
Content Caching and Delivery over Heterogeneous
Wireless Networks

Jad Hachem
University of California, Los Angeles

Email: jadhachem@ucla.edu

Nikhil Karamchandani
Indian Institute of Technology, Bombay

Email: nikhilk@ee.iitb.ac.in

Suhas Diggavi
University of California, Los Angeles

Email: suhas@ee.ucla.edu

Abstract

Emerging heterogeneous wireless architectures consist of a dense deployment of local-coverage wireless access points (APs)
with high data rates, along with sparsely-distributed, large-coverage macro-cell base stations (BS). We design a coded caching-
and-delivery scheme for such architectures that equips APs with storage, enabling content pre-fetching prior to knowing user
demands. Users requesting content are served by connecting to local APs with cached content, as well as by listening to a BS
broadcast transmission. For any given content popularity profile, the goal is to design the caching-and-delivery scheme so as to
optimally trade off the transmission cost at the BS against the storage cost at the APs and the user cost of connecting to multiple
APs. We design a coded caching scheme for non-uniform content popularity that dynamically allocates user access to APs based
on requested content. We demonstrate the approximate optimality of our scheme with respect to information-theoretic bounds. We
numerically evaluate it on a YouTube dataset and quantify the trade-off between transmission rate, storage, and access cost. Our
numerical results also suggest the intriguing possibility that, to gain most of the benefits of coded caching, it suffices to divide
the content into a small number of popularity classes.

I. INTRODUCTION

Broadband data consumption has witnessed a tremendous growth over the past few years, due in large part to multimedia
applications such as Video-on-Demand. This increased demand has been managed in the wired internet via Content Distribution
Networks (CDNs), by mirroring data in various locations and in effect pushing the content closer to the end users. Wireless
data consumption, driven by the increased demand for high-definition content on mobile devices, has also grown at a significant
rate [1] and is testing the limits of our underlying wireless communication systems [2]. However, simply borrowing the CDN
solution from wired networks and applying it to wireless systems is insufficient to solve the wireless content delivery problem.
In this work, we propose a content caching-and-delivery scheme, based on a new multi-level storage, access, and distribution
design, that is matched to the architecture of emerging wireless systems. We analytically demonstrate the efficiency of our
proposed scheme and numerically evaluate its performance on YouTube data.

There are various reasons for why the traditional CDN architecture is not sufficient to solve the wireless content distribution
problem. In wired networks, CDNs carefully evaluate what content to store based on user demand, and then replicate popular
content at several locations. This helps reduce the load at the host server, by serving many user requests locally via the content
cached in the local storage. This solution works best when neither the local storage nor the data rates are a bottleneck [3]. In
typical wireless cellular systems, neither of these conditions are true: the wireless last-hop link is a bottleneck and the storage
available at the cellular base-stations is limited.

While there have been tremendous improvements in the cellular data rates over successive generations of wireless systems, the
gains are not sufficient to compensate for the exploding rise in data demand. This has led to the emergence of a heterogeneous
wireless network (HetNet) architecture, as a front-runner for 5G systems [4], [5], [2]. This architecture advocates a dense
deployment of wireless access points (APs), with low coverage radius and high data rates, combined with a sparse deployment
of macro-cellular base stations (BSs), with larger coverage but limited communication rates. For example, the APs could be
WiFi access points or small-cells, which help offload some of the macro-cellular data traffic. However, the APs themselves
do not provide a reliable solution since they are connected to the rest of the network via best-effort backhaul, which is a
bottleneck [5]. It has been noted that even a joint management of APs and BSs is not sufficient to deal with the projected
growth in users and demand for data over wireless networks [5], [2], [1].

Given the above discussion, we note that both the traditional CDN approach as well as enhanced wireless system design are
solving only one aspect of the wireless content delivery problem. CDNs optimize content placement, without due consideration
to characteristics of wireless communications. On the other hand, wireless system design only focuses on increasing delivery
rates, agnostic to content. In this paper, we propose a joint design of content placement, access, and delivery for the
heterogeneous wireless network architecture to address the wireless content delivery problem. The key components of our
design are: (1) Multi-level popularity: Divide the content into different levels of popularity based on statistical knowledge of
user requests; (2) Multi-level caching: Equip APs with storage capabilities and use them to locally cache content based on

This work was supported by the NSF grant #1423271 and also through a gift from Qualcomm Inc.

ar
X

iv
:1

40
4.

65
60

v2
 [

cs
.I

T
]

 1
2

M
ar

 2
01

5

popularity; (3) Multi-level access: Dynamically allocate user access to APs, based on popularity of requested content; and (4)
Broadcast delivery: Use the inherent physical-layer broadcast property of wireless communications to serve multiple (distinct)
requests simultaneously, by enabling coded-multicasting opportunities.1 For any given content popularity profile, this design
trades off the transmission cost at the BS with the storage cost at the APs, and the access cost at the users resulting from
connecting to multiple APs.2

The main theoretical contribution of this work aims at solving this trade-off. It consists of the design and analysis of a
multi-level caching-and-delivery scheme for any given content popularity profile, available AP storage, and user access to
the APs. The basic idea of the scheme is to divide the available storage at each AP among the various popularity levels
(memory-sharing), and then cache content so as to create the maximum number of coded-multicasting opportunities during
delivery. By comparing the achievable BS transmission rate of our scheme to information-theoretic lower bounds,3 we are
able to demonstrate its order-optimality for any content popularity profile, available storage, and user access structure. One of
the main technical innovations of the paper is the introduction of new non-cut-set-based information-theoretic lower bounds,
which are critical to the proof of the order-optimality of our proposed scheme for the multi-level, multi-access system.

A striking aspect of the proposed near-optimal scheme is that, in some regimes, we choose to store some content of lower
popularity even though more popular content has not been completely cached. Another unique aspect is that we allow users
to have different access structures, based on the popularity level of the content that they request. Our results demonstrate the
significant benefits in performance that can be derived by enabling such multi-level access.

We also do an evaluation of our proposed scheme on a YouTube dataset that is based on user requests [9]. This dataset
provides the “continuous” content popularity profile seen in Fig. 3. We begin by clustering the content into different levels, using
efficient heuristic methods whose performance is very close to that of expensive brute-force techniques, and then evaluate the
performance of our proposed multi-level caching-and-delivery scheme. The numerical results suggest the intriguing possibility
that, to gain most of the benefits of coded caching-and-delivery, it suffices to divide the content into at most three or four levels
of popularity. Finally, these numerical evaluations also provide insight into how the user access structure impacts performance.
For example, we find that, in certain regimes, it is better to require users requesting more popular content to access a single
AP and those requesting less popular content to connect to more APs.

The paper is organized as follows. In Section II, we formally state the problem and establish the notation used throughout the
paper. Section III gives an overview of our main results and also discusses their implications. We give some preliminary results
from the literature in Section IV, which we will use in Section V to describe the multi-level caching-and-delivery scheme. We
establish the approximate optimality of the scheme in Section VI. Section VII discusses extensions of our results beyond the
analytical model described before to more realistic scenarios, and numerically evaluates the scheme in these scenarios on real
data traces. Finally, we place our work in context of the literature in Section VIII. All of the detailed proofs are relegated to
the appendices.

II. PROBLEM SETUP AND NOTATION

Consider the caching system illustrated in Fig. 1. The server hosts N files of size F bits each. Each file belongs to one of
L popularity levels, labeled 1 through L, such that the total number of files in level i ∈ {1, . . . , L} is Ni files. The network
consists of K access points, equipped with caches that can store up to M ≥ 0 files, or, equivalently, MF bits. There are U
users per cache in the network, for a total of KU users in the system. Of the U users per cache, exactly Ui users request
files from popularity level i, and these users are required to access content from the caches of the di closest access points. We
refer to di as the access degree of the level-i users. We will assume that there is a small constant D such that di ≤ D for all
popularity levels i. For symmetry, we will also assume that the access points are arranged in a cyclic fashion, such that cache
1 and cache K are next to each other.

In our setup, the popularity of a file W from level i is proportional to the average fraction of users requesting W , which is
Ui/Ni. Without loss of generality, we assume:

U1

N1
≥ U2

N2
≥ · · · ≥ UL

NL
. (1)

Thus, files from level 1 are the most popular, while level L contains the least popular files.
The system is required to operate in two phases. In the first phase, called the placement phase, information about the files is

stored in the caches of the K access points. This phase occurs prior to any knowledge about user requests. The second phase,
called the delivery phase, takes place after the KU users reveal the files that they have requested. The base station transmits

1The idea of coded caching was first proposed in [6], [7] for the case of uniform file popularity; see Section VIII for a comprehensive overview of the
related literature. In non-uniform settings, coded caching has been shown to perform better than traditional methods such as LFU [8].

2The AP deployment envisioned in next-generation wireless networks (see for example [2]) is dense enough such that mobile devices would often have
multiple APs in their range.

3The information-theoretic lower bounds do not assume memory-sharing placement, or any other placement or delivery scheme.

2

AP1 AP2 AP3 AP4

BS
1 N1

N2

· · ·

· · ·1

Fig. 1. Setup with L = 2 levels. There are K = 4 caches/access points. Level 1 has N1 files and U1 = 2 users per cache (in white), and these users are
required to access only d1 = 1 cache. Level 2 has N2 files and U2 = 1 user per cache (in gray), and these users are required to access d2 = 2 consecutive
caches. Notice that the last user accesses caches 4 and 1, for symmetry.

TABLE I
NOTATION

N Total # of files

L # of file classes

Ni # of files in the ith popularity level

K # of APs

M Memory size of cache at each AP

U # of users requesting files from an AP

Ui # of users per AP requesting ith level files

di # of AP caches accessed by a user requesting an ith level file

D Maximum di over all i

R Rate of BS transmission

a single broadcast message of size at most RF bits, which all users can hear. The users must then use the broadcast message,
together with the contents of the caches that they can access, to recover the files that they have requested.

Henceforth, we will refer to R as the BS transmission rate and M as the memory size of each cache. A rate-memory pair
(R,M) is said to be achievable if there exists a placement strategy in caches of capacity MF bits such that, for any possible
user request profile, a broadcast message of size RF bits can be delivered to satisfy all the requests. For any memory size
M ≥ 0, the optimal BS transmission rate is:

R∗(M) = inf {R ≥ 0 : (R,M) is achievable} , (2)

where the minimization is over all possible caching and delivery schemes. Given the problem parameters {Ni, Ui, di}i and K,
our goal is to characterize this optimal rate R∗(M) for each value of memory size M .

For convenience, we summarize the notation used in this paper in Table I.

A. Regularity conditions

We now present some regularity conditions that naturally arise in practice and that simplify the theoretical analysis. First,
we assume that, for each popularity level, there are more files than users requesting those files at any given time:4

∀i ∈ {1, . . . , L}, Ni ≥ KUi. (3)

Second, we will assume that no two levels are very close in popularity. Indeed, if two levels had similar popularities, then
they can be combined into a single level. We express this by:

∀ i < j,
Ui/Ni
Uj/Nj

≥ q, (4)

for some constant q > 1, since Ui/Ni represents the popularity of level i. Recall that, from (1), i < j implies that level i is
more popular than level j.

4For example, this is easily seen to be true in video applications such as Netflix, where each “file” corresponds to a short segment of video of length
ranging from a few seconds to a minute. If there are a 1000 popular files, each of length 60 minutes, this would correspond to more than 60 000 files.

3

III. MAIN THEORETICAL RESULTS

The theoretical results presented in this paper are two-fold. We first propose a caching-and-delivery scheme for our setup with
multi-level popularity and access structures. For future reference, we call this scheme Multi-Level Popularity-Aware Memory
Allocation (ML-PAMA). The scheme is a non-trivial generalization of the one proposed for single-access, multi-level caching
in [10] to multi-access systems. The main technical difficulty here comes from the correlations introduced in the cached content
available to different users in the system, due to partial overlaps between the accessed APs. Our proposed scheme manages to
remove these correlations by carefully dividing the users and caches into different groups so that there are no overlaps within
a group, and then serving the different groups separately. We validate this design by proving that our proposed scheme is in
fact order-optimal, i.e., for any given problem parameters K and {Ni, Ui, di}, and any memory size M , the BS transmission
rate R(M) achieved by our scheme is within a constant gap of the information-theoretically optimal rate R∗(M) defined
in (2). The key technical contribution here is the introduction of new non-cut-set information-theoretic lower bounds for the
multi-level, multi-access system, which are partly based on the sliding-window subset entropy inequality [11], and their use in
the proof of the order-optimality of our proposed scheme ML-PAMA.

