], θ1(0) ∈ [0, 1]. This set lies inside the
left (orange) shaded region of Fig. 1. To see this, note that
if θ2(0) is fixed at a certain value, the resulting (µ0, p0)
point lies on a line segment of slope 1 that is formed
by sweeping θ1(0) through the interval [0, 1]. If θ2(0) =
1/2, that line segment is between points (1/4, 1/8) and
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Fig. 1. The performance region for case 1. The line segments between
(1/4, 1/8) and C and between (1, 7/8) and B intersect at point A.

(1, 7/8) in Fig. 1. If θ2(0) < 1/2 then the line segment
is shifted to the left.
The small triangular (green) shaded region in Fig. 1,
with one vertex at point A, is the target region. The
vector (µ(t), p(t)) must be in this region to be an ε-
approximation. The point A is defined:

A = X + (−ε, ε) = (1− ε, 3/4 + ε)

It suffices to search for an optimal compensation vector
(µ1, p1) on the curve (µ, h(µ)). This is because the
average power p1 from a point (µ1, p1) above the curve
(µ, h(µ)) can be reduced, without affecting µ1, by choos-
ing a point on the curve. By geometry, (µ1, p1) must lie
on the line segment between points B and C in Fig. 1,
where:

B = X −
(

ε

1− 16ε
,

ε

1− 16ε

)
C = X +

(
11ε

1− 16ε
,

11ε

1− 16ε

)
Indeed, if (µ1, p1) were on the (µ, h(µ)) curve but not
in between points B and C, it would be impossible for a
convex combination of (µ1, p1) and (µ0, p0) to be in the
target region (which is required by (9)).
Observe that:

||(µ(t), p(t))−X|| ≤ ε
√

2 (10)
||(µ1, p1)−X|| ≤ O(ε) (11)

||(µ0, p0)− (µ1, p1)|| ≥
√

2/16 (12)

where (10) follows by considering the maximum distance
between X and any point in the target region, (11) holds
because any vector on the line segment between B and C
is O(ε) distance away from X , and (12) holds because the
distance between any point on the line segment between
B and C and a point in the left (orange) shaded region
is at least

√
2/16 (being the distance between the two

Rate%μ%
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w
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%p
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C%
X%

1%

(1.5,%.5)%

0%0%
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(2.5,%1)%

(.5,%.25)%

(2,%.75)%

h(μ)%curve%

(μ0,%p0)%is%in%%
this%region.%

Fig. 2. The performance region for case 2.

parallel lines of slope 1). Starting from (10) one has:

ε
√

2 ≥ ||(µ(t), p(t))−X||
= ||(1/t)(µ0, p0) + (1− 1/t)(µ1, p1)−X||
= ||(1/t)[(µ0, p0)− (µ1, p1)]− [X − (µ1, p1)]||
≥ (1/t)||(µ0, p0)− (µ1, p1)|| − ||X − (µ1, p1)||
≥
√

2/(16t)−O(ε)

where the first equality holds by (9), the second-to-
last inequality uses the triangle inequality ||W − Z|| ≥
||W ||−||Z|| for any vectors W , Z, and the final inequality
uses (11) and (12). So

√
2/(16t) ≤ O(ε). It follows that

t ≥ Ω(1/ε).
• Case 2: Suppose θ2(0) > 1/2. However, suppose y =
z = 1/2. So ω(t) ∈ {2, 3}, π(2) = π(3) = 1/2, and
ω(t) = 2 is the least efficient state. The h(µ) curve is
shown in Fig. 2. Note that h(1) = 1/3, and so the target
point is X = (1, 1/3). The point A = (1 − ε, 1/3 + ε)
is shown in Fig. 2. Point A is one vertex of the small
triangular (green) target region that defines all points
(µ(t), p(t)) that are ε-approximations.
Because θ2(0) ≥ 1/2, the point (µ0, p0) lies somewhere
in the (orange) shaded region in Fig. 2. Indeed, if θ2(0) =
1/2, then (µ0, p0) is on the line segment between points
(0.5, 0.25) and (2, 0.75). It is above this line segment if
θ2(0) > 1/2. As before, the geometry of the problem
ensures an optimal compensation vector (µ1, p1) lies
somewhere on the line segment of the h(µ) curve between
points B and C of Fig. 2. As before, it holds that:

B = X − (O(ε), O(ε))

C = X + (O(ε), O(ε))

and:

||(µ(t), p(t))−X|| ≤ O(ε)

||(µ1, p1)−X|| ≤ O(ε)

||(µ0, p0)− (µ1, p1)|| ≥ Θ(1)

As before, it follows that t ≥ Ω(1/ε).
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IV. THE DYNAMIC ALGORITHM

This section shows that a simple drift-plus-penalty algorithm
achieves O(log(1/ε)/ε) convergence time and O(log(1/ε))
average queue size.

A. Problem structure
Without loss of generality, assume that π(ωk) > 0 for

all k ∈ {1, . . . ,M} (else, remove ωk from the set Ω). The
value of π(ω0) is possibly zero. For each real number µ in
the interval [0,E [ω(t)]], define h(µ) as the minimum average
power required to achieve an average transmission rate of µ.
It is known that p∗ = h(λ). Further, it is not difficult to show
that h(µ) is non-decreasing, convex, and piecewise linear with
h(0) = 0 and h(E [ω(t)]) = 1 − π(ω0). The point (0, 0) is a
vertex point of the piecewise linear curve h(µ). There are M
other vertex points, achieved by the ω-only policies of the
form:

p(t) =

{
1 if ω(t) ≥ ωk
0 otherwise (13)

for k ∈ {1, . . . ,M}. This means that a vertex point is achieved
by only using channel states ω(t) that are on or above a
certain threshold ωk. Lowering the threshold value by selecting
a smaller ωk allows for a larger E [µ(t)] at the expense of
sometimes using less efficient channel states. The proof that
this class of policies achieves the vertex points follows by a
simple interchange argument that is omitted for brevity.

For ease of notation, define ωM+1
M
=∞ and µM+1

M
=0.

