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Abstract—How many links can be cut before a network is
bisected? What is the maximal bandwidth that can be pushed
between two nodes of a network? These questions are closely
related to network resilience, path choice for multipath routing
or bisection bandwidth estimations in data centers. The answer
is quantified using metrics such as the number of edge-disjoint
paths between two network nodes and the cumulative bandwidth
that can flow over these paths. In practice though, such cal-
culations are far from simple due to the restrictive effect of
network policies on path selection. Policies are set by network
administrators to conform to service level agreements, protect
valuable resources or optimize network performance. In this
work, we introduce a general methodology for estimating lower
and upper bounds for the policy-compliant path diversity and
bisection bandwidth between two nodes of a network, effectively
quantifying the effect of policies on these metrics. Exact values
can be obtained if certain conditions hold. The approach is based
on regular languages and can be applied in a variety of use cases.

I. INTRODUCTION

Resilience is a desirable property for many networked
systems and is often achieved through redundancy: when
multiple paths exist between nodes, it is possible to route
around a failed link. This resilience may be quantified in a
graph-theoretic sense as the (edge-wise) path diversity:

Definition 1. The path diversity between two vertices in a
graph is the number of edge-disjoint paths connecting them.

The application of Menger’s theorem [1]] for edges allows
the path diversity between two vertices to be calculated as
the minimum cut, using an algorithm such as Ford-Fulkerson,
with each edge having a unitary capacity. By adding non-
unitary edge capacities, we can also calculate the bisection
bandwidth. This metric is useful e.g., for data center routing
to optimize performance and robustness, or for quantifying
the advantages of multipath routing protocols [2] in terms of
achievable throughput.

Definition 2. The bisection bandwidth between two vertices
in a network is the maximum achievable flow between them.

In practice, networks do not permit all possible paths due
to management policies. These can be the outcome of routing
optimization techniques, security considerations or financial
agreements [3|]. For example, inter-domain paths in the Internet
resemble a valley-free policy model [4], a simplified model
of the business relationships between Autonomous Systems

(AS). On the other hand, such policies substantially restrict
which paths are permissible and constrain the effective path
diversity. Thus, a rich graph may not be fully utilized due
to a restrictive policy (or set of policies) imposed over its
paths. Therefore, calculating the policy-compliant path diversity
and bisection bandwidth is desirable to answer questions
such as: (i) how many valid edge-disjoint paths can exist
between two nodes, or (ii) how much bandwidth can be utilized
between these two nodes before the network is overloaded,
subject to network-wide policies. The goal is to understand
the effect of network policy on network resiliency, availability
and achievable throughput.

In this paper, we introduce a method for estimating the
path diversity and bisection bandwidth of a network subject
to policy constraints on the paths. We model the network
topology as a directed graph with policy labels on the edges.
We model network policies as a regular expression over these
labels and require that all valid paths in the graph adhere
to this regular expression. Every regular language can be
described by an automaton, specifically a Non-deterministic
Finite state Automaton (NFA) [5]. Using NFAs and the original
graph, we develop a transformed graph that constrains paths to
those accepted by the regular language. While path diversity
calculations on the original graph under policies are hard,
they become simple using general graph algorithms [6]] on the
transformed graph. For instance, classic graph algorithms can
work on the transformed graph to find the policy-compliant
max-flow/min-cut between two nodes as well as the paths
achieving this flow.

We will show how the transformed graph can be utilized
to obtain both upper and lower bounds on the path diversity
or bisection capacity of the original graph. If the NFA fulfills
certain criteria, the bounds are equal and therefore exactly the
same as the actual value, i.e., the path diversity or bisection
bandwidth are invariant under the transformation. Otherwise,
we obtain upper and lower approximations that encapsulate the
actual min-cut within their boundaries. The tightness of the
boundaries depends on the complexity of the state transitions of
the NFA, as we will explain later. We also show how constraints
on traversed nodes may be imposed, including scenarios where
both the nodes and edges are subject to separate constraints.

The rest of the paper is structured as follows: Section
presents interesting use cases where path diversity and bisection



bandwidth metrics under policy compliance are required.
Section [[II| describes the basic ideas and the graph transform
process; Section substantiates this process using formal
mathematical formulation and proving the needed claims.
Section |V| presents some results of our algorithm applied on
Internet AS-level topologies, demonstrating our approaclﬂ In
Section [VI| we report on related work in the field of network
resilience and policy-compliant min-cuts. Finally, we conclude
the paper and give further outlooks for our work.