A. Caching-and-delivery scheme (ML-PAMA)

In [7], an order-optimal scheme was given for a special case of this problem in which there is only a single popularity level.
This scheme randomly and independently places content in the caches, and then sends coded broadcast messages that can
benefit subsets of users at once, by taking advantage of coding opportunities. In our multi-level setup, we propose to separate
the levels, both in the AP caches and in the BS transmission, thus resulting in L single-level subsystems. Since every level
is represented by users at every cache, we have enough coding opportunities within each level, suggesting that coding across
levels is not required. The separation allows us to allocate different parts (of varying sizes) of the memory to different levels.
Each part i, of size αiM with αi ∈ [0, 1] and

∑
i αi = 1, is allocated to level i. This allocated portion αiM is exclusively

used for storing content related to files from level i. When, later in the delivery phase, the users request various files from the
server, the base station sends L separate broadcasts, one to serve the requests from each popularity level. Then, the total BS
transmission rate is given by:

R (M,K, {Ni, Ui, di}i) =

L∑
i=1

RSL (αiM,K,Ni, Ui, di) , (5)

where RSL denotes the achievable rate of a single-level system. Thus Ri(M) = RSL(αiM,K,Ni, Ui, di) is the individual rate
of the message serving level i. For ease of notation, we will henceforth denote the total transmission rate as R(M).

For each of the L levels, we generalize the coded caching-and-delivery scheme proposed in [7] to the case where users
can access multiple caches. As mentioned before, the main challenge here was dealing with the correlations introduced by the
partial overlap between the caches accessed by different users; we use a coloring-based approach to take these into account.
Next, we identify the appropriate choice for {αi}, which we call the memory-sharing parameters, so that the total achievable
rate R(M) in (5) is minimized. This gives us our first result, summarized in the following theorem.

Theorem 1. For the multi-level caching setup with L levels, K caches, and, for each level i, Ui users per cache with access
degree di and Ni ≥ KUi files, the following rate is achievable for any M ≥ 0:

R(M) =
∑
h∈H

KUh +

(∑
i∈I
√
NiUi

)2
M −

∑
j∈J Nj/dj

−
∑
i∈I

diUi,

where (H, I, J) is an M -feasible partition of the set of levels.5

Details of the scheme are provided in Section V, and the full proof of the theorem is given in Appendix C.

B. Order-optimality of the scheme

The memory-sharing scheme that we discussed above is one of many possible strategies to solve the caching-and-delivery
problem in our setup. Our next result shows that it performs approximately as well as the information-theoretic optimum, for
all values of the problem parameters.

Theorem 2. The rate R(M) achieved by ML-PAMA is within a multiplicative factor of the information-theoretically optimal
rate R∗(M). This factor is upper-bounded by 37(D + 1)3L3.

Notice that the gap depends on both the maximum access degree D and the number of levels L, but is independent of all
other problem parameters. One would expect D to not be very large, due to the delay associated with connecting to multiple

5An M -feasible partition of the set of levels is a partition for which the cache memory M satisfies a certain set of inequalities. See Definition 1 in
Section V-B for more details.

4

APs and retrieving data from their caches. As for L, our numerical evaluations in Section VII suggest that, in practice, dividing
the files into a small number of levels is enough to derive most of the caching gains. Therefore, L will likely also be a small
constant, thus making the whole multiplicative factor also a constant.

Furthermore, the multiplicative gap in Theorem 2 is very generous, and was chosen so for the sake of simplifying the analysis.
In fact, we expect the dependence of the gap on D and L to be much weaker than the O(D3L3) dependence indicated above;
we believe it can be reduced to O(D).6 As we will see in Section VII-E, numerical results strongly support our intuition that
the true gap is in fact much smaller than what the theoretical results indicate.

IV. PRELIMINARIES

Our solution for the multi-level popularity and user access structures is based on the coded caching-and-delivery scheme
developed for the single-level, single-user, single-access setup in [7]. We illustrate here the main ideas of the scheme, as well
as its associated rate, via an example.

Example 1 (Coded caching example [7]). Consider K = 2 caches, L = 1 level, N1 = N files, and U1 = 1 user per cache
with access to d1 = 1 cache. The placement phase consists of storing MF/N independently and randomly sampled bits of
every file in each cache. Each file Wn can then be seen as being composed of four parts: Wn =

(
Wn

0 ,W
n
1 ,W

n
2 ,W

n
1,2

)
, such

that Wn
S denotes the bits of file Wn which are exclusively stored in the caches in the set S ⊆ {1, 2}.7 For example, Wn

1

represents those bits that are stored in cache 1 but not in cache 2. Since the bits are independently and randomly sampled,
the size of each file part is:

|Wn
S | ≈ (M/N)

|S|
(1−M/N)

2−|S|
F. (6)

In the delivery phase, suppose users 1 and 2 (connected to caches 1 and 2, resp.) request files W 1 and W 2, resp. Then,
the server will send the following broadcast:

(
W 1

0 , W
2
0 , W

1
2 ⊕W 2

1

)
, where “⊕” denotes the bit-wise XOR operation. Using

(6), the rate of this transmission is:

R = 2 (1−M/N)
2

+ (M/N) (1−M/N)

= (N/M − 1) ·
(

1− (1−M/N)
2
)
. (7)

User 1 now has W 1
1 and W 1

1,2 from the contents of cache 1, and also W 1
0 from the broadcast. Furthermore, they can also

recover W 1
2 by combining

(
W 1

2 ⊕W 2
1

)
transmitted by the server with W 2

1 stored in cache 1. Thus, by accessing the contents
of cache 1 and listening to the BS transmission, user 1 can recover the file W 1 = (W 1

0 ,W
1
1 ,W

1
2 ,W

1
1,2). Similarly, user 2 can

recover file W 2.

The scheme can be generalized to an arbitrary K, and the associated rate is given by the following lemma.

Lemma 1 (Single-level, single-user, and single-access achievable rate [7]). For L = 1 level, K caches, a single user connecting
to each cache (and to no other), N ≥ K files, and memory size M , the following BS transmission rate is achievable:[

(N/M − 1) ·
(

1− (1−M/N)
K
)]+

,

where [x]+ = max{x, 0}.

For example, when M = N and M = 0, the BS transmission rates are 0 and K respectively.

V. CACHING-AND-DELIVERY STRATEGY

As discussed in Section III-A, our proposed caching-and-delivery scheme divides the multi-level system with L popularity
levels into L independent single-level subsystems. This section elaborates first on the design of the scheme for a single-level
subsystem with a given user access structure, and then on the optimal memory sharing between the L levels.

A. Single-level with multi-user and multi-access

Consider a single-level system consisting of N equally popular files, K caches, and U users per cache, each connecting to
the d closest caches. Below, we describe an order-optimal scheme for such a system.

Coding opportunities are maximized when BS transmissions target users with independent cache contents. Thus, we begin
by dividing the KU users in the system into dU groups, such that no two users in the same group access the same cache (see
Fig. 2). Next, we color the K caches using d colors such that each user has access to exactly one cache of each color. Finally,
we divide every file into d sub-files of equal size, and we color these sub-files using the same d colors used for the caches.
Thus, corresponding to each color, we have K/d caches and N sub-files of size F/d bits each.

6We were recently able to completely remove the dependence on L in the case D = 1. We believe this improvement extends to D > 1, and all these
results would be reported in this document.

7For ease of notation, we write Wn
1,2 instead of Wn

{1,2}, etc.

5

1 2

3 4

1 2

3 4

1 2

3 4

Fig. 2. A single-level setup with K = 6, U = 2, and d = 2. The users are divided into dU = 4 groups (numbered 1 through 4) such that no two users in
the same group share any caches. The caches are colored into d = 2 colors, such that every user has access to exactly one cache of every color.

During the placement phase, for each color c we use the random sampling scheme described in Section IV to cache all N
c-colored sub-files across the K/d c-colored caches. During the delivery phase, we treat each of the dU groups of users and
each of the d colors separately. For every (user group, color) pair, we have a system with K/d users, each with single-access
to a cache of memory size MF bits, and N sub-files each of size F/d bits. Thus, using the rate expression from Lemma 1,
the broadcast message size for a particular pair of group and color is given by:[

(N/dM − 1) ·
(

1− (1− dM/N)
K/d
)]+
· F/d bits.

By repeating the argument for each of the dU user groups and d colors, we get the following result regarding the achievable
total BS transmission rate.

Lemma 2. For L = 1 level, K caches, U users per cache with an access degree of d, N ≥ KU files, and memory size
M ∈ [0, N/d], the following BS transmission rate RSL(M,K,N,U, d) is achievable:[

dU · (N/dM − 1) ·
(

1− (1− dM/N)
K/d
)]+

.

B. Memory-sharing

The caching-and-delivery scheme described above applies to a single-level system with a given user access structure. As
discussed in Section III-A, for a multi-level system, we divide the available cache memory among the various levels and then
utilize the above scheme independently for each level. What remains is to identify the appropriate choice of the memory-sharing
parameters {αi}i so that the total rate is minimized.

Clearly, it is desirable to allocate a larger memory to the more popular levels as compared to the less popular ones. A natural
approach would be to use the available memory to completely store the files in the most popular levels, before beginning to
cache those in the less popular levels. Somewhat surprisingly, this approach turns out to be sub-optimal in certain regimes, as
illustrated in the following example.

Example 2. Let there be K = 8 caches, and L = 2 popularity levels such that N1 = N2 = 100, (U1, U2) = (9, 1), and
d1 = d2 = 1. Thus, level 1 is the more popular level, with U1/N1 > U2/N2. Let the K caches have a memory of M = 100
files. If we give the whole memory to the more popular level, i.e., (α1, α2) = (1, 0), then, by (5) and Lemma 2, we can achieve
a BS transmission rate of R = 8. However, sharing the memory between the levels using (α1, α2) = (3

2 ,
1
4) yields the smaller

rate R = 6. Clearly, devoting the entire memory to popular files is sub-optimal for this example setup.

The above example illustrates that a non-trivial choice of memory-sharing parameters {αi}i might be needed to achieve the
minimum transmission rate for our proposed scheme. Intuitively, this is due to the diminishing returns property exhibited by
the rate-memory tradeoff for each individual level. With that in mind, we now describe our choice for these parameters. We
begin by partitioning the set of levels into three subsets, denoted by H , I , and J , as follows.

Definition 1 (M -feasible partition). For any cache memory M , we define an M -feasible partition (H, I, J) of the set of levels
{1, . . . , L} as one that satisfies:

∀h ∈ H, M̃ < (1/K)
√
Nh/Uh + yh;

∀i ∈ I, (1/K)
√
Ni/Ui ≤ M̃ ≤ (1/di)

√
Ni/Ui;

∀j ∈ J, (1/dj)
√
Nj/Uj < M̃,

where M̃ =
M−

∑
j∈J Nj/dj∑

i∈I
√
NiUi

and yh = Nh/K∑
i∈I
√
NiUi

.

We now describe how to assign αi’s for the subsets H , I , and J . The set H will consist of levels that get zero cache
memory, i.e., αhM = 0 for all h ∈ H . In contrast, the set J will consist of levels that get enough cache memory so that all
user requests for these levels will be satisfied without any broadcast. In other words, for all j ∈ J , we set αjM = Nj/dj so

6

that the individual rate Rj = 0 for level j, as determined by Lemma 2. Finally, the set I will consist of the remaining levels,
which will share any remaining cache memory

(
M −

∑
j∈J Nj/dj

)
according to their relative popularity. We formalize this

memory allocation in the following definition.

Definition 2 (Popularity-aware memory allocation (PAMA)). For an M -feasible partition (H, I, J) of the set of levels
{1, . . . , L}, the PAMA (α1, . . . , αL) is:

∀h ∈ H, αhM = 0;

∀i ∈ I, αiM =

√
NiUi∑

i′∈I
√
Ni′Ui′

M −∑
j∈J

Nj
dj

 ;

∀j ∈ J, αjM =
Nj
dj
.