Let {µ1, µ2, . . . , µM , µM+1} be the set of transmission rates
at which there are vertex points. Specifically, for k ∈
{1, . . . ,M}, µk corresponds to the threshold ωk in the policy
(13). That is:

µk
M
= E [ω(t)|ω(t) ≥ ωk] =

M∑
i=k

ωiπ(ωi) (14)

Note that:

0 = µM+1 < µM < µM−1 < · · · < µ1 = E [ω(t)]

It follows that h(µk) is the corresponding average power for
vertex k, so that (µk, h(µk)) is a vertex point of the curve
h(µ):

h(µk) = Pr[ω(t) ≥ ωk] =

M∑
i=k

π(ωi) (15)

The numbers {µ1, µ2, . . . , µM , µM+1} represent a set of
measure 0 in the interval [0,E [ω(t)]]. It is assumed that the
arrival rate λ is a number in [0,E [ω(t)]] that lies strictly be-
tween two points µb+1 and µb for some index b ∈ {1, . . . ,M}.
That is:

µb+1 < λ < µb

Thus, the point (λ, h(λ)) can be achieved by timesharing
between the vertex points (µb+1, h(µb+1)) and (µb, h(µb)):

λ = θµb+1 + (1− θ)µb (16)
p∗ = h(λ) = θh(µb+1) + (1− θ)h(µb) (17)

for some probability θ that satisfies 0 < θ < 1. In particular:

θ =
µb − λ

µb − µb+1

B. The drift-plus-penalty algorithm

For each slot t ∈ {0, 1, 2, . . .}, define L(t) = 1
2Q(t)2

and ∆(t) = L(t + 1) − L(t). Let V be a nonnegative real
number. The drift-plus-penalty algorithm from [9][11] makes
a power allocation decision that, every slot t, minimizes a
bound on ∆(t)+V p(t). The value V can be chosen as desired
and affects a performance tradeoff. This technique is known
to yield average queue size of O(V ) with deviation from
optimal average power no more than O(1/V ) [9][11]. This
holds for general multi-queue networks. By defining ε = 1/V ,
this produces an O(ε) approximation with average queue size
O(1/ε). Further, it can be shown that convergence time is
O(1/ε2) (see Appendix D in [17]).

In the context of the simple one-queue system of the
current paper, the drift-plus-penalty algorithm reduces to the
following: Every slot t, observe Q(t) and ω(t) and choose
p(t) ∈ {0, 1} to minimize:

V p(t)−Q(t)ω(t)p(t)

That is, choose p(t) according to the following rule:

p(t) =

{
1 if Q(t)ω(t) ≥ V
0 otherwise (18)

The current paper shows that, for this special case of a system
with only one queue, the above algorithm leads to an improved
queue size and convergence time tradeoff.

C. The induced Markov chain

The drift-plus-penalty algorithm induces a Markov structure
on the system. The system state is Q(t) and the state space is
the set of nonnegative real numbers. Observe from (18) that
the drift-plus-penalty algorithm has the following behavior:

• Q(t) ∈ [V/ωb+1, V/ωb) =⇒ p(t) = 1 if and only if
ω(t) ≥ ωb+1. In this case one has (from (14) and (15)):

E [µ(t)|Q(t) ∈ [V/ωb+1, V/ωb)] = µb+1 (19)
E [p(t)|Q(t) ∈ [V/ωb+1, V/ωb)] = h(µb+1) (20)

• Q(t) ∈ [V/ωb, V/ωb−1) =⇒ p(t) = 1 if and only if
ω(t) ≥ ωb. In this case one has:

E [µ(t)|Q(t) ∈ [V/ωb, V/ωb−1)] = µb (21)
E [p(t)|Q(t) ∈ [V/ωb, V/ωb−1)] = h(µb) (22)

where V/0 is defined as ∞ (in the case ωb−1 = ω0 = 0), and
ωM+1 =∞ so that V/ωM+1 = 0.

Now define intervals I(1), I(2), I(3), I(4) (see Fig. 3):

I(1) M
= [0, V/ωb+1)

I(2) M
= [V/ωb+1, V/ωb)

I(3) M
= [V/ωb, V/ωb−1)

I(4) M
= [V/ωb−1,∞)

If V/ωb+1 = 0 then I(1) is defined as the empty set, and
if V/ωb−1 = ∞ then I(4) is defined as the empty set. The
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equalities (19)-(22) can be rewritten as:

E
[
µ(t)|Q(t) ∈ I(2)

]
= µb+1 (23)

E
[
p(t)|Q(t) ∈ I(2)

]
= h(µb+1) (24)

E
[
µ(t)|Q(t) ∈ I(3)

]
= µb (25)

E
[
p(t)|Q(t) ∈ I(3)

]
= h(µb) (26)

Recall that under the drift-plus-penalty algorithm (18), if
Q(t) ∈ I(2) then the set of all ω(t) that lead to a transmission
is equal to {ω ∈ Ω|ω ≥ ωb+1}. If Q(t) ∈ I(1), then the set of
all ω(t) that lead to a transmission depends on the particular
value of Q(t). However, since interval I(1) is to the left of
interval I(2), the set of all ω(t) that lead to a transmission
when Q(t) ∈ I(1) is always a subset of {ω ∈ Ω|ω ≥ ωb+1}.
Similarly, since I(4) is to the right of I(3), the set of all ω(t)
that lead to a transmission when Q(t) ∈ I(4) is a superset of
the set of all ω(t) that lead to a transmission when Q(t) ∈ I(3).
Therefore, under the drift-plus-penalty algorithm one has:

E
[
µ(t)|Q(t) ∈ I(1)

]
≤ µb+1 (27)

E
[
p(t)|Q(t) ∈ I(1)

]
≤ h(µb+1) (28)

E
[
µ(t)|Q(t) ∈ I(4)

]
≥ µb (29)

E
[
p(t)|Q(t) ∈ I(4)

]
≥ h(µb) (30)

For each i ∈ {1, 2, 3, 4} define the indicator function:

1{Q(t) ∈ I(i)} =

{
1 if Q(t) ∈ I(i)
0 otherwise

For each slot t > 0 and each i ∈ {1, 2, 3, 4}, define 1
(i)

(t) as
the expected fraction of time that Q(t) ∈ I(i):

1
(i)

(t)M
=

1

t

t−1∑
τ=0

E
[
1{Q(t) ∈ I(i)}

]
It follows that (using (24), (26), (28)):

p(t) ≤ 1
(2)

(t)h(µb+1) + 1
(3)

(t)h(µb)

+1
(1)

(t)h(µb+1) + 1
(4)

(t) (31)

where the final term follows because p(t) ≤ 1 for all slots t.
Similarly (using (23), (25), (27)):

µ(t) ≤ 1
(2)

(t)µb+1 + 1
(3)

(t)µb

+1
(1)

(t)µb+1 + 1
(4)

(t)E [ω(t)] (32)

where the final term follows because E
[
µ(t)|Q(t) ∈ I(4)

]
≤

E [ω(t)]. Likewise (using (23), (25), (29)):

µ(t) ≥ 1
(2)

(t)µb+1 + 1
(3)

(t)µb + 1
(4)

(t)µb (33)

which holds because E
[
µ(t)|Q(t) ∈ I(1)

]
≥ 0.