II. WHY ARE POLICY-COMPLIANT MIN-CUTS IMPORTANT?

Calculation of policy-compliant path diversity and bisection
bandwidth can be applied on a wide range of scenarios to
quantify the resilience and achievable throughput of a network.
With our approach, the only requirement is that the network
policy should be expressible with a regular expression; the form
of the corresponding NFA dictates whether we can calculate
the exact value or an approximation as will be described
in Section Many network policies used in practice are
expressible through regular expressions [7]. We identify the
following use cases for policy-compliant min-cuts:

Inter-Domain Valley-Free Routing: A basic use case is the
calculation of the path diversity of an Internet conforming to the
valley-free policy model [4]]. Path diversity in this case can refer
to the number of edge-disjoint paths between two Autonomous
Systems (AS), where each edge connects two neighboring ASes
together. Edges are labelled as peer-to-peer (p2p), provider-
to-customer (p2c) or customer-to-provider (c2p) relationships.
This topology and corresponding edge labels can be obtained
from datasets like CAIDA [[8]]. We note that, in reality, such
links correspond to multiple network layer links and even more
physical links, i.e., the calculated path diversity is therefore
a lower bound of the physical path diversity. In the valley-
free model, the global inter-domain policy can be expressed
with the following regular expression: c2p*p2p?p2c*. Paths
can only go first uphill (c2p) and then downhill (p2c), while
at most one p2p link can connect an uphill with a downhill
transition forming a “mountain” with a p2p link on its “peak”.
The peak may also be sharper, with a direct transition from
uphill to downhill. We will revisit valley-free path diversity in
Section [V| where we examine tier one depeerings.

Beyond Classic Policies - Negative Waypoint Routing:
Valley-free is a basic family of policies that approximates
the current market relationships in the Internet. Ideally, we
would like to examine additional routing policies on top of
the classic ones, across domains. Examples are (i) waypoint
routing, i.e., forcing the traffic to pass over certain waypoints
before reaching its destination, and (ii) negative routing, i.e.,
forcing the traffic to avoid certain nodes or links in the network.
Such policies further perplex path diversity calculations but
are interesting for specific real-world scenarios and use cases.

Consider the following (slightly contrived) example which
encapsulates waypoint and negative routing policies. We assume
a valley-free Internet, in which each inter-AS edge is directed

The source code can be obtained directly from the authors upon request.
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Fig. 1: NFAs for the negative waypoint routing use case: valley-
free (left side) and waypoint routing policies (right side).

and is annotated with a tuple label: (relationship_type, next_
AS), where relationship_type is p2p, p2c or c2p and next_
AS is the edge-terminating AS. A government organization
in AS A wants to send traffic to one of its embassies in AS
B, located in another country. The traffic from A to B needs
to pass over a special encryption middlebox; there are two
clones of this middlebox in AS Wy and AS W, for redundancy.
The original traffic can pass through any AS before it reaches
waypoint Wy or Wo, except for AS X, which is governed by a
rival administration. After either of the waypoints is traversed,
traffic can go through any AS in the world—including X—
until it reaches its destination B, where it is decrypted on
the premises. This policy corresponds to a regular expression
(omitted here for brevity) which can be mapped in turn to an
NFA that accepts the expression, as depicted in Fig. [T The
resulting policy-compliant NFA is then a composition of the
valley-free and the negative waypoint routing NFAs.

In this particular case, the path diversity metric can help the
traffic sender determine how many inter-domain links could be
brought down until the organization-to-embassy communication
is crippled, e.g., in the event of a cyber-war launched by the
rival country. We view this as a “negative waypoint” inter-
domain routing use case, since we aim at approximating the
multitude of edge-disjoint paths that avoid a certain node or
edge in the inter-AS graph and pass through certain waypoints.
The problem cannot be solved by simply removing AS X,
pruning its corresponding edges and calculating the diversity
on the pruned graph using the sender-waypoint and waypoint-
receiver node pairs. As the policy dictates, AS X can be
traversed after the traffic has been processed by either AS Wy
or AS W,, but not sooner. The NFA encompasses both this
stateful routing decision process and the underlying valley-free
conditions, and allows us to encompass a complex policy in a
simple graph object. Having such NFAs at hand, we will explain
later how the policy-compliant diversity can be calculated.

Multipath TCP (MPTCP): MPTCP [9] is a proposed
extension to TCP from the IETF [10] allowing TCP connections
to use multiple paths to increase resource utilization, redun-
dancy and availability. This is especially useful when multiple
wireless channels with different properties are available, or
for better utilizing dense data center topologies, to exploit the
large bisection bandwidth available. Consider the data center



scenario, where the operator has full control over the endpoints
and switches and can route subflows individually. Here, the
number of disjoint available paths that MPTCP can send traffic
over is useful information for the MPTCP implementation.
Path diversity calculations in this case yield an approximation
of the maximal number of distinct flows that MPTCP can push
in the network without these flows contending with each other
for bandwidth. The approach for calculating the effective path
diversity can take into account domain-specific policies which
have been, e.g., expressed via Merlin [[7]. In addition, it enables
data center operators to compute the policy-compliant available
bandwidth between two areas of a network. This can help to
estimate the time that a MPTCP bulk data transfer may require,
or whether the network is utilized properly during the transfer.
DDoS Link-Flooding Attacks: Estimating the bisection
bandwidth of a data center can lead to an approximation of
the attack budget that a DDoS link-flooding attack against
data center core links, such as Crossfire [11]], may require.
The recent attack against Spamhaus [12] indicates that such
information is valuable both for the attacker and the defender:
the attacker tries to find weak links which he can deplete at
minimal cost, isolating entire domains from the Internet [[11],
while the defender tries to increase the cost for the attacker via
suitable network and traffic engineering [13]]. Knowing how
much bandwidth needs to be depleted to cut off a network
from the rest of the Internet can help an operator perform an
informed risk assessment of a possible attack, while taking
into account the routing policies imposed over the network.