It can be easily shown that αi ∈ [0, 1] for all i. and
∑L
i=1 αi = 1. Note that for a level i ∈ I , the amount of (remaining)

memory given per file is proportional to
√
Ui/Ni, which is a measure of the popularity of i.

For any memory size M , we choose the memory-sharing parameters {αi}i to be any PAMA corresponding to M . With
these parameters, the total achievable BS transmission rate for the scheme can now be evaluated using Lemma 2 for each
level, and immediately gives us the result in Theorem 1.

Note that, given all the problem parameters and a memory size M , it is possible to numerically compute the optimal
values of αi (using any convex optimization solver). However, our analysis above provides a structured and exact solution,
the advantages of which are two-fold. First, this enables us to design an efficient algorithm8 that finds a PAMA for all values
of M , the details of which can be found in Appendix C. Secondly, the structure of the solution, particularly with regards to
the partitioning of the set of levels into (H, I, J), is what enables the analysis of the gap between the achievable rate and the
information-theoretic lower bounds, and ultimately allows us to demonstrate the order-optimality of ML-PAMA.

C. Extensions

The scheme described so far is designed for the very symmetric and regular setup in Section II. While the design is based
on several assumptions, we here explore extensions for when the following two assumptions no longer hold: (1) Equal file
sizes; and (2) Linear arrangement of the APs.

Firstly, in practice, files at a certain host server do not have the exact same size. Sizes of video files, for instance, depend
on the length and quality of the video. For such a scenario, we propose the following modification to the scheme. Recall from
Example 1 that, when all files have equal size F , each cache samples a random subset of size MF

N bits from each file, totaling
MF bits. In effect, we are taking a random subset of size MF bits out of the total NF bits available at the server. If files
had different sizes F1, . . . , FN , and F was their average, then we can achieve a similar result by caching a random subset of
size MF bits, out of the total

∑N
i=1 Fi bits.

Secondly, while the linear arrangement of APs was convenient for the analysis of the lower bounds, a two-dimensional
arrangement fits a realistic setting more closely. A natural extension of the model would be to place APs on a 2D lattice. We
can then color the caches using d colors such that the discrete Voronoi region of any point in the plane will contain at least
one cache of each color. From this point on, the scheme is exactly the same.

VI. INFORMATION-THEORETIC IMPOSSIBILITY RESULTS

Theorem 2 establishes the order-optimality of ML-PAMA, for any multi-level system, by comparing its achievable BS
transmission rate with the information-theoretic optimum.

To prove this result, we derive lower bounds on the rate of any feasible scheme, as a function of the problem parameters K,
L, {Ni, Ui, di} and memory size M . In particular, we provide two types of lower bounds. The first are cut-set (or cooperative)
bounds [12], which are based on the idea that, if one considers a subset of users and artificially allows them to cooperate with
each other by sharing the content of the caches they access, then the transmission rate required will be a lower bound on the
rate for the original problem setting (with no cooperation). The resulting bound is given as follows.

Lemma 3 (Cut-set bounds). For any level i ∈ {1, . . . , L} and any v ∈ {1, . . . ,KUi}, the optimal rate is bounded by:

R∗(M) ≥ v − dv/Uie+ (di − 1)

bNi/vc
M.

Note that the cut-set bound only considers one popularity level at a time and assumes that only user requests of this level
need to be served. While such cut-set bounds are enough to prove order-optimality for a single-level system [6], [7], they do

8The algorithm runs in Θ(L2) time.

7

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
0

10
1

10
2

10
3

10
4

10
5

10
6

p
o
p
u
l
a
r
i
t
i
e
s

files

empirical popularities
Zipf approximation

Fig. 3. Popularity of 493 722 YouTube videos. The distribution can be approximated by a Zipf distribution with parameter 0.6.

not suffice for a multi-level system. Hence one needs to derive more general lower bounds that take into account the constraint
that both the available resources need to serve requests for files from multiple levels. The fact that the different levels have
different access structures associated with them makes it even more challenging to derive such bounds for our setup. Below,
we present one such class of non-cut set lower bounds.

Lemma 4 (Non-cut set bounds). For any A ⊆ {1, . . . , L}, any l ∈ {1, . . . , L} with l /∈ A, any s ∈ {dl, . . . ,K}, and any
b ∈ N+, we have:

R∗(M) ≥ 1

D + 1
min

{
(s− dl + 1)Ul ,

Nl
sb

}
+
∑
j∈A

min

{
Uj ,

Nj
bdj

}
− M

b
.

Both lemmas are proved in Appendix B.
Next, we analyze the gap between these lower bounds and the achievable rate of ML-PAMA. Recall that the scheme divides

the popularity levels into a partition (H, I, J). We go over all feasible (H, I, J) partitions that can arise for different multi-level
systems, and for each of them carefully choose the parameters in the above lemmas to get the best possible lower bound.
We then analyze the gap between this lower bound and the achievable rate associated with the (H, I, J) partition under
consideration. We are able to show that, for any multi-level system, the achievable rate and the information-theoretic lower
bound differ by at most a constant multiplicative gap. This gives us the order-optimality result in Theorem 2. Details of the
gap analysis can be found in Appendix A.

VII. DISCUSSION AND NUMERICAL EVALUATIONS

In the previous sections, we presented theoretical results for any given set of popularity levels and associated user access
structures. However, in practice, what is available is a “continuous” popularity distribution over the entire set of files, and
it is up to the designer to choose: (a) the number of popularity levels; (b) which files to assign to which level; and (c)
the corresponding user access degree for each popularity level. For each such choice, our theoretical results characterize the
minimum broadcast transmission rate, and we study, in this section, the impact of these choices on the transmission rate.
Furthermore, while our theoretical model assumed that, for each popularity level, the number of users per AP is exactly
the same, we relax this assumption here by allowing each user to randomly connect to one of the K APs and request a file
stochastically, according to the underlying popularity distribution. Finally, we will also compare the performance of our scheme
with that of the traditional LFU approach, as well as the information-theoretic lower bounds presented before.

We use a YouTube dataset [9] for our evaluations, which provides the number of requests for around 500 000 videos. Fig. 3
shows the popularity distribution of the files, which resembles a Zipf distribution similar to those commonly observed for
multimedia content [13].

A. Discretizing a continuous popularity distribution

Our first step is to divide the files in the YouTube dataset into a certain number of levels, based on the popularity profile in
Fig. 3. We consider small, moderate, and large values of M/N (0.03, 0.2, and 0.7) and set the user access degree di = 1 for

8

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7

r
a
t
e

R
,

n
o
r
m
a
l
i
z
e
d

b
y

r
a
t
e

a
t

L
=
1

number of levels L

YouTube dataset

M/N = 0.03
M/N = 0.2
M/N = 0.7

Fig. 4. Rate achieved by ML-PAMA vs. number of levels, for different values of cache memory. For each L, we choose the L levels that minimize the
achievable rate (using brute-force search). For ease of comparison, the rate values have been normalized by the rate at L = 1.

0

100

200

300

400

500

0 200 400 600 800 1000

b
r
o
a
d
c
a
s
t

r
a
t
e
s

cache memory

brute-force search for levels
heuristic search for levels

Fig. 5. Performance of the heuristic algorithm compared with that of the brute-force (optimal) search over two levels, when N = 10 000 files follow a
Zipf(0.6). The maximum multiplicative loss does not exceed 1.92.

every level i, so as to study the impact of the number of levels on the broadcast rate in isolation. For increasing values of L,
we find the division of the files into L levels that minimizes the rate achieved by the ML-PAMA scheme using a brute-force
search. We plot the minimum achievable rate versus L in Fig. 4. As is easily apparent, while there is a significant gain in
performance between treating all files as one level and dividing them into two levels, the gain decreases with diminishing
returns as L increases. This shows the importance of dividing files into multiple levels, but also suggests that 3–4 levels are
sufficient to derive most of the benefits.

While the brute-force search described above yields the optimal partition for any given number of levels L, it is computa-
tionally expensive and has a running time of at least Ω(NL−1). We design a heuristic algorithm for dividing the content into
two levels, based on analyzing the broadcast rate for any given partition when the underlying popularity profile is a true Zipf
distribution. We skip it here for lack of space and provide it in Algorithm 1. The heuristic algorithm runs in constant time and,
as shown in Fig. 5, performs almost as well as the brute-force search. As a result, we use Algorithm 1 in all our experiments
to discretize the popularities.

B. Impact of multi-access on the achievable rate

To study the effect of multi-access in isolation, we will fix the partition we use to divide the files into different levels and
then look at different multi-access structures. Consider L = 2 levels, with N1 = 0.2N , and N2 = 0.8N files. We plot in Fig. 6
the BS rate of our scheme as a function of the normalized memory M/N , for four different access structures (d1, d2): (1, 1),
(1, 2), (2, 1), and (2, 2).

9

Algorithm 1 Two-level splitting algorithm on Zipf distributions
1: procedure ZIPFSPLIT(s,N,K,M)
2: if s < 1 then
3: n← 1−s

2−s
·min {MK,N}

4: else
5: m1 ← min

{
N/K,K

1
s−1

}
6: m2 ← max

{
N

1
s ,K

1
s−1

}
7: if M ≤ m1 then
8: n← (MK)1/s

9: else if m1 < M < m2 then
10: n← N1/s

11: else if M ≥ m2 then
12: n← 0.1M
13: end if
14: end if
15: (N1, N2)← (n,N − n)
16: return (N1, N2)
17: end procedure

0

5

10

15

20

25

30

35

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

b
r
o
a
d
c
a
s
t

r
a
t
e

R

normalized cache memory M/N

YouTube dataset

d=(1,1)
d=(1,2)
d=(2,1)
d=(2,2)

Fig. 6. Achievable rate vs. cache memory in a two-level setup, for different access structures.

As one would expect, allowing for multi-access greatly improves the transmission rate. For example, the rate for the multi-
access system with (d1 = 2, d2 = 2) is smaller than the rate for the single-access system with (d1 = 1, d2 = 1). The cases
(d1 = 1, d2 = 2) and (d1 = 2, d2 = 1) provide a more interesting comparison. For small memory size M , the former gives a
lower rate since the cache memory mainly contains files from level 1, and so giving higher access to level 1 is more beneficial
in reducing the rate. On the other hand, as M grows and files from level 2 start occupying a significant portion of the memory,
it becomes more efficient to give higher access to level 2 since it has many more files than level 1.

While greater cache access helps reduce the rate, there is also a cost associated with it in terms of the increased delay
in gathering data from multiple APs, as well as a reduced rate as a user connects to farther APs. In general, for a given
multi-level setup with parameters L, K, {Ni, Ui}, and M , such a cost can be included in the rate optimization framework as
one or more inequalities of the form costj(K, {Ui, di}i) ≤ Cj , for some maximum cost Cj . The above optimization problem
can be numerically solved by a designer in order to identify the optimal access structure for the multi-level system under
consideration. However, to derive some intuition about how the costs impact the optimal multi-access structure, let us consider
a setup with L = 3 levels, and with N1 = 0.04N , N2 = 0.13N , and N3 = 0.83N files in the three levels. Say we want to
include both a maximum degree constraint di ≤ 3 for each level i, as well as an average degree constraint (

∑
i Uidi)/U ≤ 2.

Then, Fig. 7 plots the optimal access structure vs. the normalized memory size. As before, when the memory is small, the
optimal access structure is one which satisfies d1 ≥ d2 ≥ d3, but this relation becomes reversed as the memory increases.

C. Stochastic variations in user profiles

The theoretical setup and results presented in the previous sections assumed a symmetric and deterministic user profile
across all the APs. In particular, exactly Ui users are assigned to each AP to request files from level i. This section aims at
evaluating the robustness of ML-PAMA to asymmetry and stochasticity in the user profiles across caches.

10

1

2

3

0 0.2 0.4 0.6 0.8 1

d
e
g
r
e
e

o
f

e
a
c
h

p
o
p
u
l
a
r
i
t
y

l
e
v
e
l

normalized cache memory M/N

d1
d2
d3

Fig. 7. Optimal access structure vs. memory, with dmax = 3, davg = 2.