In the next section it is shown that:
• µ(t) is close to λ when t is sufficiently large.
• 1

(1)
(t) and 1

(4)
(t) are close to 0 when t and V are

sufficiently large.

V/ωb%V/ωb+1%
V/ωb(1%

0%

Q(t)%
I(2)% I(3)%I(1)% I(4)%

Posi5ve%dri:% Nega5ve%dri:%

Fig. 3. An illustration of the four intervals Ii for i ∈ {1, 2, 3, 4}.

• 1
(2)

(t) and 1
(3)

(t) are close to θ and 1− θ, respectively,
when t and V are sufficiently large.

• p(t) is close to p∗ when t and V are sufficiently large.
Furthermore, to address the issue of convergence time, the

notion of “sufficiently large” must be made precise. A key step
is establishing bounds on the average queue size.

V. ANALYSIS

A. The distance between µ(t) and λ
Recall that ωM is the largest possible value of ω(t). Assume

that V ≥ ω2
M .

Lemma 1: If V ≥ ω2
M , then under the drift-plus-penalty

algorithm:
a) One has p(t) = µ(t) = 0 whenever Q(t) < ωM .
b) The queueing equation (1) can be replaced by the

following for all slots t ∈ {0, 1, 2, . . .}:
Q(t+ 1) = Q(t) + a(t)− µ(t)

Proof: Suppose V ≥ ω2
M . To prove (a), suppose that

Q(t) < ωM . Since ω(t) ≤ ωM for all t, one has:

Q(t)ω(t) ≤ Q(t)ωM

< ω2
M

≤ V

and so the algorithm (18) chooses p(t) = 0, so that µ(t) is
also 0. This proves part (a).

To prove (b), note that part (a) implies Q(t) ≥ µ(t) for all
slots t. Indeed, this holds in the case Q(t) < ωM (since part
(a) ensures µ(t) = 0 in this case), and also holds in the case
Q(t) ≥ ωM (since ωM ≥ µ(t) always). Thus:

Q(t+ 1) = max[Q(t) + a(t)− µ(t), 0]

= Q(t) + a(t)− µ(t)

Lemma 2: If V ≥ ω2
M and Q(0) = q0 with probability 1

(for some constant q0 ≥ 0), then for every slot t > 0:

µ(t) = λ− E [Q(t)− q0] /t
Proof: By Lemma 1 one has for all slots τ ∈ {0, 1, 2, . . .}:

Q(τ + 1)−Q(τ) = a(τ)− µ(τ)

Taking expectations gives:

E [Q(τ + 1)]− E [Q(τ)] = λ− E [µ(τ)]

Summing the above over τ ∈ {0, 1, 2, . . . , t− 1} gives:

E [Q(t)]− E [Q(0)] = λt−
t−1∑
τ=0

E [µ(τ)]

Dividing by t proves the result.
The above lemma implies that if V ≥ ω2

M , then µ(t)
converges to λ whenever E [Q(t)− q0] /t converges to 0.



7

B. The distance between 1
(2)

(t) and θ

The following lemma shows that if 1
(1)

(t), 1
(4)

(t), and
E [Q(t)− q0] /t are close to 0, then 1

(2)
(t) is close to θ.

Lemma 3: If V ≥ ω2
M and Q(0) = q0 with probability 1

(for some constant q0 ≥ 0), then for all slots t > 0:

θ − [µb1
(1)

(t)− ψ(t)]

µb − µb+1
≤ 1

(2)
(t)

≤ θ +
1
(4)

(t)E [ω(t)] + ψ(t)

µb − µb+1

where ψ(t) is defined:

ψ(t)M
=E [Q(t)− q0] /t

Proof: Fix t > 0. Lemma 2 implies:

λ = µ(t) + ψ(t)

≥ 1
(2)

(t)µb+1 + 1
(3)

(t)µb + 1
(4)

(t)µb + ψ(t)

= 1
(2)

(t)µb+1 + (1− 1
(2)

(t))µb − 1
(1)

(t)µb + ψ(t)

where the first inequality holds by (33). Substituting the
identity for λ given in (16) into the above inequality gives:

θµb+1 + (1− θ)µb
≥ 1

(2)
(t)µb+1 + (1− 1

(2)
(t))µb − 1

(1)
(t)µb + ψ(t)

Rearranging terms proves that:

θ − [µb1
(1)

(t)− ψ(t)]

µb − µb+1
≤ 1

(2)
(t)

To prove the second inequality, note that:

λ = µ(t) + ψ(t) (34)

≤ 1
(2)

(t)µb+1 + 1
(3)

(t)µb + 1
(1)

(t)µb+1

+1
(4)

(t)E [ω(t)] + ψ(t) (35)

= 1
(2)

(t)µb+1 + (1− 1
(2)

(t))µb

−1
(1)

(t)µb − 1
(4)

(t)µb + 1
(1)

(t)µb+1

+1
(4)

(t)E [ω(t)] + ψ(t)

≤ 1
(2)

(t)µb+1 + (1− 1
(2)

(t))µb

+1
(4)

(t)E [ω(t)] + ψ(t) (36)

where (34) holds by Lemma 2, (35) holds by (32), and (36)
holds because µb+1 < µb. Substituting the identity for λ given
in (16) gives:

θµb+1 + (1− θ)µb ≤ 1
(2)

(t)µb+1 + (1− 1
(2)

(t))µb

+1
(4)

(t)E [ω(t)] + ψ(t)

Rearranging terms proves the result.