III. IDEA: CUSTOM GRAPH TRANSFORM

Our objective is to transform a directed labelled graph G
into another graph G’, such that: (i) only policy-compliant
paths exist in G’, and (ii) the transformation does not distort
the minimum cut. The minimum cut may represent either
bisection bandwidth or, by choosing unitary edge capacities,
path diversity (cf. Menger’s theorem [1]]). We define a policy-
compliant path as any path whose path string (the string
resulting from concatenating the edge labels) belongs to some
regular language L. How do we accomplish this? Every regular
language L is represented by a finite state automaton M, and
vice versa. Therefore, upon traversing an edge in the graph,
we need to accordingly change the state in the automaton, as
if the edge label had been given to the automaton as an input.

The first idea is to use the tensor product of the graph G and
the policy-checking automaton M (Fig. 2] gives an example).
From M we define the transition graph 7', which has a node
set consisting of the states of M and an edge set representing
the permitted state transitions of M. The edges in G and T’
are labelled with policy-related symbols that result in the state
transitions represented in 7. For each of these symbols s € %,
we form the subgraphs G and T consisting of all the edges
labelled with s. We then form the tensor product of these
subgraphs, which is defined as follows: if v; and vy are nodes
in G and ¢; and go are nodes in T, then G’ contains the nodes
(v1,¢1)s (v1,92), (ve,q1) and (ve,qe). Likewise, if there is
an edge (v1,v2) in the subgraph G and an edge (qi,¢2) in
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Gs A R T First state Second state
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e . —
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Fig. 2: The tensor product. For each label s € ¥, the tensor
product of the edges in G labelled with s and the edges in T°
labelled with s (representing the state transitions in A/ when
s is entered as an input) yields the set of mapped edges in G'.
We represent the edge label s symbolically via the colour and
style of the edge. Nodes in G’ are derived from the triangles
of the NFA and the squares of the original graph G.

the subgraph Ty, then the tensor product contains the edge
((v1,q1), (v2,¢2)). The union of all of these tensor products
is the transformed graph G’. This allows us to move both
between the nodes v; and v, in G and the nodes ¢; and g5
in T (and therefore the states ¢q; and gs in M) at the “same
time”. We define M to be a Non-deterministic Finite state
Automaton (NFA) because an NFA is typically smaller than a
corresponding Deterministic Finite state Automaton (DFA).

This transform gives us part of the solution, but it does not
guarantee that the minimum cut calculated over G’ represents
accurately the corresponding minimum cut of G. A single edge
in the original graph G may be mapped to a set of parallel
edges in the transformed graph G’. Consider the possibility
of a transition from one state {¢; } to two states {q2, g3} over
an edge (v1,v2). This will be mapped to two edges in G”:
((v1,q1), (v2,q2)) and ((v1,q1), (v2,q3)), even though there is
just one edge in G. Therefore, the second idea is to force the
transform to maintain the minimum cut. This may not always
be possible, as we will explain later. If it is not, the result still
is an approximation of the minimum cut, for which we will
give lower and upper bounds in section

The core idea is to add aggregator states to the NFA and
consequently to G’ so that the min-cut paths between two
nodes must traverse at most the same number of parallel edges
as in GG, which limits the minimum cut in G’ to the same value
as in G. To preserve the structure of the NFA—and thus the
policy it describes—we utilize e-transitions. e-transitions can
be thought of as “free” transitions: they do not consume a
symbol during traversal. In our case, this means that we do
not need to traverse an edge between nodes in G in order to
traverse an e-transition. Where there is a chance of the min-cut
being inflated, we add an aggregator node (for each edge label)
and use e-transitions to “channel” all of the paths through this
node. Each node in G has corresponding aggregator nodes in
G’ as needed and where it is applicable.

There are several possible cases for the aggregated transitions:
(i) from a single state to another single state (one-to-one),
(ii) from a single state to multiple states (one-to-many),
(iii) from multiple states to a single state (many-to-one), or
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Fig. 3: The use of aggregation nodes (represented with
circles) for a one-to-many state mapping. The two blue dashed
transitions of the NFA are aggregated using one aggregation
node. e-transitions are represented by black dotted dashed lines.