0

20

40

60

80

100

0 100000 200000 300000 400000 500000

b
r
o
a
d
c
a
s
t

t
r
a
n
s
m
i
s
s
i
o
n

r
a
t
e

cache memory

theoretical rate
empirical rate

Fig. 8. Comparison of the theoretical rate with the empirical rate, based on simulations of demands over the YouTube dataset, with 5 caches and 100 total
users. The theoretical rate is off by a factor of up to 2.8 from the empirical.

We consider a setup where each of the KU users in the system randomly connects to one of the K APs and requests a
file stochastically, according to the YouTube popularity distribution in Fig. 3. We ran simulations for this setup, and we plot
the empirically achieved rate against the cache memory in Fig. 8. For comparison, we also show the rate predicted by our
theoretical model, which assumes a symmetric user profile across the caches. Clearly, the theory very closely predicts the
empirical results for a random user profile, thus demonstrating the robustness of our theoretical results to stochastic variations
across APs and justifying their utility in practice.

D. Comparison with Least-Frequently Used (LFU)

In this section, we compare the performance of ML-PAMA with that of the traditional LFU scheme using simulations on
the YouTube data. For any memory size M , LFU fully stores the M most popular files, so that requests for more popular
files are completely served from the cache, and requests for less popular files are fully handled by the BS transmission. The
results, given in Fig. 9, show the superiority of ML-PAMA.

E. Numerical gap

As discussed in Section III, the multiplicative gap in Theorem 2 results from many over-simplifications in bounding the
achievable rate. Numerical results suggest that this gap is much smaller. For instance, when D = 5 and L = 3, the worst-case
gap does not exceed 45. We provide an example in Fig. 10, where the gap between the achievable rate and the lower bounds
is approximately 6, which is much smaller than predicted by the conservative theoretical bounds.

11

0

50

100

150

200

250

300

350

400

0 100000 200000 300000 400000 500000

b
r
o
a
d
c
a
s
t

t
r
a
n
s
m
i
s
s
i
o
n

r
a
t
e

cache memory

memory-sharing scheme
traditional LFU

Fig. 9. Comparison of the memory-sharing scheme (ML-PAMA) with traditional LFU. ML-PAMA achieves up to a factor-14.5 in gain over LFU.

0

50

100

150

200

0 500 1000 1500 2000 2500 3000

b
r
o
a
d
c
a
s
t

r
a
t
e

cache memory

achievable rate
lower bounds

Fig. 10. Rate achieved by the memory-sharing scheme compared with the information theoretic lower bounds. The setting is as follows: L = 3,
(N1, N2, N3) = (500, 1500, 8000), K = 10, (U1, U2, U3) = (9, 5, 1), and (d1, d2, d3) = (1, 3, 5). The maximum gap is ≈ 6.

VIII. RELATED WORK

Content caching-and-delivery has an extensive history and has been widely studied; see for example [14] and references
therein. More recently, it has been studied in the context of Video-on-Demand systems, for which efficient content placement
and delivery schemes have been proposed in [15], [16], [17]. The impact of different popularities among the available content
on the caching schemes has also been investigated; see for example [13], [18], [19]. A common feature among the conventional
caching schemes studied in the above literature is that the stored content is replicated across the caches in the system. When
users request content, the parts of the demanded files that are available at nearby caches are served locally. The remaining file
parts are served via orthogonal unicast transmissions by a central server hosting all the files.

The inherent broadcast nature of wireless communications presents an opportunity to improve system performance by serving
multiple users simultaneously. Recently, [6], [7] proposed new caching schemes for a single-hop broadcast network, which,
unlike the conventional schemes, are based on storing different data across the caches in the network during placement and then
using coded-multicast server transmissions during delivery to satisfy multiple user requests simultaneously. These observations
were extended to the case of two-tier tree networks in [20] and to non-uniform file popularities in [8], [10], [21]. Our work
differs from all the above in that we utilize the ability of users to access multiple AP caches to design a system architecture that
dynamically allocates user access to APs depending on the requests, significantly improving performance. The main technical
difficulty here is the partial overlap between the caches accessed by various users in the system: both the achievability scheme
as well as the lower bounds require new ideas to take this overlap into account. For any access profile, we are able to prove the
order-optimality of our scheme by comparing its achievable rate to information-theoretic lower bounds. We also numerically

12

evaluate the scheme’s performance over a YouTube dataset and demonstrate its benefits over single-AP access. This evaluation
further enables us to study the optimal access profile for different values of memory, as well as optimize the number of
popularity levels to demonstrate that 3–4 levels are sufficient to accumulate most of the gains of memory-sharing.

In terms of the system architecture, our vision is closest to [22], [23], [24], which recently proposed a caching architecture
for heterogeneous wireless networks, with the small-cell or WiFi access points acting as helpers by storing part of the content.
However, they did not utilize the broadcast property enabling network coded delivery, nor did they examine the problem from
an information-theoretic viewpoint, i.e., develop impossibility results that are not tied to a particular scheme.

There has also been a lot of work in algorithms and protocols related to content distribution over networks. Content distribution
networks such as those managed by Akamai and Amazon are integral to how content is served over the internet today, and
there has been a lot of work on their system design and architecture [25], [26]. Over the last few years, a new paradigm for
how internet protocols should search for and deliver content, called content-centric networking, has emerged that has garnered
significant attention; see for example [27], [28], [29] and references therein. These works have been mainly from a networking
systems viewpoint and a significant focus has been on naming data objects and routing for content delivery. In this work, we
study such content-centric networks from an information-theoretic viewpoint, and our focus is on the last-hop wireless link.

Various other methods for content distribution have been proposed in the literature, for example [30] explores distributed
caching in mobile networks using device-to-device communications and [31] studies content distribution for vehicular networks.
Other related work includes [32] which derives scaling laws for content replication in multihop wireless networks; [33] which
studies the benefit of coded caching when the caches are distributed randomly; and [34] which explores the benefits of adaptive
content placement, using knowledge of user requests. However, these have not been examined from an information-theoretic
viewpoint and the focus has been on optimizing particular strategies.

REFERENCES

[1] “Cisco visual networking index (VNI) global mobile data traffic forecast update,” 2013, http://www.gsma.com/spectrum/wp-content/uploads/2013/03/
Cisco VNI-global-mobile-data-traffic-forecast-update.pdf.

[2] “Qualcomm: The 1000x challenge,” 2013, http://www.qualcomm.com/solutions/wireless-networks/technologies/1000x-data/small-cells.
[3] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman, “Placement algorithms for hierarchical cooperative caching,” in Proceedings of the ACM-SIAM

Symposium on Discrete Algorithms (SODA), 1999, pp. 586–595.
[4] “Intel heterogeneous network solution brief,” 2013, http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/

communications-heterogeneous-network-brief.pdf.
[5] “Intel: Rethinking the small cell business model,” 2012, http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/

communications-small-cell-study.pdf.
[6] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE Transactions on Information Theory, vol. 60, no. 5, pp. 2856–2867, May

2014.
[7] ——, “Decentralized coded caching attains order-optimal memory-rate tradeoff,” arXiv:1301.5848 [cs.IT], Jan. 2013, to appear in the IEEE Transactions

on Networking.
[8] U. Niesen and M. A. Maddah-Ali, “Coded caching with nonuniform demands,” pre-print, 2013, http://arxiv.org/abs/1308.0178.
[9] “UMass trace repository,” http://traces.cs.umass.edu/index.php/network/network.

[10] J. Hachem, N. Karamchandani, and S. Diggavi, “Multi-level coded caching,” in Proceedings of the IEEE International Symposium on Information Theory
(ISIT), Jun. 2014.

[11] J. Jiang, N. Marukala, and T. Liu, “Symmetrical multilevel diversity coding and subset entropy inequalities,” IEEE Transactions on Information Theory,
vol. 60, no. 1, pp. 84–103, 2014.

[12] T. M. Cover and J. A. Thomas, Elements of information theory. New York, NY, USA: Wiley-Interscience, 1991.
[13] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching and zipf-like distributions: evidence and implications,” in Proceedings of the IEEE

International Conference on Computer Communications (INFOCOM), 1999, pp. 126–134.
[14] D. Wessels, Web Caching, N. Torkington, Ed. Sebastopol, CA, USA: O’Reilly & Associates, Inc., 2001.
[15] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for content distribution networks,” in Proceedings of the IEEE International Conference

on Computer Communications (INFOCOM), 2010, pp. 1478–1486.
[16] B. Tan and L. Massoulié, “Optimal content placement for peer-to-peer video-on-demand systems,” IEEE/ACM Transactions on Networking, vol. 21,

no. 2, pp. 566–579, Apr. 2013.
[17] J. Llorca, A. M. Tulino, K. Guan, J. Esteban, M. Varvello, N. Choi, and D. C. Kilper, “Dynamic in-network caching for energy efficient content delivery,”

in Proceedings of the IEEE International Conference on Computer Communications (INFOCOM), 2013, pp. 245–249.
[18] D. Applegate, A. Archer, V. Gopalakrishnan, S. Lee, and K. K. Ramakrishnan, “Optimal content placement for a large-scale VoD system,” in Proceedings

of the ACM International Conference on emerging Networking EXperiments and Technologies (CoNEXT), 2010, pp. 4:1–4:12.
[19] S. Jin and A. Bestavros, “Popularity-aware greedy dual-size web proxy caching algorithms,” in Proceedings of the IEEE International conference on

Distributed Computing Systems (ICDCS), 2000, pp. 254–261.
[20] N. Karamchandani, M. Maddah-Ali, U. Niesen, and S. Diggavi, “Hierarchical coded caching,” in Proceedings of the IEEE International Symposium on

Information Theory (ISIT), Jun. 2014.
[21] M. Ji, A. M. Tulino, J. Llorca, and G. Caire, “On the average performance of caching and coded multicasting with random demands,” Aug. 2014, to

appear in the IEEE International Symposium on Wireless Communication Systems.
[22] N. Golrezaei, K. Shanmugam, A. G. Dimakis, A. F. Molisch, and G. Caire, “Femtocaching: Wireless video content delivery through distributed caching

helpers.” in Proceedings of the IEEE International Conference on Computer Communications (INFOCOM), 2012, pp. 1107–1115.
[23] E. Baştuǧ, M. Bennis, and M. Debbah, “Cache-enabled small cell networks: Modeling and tradeoffs,” Aug. 2014, to appear in the IEEE International

Symposium on Wireless Communication Systems.
[24] K. Poularakis, G. Iosifidis, A. Argyriou, and L. Tassiulas, “Video delivery over heterogeneous cellular networks: Optimizing cost and performance,” in

Proceedings of the IEEE International Conference on Computer Communications (INFOCOM), April 2014, pp. 1078–1086.
[25] E. Nygren, R. K. Sitaraman, and J. Sun, “The akamai network: a platform for high-performance internet applications,” ACM SIGOPS Operating Systems

Review, vol. 44, no. 3, pp. 2–19, 2010.

13

http://www.gsma.com/spectrum/wp-content/uploads/2013/03/Cisco_VNI-global-mobile-data-traffic-forecast-update.pdf
http://www.gsma.com/spectrum/wp-content/uploads/2013/03/Cisco_VNI-global-mobile-data-traffic-forecast-update.pdf
http://www.qualcomm.com/solutions/wireless-networks/technologies/1000x-data/small-cells
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/communications-heterogeneous-network-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/communications-heterogeneous-network-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/communications-small-cell-study.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/communications-small-cell-study.pdf
http://arxiv.org/abs/1308.0178
http://traces.cs.umass.edu/index.php/network/network

[26] A.-M. K. Pathan and R. Buyya, “A taxonomy and survey of content delivery networks,” Grid Computing and Distributed Systems Laboratory, University
of Melbourne, Technical Report, 2007.

[27] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman, “A survey of information-centric networking,” IEEE Communications Magazine,
vol. 50, no. 7, pp. 26–36, 2012.

[28] S. K. Fayazbakhsh, Y. Lin, A. Tootoonchian, A. Ghodsi, T. Koponen, B. Maggs, K. Ng, V. Sekar, and S. Shenker, “Less pain, most of the gain:
Incrementally deployable ICN,” SIGCOMM Computer Communication Review, vol. 43, no. 4, pp. 147–158, Aug. 2013.