C. Positive and negative drift

Define E [Q(t+ 1)−Q(t)|Q(t)] as the conditional drift.
Assume that V ≥ ω2

M , so that Lemma 1 implies Q(t + 1) −
Q(t) = a(t)− µ(t) for all slots t. Thus:

E [Q(t+ 1)−Q(t)|Q(t)] = E [a(t)− µ(t)|Q(t)]

= λ− E [µ(t)|Q(t)]

where the final equality follows because a(t) is independent
of Q(t). From (23) and (27) one has for all slots t:

E [µ(t)|Q(t) < V/ωb] ≤ µb+1

Likewise, from (25) and (29) one has:

E [µ(t)|Q(t) ≥ V/ωb] ≥ µb

Define positive constants βL and βR (associated with drift
when Q(t) is to the Left and Right of the threshold V/ωb) by:

βL
M
=λ− µb+1 , βR

M
=µb − λ

It follows that:

E [Q(t+ 1)−Q(t)|Q(t)] ≥ βL if Q(t) < V/ωb (37)
E [Q(t+ 1)−Q(t)|Q(t)] ≤ −βR if Q(t) ≥ V/ωb (38)

In particular, the system has positive drift if Q(t) < V/ωb,
and negative drift otherwise (see Fig. 3).

D. A basic drift lemma

Consider a real-valued random process Z(t) over slots t ∈
{0, 1, 2, . . .}. The following drift lemma is similar in spirit to
results in [18][15], but focuses on a finite time horizon with
an arbitrary initial condition Z(0) = z0 (rather than on steady
state), and on expectations at a given time (rather than time
averages). These distinctions are crucial to convergence time
analysis. The lemma will be applied using Z(t) = Q(t) for
bounds on average queue size and on 1

(4)
(t). It will then be

applied using Z(t) = V/ωb −Q(t) to bound 1
(1)

(t). Assume
there is a constant δmax > 0 such that with probability 1:

|Z(t+ 1)− Z(t)| ≤ δmax ∀t ∈ {0, 1, 2, . . .} (39)

Suppose there are constants θ ∈ R and β > 0 such that:

E [Z(t+ 1)− Z(t)|Z(t)] ≤
{
δmax if Z(t) < θ
−β if Z(t) ≥ θ (40)

Note that if (39) holds then (40) automatically holds for the
special case Z(t) < θ. Thus, the negative drift case Z(t) ≥ θ
is the important case for condition (40). Further, if (39)-(40)
both hold, then the constant β necessarily satisfies:

0 < β ≤ δmax
Lemma 4: Suppose Z(t) is a random process that satisfies

(39)-(40) for given constants θ, δmax, β (with θ ∈ R and
0 < β ≤ δmax). Suppose Z(0) = z0 for some z0 ∈ R. Then
for every slot t ≥ 0 the following holds:

E
[
erZ(t)

]
≤ D + (erz0 −D) ρt (41)

where constants r, ρ, D are defined:

r M
=

β

δ2max + δmaxβ/3
(42)

ρ M
= 1− rβ/2 (43)

D M
=

(erδmax − ρ)erθ

1− ρ
(44)

Note that the property 0 < β ≤ δmax can be used to show
that 0 < ρ < 1.
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Proof: (Lemma 4) The proof is by induction. The inequality
(41) trivially holds for t = 0. Suppose (41) holds at some slot
t ≥ 0. The goal is to show that it also holds on slot t + 1.
Let r be a positive number that satisfies 0 < rδmax < 3. It
is known from results in [18] that for any real number x that
satisfies |x| ≤ δmax:

erx ≤ 1 + rx+
(rδmax)2

2(1− rδmax/3)
(45)

Define δ(t) = Z(t + 1) − Z(t) and note that |δ(t)| ≤ δmax
for all t. Then:

erZ(t+1) = erZ(t)erδ(t)

≤ erZ(t)

[
1 + rδ(t) +

(rδmax)2

2(1− rδmax/3)

]
(46)

where the final inequality holds by (45). Choose r such that:

(rδmax)2

2(1− rδmax/3)
≤ rβ

2
(47)

It is not difficult to show that the value of r given in (42)
simultaneously satisfies (47) and 0 < rδmax < 3. For this
value of r, substituting (47) into (46) gives:

erZ(t+1) ≤ erZ(t)

[
1 + rδ(t) +

rβ

2

]
(48)

Now consider the following two cases:
• Case 1: Suppose Z(t) ≥ θ. Taking conditional expecta-

tions of (48) gives:

E
[
erZ(t+1)|Z(t)

]
≤ E

[
erZ(t)[1 + rδ(t) +

rβ

2
]|Z(t)

]
≤ erZ(t)[1− rβ +

rβ

2
] (49)

= erZ(t)ρ

where (49) follows by (40), and the final equality holds
by definition of ρ in (43).

• Case 2: Suppose Z(t) < θ. Then:

E
[
erZ(t+1)|Z(t)

]
= E

[
erZ(t)erδ(t)

]
≤ erZ(t)erδmax

Putting these two cases together gives:

E
[
erZ(t+1)

]
≤ ρE

[
erZ(t)|Z(t) ≥ θ

]
Pr[Z(t) ≥ θ]

+erδmaxE
[
erZ(t)|Z(t) < θ

]
Pr[Z(t) < θ]

= ρE
[
erZ(t)

]
+(erδmax − ρ)E

[
erZ(t)|Z(t) < θ

]
Pr[Z(t) < θ]

≤ ρE
[
erZ(t)

]
+ (erδmax − ρ)erθ

where the final inequality uses the fact that erδmax > 1 > ρ.
By the induction assumption it is known that (41) holds on

slot t. Substituting (41) into the right-hand-side of the above
inequality gives:

E
[
erZ(t+1)

]
≤ ρ

[
D + (erz0 −D) ρt

]
+(erδmax − ρ)erθ

= D + (erz0 −D) ρt+1

where the final equality holds by the definition of D in (44).
This completes the induction step.

Let 1{Z(τ) ≥ θ + c} be an indicator function that is 1
if Z(τ) ≥ θ + c, and 0 else. The next corollary shows that
the expected fraction of time that this indicator is 1 decays
exponentially in c.