(iv) from multiple states to multiple states (many-to-many).
In the first case, the min-cut is always invariant; no inflation
can occur. The latter cases are depicted in Fig. ] Fig. @
and Fig. 5] respectively. In the one-fo-many and many-to-one
cases the addition of aggregation nodes leads to the correct
min-cut value, while the many-to-many case requires careful
consideration. In this case, we can only maintain the accurate
min-cut using aggregation states if the set of state transitions
can be expressed as the Cartesian product of two subsets of the
set of state nodes. This results in complete bipartite subgraphs
on the transformed graph G’ with aggregatable transitions, as
shown in Fig. El Therefore, if this is not the case, we need
to break the transition down to n disjoint state transition sets
of the cases (i) to (iv) and perform the transform for each of
them; each set introduces an extra aggregator state. Regarding
edge capacities we provide different values to yield upper and
lower bounds on the min-cut, as we will show later.
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Fig. 4: The use of aggregation nodes (represented with circles)
for a many-to-one state mapping. The two red dotted transitions
of the NFA are aggregated using one aggregation node.

To calculate the min-cut with conventional algorithms, we
need to have a single terminating node in G’, which implies
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Fig. 5: The use of aggregation nodes for a many-to-many state
mapping. The four green transitions of the NFA are aggregated
using two aggregation nodes.

a single terminating state in M. If we have more than one
terminating state, then prior to proceeding we need to create
a virtual terminating state and copy all of the transitions to
the previous terminating states to the new one. Finally, if we
want to consider constraints on nodes as well as edges, we can
split the nodes under consideration in two halves as follows:
all of the incoming edges connect to one half and all of the
outgoing edges connect to the other. We then add a labelled
edge between those halves, allowing the edge to represent the
node and effectively encompass its constraints.

IV. THE MATH BEHIND THE TRANSFORM

Here we present the required definitions, algorithmic steps,
proofs of correctness, and complexity of the algorithm.

A. Notation and Definitions

e G = (V,E) is a labelled directed graph with nodes V,
edges F, a labelling function [ : E — ¥ that maps edges
in E to corresponding labels in 3, and a capacity function
¢: E — RT that maps edges to edge capacities. For path
diversity calculations, we choose c(e) =1 for all e € E.

e L C ¥* is a regular language. We require that for any
path (eq,...,e,) in G, the string I(eq)...l(ey,) formed of
the edge labels be in L.

e M = (@Q,%,A,qo, F) is a NFA with states (), input
symbols 3, state transitions A C Q) x 3 X @, terminating
states F' C () and a starting state qo € (). M accepts L.
e-transitions are allowed with € € 3.

e T =(Q,A) is the directed graph derived from M.

o G' = (V' E) is the final transformed graph: its formation
is such that the policy constraints are met and the minimum
cut is not inflated, if possible.

B. Single Virtual Termination States

In order to have a single terminating node in G’ for use
with Ford-Fulkerson (or another flow algorithm), the set of



terminating states F' in M must be no larger than one. If
|F'| > 1, we add a new termination state ¢*. A state transition
to ¢* is added from every other state which previously had a
transition to a terminating state, and F' is updated accordingly:

Q:=QuU{¢"} (D
A:=AU{(d,s,4)1(d,8,9) €eANgeEF} (2
Fi={g"} 3)

C. Tensor Product Transform: Steps
1) We form subgraphs G5 C G consisting of all the edges
labelled with s € X:
Gs = (V; Ee) (4)

E; = {(v1,v2) | (v1,v2) € ENl((v1,v2)) = s} (5)

2) We form subgraphs T C T of all the state transitions for
an input symbol s € X:

Ts == (Q, Ay) (6)

Ag:={(q1,0) | (@1,8,2) €ANS =5} (D)

3) We augment A, with aggregator states, if necessary. (i) We
require that A has the form Q’, x Q% with Q’, C @ and
QY C Q. (ii) If this is not the case, we decompose Ag

into ns disjoint sets Ay j; such that each subset has the
form @ ; x Q7 ) and repeat the following for every k:

a) We add a new aggregator state ¢, if |Q%| > 1 and ¢7

if|Qg|>1:
_fQ Q=1
Q'—{Qu{qg} Q> 1 ®)
e QY =1
@={ Gun 107151 ©

b) If we added a ¢/, in the previous step, we connect the
preceding states to it with an e-edge. Likewise for ¢/
and succeeding states:

N Q4| =1

Bei= { AU@ x{gy 1Q)>1 1O
_ [ A QU =1

A '_{ Au(grxqQny Q=1 Y

¢) Finally, we connect states ¢/, and ¢” with the aggregated
state transition edge. If we did not use aggregating nodes
on either side because there was only one state in Q’,
or @Y, we use that single state instead:

L QL Q=1
@ = { (@) 1Ql>1 (12)

L Q@ =1
Ay =Q, x QY (14)

4) For each pair of G5 and T that we derived in the previous
steps, we calculate the fensor product G, = G5 x Ts. The
nodes of G/, are given by:

Vi=VxQ (15)
The edges of G, are given by:
E = {((v1,q1), (v2,42))
| (v1,v2) € Es A (q1,q2) € A} (16)

Furthermore, e-transitions are mapped to edges in G’ that
are effectively located within a single node in G:

El:={((v,q1), (v, q2)) |[v €V A(q1,q2) € A} (17)

5) G’ is the union of G for each s € ¥ (including ¢):

¢ =Jac =0 JE)

sEX seX

(18)

6) For the edge capacities ¢’ : E/ — RT in G’, we have
different values for the upper and lower bound minimum
cut. (I9) and (20) give the capacities c,,,,,.,. and cj,,,,. for

the upper and lower bound minimum cuts, respectively.