[29] I. Psaras, W. K. Chai, and G. Pavlou, “Probabilistic in-network caching for information-centric networks,” in Proceedings of the ACM workshop on
Information-centric networking (ICN), 2012, pp. 55–60.

[30] S. Ioannidis, L. Massoulie, and A. Chaintreau, “Distributed caching over heterogeneous mobile networks,” in Proceedings of the ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer Systems, 2010, pp. 311–322.

[31] M. Li, Z. Yang, and W. Lou, “Codeon: Cooperative popular content distribution for vehicular networks using symbol level network coding,” IEEE
Journal on Selected Areas in Communications, vol. 29, no. 1, pp. 223–235, 2011.

[32] S. Gitzenis, G. S. Paschos, and L. Tassiulas, “Asymptotic laws for joint content replication and delivery in wireless networks,” IEEE Transactions on
Information Theory, vol. 59, no. 5, pp. 2760–2776, May 2013.

[33] E. Altman, K. Avrachenkov, and J. Goseling, “Coding for caches in the plane,” pre-print, 2013, http://arxiv.org/abs/1309.0604.
[34] J. Y. Yang and B. Hajek, “Single video performance analysis for video-on-demand systems,” pre-print, 2013, http://arxiv.org/abs/1307.0849.

APPENDIX A
PROOF OF THE ORDER-OPTIMALITY OF ML-PAMA (THEOREM 2)

This section aims at analyzing the gap between the achievable rate and the information-theoretic lower bounds on the optimal
rate. To this end, we proceed in two main steps. First, we give some preliminary results in Appendix A-A that will be useful
for the main body of the proof. These include some in-depth analysis of the achievable rate, as well as some generally-useful
definitions and inequalities. Second, we present the gap analysis itself in Appendix A-B. We identify the different cases to
analyze, and prove the order-optimality of the scheme in each case.

For clarity, the proofs of the preliminary results are relegated to the end of this appendix, in Appendix A-C. Finally, we
separately analyze, in Appendix A-D, a special case where the total number of caches is smaller than some constant.

A. Preliminary results

We will now present the preliminary results that will be used for the gap analysis. The proofs of all the lemmas in this
section are relegated to Appendix A-C.

For convenience, we start by defining, for any set of levels A ⊆ {1, . . . , L}:

SA =
∑
i∈A

√
NiUi,

TA =
∑
i∈A

Ni
di
.

Recall that the achievability scheme partitions the set of levels into an M -feasible partition (Definition 1). This provides us
with a structured way of studying the behavior of the individual rates of different levels. However, in some cases, a particular
level in the set I might have so much allocated memory that its rate, while still positive, becomes small enough to obfuscate
the properties of its other parameters, such as number of files and number of users. This prompts us to isolate such levels and
study their behavior separately from the remaining levels in I . To this end, we refine the M -feasible partition currently in use
by defining:

I ′′ =

{
i ∈ I : αiM > β

Ni
di

}
=

{
i ∈ I : M >

β

di

√
Ni
Ui
SI + TJ

}
,

where β < 1 is a constant defined by:

β =
1

16γ(D + 1)L
, (8)

and γ = 1
1−e−1 . The complement of I ′′, with respect to I , is denoted by I ′ = I\I ′′.

As a result (recall Definition 1), the memory satisfies the following inequalities at any time:

∗∀h ∈ H, M <
1

K

√
Nh
Uh

SI + TJ +
Nh
K
, (9a)

∀i ∈ I ′, 1

K

√
Ni
Ui
SI + TJ ≤ M <

β

di

√
Ni
Ui
SI + TJ , (10)

∀i ∈ I ′′, β

di

√
Ni
Ui
SI + TJ ≤ M <

1

di

√
Ni
Ui
SI + TJ , (11)

∀j ∈ J, 1

di

√
Nj
Uj
SI + TJ ≤M. (12)

14

http://arxiv.org/abs/1309.0604
http://arxiv.org/abs/1307.0849

From the above definitions, as well as from the PAMA choice of memory-sharing parameters {αi}, we can deduce the
individual broadcast rate of each level. This is done in the next lemma.

Lemma 5. The individual rates of each level can be bounded as in the following inequalities:

∀h ∈ H, Rh(M) = KUh,

∀i ∈ I ′, (1− e−1)
SI
√
NiUi

M − TJ
≤ Ri(M) ≤ SI

√
NiUi

M − TJ
− diUi,

∀i ∈ I ′′, (1− e−1)diUi

1− M − TJ
1
di

√
Ni

Ui
SI

 ≤ Ri(M) ≤ 1

β
diUi

1− M − TJ
1
di

√
Ni

Ui
SI

 ,

∀j ∈ J, Rj(M) = 0.

The next step is to identify two important levels, each of which will dominate one of two significant sums. The first one,
labeled m, is the level that dominates the rate achieved by the scheme. In particular, it is the level for which the individual
rate is the largest. Recall that the individual rate of level i is Ri(M) = RSL(αiM,K,Ni, Ui, di). The second one, labeled i∗,
is the level that dominates the sum SI′ =

∑
i∈I′
√
NiUi. These definitions are formalized next.

m = argmax
i

Ri(M),

i∗ = argmax
i∈I′

NiUi. (13)

Throughout the analysis, the total broadcast rate will be upper-bounded by the individual rate of level m:

R(M) =

L∑
i=1

Ri(M) ≤ L ·Rm(M). (14)

In addition, the properties of the achievable rate are such that level m also often dominates the {NiUi}i terms, as the
following lemma states.

Lemma 6 (Dominance Lemma). If m ∈ H ∪ I ′, then SI′ ≤ γL
√
NmUm, with γ = 1

1−e−1 .

Next, we revisit the regularity condition in (4). We rewrite it in a format that will be more useful later on:

∀i < j,

√
Ui/Ni√
Uj/Nj

≥ q0 = 16γ(D + 1)2L, (15)

where γ = 1
1−e−1 as above. Note that q0 =

√
q in (4). Notice that the regularity condition implies that:

∀i, j,
√
Ni
Ui

<

√
Nj
Uj

=⇒ 1

di

√
Ni
Ui

<
1

dj

√
Nj
Uj
. (16)

This is effectively saying that, for any M -feasible partition (H, I, J) with refining I = I ′ ∪ I ′′, the levels in J will always
be more popular than the levels in I ′′, which are in turn more popular than the ones in I ′, and H contains the least popular
levels of all. This can be written concisely as J < I ′′ < I ′ < H .

The following lemma is a direct consequence of the regularity condition.

Lemma 7. For all values of M ≥ 0, the ML-PAMA scheme always results in |I ′′| ≤ 1.

Finally, we present two bounds that will frequently be used in the gap analysis: an upper bound on the achievable rate; and
a lower bound on the optimal rate.

Lemma 8. If I ′′ = {i1} 6= ∅, then, for all i ∈ H ∪ I ′,

Ri(M) ≤ di1
β

√
NiUiUi1
Ni1

.

Lemma 9. If I ′′ = {i1} 6= ∅, and if I ′ 6= ∅ so that i∗ (as defined in (13)) exists, then,

R∗(M) ≥ 1

16L(D + 1)2

√
Ni∗Ui∗Ui1

Ni1
,

provided q0 ≥ 16L(D + 1)2.

15

B. Gap analysis

The gap analysis consists in comparing the achievable rate with the lower bounds given in Lemma 3 and Lemma 4. The
lower bounds in Lemma 4 require the evaluation of two minimizations. For clarity, we label the two minimizations:

∗s(s− dl + 1)b ≶
Nl
Ul

; (17a)

b ≶
Nj
djUj

, ∀j ∈ A. (18)

Furthermore, we will use, on one occasion, the following result, which is a direct consequence of Lemma 4.

Corollary 1 (Simple general bounds). For any A ⊆ {1, . . . , L} and any b ∈ N+, we have:

R∗(M) ≥
∑
j∈A

min

{
Uj ,

Nj
bdj

}
− M

b
.

Corollary 1 requires only the evaluation of the minimization in (18).
The analysis in this section is concerned with the case when the number of caches K in the network is large. In particular,

we assume:
K ≥ k0 = 16(D + 1)2(γL+ 1), (19)

where γ = 1
1−e−1 . The case where K < k0 will be dealt with in Appendix A-D.

We will divide the analysis of this section into two main regimes, which depend on the set to which m belongs. Note that,
if m ∈ J , then Rm(M) = 0 and thus R(M) = 0. Thus, we will only consider the regimes m ∈ H ∪ I ′ and m ∈ I ′′. The first
regime is subdivided into two cases, depending on whether I ′′ is empty or not. The second regime is also subdivided into two
cases, depending on whether I ′ is empty or not.

1) Regime 1: m ∈ H ∪ I ′:
a) Case A: I ′′ = {i1}:

From Lemma 8 and (14), we have:

R(M) ≤ L ·Rm(M) ≤ L · D + 1

β

√
NmUmUi1

Ni1
. (20)

Combining (20) with Lemma 9, we get:
R(M)

R∗(M)
≤ 16

β
L2(D + 1)3. (21)

b) Case B: I ′′ = ∅:
Notice that I ′ = I and hence SI = SI′ . Since m ∈ H ∪ I ′, we have, from Lemma 6,

SI ≤ γL
√
NmUm. (22)

Case B.i: m ∈ H
Here, we have

R(M) ≤ L ·KUm. (23)

Consider the case where J 6= ∅. Use Lemma 4 with l = m, A = J , s = bδKc, b =
⌊

1
δ2K2 · Nm

Um

⌋
, and

δ =
1

4(D + 1)(γL+ 1)
.

We must first analyze the inequalities in (17a) and (18). For (17a), we have:

s(s− dl + 1)b ≤ s2b ≤ δ2K2 · 1

δ2K2
· Nm
Um

=
Nm
Um

.

For (18), we first show that the quantity inside the floor in the expression of b is greater than 1. Indeed, since J is non-empty,
there exists some j ∈ J . Therefore, since m ∈ H and j ∈ J , we have:

1

dj

√
Nj
Uj
≤ M̃ ≤ 1

K

√
Nm
Um

=⇒ Nm
K2Um

≥ Nj
d2jUj

,

16

Hence,
1

δ2K2
· Nm
Um

= (D + 1)64γ2L2 · Nm
K2Um

≥ 2 · (D + 1)Nm
K2Um

≥ 2 · (D + 1)Nj
d2jUj

≥ 2 · Nj
djUj

≥ 1. (24)

As a result of (24), b ≥ 1
2 ·

1
δ2K2 · Nm

Um
≥ 1

2 · 2 ·
Nj

djUj
=

Nj

djUj
for all j ∈ J , thus evaluating the inequality in (18).

Therefore,

R∗(M) ≥ 1

D + 1
(s− dm + 1)Um −

M − TJ
b

≥ 1

D + 1
(δK − 1− dm + 1)Um −

M − TJ
1

2δ2K2 · Nm

Um

=
1

D + 1
(δK − dm)Um − 2δ2 · M − TJ

Nm

K2Um

(a)

≥ 1

D + 1
(δK − dm)Um − 2δ2 ·

1
K

√
Nm

Um
· SI + Nm

K

Nm

K2Um

(b)

≥ 1

D + 1
(δK − dm)Um − 2δ2 ·

1
K

√
Nm

Um
· γL
√
NmUm + Nm

K

Nm

K2Um

=
1

D + 1
(δK − dm)Um − 2δ2(γL+ 1) ·KUm

= KUm

[
δ

D + 1
− dm
K(D + 1)

− 2δ2(γL+ 1)

]
= KUm

[
1

(D + 1)24(γL+ 1)
− dm
K(D + 1)

− 2(γL+ 1)

(D + 1)216(γL+ 1)2

]
= KUm

[
1

(D + 1)28(γL+ 1)
− dm
K(D + 1)

]
≥ KUm

[
1

(D + 1)28(γL+ 1)
− 1

K

]
(c)

≥ KUm ·
1

(D + 1)216(γL+ 1)
, (25)

where (a) follows from m ∈ H and (9), (b) follows from (22), and (c) follows from (19).
We can now combine (23) with (25) to get:

R(M)

R∗(M)
≤ L

1
(D+1)216(γL+1)

= 16(D + 1)2L(γL+ 1). (26)

Now consider the case when J = ∅. Hence, TJ = T∅ = 0. We will use Lemma 3, with i = m, and v = bδKUmc, with:

δ =
1

4(γL+ 1)
.