Corollary 1: If the assumptions of Lemma 4 hold, then for
any c > 0 and any slots T and t that satisfy 0 ≤ T < t:

1

t

t−1∑
τ=0

E [1{Z(τ) ≥ θ + c}]

≤ (erδmax − ρ)e−rc

1− ρ
+

[
T

t
+
er(z0−c−θ)ρT

t(1− ρ)

]
(50)

where r and ρ are defined in (42)-(43). Further, if z0 ≤ θ then
for any t > 0:

1

t

t−1∑
τ=0

E [1{Z(τ) ≥ θ + c}] ≤ e−rc(erδmax − ρ+ 1/t)

(1− ρ)
(51)

The intuition behind the right-hand-side of (50) is that the
first term represents a “steady state” bound as t→∞, which
decays like e−rc. The last two terms (in brackets) are due to
the transient effect of the initial condition z0. This transient
can be significant when z0 > θ. In that case, er(z0−c−θ) might
be large, and a time T is required to shrink this term by
multiplication with the factor ρT .

Proof: (Corollary 1) One has for t > T :

t−1∑
τ=0

E [1{Z(τ) ≥ θ + c}] ≤ T +

t−1∑
τ=T

E [1{Z(τ) ≥ θ + c}]

(52)

However, for every slot τ ≥ 0 one has:

erZ(τ) ≥ er(θ+c)1{Z(τ) ≥ θ + c}

Taking expectations of both sides gives:

E
[
erZ(τ)

]
≥ er(θ+c)E [1{Z(τ) ≥ θ + c}]

Rearranging the above shows that for every slot τ ≥ 0:

E [1{Z(τ) ≥ θ + c}] ≤ e−r(θ+c)E
[
erZ(τ)

]
≤ e−r(θ+c)[D + (erz0 −D)ρτ )]
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where the final inequality uses (41). Substituting the above
inequality into the right-hand-side of (52) gives:
t−1∑
τ=0

E [1{Z(τ) ≥ θ + c}]

≤ T + e−r(θ+c)
t−1∑
τ=T

[D + (erz0 −D)ρτ ]

= T + e−r(θ+c)
[
(t− T )D + (erz0 −D)ρT

(1− ρt−T )

(1− ρ)

]
≤ T + e−r(θ+c)

[
tD +

erz0ρT

(1− ρ)

]
Dividing by t and substituting the definition of D proves (50).
Inequality (51) follows immediately from (50) by choosing
T = 0.

E. Bounding E [Q(t)] and 1
(4)

(t)

Let Q(t) be the backlog process under the drift-plus-
penalty algorithm. Assume that V ≥ ω2

M and the ini-
tial condition is Q(0) = q0 for some constant q0. Define
δmax

M
= max[ωM , amax] as the largest possible change in Q(t)

over one slot, so that:

|Q(t+ 1)−Q(t)| ≤ δmax ∀t ∈ {0, 1, 2, . . .}

From (38) it holds that:

E [Q(t+ 1)−Q(t)|Q(t)] ≤
{
δmax if Q(t) < V/ωb
−βR if Q(t) ≥ V/ωb

It follows that the process Q(t) satisfies the conditions (39)-
(40) required for Lemma 4. Specifically, define Z(t) = Q(t),
z0 = q0, θ = V/ωb, β = βR.

Lemma 5: If 0 ≤ q0 ≤ V/ωb and V ≥ ω2
M , then for all

slots t ≥ 0 one has:

E [Q(t)] ≤ V

ωb
+

1

rR
log

(
1 +

erRδmax − ρR
1− ρR

)
= O(V )

where constants rR and ρR are defined:

rR
M
=

βR
δ2max + δmaxβR/3

(53)

ρR
M
= 1− rRβR/2 (54)

The lemma provides a bound on E [Q(t)] that does not
depend on t. The bound holds whenever the initial condition
satisfies 0 ≤ q0 ≤ V/ωb. Typically, the initial condition
is q0 = 0. However, a place-holder technique in Section
VI requires a nonzero initial condition that still satisfies the
desired inequality 0 ≤ q0 ≤ V/ωb.

Proof: For ease of notation, let “r” and “ρ” respectively
denote “rR” and “ρR” given in (53) and (54). Define θ =
V/ωb and β = βR. By (41) one has for all t ≥ 0 (using
Z(0) = Q(0) = q0):

E
[
erQ(t)

]
≤ D + (erq0 −D)ρt

≤ D + erV/ωb

where D is given in (44), and where the final inequality uses
Dρt ≥ 0 and q0 ≤ V/ωb. Using Jensen’s inequality gives:

erE[Q(t)] ≤ D + erV/ωb

Taking a log of both sides and dividing by r gives:

E [Q(t)] ≤ log(D + erV/ωb)

r

=
1

r
log

(
erV/ωb +

(erδmax − ρ)erV/ωb

1− ρ

)
=

V

ωb
+

1

r
log

(
1 +

erδmax − ρ
1− ρ

)

Lemma 6: If 0 ≤ q0 ≤ V/ωb and V ≥ ω2
M , then for all

slots t > 0:

1
(4)

(t) ≤ O(e
−rRV ( 1

ωb−1
− 1

ωb
)
)

where rR is given by (53).
Proof: For ease of notation, this proof uses “r” to denote

“rR.” If the interval I(4) does not exist then 1
(4)

(t) = 0 and
the result is trivial. Now suppose interval I(4) exists (so that
the interval I(3) is not the final interval in Fig. 3). Define
θ = V/ωb, c = V (1/ωb−1 − 1/ωb), β = βR, ρ = 1− rβR/2.
Then 1{Q(τ) ≥ θ + c} = 1 if and only if Q(τ) ≥ V/ωb−1,
which holds if and only if Q(τ) ∈ I4. Thus, for all slots t > 0:

1
(4)

(t) =
1

t

t−1∑
τ=0

E [1{Q(τ) ≥ θ + c}]

≤ e−rc(erδmax − ρ+ 1/t)

1− ρ
(55)

=
e
−rV ( 1

ωb−1
− 1

ωb
)
(erδmax − ρ+ 1/t)

1− ρ
where (55) holds by (51) (which applies since z0 = q0 ≤ θ).
The right-hand-side of the above inequality is indeed of the
form O(e

−rV ( 1
ωb−1

− 1
ωb

)
).