C;pper(((Uh(h)v (1)2,(]2))) = { Zivl7v2) :i 7: Zz
( ) {19

C;ower(((UIaQ1)7 ('UQaQ2))) = { Oons Zi i Zi
(20)

Where s = [((v1,v2)) and ng is the number of disjoint
sets Ay that A, is decomposed into in step 3.

D. Correctness

We next prove that the transformed graph contains only
valid policy-compliant paths (claims [T] and [2)), that capacities
Clower @nd €., yield lower and upper bounds of the min-cut
(claims [3] and [)), and that we obtain an exact value for the
policy-compliant min-cut as long as certain conditions hold,

pertaining to the form of the NFA (claim [5).

Claim 1. Given a path P in G, if the string formed by the
concatenation of the edge labels of P is not in L, then no
corresponding path P’ exists in G'.

Proof. The edge labels of P form a string. This string contains
at least one edge e with a label s € ¥ which results in the
string no longer being in L. This implies that there is no
outgoing state transition from the preceding state to any other
state in the NFA. The tensor product of the NFA with the edge
e is thus empty. Therefore, there is no edge to the next node
mapped from P and no P’ can be formed in G'. O

Claim 2. If a path P exists in G and the string formed by
the concatenation of the edge labels of P is in L, then there
exists a corresponding path P’ in G'.

Proof. 1f the edge labels traversed by P form a string in L,
then that string represents a sequence of valid state transitions
in NFA M (respectively the NFA graph T') from the starting



to a terminating state. The tensor product for each s € 3 gives
us a connection between two nodes if the edge corresponds to
a valid state transition in M. As the string is in L, we know
that all of the edge transitions are valid and therefore that all
of the nodes mapped from P to P’ are connected. Thus a valid
path P’ can be formed in G’. O

Claim 3. Let v and v, be nodes in G. Let qy and q; be
the starting and terminating states in the NFA. Let the edge
capacities of G' be ¢, of (19). Then the minimum cut
between (v1,qo) and (vy, qi) in G’ is less than or equal to the
minimum cut between v, and v, in G, taking into consideration
only those paths whose edge labels form strings in L.

Proof. From Claim [1] and Claim [2] we have that any path in G’
corresponds to a valid path in G, and vice versa. For each pair
of adjacent nodes vy and vy in the path in G we have the
capacity c((vg,vk41)) for the edge that connects them. The
edge (vg,vr41) is mapped to ns edges in G’, each having a
capacity of M, where n, is the number of disjoint
sets Ay, that Ag is decomposed into in step 3. All of these n
mapped edges in G’ therefore have a cumulative capacity of
¢((vg, vg+1)), the same as between the pair of nodes in G that
they were mapped from. Hence the minimum cut between each
pair of nodes in the path in G’ is at most as large as that in

G, while it may also be smaller due to the Ay decomposition.

By induction, this applies to the path as a whole, and by
generalization to all paths in G’. Therefore, the minimum cut
will not be overestimated and the calculated value in G’ is a
lower bound of the actual min-cut in G. O

Claim 4. Let vi and v, be nodes in G. Let qy and q; be
the starting and terminating states in the NFA. Let the edge
capacities of G' be c,,... of 0). Then the minimum cut
between (v1,qo) and (vn,q:) in G' is greater than or equal
to the minimum cut between vy and v, in G, taking into
consideration only those paths whose edge labels form strings

in L.

Proof. From Claim [I|and Claim [2) we have that any path in G
corresponds to a valid path in G, and vice versa. For each pair
of adjacent nodes vy and vy in the path in G we have the
capacity c((vg,vg4+1)) for the edge that connects them. The
edge (vg,vr41) is mapped to ng edges in G’ which all have
the capacity c((vg, vk+1)), where ng is the number of disjoint
sets A;y that A is decomposed into in step 3. Hence the
capacity of an edge e in G and of any edge ¢’ in G’ that e is
mapped to is the same. All valid paths in G’ therefore have
at least the same minimum cut as the ones in G from which
they are mapped, while there may be several corresponding
parallel paths in G’ due to the A; decomposition. Therefore,
the minimum cut will not be underestimated and the calculated
value in G’ is an upper bound of the actual min-cut in G. [

Claim 5. The lower bound of claim |3| and the upper bound
of claim W coincide and the min-cut calculation is exact if:

Vs € X:3Q,,Q7 CQ:A;=QL x Q" (21)