17

Notice that, from (19), we have K ≥ 4(γL+ 1)D = D
δ ≥

dm
δ , which ensures that v ≥ dm. Then,

R∗(M) ≥ v − dv/Ume+ (dm − 1)

bNm/vc
M

≥ δKUm − 1− δK + dm
Nm

δKUm
− 1

M

= δKUm − 1− δKUm (δK + dm)

Nm − δKUm
M

(a)

≥ δKUm − 1− δKUm (δK + dm)

(1− δ)Nm
·

(
1

K

√
Nm
Um

SI +
Nm
K

)

= δKUm − 1−
δKUm

(
δ + dm

K

)
(1− δ)Nm

·

(√
Nm
Um
· SI +Nm

)
(b)

≥ δKUm − 1−
δKUm

(
δ + dm

K

)
(1− δ)Nm

·

(√
Nm
Um
· γL

√
NmUm +Nm

)

= δKUm − 1−
(γL+ 1) · δKUm

(
δ + dm

K

)
1− δ

= KUm

[
δ − 1

KUm
−

(γL+ 1)δ
(
δ + dm

K

)
1− δ

]
(c)

≥ KUm

[
δ − 1

K
− 2(γL+ 1)δ2

1− δ

]
= KUm

[
1

4(γL+ 1)
− 1

K
−

2(γL+ 1) · 1
16(γL+1)2

1− 1
4(γL+1)

]

= KUm

[
1

4(γL+ 1)
− 1

K
− 2

16(γL+ 1)− 4

]
≥ KUm

[
1

4(γL+ 1)
− 1

K
− 2

12(γL+ 1)

]
= KUm

[
1

12(γL+ 1)
− 1

K

]
(d)

≥ KUm ·
1

24(γL+ 1)
, (27)

where (a) uses m ∈ H and (9), (b) uses (22), (c) uses K ≥ dm/δ and Um ≥ 1, and (d) uses K ≥ k0 ≥ 24(γL+ 1).
We then combine (23) with (27) to get:

R(M)

R∗(M)
≤ 24L(γL+ 1). (28)

Case B.ii: m ∈ I ′.
Using (14), Lemma 5 and (22), the achievable rate can be bounded by:

R(M) ≤ L ·Rm(M) ≤ L · SI
√
NmUm

M − TJ
≤ γL2NmUm

M − TJ
. (29)

Look at the case when J 6= ∅. Use Lemma 4, with l = m, A = J , s =
⌊
δNm

M−TJ

⌋
, b =

⌊
(M−TJ)

2

δ2NmUm

⌋
, and:

δ =
1

4(D + 1)
.

We will now analyze the minimizations in (17a) and (18). For (17a):

s(s− dm + 1)b ≤ s2b ≤ δ2N2
m

(M − TJ)2
· (M − TJ)2

δ2NmUm
=
Nm
Um

.

18

For (18), note that there exists some j ∈ J . Hence, using (12):

(M − TJ)2

δ2NmUm
≥ 1

δ2NmUm

(
1

dj

√
Nj
Uj
SI

)2

=
S2
I

δ2NmUm
· 1

d2j
· Nj
Uj
≥ 1

δ2dj
· Nj
djUj

=
16(D + 1)2

dj
· Nj
djUj

≥ 2 · Nj
djUj

.

Furthermore, since Nj

djUj
≥ 1, then,

b ≥ 1

2
· (M − TJ)2

δ2NmUm
≥ Nj
djUj

.

Therefore,

R∗(M) ≥ 1

D + 1
(s− (dm − 1))Um −

M − TJ
b

≥ 1

D + 1

(
δNmUm
M − TJ

− dmUm
)
− M − TJ

(M−TJ)2

2δ2NmUm

=
1

D + 1
· δNmUm
M − TJ

− dmUm
D + 1

− 2δ2NmUm
M − TJ

=
NmUm
M − TJ

[
δ

D + 1
− M − TJ

Nm

dm
(D + 1)

− 2δ2

]

=
NmUm
M − TJ

[
1

4(D + 1)2
− M − TJ

Nm

dm
(D + 1)

− 2

16(D + 1)2

]
(a)

≥ NmUm
M − TJ

[
1

8(D + 1)2
− 1

Nm

dm
(D + 1)

· β
dm

√
Nm
Um

SI

]
(b)

≥ NmUm
M − TJ

[
1

8(D + 1)2
− βγL

D + 1

]
(c)
=

NmUm
M − TJ

[
1

8(D + 1)2
− 1

16(D + 1)2

]
=

NmUm
M − TJ

· 1

16(D + 1)2
, (30)

where (a) follows from m ∈ I ′ and (10), (b) follows from (22), and (c) follows from (8).
We now combine (29) with (30) to get:

R(M)

R∗(M)
≤ (D + 1)γL2

1
8(D+1) − βγL

≤ 16(D + 1)2γL2. (31)

Now assume J = ∅. Note that TJ = 0. Use Lemma 3, using i = m and v =
⌊
δNmUm

M

⌋
, with

δ = 1−
√

2

3
.

We have,

R∗(M) ≥ δNmUm
M

− 1−
δNm

M + dm
M
δUm
− 1

M

≥ δNmUm
M

− 1− δUm ·
δNm

M + dm

M − δUm
M. (32)

Note the following:
δNm
M
≥ δNm

β
dm

√
Nm

Um
SI

=
δdm
√
NmUm
βSI

≥ dm ·
δ

βγL
≥ dm,

19

where the last inequality holds because β < δ
γL follows from (8). Also note that, from (10):

M ≥ 1

K

√
Nm
Um

SI ≥
1

K
Nm ≥ Um.

Substituting the above two inequalities in (32):

R∗(M) ≥ δNmUm
M

− 1− δUm ·
2δNm

M

M − δM
M

=
δNmUm
M

− 1− NmUm
M

· 2δ2

1− δ

=
NmUm
M

[
δ − M

NmUm
− 2δ2

1− δ

]
=

NmUm
M

[
5− 2

√
6− M

NmUm

]
(a)

≥ NmUm
M

0.1−
β
dm

√
Nm

Um
SI

NmUm

(b)

≥ NmUm
M

[
0.1−

β
dm
γL

Um

]
(c)

≥ NmUm
M

[0.1− βγL]

(d)

≥ 0.05
NmUm
M

, (33)

where (a) follows from m ∈ I ′ and (10), (b) follows from (22), (c) follows from dmUm ≥ 1, and (d) follows from β < 0.05
γL ,

which is implied by (8).
By combining (29) (with TJ = 0) with (33), we get:

R(M)

R∗(M)
≤ 20γL2. (34)

2) Regime 2: m ∈ I ′′:
a) Case A: I ′ = ∅:

When I ′ = ∅, then I = {m}, and SI =
√
NmUm. Therefore, we have:

Rm(M) ≤ 1

β
dmUm

1− M − TJ
1
dm

√
Nm

Um
SI

 =
1

β
dmUm

(
1− M − TJ

Nm/dm

)
,

and hence
R(M) ≤ L · 1

β
(D + 1)Um

(
1− M − TJ

Nm/dm

)
. (35)

We will now use Corollary 1, with A = J ∪ {m} and b =
⌈

Nm

dmUm

⌉
. Evaluating (18):

b ≥ Nm
dmUm

≥ q20Nj
dmUj

≥ Nj
Uj
≥ Nj
djUj

,

for all j ∈ J . Note also that b ≥ 1, and thus b ≤ 2Nm

dmUm
. Therefore:

R∗(M) ≥
M − TJ∪{m}

b

≥
Nm

dm
− (M − TJ)

2Nm

dmUm

=
Um
2

(
1− M − TJ

Nm/dm

)
. (36)

20

Combining (36) with (35), as well as using (8), we get:

R(M)

R∗(M)
≤ 2(D + 1)L

β
= 32γ(D + 1)2L2. (37)

b) Case B: I ′ 6= ∅:
Note that when I ′ 6= ∅, the level i∗ exists.

By the level-spacing regularity condition, |I ′′| ≤ 1, which implies I ′′ = {m} in this regime.
Consider the following two memory values:

Y0 =
Nm
dm

+ TJ ,

Y1 =
β

dm

√
Nm
Um

SI + TJ .

Note that M ≥ Y1 because m ∈ I ′′ and (11).
We will analyze two cases, that depend on the value of Y0 − Y1.
Case B.i: Y0 − Y1 < Nm

2dm
Note the following:

Y0 − Y1 <
Nm
2dm

Nm
dm
− β

dm

√
Nm
Um

SI <
Nm
2dm

β

dm

√
Nm
Um

SI >
Nm
2dm

2β · SI√
NmUm

> 1.

By noticing that, because m ∈ I ′′, then SI =
√
NmUm +SI′ ≤

√
NmUm +L

√
Ni∗Ui∗ (by the definition of i∗, see (13)), the

above implies:

2β

(
1 + L

√
Ni∗Ui∗

NmUm

)
> 1

L

√
Ni∗Ui∗

NmUm
>

1

2β
− 1

2β

1− 2β
L

√
Ni∗Ui∗Um

Nm
> Um. (38)

Since M ≥ Y1, we have, by Lemma 5 and (38):

Rm(M) ≤ Rm(Y1) ≤ 1

β
dmUm ≤

2

1− 2β
· dm · L

√
Ni∗Ui∗Um

Nm
,

and thus

R(M) ≤ 2(D + 1)L2

1− 2β

√
Ni∗Ui∗Um

Nm
. (39)

Combining (39) with Lemma 9 (where i1 = m), we get:

R(M)

R∗(M)
≤ 32(D + 1)3L3

1− 2β
≤ 8

7
· 32(D + 1)3L3 ≤ 37(D + 1)3L3, (40)

which follows from observing that:

1− 2β = 1− 1

8γ(D + 1)L
=

8γ(D + 1)L− 1

8γ(D + 1)L
≥ 7

8
.

Case B.ii: Y0 − Y1 ≥ Nm

2dm
We consider two possibilities: one where M is greater than Y0, and one where it is less than Y0.

When M ≥ Y0, we have:
Rm(M) ≤ Rm(Y0). (41)

21

When M < Y0, we have Y1 ≤M < Y0, and hence, by the convexity of Rm(·):

Rm(M) ≤ Rm(Y0) +
Y0 −M
Y0 − Y1

(Rm(Y1)−Rm(Y0))

≤ Rm(Y0) +
Y0 −M
Y0 − Y1

Rm(Y1)

≤ Rm(Y0) +
Y0 −M
Nm

2dm

· 1

β
dmUm

= Rm(Y0) +
2

β
dmUm

(
1− M − TJ

Nm/dm

)
. (42)

We now need to compute Rm(Y0) for both (41) and (42). From Lemma 5:

Rm(Y0) ≤ SI
√
NmUm

Y0 − TJ
− dmUm

=
SI
√
NmUm

Nm/dm
− dmUm

= dm

√
Um
Nm

SI − dmUm

= dm

√
Um
Nm

(√
NmUm + SI′

)
− dmUm

= dm

√
Um
Nm

SI′

≤ dmL
√
Ni∗Ui∗Um

Nm
. (43)

Therefore, when M ≥ Y0, we have:

R(M) ≤ L ·Rm(M) ≤ L ·Rm(Y0) ≤ (D + 1)L2

√
Ni∗Ui∗Um

Nm
.

This can be combined with Lemma 9 to give:

R(M)

R∗(M)
≤ 16L3(D + 1)3. (44)

When M < Y0, then:

R(M) ≤ (D + 1)L2

√
Ni∗Ui∗Um

Nm
+

2

β
· (D + 1)L · Um

(
1− M − TJ

Nm/dm

)
. (45)

Define:

r1 =

√
Ni∗Ui∗Um

Nm

r2 = Um

(
1− M − TJ

Nm/dm

)
,

and thus we can rewrite the rate as:
R(M) ≤ (D + 1)L2 · r1 +

2(D + 1)L

β
· r2.

Also define:
λ = 8(D + 1)2L

If r1 ≤ λr2, then:

R(M) ≤
[
(D + 1)L2λ+

2(D + 1)L

β

]
r2

=

[
8(D + 1)3L3 +

2(D + 1)L

β

]
Um

(
1− M − TJ

Nm/dm

)
.