F. Bounding 1
(1)

(t)

One can similarly prove a bound on 1
(1)

(t). The intuition is
that the positive drift in region I(2) of Fig. 3, together with the
fact that the size of interval I(2) is Θ(V ), makes the fraction
of time the queue is to the left of V/ωb decay exponentially
as we move further left. The result is given below. Recall that
Q(0) = q0 for some constant q0 ≥ 0.

Lemma 7: If q0 ≥ 0 and V ≥ ω2
M , then for all slots t > 0

one has:

1
(1)

(t) ≤ O(V )/t+O(e
−rLV ( 1

ωb
− 1

ωb+1
)
)

where rL is defined:

rL
M
=

βL
δ2max + δmaxβL/3

Intuitively, the first term in the above lemma (that is, the
O(V )/t term) bounds the contribution from the transient time
starting from the initial state Q(0) = q0 and ending when
the threshold V/ωb is crossed. The second term represents a
“steady state” probability assuming an initial condition V/ωb.
The proof defines a new process Z(t) = V/ωb−Q(t). It then
applies inequality (50) of Corollary 1, with a suitably large
time T > 0, to handle the initial condition z0 = V/ωb − q0.
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Proof: (Lemma 7) Define Z(t) = V/ωb − Q(t) and note
that |Z(t + 1) − Z(t)| ≤ δmax still holds. Further, from (37)
it holds:

E [Z(t+ 1)− Z(t)|Z(t)] ≤
{
δmax if Z(t) ≤ 0
−βL if Z(t) > 0

Now define θ as any positive value. It follows that:

E [Z(t+ 1)− Z(t)|Z(t)] ≤
{
δmax if Z(t) < θ
−βL if Z(t) ≥ θ

Thus, the conditions (39)-(40) hold for this Z(t) process, with
initial condition z0 = V/ωb − q0. Therefore, Corollary 1 can
be applied.

For ease of notation let “r” represent “rL,” let “β” represent
“βR,” and let “ρ” represent “ρL,” where ρL

M
=1 − rLβL/2.

Define c = V/ωb − V/ωb+1. From (50) of Corollary 1, the
following holds for all slots T , t such that 0 ≤ T < t:

1

t

t−1∑
τ=0

E [1{Z(τ) ≥ θ + c}]

≤ (erδmax − ρ)e−rc

1− ρ
+

[
T

t
+
er(z0−c−θ)ρT

t(1− ρ)

]
This holds for all θ > 0. Taking a limit as θ → 0+ gives:

1

t

t−1∑
τ=0

E [1{Z(τ) > c}]

≤ (erδmax − ρ)e−rc

1− ρ
+

[
T

t
+
er(z0−c)ρT

t(1− ρ)

]
Notice that the event 1{Z(τ) > c} is equivalent to the event
{Q(τ) < V/ωb+1}, which is the same as the event Q(τ) ∈ I1
(see Fig. 3). Thus, the left-hand-side of the above inequality
is the same as 1

(1)
(t). Hence:

1
(1)

(t) ≤ (erδmax − ρ)e−rc

1− ρ
+

[
T

t
+
er(z0−c)ρT

t(1− ρ)

]
≤ (erδmax − ρ)e−rc

1− ρ
+

[
T

t
+
erV/ωb+1ρT

t(1− ρ)

]
where the final inequality uses the fact that z0 ≤ V/ωb.
By definition of c, the first term on the right-hand-side is
O(e

−rLV ( 1
ωb
− 1

ωb+1
)
). It remains to choose a value T > 0

for which the remaining two terms (in brackets) are O(V )/t.
To this end, define xM

=r/(ωb+1 log(1/ρL)). Choose T as the
smallest integer that is greater than or equal to xV . Then
T = O(V ) and:

T

t
≤ O(V )/t

erV/ωb+1ρT

t(1− ρ)
≤ erV/ωb+1ρxV

t(1− ρ)

=
1

t(1− ρ)

≤ O(V )/t

G. Optimal backlog and near-optimal convergence time

Define:

γ M
= min

[
rR

(
1

ωb−1
− 1

ωb

)
, rL

(
1

ωb
− 1

ωb+1

)]
Results of Lemmas 5-7 imply that if the drift-plus-penalty
algorithm (18) is used with V ≥ ω2

M , and if the initial queue
state satisfies 0 ≤ q0 ≤ V/ωb, then for all t > 0:

Q(t) ≤ O(V ) (56)
E [Q(t)] /t ≤ O(V )/t (57)

1
(4)

(t) ≤ O(e−γV ) (58)

1
(1)

(t) ≤ O(e−γV ) +O(V )/t (59)

Indeed, (56)-(57) follow from Lemma 5, while (58) and (59)
follow from Lemmas 6 and 7, respectively.

Fix ε > 0 and define:

V = max[(1/γ) log(1/ε), ω2
M ]

Tε = log(1/ε)/ε

Inequalities (56)-(59) can be used to easily derive the follow-
ing facts:

• Fact 1: For all slots t > 0 one has Q(t) ≤ O(log(1/ε)).
• Fact 2: For all slots t > Tε one has E [Q(t)] /t ≤ O(ε).
• Fact 3: For all slots t > 0 one has 1

(4)
(t) ≤ O(ε).

• Fact 4: For all slots t > Tε one has 1
(1)

(t) ≤ O(ε).

Fact 2 and Lemma 2 ensure that for t > Tε:

µ(t) ≥ λ−O(ε) (60)

Facts 2, 3, 4 and Lemma 3 ensure that for t > Tε:

|1(2)(t)− θ| ≤ O(ε) , |1(3)(t)− (1− θ)| ≤ O(ε)

Substituting the above into (31) proves that for t > Tε:

p(t) ≤ θh(µb+1) + (1− θ)h(µb) +O(ε)

= p∗ +O(ε) (61)

The guarantees (60) and (61) show that the drift-plus-penalty
algorithm gives an O(ε)-approximation with convergence time
Tε = O(log(1/ε)/ε). This is within a factor log(1/ε) of the
convergence time lower bound given in Section III. Hence, the
algorithm has near-optimal convergence time.