Proof. If (21) is true, then n is equal to one for every s € X.
Accordingly, ¢j,,,.,.(€) = ¢ipper(€) for every e € E'. This
means that the lower and upper bounds of the minimum cut
are equal. Since the actual min-cut lies between these values,

it must therefore be equal to the lower and upper bounds. [

E. The Maximal Biclique Generation Problem

The number of disjoint sets A, j that A is decomposed
into in step 3 of the graph transform determines how far off the
lower and upper min-cut bounds are from the actual value in
the worst case. Each A; . = @ ; x QY ;. should be expressed
as the Cartesian product of two state node subsets. The tensor
product of each A, j with a link (v;,v;) € Ej is equivalent to
a biclique in the transformed graph. This process can thus be
reduced to finding the minimal number of complete bipartite
graphs—or bicliques—that cover the transformed subgraph
corresponding to the initial labelled link (v;,v;). The found
bicliques can then be used inversely to determine the k& A; i
sets, i.e., to determine the Cartesian product decompositions of
the NFA state transitions. This observation helps to estimate
the complexity of the decomposition problem; though a formal
analysis is outside the scope of this paper. The problem of
finding maximal bicliques is generally NP-Complete [14], and
we refer the reader to existing literature for solutions [15], [16].
If looser bounds are acceptable, a heuristic solution could be
used. We typically only need to decompose small subgraphs
corresponding to simple NFAs and this only needs to be
performed once per A;—i.e., per symbol— when transforming
the graph. The time costs are significant only in cases where
the NFA contains very large and complicated transitions. For
many common scenarios, including 1-to-1, 1-to-N, N-to-1, and
M-to-N, the decomposition is trivial (see Fig. 2] to [3).

F. Algorithmic Complexity

In Space: Here we consider the space complexity, which
depends on the number of nodes and edges in graph G' and
the number of states and transitions in NFA M. There are
|Q| states in the NFA. We may need to add O(]A]) states for
aggregation (at most one per transition). Therefore, applying
the tensor product and taking into account the aggregation
states gives us a total node complexity of:

V'l =0o(VI(IQl + |A])

Typically, one edge in G will be mapped to one edge in G, plus
some e-edges. In the worst case, we may need O(]A|) edges to
map between two nodes (if many need to be decomposed into
disjoint subsets in step 3). We may also need O(|A|) e-edges
for each node, yielding a total edge complexity of:

[E'| = O(A[(IV] + |E]))

(22)

(23)

In Time: To obtain G, executing (5) requires ©(|E|) steps
(the nodes are maintained), while obtaining the T requires
executing (7, requiring O(]A|) steps. Step 3 will be executed
in the worst case n times, where n is the number of disjoint
transition sets that A; may be broken into, which cannot be
larger than |A|. Additionally, it demands ¢4 time, which is the



amount of time required to actually decompose state transitions
in M. The latter depends on A, and may be of nondeterministic
polynomial complexity. However, t4.. is generally negligible
in practice for many common scenarios (i.e., |V| >> |Q| and
|E| >> |Al). 3a and 3c require only constant time, since
they add a single object to a set. 3b requires O(|Q)|) steps,
giving us O(|Q||A]) total time for step 3. For step 4, we
have O(|V|Q|) for executing (I3), O(|E||A|) for executing
(T6) and O(|V||A|) for executing (T7). Finally, (I8) requires
O((|[V|+ |E])|A]) steps. Thus, the total time complexity is:

t=O(VIIQI+[AI(VI+ Bl + QD) + taee

In practice, the total running time is dominated by the min-cut
calculation on the transformed graph—e.g., via Ford-Fulkerson
or Edmonds-Karp—rather than by the graph transformation
process itself. The spatial complexity of the transformed graph
in terms of the sizes |V’| and | E’| is the most important factor
for the time that the min-cut calculation requires.

(24)

V. APPLICATIONS

In this section we showcase some of the applications of the
graph transform algorithm. Note that our main contribution
is the algorithm; here, we simply wish to demonstrate its
applicability to a selection of real-world problems, rather than
provide a full and rigorous analysis.

A. Paths between tier one and tier two providers

Setup: We begin by calculating the number of edge-
disjoint paths between some of the largest ISPs in the world,
using the CAIDA AS relationships data [8]. We performed
this calculation both for the total path diversity assuming no
policies, i.e., arbitrary paths, and also for the diversity of valley-
free paths using the regular expression described in Section [II}
We note that this regular expression can be mapped to an NFA
that satisfies condition ; therefore, the obtained values in
this case are exact since the min-cut bounds coincide.