22

Using the lower bound computed above in (36), we get:

R(M)

R∗(M)
≤ 2(D + 1)L

[
8(D + 1)2L2 +

2

β

]
. (46)

If r1 > λr2, then:

R(M) ≤
[
(D + 1)L2 +

2(D + 1)L

β
· 1

λ

]
r1

=

[
(D + 1)L2 +

2

8β(D + 1)

]√
Ni∗Ui∗Um

Nm
.

Combining this with Lemma 9, we get:

R(M)

R∗(M)
≤ 2(D + 1)L

[
8(D + 1)2L2 +

2

β

]
. (47)

Therefore, both (46) and (47) give, using (8) and the fact that γ < 2:

R(M)

R∗(M)
≤ 2(D + 1)L

[
8(D + 1)2L2 + 8γ(D + 1)L

]
≤ 32(D + 1)3L3. (48)

3) Gap: By combining (21), (26), (28), (31), (34), (44) and (48), we get:

R(M)

R∗(M)
≤ 37(D + 1)3L3.

C. Proof of preliminary results

Proof of Lemma 5: For h ∈ H , αhM = 0, and thus, by Lemma 2, Rh(M) = R̃h(0) = KUh.
For j ∈ J , αjM =

Nj

dj
, and thus, by Lemma 2, Rj(M) = R̃j(Nj/dj) = 0.

For i ∈ I ′, αiM =
√
NiUi

SI
(M − TJ), and thus Lemma 2 gives:

Ri(M) ≤ NiUi
αiM

− diUi =
SI
√
NiUi

M − TJ
− diUi.

Furthermore, since αiM ≥ Ni

K , we have:

Ri(M) =

(
SI
√
NiUi

M − TJ
− diUi

)(
1−

(
1− diαiM

Ni

)K/di)

≥ SI
√
NiUi

M − TJ

(
1− exp

{
−K
di
· diαiM

Ni

})
≥ SI

√
NiUi

M − TJ
(1− e−1).

Finally, for i ∈ I ′′, we have:

β
Ni
di
≤ αiM ≤

Ni
di
.

Moreover, we have R̃i(βNi/di) ≤ 1
βdiUi, and R̃i(Ni/di) = 0. Therefore, by the convexity of R̃i(·), we get:

Ri(M) ≤ 1

β
diUi

(
1− αiM

Ni/di

)
=

1

β
diUi

1− M − TJ
1
di

√
Ni

Ui
SI

 .

Furthermore,

Ri(M) ≥
(
NiUi
αiM

− diUi
)

(1− e−1) = (1− e−1)
NiUi
αiM

(
1− diαiM

Ni

)
≥ (1− e−1)diUi

1− M − TJ
1
di

√
Ni

Ui
SI

 .

23

Proof of Lemma 7: Assume, for the sake of contradiction, that there were two levels i, j ∈ I ′′. Without loss of generality,
assume i < j, so that Ui/Ni > Uj/Nj . Then, by (11), we have:

β

di

√
Ni
Ui
≤ β

dj

√
Nj
Uj

< M̃ ≤
√
Ni
Ui
≤

√
Nj
Uj
.

However, this implies, using (8):√
Ui/Ni√
Uj/Nj

<
dj
β
≤ D · 16γ(D + 1)L ≤ 16γ(D + 1)2L = q0,

thus contradicting the regularity condition.
Proof of Lemma 8: Let i ∈ H ∪ I ′.

If i ∈ H , then:
β

di1

√
Ni1
Ui1
≤ M − TJ

SI
≤ 1

K

√
Ni
Ui

=⇒ Ri(M) ≤ KUi ≤
di1
β

√
NiUiUi1
Ni1

.

If i ∈ I ′, then:
M − TJ
SI

≥ β

di1

√
Ni1
Ui1

=⇒ Ri(M) ≤ SI
√
NiUi

M − TJ
≤ di1

β

√
NiUiUi1
Ni1

.

Proof of Lemma 9: Use Lemma 4, with l = i∗, A = J ∪{i1}, s =

⌊
δ

√
Ni∗/Ui∗√
Ni1

/Ui1

⌋
, and b =

⌊
1
δ2
Ni1

Ui1

⌋
, where δ = 1

4L(D+1) .

First, note that s ≥ 1 since q0 ≥ 1
δ , as well as b ≥ 1, and:

b ≥ 1

2δ2
Ni1
Ui1
≥ Ni1
Ui1
≥ Nj
Uj
,

for all j ∈ J , and therefore b ≥ Ni1

di1Ui1
and b ≥ Nj

djUj
. This evaluates (18). Furthermore:

s2b ≤ Ni∗

Ui∗
,

thus evaluating (17a).
Using these in the lower bound:

R∗(M) ≥ 1

D + 1

(
δ

√
Ni∗Ui1
Ui∗Ni1

− di

)
Ui∗ −

M − TJ −
Ni1

Ui1

1
2δ2

Ni1

Ui1

≥

√
Ni∗Ui∗Ui1

Ni1

(
δ

D + 1
− 1

q0

)
− 2δ2 · Ui1

Ni1
·

(
1

di1

√
Ni1
Ui1

SI −
Ni1
di1

)

≥

√
Ni∗Ui∗Ui1

Ni1

(
δ

D + 1
− 1

q0
− 2δ2L

)

≥ 1

16L(D + 1)2

√
Ni∗Ui∗Ui1

Ni1

Proof of Lemma 6: Assume first that m ∈ H . Let i ∈ I ′ be arbitrary. By the definition of m, we have, from Lemma 5:

Ri(M) ≤ Rm(M) =⇒ (1− e−1)
SI
√
NiUi

M − TJ
≤ KUm

=⇒
√
NiUi ≤

1

1− e−1
·KUm ·

M − TJ
SI

=⇒
√
NiUi ≤

1

1− e−1
·KUm ·

1

K

√
Nm
Um

=⇒
√
NiUi ≤

1

1− e−1
·
√
NmUm.

Therefore, SI′ ≤ γL
√
NmUm.

24

Now assume that m ∈ I ′. Let i ∈ I ′ be arbitrary. By the definition of m, we have, from Lemma 5:

Ri(M) ≤ Rm(M) =⇒ (1− e−1)
SI
√
NiUi

M − TJ
≤ SI

√
NmUm

M − TJ
=⇒

√
NiUi ≤

1

1− e−1
·
√
NmUm.

Therefore, SI′ ≤ γL
√
NmUm.

D. Special case: small number of caches

Previously, we were looking at the case where K ≥ k0. We will now study the opposite case: K < k0.
When the number of caches is small, we use a different caching scheme to simplify the analysis. First, we find the unique

level i∗ such that:
i∗−1∑
i=1

Ni
di
≤M <

i∗∑
i=1

Ni
di
.

Recall that the level numbers are ordered in decreasing popularity, i.e., 1 is the most popular level and L is the least popular.
Once i∗ is found, define the sets:

H = {i∗ + 1, . . . , L} ;

I = {i∗} ;

J = {1, . . . , i∗ − 1} .

As before, we will fully store the set J and give no memory to the set H . The set I , however, will use the remaining memory
and apply a conventional caching scheme, i.e., parts of files are stored and the user requests are served by supplying the
remaining parts through multiple unicasts. The resulting broadcast rate is:

R(M) =
∑
h∈H

KUh +KUi∗

(
1− M − TJ

Ni∗/di∗

)
≤ k0

[
LUm + Ui∗

(
1− M − TJ

Ni∗/di∗

)]
, (49)

where m = argmaxh∈H Uh is the level with the largest individual rate among the levels in H .
We will use Lemma 4, with A = I ∪ J , l = m, s = dm and b = dNi∗/Ui∗e. Note that:

b ≥ Ni∗

Ui∗
≥ Nj
Uj
, j ∈ J ;

b ≤ 2
Ni∗

Ui∗
≤ 2

Nh
Uh

, h ∈ H.

Therefore:

R∗(M) ≥ 1

D + 1
min

{
Um,

Nm
b

}
+

i∗∑
i=1

min

{
Ui,

Ni
b

}
≥ 1

2(D + 1)
Um +

Ni∗/di∗ − (M − TJ)

2Ni∗/Ui∗

=
1

2(D + 1)
Um +

1

2di∗
Ui∗

(
1− M − TJ

Ni∗/di∗

)
. (50)

Combining (49) with (50), we get:

R(M)

R∗(M)
≤ 2Lk0(D + 1) = 32(D + 1)3L(γL+ 1).

APPENDIX B
PROOF OF THE LOWER BOUNDS ON THE OPTIMAL RATE (LEMMAS 3 AND 4)

To prove the information-theoretic lower bounds, the following notation will be useful. If there are K APs numbered 1
through K, then, for all k ∈ {1, . . . ,K}, we define Zk as the contents of the cache of the k-th AP. Furthermore, we label the
broadcast message as Xr, where r = (r1, . . . , rKU) is a request vector indicating what file is demanded by each of the KU
users. Finally, for each level i, we define Wi as the set of files in level i. The individual files are denoted as W i

1, . . . ,W
i
Ni

.

25

A. Proof of the cut-set bounds (Lemma 3)

Select v users from level i, such that the total number of caches that are connected to at least one of these users is the
smallest. This results in s = dv/Uie+ (di − 1) caches. We now send b = bNi/vc different broadcasts Xr1 , . . . , Xrb aimed at
b different request vectors:

r1 = (W i
1, . . . ,W

i
v)

r2 = (W i
v+1, . . . ,W

i
2v)

...
rb =

(
W i

(bNi/vc−1)v+1, . . . ,W
i
bNi/vcv

)
.

These broadcast messages should thus allow the v users to decode, together, v bNi/vc files in total. Therefore, we can write:

bRF + sMF ≥ H (Z1, . . . , Zs, X
r1 , . . . , Xrb)

= H
(
Z1, . . . , Zs, X

r1 , . . . , Xrb
∣∣∣W i

1, . . . ,W
i
vbNi/vc

)
+H

(
W i

1, . . . ,W
i
vbNi/vc

)
−H

(
W i

1, . . . ,W
i
vbNi/vc

∣∣∣Z1, . . . , Zs, X
r1 , . . . , Xrb

)
(∗)
≥ H

(
W i

1, . . . ,W
i
vbNi/vc

)
· (1− εF)

= v bNi/vc · F · (1− εF) ,

where (∗) follows from Fano’s inequality.
As F grows, this results in:

bR+ sM ≥ v bNi/vc
bNi/vcR+ (dv/Uie+ (di − 1))M ≥ v bNi/vc

R ≥ v − dv/Uie+ (di − 1)

bNi/vc
M.

This concludes the proof.

B. Sliding window subset entropy inequality

To prove the non-cut-set bounds, we use an entropy inequality given in [11] called the sliding window subset entropy
inequality. We briefly present it in this section.

Define the following operator for any integers m and n:

〈m〉n
def
=

{
m mod n if m mod n 6= 0

n if m mod n = 0
. (51)

The inequality is given in the following lemma.

Lemma 10 (Sliding window subset entropy inequality [11, Theorem 3]). Let (Y1, . . . , Yn) be n jointly distributed random
variables. Define, for simplicity, 〈m〉 def

= 〈m〉n for all integers m. Then, for any k ∈ {1, . . . , n− 1}, we have:

1

k

n∑
i=1

H
(
Yi, . . . , Y〈i+k−1〉

)
≥ 1

k + 1

n∑
i=1

H
(
Yi, . . . , Y〈i+k〉

)
.

C. Proof of the non-cut-set bounds (Lemma 4)

For this proof, we make the following assumptions. First, the level l in the statement of the lemma is assumed to be of
lower popularity than all the levels in the set A. Indeed, in the gap analysis of Appendix A, we always choose l and A this
way. Second, we assume that d1 ≤ d2 ≤ · · · ≤ dL. As seen in Section VII, this is not an unreasonable assumption in most
scenarios. Therefore, dl ≥ dj for all j ∈ A. We note that the lemma can be generalized, and a very similar result can be
derived when these assumptions do not hold.

Consider K sets of b broadcast messages each, and denote the i-th such set by X (i). Then,

sbR+ sM ≥ s

K

K∑
i=1

H
(
Zi,X (i)

)
.