Further, it is known that if the rate-power curve h(µ)
has at least two piecewise linear segments and if the point
(λ, h(λ)) does not lie on the segment closest to the origin, then
any algorithm that yields an O(ε)-approximation must have
average queue size that satisfies Q(t) ≥ Ω(log(1/ε)) [13]. Fact
1 shows that the drift-plus-penalty algorithm meets this bound
with equality. Hence, not only does it provide near optimal
convergence time, it provides an optimal average queue size
tradeoff.
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VI. PRACTICAL IMPROVEMENTS

A. Place-holders

The structure of this problem admits a practical improve-
ment in queue size via the place-holder technique of [9].
This does not change the O(log(1/ε)) average queue size
tradeoff with ε, but can reduce the coefficient that multiplies
the log(1/ε) term. Assume that V ≥ 0 and define the following
nonnegative parameter:

qplace
M
= max

[
V

ωM
− ωM , 0

]
(62)

The technique uses a nonzero initial condition Q(0) = qplace,
where the initial backlog qplace is fake data, also called place-
holder backlog. Note that qplace > 0 if and only if V > ω2

M .
The following lemma refines Lemma 1 and shows that this

place-holder backlog is never transmitted. Hence, it acts only
to shift the queue size up to a value required to make desirable
power allocation decisions via (18).

Lemma 8: If V ≥ ω2
M and Q(0) = qplace, then the

drift-plus-penalty algorithm (18) chooses p(t) = µ(t) = 0
whenever Q(t) < V/ωM . Thus, Q(t) ≥ qplace for all t.

Proof: The proof is similar to that of Lemma 1 and is
omitted for brevity.

Consequently, at every slot t the queue can be decomposed
as Q(t) = qplace +Qreal(t), where Qreal(t) is the real queue
backlog from actual arrivals. The sample path of Q(t) and
all power decisions p(t) are the same as when the drift-plus-
penalty algorithm is implemented with the nonzero initial
condition qplace. Of course, every transmission µ(t) sends
real data from the queue, rather than fake data. The resulting
algorithm is:
• Initialize Qreal(0) = 0.
• Every slot t, observe Qreal(t) and ω(t) and choose:

p(t) =

{
1 if (qplace +Qreal(t))ω(t) ≥ V
0 otherwise

• Update Qreal(t) by:

Qreal(t+ 1) = max[Qreal(t) + a(t)− p(t)ω(t), 0] (63)

If qplace > 0 then qplace = V/ωM − ωM ≤ V/ωb. Thus,
0 ≤ qplace ≤ V/ωb, and so the initial condition Q(0) = qplace
still meets the requirements of the lemmas of the previous
section. Therefore, the same performance bounds hold for the
power process p(t) and the queue size process Q(t). However,
at every instant of time, the real queue size Qreal(t) is reduced
by exactly qplace in comparison to Q(t).

B. LIFO scheduling

The queue update equations (63) and (1) allow for any work-
conserving scheduling mechanism. The default mechanism
is First-In-First-Out (FIFO). However, the Last-In-First-Out
(LIFO) scheduling discipline can provide significant delay
improvements for 98% of the packets [19][14]. Intuitively,
the reason is the following: Results in the previous section
show that, for sufficiently large V , the backlog Q(t) is almost
always to the right of the V/ωb+1 point in Fig. 3. Suppose the

place-holder technique is not used. Then packets that arrive
when Q(t) ≥ V/ωb+1 must wait for at least V/ωb+1 units
of data to be served under FIFO, but are transmitted more
quickly under LIFO. Work in [14] mathematically formalizes
this observation. Roughly speaking, most packets have average
delay reduced by at least V/(ωb+1λ) under LIFO (and without
the place-holder technique). With the place-holder technique,
this reduction is changed to (V/ωb+1 − qplace)/λ (since the
place-holder technique already reduces average delay of all
packets by qplace/λ). One caveat is that, under LIFO, a
finite amount of arriving data might never be transmitted.
For example, if drift-plus-penalty is implemented without the
place-holder technique, then the first qplace units of arriving
data will never exit under LIFO, where qplace is given in (62).
Of course, using LIFO as opposed to FIFO does not change
the total queue size or the fundamental tradeoff between
total average queue size and average power. These issues are
explored via simulation in the next section.

VII. SIMULATION

A. Two channel states
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Fig. 4. Average power versus average backlog for the case of 2 channel
states. All data points are averages obtained after simulation over 1 million
slots. Three algorithms are shown. The drift-plus-penalty (DPP) algorithms
use various values of V . The V values are labeled for select points on the
DPP curve (green). The ω-only algorithm uses various values of δ. The DPP
algorithms significantly outperform ω-only. DPP-place (red) provides only a
modest gain over DPP (green) in the range V ∈ [4, 10].

Consider the scenario of Case 1 in Section III. There are two
channel states ω(t) ∈ {1, 2} with π(1) = 3/4, π(2) = 1/4.
The h(µ) curve is shown in Fig. 1. Assume the arrival process
a(t) is i.i.d. over slots with:

Pr[a(t) = 0] =
2

5
, P r[a(t) = 1] =

1

5
, P r[a(t) = 2] =

2

5

The arrival rate is λ = E [a(t)] = 1, and the minimum average
power required for stability is p∗ = h(1) = 3/4.

Three different algorithms are considered below:
• Drift-plus-penalty (DPP) with Q(0) = 0.
• DPP with place-holder (DPP-place) with qplace =

max[V/2− 2, 0] (from (62)) and Qreal(0) = 0.
• An ω-only policy designed to satisfy E [µ(t)] = λ + δ

and E [p(t)] = h(λ+ δ).
The DPP algorithms operate online without knowledge of λ,
π(1), π(2), while the ω-only policy is designed offline with
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knowledge of these values. Results are plotted in Fig. 4 for
various values of V ≥ 0 and δ ≥ 0. The DPP algorithms
significantly outperform the ω-only algorithm even though
they do not have knowledge of the system probabilities. The
theoretical tradeoffs of the previous section were derived under
the assumption that V ≥ ω2

M (in this case, ω2
M = 22 = 4).