Results: The results are shown in Table [l The ISPs are:
NTT (AS2914), Deutsche Telekom (AS3320), AT&T (AS7018),
Embratel (AS4230), BT (AS5400) and Comcast (AS7922). First
of all, we notice that unconstrained routing could offer around
two orders of magnitude greater path diversity than the valley-
free case. We observe substantial path diversity present between
tier ones and tier twos, especially considering that these are AS-
level paths, corresponding to multiple links at the router level.
We note that the number of valley-free paths between pairs
of tier one ISPs is always one due to the lack of an upstream
ISP as well as the prohibition of traversing multiple peering
links; thus we see only their direct p2p interconnections. The
sizeable customer cone of the tier ones combined with this lack
of diversity means that any depeering has the potential to cause
major disruption for the direct tier one customers, which is
known to have occurred already [17]], [18]]. For large tier twos,
due to the rich peer-to-peer interconnectivity resulting in large
path diversity, such depeerings seem not to be harmful. In this
context we remark that even for very large ISPs, the limiting
factor for path diversity is often the number of peering and

Arbitrary paths
AS 2914 3320 7018 4230 5400 7922 2914 3320 7018 4230 5400 7922

Valley-free paths

2914 - 496 1012 190 145 145 - 1 1 9 5 2
3320 496 - 496 190 145 145 1 - 1 10 6 3
7018 1012 496 - 190 145 145 1 1 - 9 5 3
4230 190 190 190 - 145 145 9 10 9 - 10 8
5400 145 145 145 145 - 145 5 6 5 10 - 6
7922 145 145 145 145 145 - 2 3 3 8 6 -

TABLE I: Path diversity between large tier one and tier two
ISPs. Tier one ISPs are marked in bold face for clarity.

provider connections that the ISP itself maintains, rather than
the Internet topology at large; this points to a densely connected
Internet. An ISP which wishes to improve its connectivity can
therefore either establish a business relationship with another
upper tier ISP, or expand its peering. Many evidently choose
the latter [[19]], with the propagation of public open Internet
Exchange Points (IXPs) [20] lowering the barriers to entry for
establishing new peering relationships.

B. Global path diversity

Setup: To extend the previous use case, we look at the
number of edge-disjoint paths between arbitrary pairs of ASes.
We again use the CAIDA AS relationships data [8]] and use the
valley-free model. Due to the large number of ASes present,
it is not feasible to calculate the pairwise path diversity for
every pair of ASes. Instead we sample the ASes, selecting
each AS with a probability proportional to the number of
addresses it announces, using the CAIDA RouteViews AS-to-
prefix data [21]. The AS relationships dataset is obtained from
BGP routes announced at various vantage points within the
Internet; the downside to this is that many peering links are
not visible from these vantage points. In reality, the number of
peering links in the Internet may be much larger than reported
in this dataset [22]]. To address this deficiency, we augment the
AS relationships with data available from PeeringDB, which
was evaluated and validated by Lodhi et al. [23]]. We specifically
add links between IXP members with an Open policy, indicating
a general willingness to peer with other IXP members without
any preconditions (such as balanced traffic). The majority of
IXP members have an Open peering policy. In addition to the
valley-free scenario, we also evaluate a more liberal policy,
where a path may traverse more than one peering link between
the uphill and downhill transitions. As we will see later, this
can increase resiliency substantially. We note that the multiple
peering link case corresponds also—like the classic valley-free
case—to an NFA that satisfies condition (ZI)), thus yielding
exact values for the path diversity calculations.

Results: Fig. [6] shows the CCDF of path diversity. We
evaluated the path diversity between 10,000 pairs of randomly
selected ASes, with the selection weighted by the number
of announced addresses as already described beforehand. We
observe that (i) the added links make little difference to the
valley-free scenario, (ii) the multiple peering links scenario has
a considerably larger path diversity and profits a little more
from extra peering links. Note that although the two valley-free
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Fig. 6: CCDF of path diversity, by constraint type and added
link policy. VF: Valley-Free, MPL: Multiple Peering Links.

scenarios appear to be identical, there are small differences
between them hidden by the log scale, which we will see later.

C. Effects of peering policy openness on path diversity

Setup: Typically, IXP members have Open, Selective and
Restrictive peering policies. The majority of IXP members have
an Open policy, which, as stated above, implies the willingness
to peer with other IXP members without any preconditions. A
Selective policy generally implies certain preconditions, such
as balanced traffic (e.g., a maximal 1:2 ratio) or geographically
diverse peering points (e.g., one on every continent), and is
typical for major ISPs. A Restrictive peering policy generally
indicates the intent to peer only on a case-by-case basis, which
is typical for the largest ISPs, especially tier ones. We would
like to examine the effect of adding peering links from a given
policy class in terms of the AS-level path diversity. While
introducing peering links between all pairs of IXP members
with an Open policy is a reasonable approach to augment the
graph, the other cases may be less realistic. One approach is to
add links between all pairs of IXP members sharing the same
peering policy. ISPs typically peer with similarly sized ISPs,
and peering policy may be seen as a crude indicator of ISP
size (with larger ISPs being more restrictive).

Results: Table shows the results of the path diversity
calculation between 10,000 randomly selected pairs of ASes,
with the selection weighted by the number of announced
addresses. We observe that especially Open links increase
the mean path diversity by 10.9%. This is not surprising given
that: (i) these are the most numerous, and (ii) the most likely
to be missed by BGP route collectors—relationships between
the largest ISPs are most likely to be faithfully represented in
the AS relationship dataset. Restrictive and Selective links—
between IXP members with the same respective policy—have
smaller impact on path diversity.