26

We choose the broadcast messages as follows. Recall that, for every level j ∈ A, each user has access to the caches
(Zi, . . . , Z〈i+dj−1〉), for some i ∈ {1, . . . ,K}. We say that these users are cache-indexed by i. The dj sets of broadcasts(
X (i), . . . ,X (〈i+dj−1〉)

)
are chosen so that the Uj users cache-indexed by i decode the first wj files of level j, where:

wj = min {djbUj , Nj} .

Correspondingly, we denote this set of files by: W̃(j). The choice of the broadcasts with regards to the demands of the users
in level l will be decided afterwards.

Assume, without loss of generality, that A = {1, . . . , t}, such that d1 ≤ d2 ≤ · · · ≤ dt. We will use, in the following
inequalities, Lemma 10 extensively, and will denote each step that uses it by (∗). Steps that use Fano’s inequality will be
denoted by (∗∗).

sbR+ sM ≥ s

K

K∑
i=1

H
(
Zi,X (i)

)
(∗)
≥ s

K
· 1

d1

K∑
i=1

H
(
Zi,X (i), . . . , Zi+d1−1,X (i+d1−1)

)
(∗∗)
≥ s

K
· 1

d1

K∑
i=1

[
H
(
Zi,X (i), . . . , Zi+d1−1,X (i+d1−1)

∣∣∣W̃1
)

+N1(1− εF)
]

=
s

K
· 1

d1

K∑
i=1

H
(
Zi,X (i), . . . , Zi+d1−1,X (i+d1−1)

∣∣∣W̃1
)

+ s
N1

d1
(1− εF)

(∗)
≥ s

K
· 1

d2

K∑
i=1

H
(
Zi,X (i), . . . , Zi+d2−1,X (i+d2−1)

∣∣∣W̃1
)

+ s
N1

d1
(1− εF)

(∗∗)
≥ s

K
· 1

d2

K∑
i=1

[
H
(
Zi,X (i), . . . , Zi+d2−1,X (i+d2−1)

∣∣∣W̃1, W̃2
)

+N2(1− εF)
]

+ s
N1

d1
(1− εF)

=
s

K
· 1

d2

K∑
i=1

H
(
Zi,X (i), . . . , Zi+d2−1,X (i+d2−1)

∣∣∣W̃1, W̃2
)

+ s

(
N1

d1
+
N2

d2

)
(1− εF)

≥ · · ·

≥ s

K
· 1

dt

K∑
i=1

H
(
Zi,X (i), . . . , Zi+dt−1,X (i+dt−1)

∣∣∣W̃1, . . . , W̃t
)

+ s

(
N1

d1
+ · · ·+ Nt

dt

)
(1− εF).

(52)

Our next step is to combine the remaining entropy terms in the sum in a way that forms a cut-set bound for level l. For
that, we have to choose the level-l demands that the broadcasts should serve. To avoid any inconsistencies in the choice of the
broadcasts, we have to consider two cases.

Let δ = 1
1+ 1

D

, where D is the largest degree. First, if s ≥ δK, then we choose the broadcasts such that the (s− dl + 1)Uj
users cache-indexed by the first (s− dl + 1) caches can collaboratively decode the first min {sb(s− dl + 1)Uj} using the first
s sets of broadcasts. Carrying out the calculations:

s

K
· 1

dt

K∑
i=1

H
(
Zi,X (i), . . . , Zi+dt−1,X (i+dt−1)

∣∣∣W̃1, . . . , W̃t
)

≥ s

K
· 1

dt
H
(
Z1,X (1), . . . , Zs,X (s)

∣∣∣W̃1, . . . , W̃t
)

≥ δ

D
H
(
Z1,X (1), . . . , Zs,X (s)

∣∣∣W̃1, . . . , W̃t
)

(∗∗)
≥ δ

D
min {s(s− dl + 1)bUl, Nl} (1− εF).

≥ 1

D + 1
min {s(s− dl + 1)bUl, Nl} (1− εF). (53)

27

Second, if s < δK, then,

s

K
· 1

dt

K∑
i=1

H
(
Zi,X (i), . . . , Zi+dt−1,X (i+dt−1)

∣∣∣W̃1, . . . , W̃t
)

(∗)
≥ s

K
· 1

s

K∑
i=1

H
(
Zi,X (i), . . . , Zi+s−1,X (i+s−1)

∣∣∣W̃1, . . . , W̃t
)

≥ 1

K

K−s∑
i=1

H
(
Zi,X (i), . . . , Zi+s−1,X (i+s−1)

∣∣∣W̃1, . . . , W̃t
)
.

Because we now have only K − s terms in the sum, and s cache variables in each entropy term, we can choose broadcast
message sets X (i) such that all (s−dl+1)Ul users connected to s consecutive caches can together decode up to (s−dl+1)Ul ·sb
files, without worrying about inconsistencies. Hence:

1

K

K−s∑
i=1

H
(
Zi,X (i), . . . , Zi+s−1,X (i+s−1)

∣∣∣W̃1, . . . , W̃t
)

(∗∗)
≥ 1

K
· (K − s) min {s(s− dl + 1)Ulb,Nl} (1− εF)

≥ (1− δ) min {s(s− dl + 1)Ulb,Nl} (1− εF).

≥ 1

D + 1
min {s(s− dl + 1)Ulb,Nl} (1− εF). (54)

By combining (53) and (54) with (52), we get the result of the lemma.

APPENDIX C
PROOF OF THE RATE ACHIEVED BY ML-PAMA (THEOREM 1)

Theorem 1 is a direct consequence of the following result.

Lemma 11. For every M ≥ 0, there exists at least one M -feasible partition (H, I, J) of the set of levels.

Before we prove the lemma, we will show how it implies the result of the theorem.
Given that an M -feasible partition exists, then the PAMA choice of the αi parameters results in the following individual

rates:

∀h ∈ H, Rh(M) = KUh,

∀i ∈ I, Ri(M) ≤ SI
√
NiUi

M − TJ
− diUi,

∀j ∈ J, Rj(M) = 0.

See Lemma 5 for more details.
By combining this with (5), we get:

R(M) =

L∑
i=1

Ri(M)

=
∑
h∈H

Rh(M) +
∑
i∈I

Ri(M) +
∑
j∈J

Rj(M)

≤
∑
h∈H

KUh +
∑
i∈I

(
SI
√
NiUi

M − TJ
− diUi

)
+
∑
j∈J

0

=
∑
h∈H

KUh +
S2
I

M − TJ

=
∑
h∈H

KUh +

(∑
i∈I
√
NiUi

)2
M −

∑
j∈J Nj/dj

,

which is the rate expression stated in the theorem.
We will now prove Lemma 5, thus completing the proof of Theorem 1.

28

Proof of Lemma 5: We prove the existence of an M -feasible partition for each M by construction. We give an algorithm
that constructs such a partition for all M ≥ 0 in Θ(L2), shown in Algorithm 2.

We first observe that the inequalities associated with an M -feasible partition can be rewritten as:

∀h ∈ H, M ≤ f I,J (m̃h) +
Nh
K

;

∀i ∈ I, f I,J (m̃i) ≤ M ≤ f I,J
(
M̃i

)
;

∀j ∈ J, f I,J
(
M̃j

)
≤M,

where, for any level i, we define:

m̃i =
1

K

√
Ni
Ui

;

M̃i =
1

di

√
Ni
Ui
,

and, for any subsets A,B ⊆ {1, . . . , L}, we define:

fA,B(x) = x · SA + TB .

Algorithm 2 Algorithm that finds an M -feasible partition for all M .
1: procedure PARTITIONLEVELS(K, {Ni, Ui, di}Li=1)

2: Sort the terms
{
m̃i, M̃i

}L
i=1

and label the result as (x1, . . . , x2L).
3: I0 ← ∅
4: J0 ← ∅
5: for t ∈ {1, . . . , 2L} do
6: if xt = m̃i for some i then
7: It ← It−1 ∪ {i}
8: Jt ← Jt−1
9: else if xt = M̃i for some i then

10: It ← It−1\{i}
11: Jt ← Jt−1 ∪ {i}
12: end if
13: Yt ← f It−1,Jt−1(xt)
14: end for
15: Y2L+1 ←∞
16: Store (Y1, . . . , Y2L+1) and (I1, J1, . . . , I2L, J2L).
17: end procedure
18: procedure GETPARTITION(M)
19: Find t such that Yt ≤M < Yt+1

20: (I, J)← (It, Jt)
21: H ← (It ∪ Jt)c
22: return (H, I, J)
23: end procedure

The first thing to note is that f I,J(·) is an increasing function for any fixed I and J . Therefore,

f I,J (m̃i) ≤ f I,J
(
M̃i

)
, (55)

for all levels i.

29

Second, for any level i, and any disjoint sets I and J such that i is not an element of either I or J , we have:

f I,J (m̃i) =
1

K

√
Ni
Ui
· SI + TJ

≤ 1

K

√
Ni
Ui
·
(
SI +

√
NiUi

)
+ TJ

=
1

K

√
Ni
Ui
· SI∪{i} + TJ

= f I∪{i},J (m̃i) . (56)

Moreover,

f I∪{i},J
(
M̃i

)
=

1

di

√
Ni
Ui
· SI∪{i} + TJ

=
1

di

√
Ni
Ui
·
(
SI +

√
NiUi

)
+ TJ

=
1

di

√
Ni
Ui
· SI +

Ni
di

+ TJ

=
1

di

√
Ni
Ui
· SI + TJ∪{i}

= f I,J∪{i}
(
M̃i

)
. (57)

By combining (55), (56), and (57), we can conclude that the function f preserves the order of the (x1, . . . , x2L) terms. In
particular, the algorithm always results in:

Y1 ≤ Y2 ≤ · · · ≤ Y2L.

The last thing to check is that the partition returned by the algorithm for any M is indeed M -feasible. Recall that, for a
particular M , the algorithm finds t such that Yt ≤ M < Yt+1, and then selects the partition (H, I, J) based on It and Jt.
Because of the perfect matching between the xt’s and the Yt’s enabled by the function f , we can deduce some conditions on
M . First, all levels i ∈ I would only be in the set I because the algorithm passed by a m̃i term prior to reached xt, but did
not pass by the term M̃i yet. Hence, m̃i ≤ xt < xt+1 ≤ M̃i. The perfect matching between x and Y gives:

1

K

√
Ni
Ui
SI + TJ = f It,Jt (m̃i) ≤ Yt ≤M < Yt+1 ≤ f It,Jt

(
M̃i

)
=

1

di

√
Ni
Ui
SI + TJ

Similarly, for h ∈ H ,

M < Yt+1 ≤ f It,Jt (m̃h) ≤ 1

K

√
Nh
Uh

SI + TJ +
Nh
K
,

and, for j ∈ J ,
1

dj

√
Nj
Uj
SI + TJ = f It,Jt

(
M̃j

)
≤ Yt ≤M,

which are the conditions of M -feasibility, thus concluding the proof.

30

	I Introduction
	II Problem setup and notation
	II-A Regularity conditions

	III Main theoretical results
	III-A Caching-and-delivery scheme (ML-PAMA)
	III-B Order-optimality of the scheme

	IV Preliminaries
	V Caching-and-delivery strategy
	V-A Single-level with multi-user and multi-access
	V-B Memory-sharing
	V-C Extensions

	VI Information-theoretic impossibility results
	VII Discussion and numerical evaluations
	VII-A Discretizing a continuous popularity distribution
	VII-B Impact of multi-access on the achievable rate
	VII-C Stochastic variations in user profiles
	VII-D Comparison with Least-Frequently Used (LFU)
	VII-E Numerical gap

	VIII Related work
	References
	Appendix A: Proof of the order-optimality of ML-PAMA (Theorem ??)
	A-A Preliminary results
	A-B Gap analysis
	A-B1 Regime 1: mHI'
	A-B2 Regime 2: mI''
	A-B3 Gap

	A-C Proof of preliminary results
	A-D Special case: small number of caches

	Appendix B: Proof of the lower bounds on the optimal rate (Lemmas ?? and ??)
	B-A Proof of the cut-set bounds (Lemma ??)
	B-B Sliding window subset entropy inequality
	B-C Proof of the non-cut-set bounds (Lemma ??)

	Appendix C: Proof of the rate achieved by ML-PAMA (Theorem ??)