However, the DPP algorithms can be implemented for any
value V ≥ 0. Observe from the figure that average power
starts approaching optimality even for values V < 4, and
converges to the optimal p∗ = 3/4 as V is increased beyond
4. It can be shown that the ω-only algorithm achieves an O(ε)-
approximation with average queue size Θ(1/ε), whereas re-
sults in the previous section prove the DPP algorithms achieve
an O(ε)-approximation with average queue size Θ(log(1/ε)).
The simulations verify these theoretical results.

In this example, the DPP place-holder algorithm gives
performance very close to standard DPP, with only a modest
gain in the range V ∈ [4, 10]. For values V ≤ 4 the DPP and
DPP-place algorithms are identical.

Convergence time to the desired constraint µ(t) ≥ λ
is illustrated in Fig. 5 by plotting the empirical value of
E [µ(t)] versus time. The ω-only policy is not plotted because
it achieves the constraint immediately by its offline design.
The DPP-place algorithm shows a slight convergence time
improvement over DPP. Both DPP algorithms demonstrate
that |µ(t) − λ| decays like V/t. This is consistent with the
theoretical guarantees derived in the previous section. Indeed,
for an O(ε)-approximation, one sets V = Θ(log(1/ε)), so after
time t ≥ Θ(log(1/ε)/ε) the deviation from the constraint is
at most O(V/t) ≤ O(ε). The corresponding average power
E [p(t)] is plotted in Fig. 6.
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Fig. 5. Average transmission rate E [µ(t)] versus time, obtained from 105

independent simulation runs over the first 500 slots. The DPP curves are thick,
solid, and labeled with V ∈ {5, 10, 20, 40}. The DPP-place curves are thin
dashed curves where V ∈ {5, 10, 20, 40} corresponds to red, purple, grey,
green, respectively.

B. Nine channel states

Now consider a process ω(t) with 9 possible rates
{ω0, . . . , ω9}:

Ω = {0, 3, 7, 11, 18, 22, 24, 36, 46}
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Fig. 6. Average power E [p(t)] versus time for the same experiments, V
parameters, and color scheme as Fig. 5.

The probabilities are:

π(ωi) =

 1/15 if i ∈ {0, 1, 2}
2/9 if i ∈ {3, 4, 5}
2/45 if i ∈ {6, 7, 8}

The arrival process a(t) has probabilities:

Pr[a(t) = 0] = 0.42, P r[a(t) = 20] = 0.58

with arrival rate λ = 11.6 packets/slot. The DPP-place
algorithm uses qplace = max[V/46 − 46, 0] (as in (62)), and
qplace > 0 if and only if V > 462 = 2116. It can be shown
that p∗ = h(λ) = 7/15 for this system. Simulations for DPP
and DPP-place are in Fig. 7. As before, the DPP algorithms
outperform the ω-only policy, although the improvements are
not as dramatic as they are in Fig. 4. This is because the
arrival rate vector in this case is close to a vertex point of the
h(µ) curve. As before, the DPP-place algorithm performance
is similar to that of DPP with a shifted V parameter.
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Fig. 7. The 9-channel simulation

C. Robustness to non-ergodic changes

This subsection illustrates how the algorithm reacts to
nonergodic changes. The system with 9 possible channel states
from the previous section is considered. The simulation is run
over 6000 slots, broken into three phases of 2000 slots each.
The system probabilities are changed at the beginning of each
phase. The algorithm is not aware of the changes and must
adapt. Specifically:
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1) First phase: The same parameters of the previous subsec-
tion are used (so λ = 11.6).

2) Second phase: Channel probabilities are the same as
phase 1. The arrival rate is increased to λ = 13 by using
Pr[a(t) = 20] = .65, Pr[a(t) = 0] = 0.35.

3) Third phase: The same arrival rate λ = 13 of phase 2 is
used. However, channel probabilities are changed to:

π(ωi) =

 1/15 if i ∈ {0, 1, 2}
1/9 if i ∈ {3, 4, 5}
7/45 if i ∈ {6, 7, 8}
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Fig. 8. Average power (obtained from 10000 independent simulation runs)
versus time for a system that changes nonergodically over 3 phases.
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Fig. 9. Average queue size (obtained from 10000 independent simulation
runs) versus time for a system that changes nonergodically over 3 phases.

The resulting power and queue size averages are plotted
in Figs. 8 and 9. The data is obtained by averaging sample
paths over 10000 independent runs. Fig. 8 shows that for
large V , average power converges to a value close to the
long-term optimum associated with each phase. Thus, the
DPP algorithms adapt to changing environments. For each V ,
average power of DPP-place is roughly the same as DPP (Fig.
8). Average queue size of DPP-place is smaller than that of
DPP when V is large (Fig. 9).

D. Delay improvements under LIFO

Fig. 10 illustrates the gains of Last-in-First-Out (LIFO)
scheduling (as in [19][14]) for the 9-channel state system
with parameters described in Section VII-B (the system is
the same as that of Fig. 7). Average power is plotted versus

average delay (in slots) for DPP-place with and without LIFO.
The LIFO data considers only the 98% of all packets with
the smallest delay (so that 2% of the packets are ignored in
the delay computation). LIFO scheduling significantly reduces
delay for these packets. For example, when V = 80000,
average delay is 236.3 slots without LIFO, and only 20.0 slots
with LIFO (average power is the same for both algorithms).
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Fig. 10. A comparison of the power-delay tradeoff for DPP-place with and
without LIFO. The LIFO data for average delay considers the best 98% of
all traffic. Each data point represents a simulation over 106 slots. Average
power is the same for both algorithms whenever V is the same.

VIII. CONCLUSIONS

This paper considers convergence time for minimizing av-
erage power in a wireless transmission link with time varying
channels and random traffic. Prior algorithms produce an ε-
approximation with convergence time O(1/ε2). This paper
shows, for a simple example, that no algorithm can get
convergence time better than O(1/ε). It then shows that
this ideal convergence time tradeoff can be approached to
within a logarithmic factor. Furthermore, the resulting average
queue size is at most O(log(1/ε)), which is known to be
an optimal tradeoff. This establishes fundamental convergence
time, queue size, and power characteristics of wireless links.
It shows that learning times in an unknown environment can
be pushed much faster than expected.
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