D. Effects of depeering on path diversity

Setup: We have already noted the effect of a depeering
event, where one ISP chooses to cease sharing its routes with
one of its peers. We would like to investigate the effect of such
an event on path diversity. We synthetically create a depeering
event by removing the peering between two tier ones, in this

Path diversity Mean path diversity

Links added I o Scenario Before After Difference

None 2.836  2.620 Valley-free 1.100 1.023 7.03 %

Restrictive  2.851 2.633 + Open links 1.101 1.023 7.02 %

Selective 3.037 2953 Multiple peering links 1.267 1.267 0.02 %

Open 3.146 3.136 + Open links 1.499 1.499 0.04 %
(a) Policy (b) Depeering

TABLE II: The effect on path diversity of (i) augmenting the
relationship graph with IXP membership data (values are not
cumulative), by policy and (ii) depeering two tier one ISPs,
by constraint type and whether or not the graph is augmented
with IXP membership data. The values are rounded off.

case Deutsche Telekom (AS3320) and Level3 (AS1, AS3356
and AS3549). We then evaluate the path diversity between the
exclusive customer cones of the ISPs, i.e., the sets of customers
which have only the one but not the other as (transit) upstream
providers, and vice versa. We examine these customer cones
down to a depth of three. As before, we also examine the effect
of adding peering links. Now we also consider the possibility
of a model more liberal than valley-free, allowing to traverse
multiple peering links, as examined also by Hu et al. [24] and
Kotronis et al. [25]. We evaluate the effect of allowing this
while still maintaining the overall valley-free model (i.e., not
permitting a provider to transit via its customers).

Results: Table shows the results of the depeering for
the different scenarios involving 10,000 pairs of ASes, selected
pairwise from each of the tier one AS’s exclusive customer
cones. For the valley-free model, we observe a negligible
increase in path diversity by adding the extra links from
PeeringDB, both before and after the depeering. The depeering
event causes an approximately 7 % decrease in path diversity.
Conversely, if we allow multiple peering links, the addition
of the extra peering links boosts path diversity by over 18 %.
Here we do not observe a significant drop in path diversity due
to the depeering. Allowing multiple peering links can therefore
potentially increase resilience in the face of a depeering.

VI. RELATED WORK

Tensor Products: Soulé et al. 7] use a similar process
to the one presented in this paper in the context of network
management. Their goal is to enforce bandwidth allocation
subject to path constraints represented by regular expressions
and consequently by NFAs. They use tensor products in a
different context than our approach, since we focus on path
diversity and the implications arising in its preservation across
transformations. In particular, we further propose the addition
of aggregator nodes, acting as inhibitors to min-cut inflation.

Network Resilience: Previous research on resilient net-
works [26], [27] considers the network as a set of nodes and
links, annotated with geographical properties. Consequently,
researchers can calculate min-cuts, path distances or shared
fate link groups that are affected in a correlated fashion during
a disaster. On the other hand, networks are run as policy-
compliant administrative domains [3[]; the choice of paths that



traffic can traverse is constrained. The view of the network
as a geographical map cannot capture this behavior. Thus, we
argue that network resilience should be also estimated under a
policy-compliance framework. Our approach enables exactly
that, allowing to run vanilla min-cut calculation algorithms like
Ford-Fulkerson on the transformed graph, with tight min-cut
approximations under certain conditions.

Min-cuts with Policies: Sobrinho et al. [28] describe a
model for understanding the connectivity provided by route-
vector protocols in the face of routing policies. Erlebach
et al. [29], [30] study valid s-t-paths and s-t-cuts in the valley-
free model and prove the NP-hardness of the vertex-disjoint
min-cut problem. On the other hand, they prove that the edge-
disjoint version can be solved in polynomial time for valley-free
policies; we have verified this statement in our framework. Both
works focus on specific aspects of the general problem (route-
vector protocols and valley-free policies respectively), while
we are delving into a more general methodology for min-cut
estimations. Sobrinho et al. [28]] examine the dynamics of a
routing protocol with their work, while we concentrate on
a general method to understand the effect of stable network
policies on path diversity, ignoring for example the dynamics
of routing convergence. Teixeira et al. [31] study vertex- and
edge-disjoint paths in undirected Internet topology models, but
without taking routing policies into account.

VII. CONCLUSION

Path diversity and bisection bandwidth are useful metrics to
describe how resilient or rich a network is. Network policies,
imposed by network administrators and applied via routing
protocols or network configuration, can constrain the natural
path diversity of a network graph. With this work, we described
and proved the correctness of a generic methodology for min-
cut computations in arbitrary graphs, assuming policies that
can be formulated using regular expressions. Our approach can
be applied in a variety of scenarios, some of which are briefly
showcased in this paper. These include the investigation of
Internet topology and alternative policy models in the Internet,
effectively studying Internet-wide resilience and the effects
of inter-AS connectivity on path diversity. We see further
potential for our approach in the analysis of MPTCP flow
path availability in data center networks, and path selection
optimization in multipath flow routing applications. Achieving
tighter bounds for the min-cut is another topic of interest.
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