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Low-Delay Distributed Source Coding for
Time-Varying Sources with Unknown Statistics

Fangzhou Chen, Bin Li and C. Emre Koksal

Abstract—We consider a system in which two nodes take
correlated measurements of a random source with time-varying
and unknown statistics. The observations of the source at the first
node are to be losslessly replicated with a given probability of
outage at the second node, which receives data from the first node
over a constant-rate errorless channel. We develop a systemand
associated strategies for joint distributed source coding(encoding
and decoding) and transmission control in order to achieve low
end-to-end delay. Slepian-Wolf coding in its traditional form
cannot be applied in our scenario, since the encoder requires the
joint statistics of the observations and the associated decoding
delay is very high. We analytically evaluate the performance
of our strategies and show that the delay achieved by them
are order optimal, as the conditional entropy of the source
approaches to the channel rate. We also evaluate the performance
of our algorithms based on real-world experiments using two
cameras recording videos of a scene at different angles. Having
realized our schemes, we demonstrated that, even with a very
low-complexity quantizer, a compression ratio of approximately
50% is achievable for lossless replication at the decoder, at an
average delay of a few seconds.

Index Terms—Lossless distributed source coding, universal
algorithms, delay optimal control, heavy-traffic analysis

I. I NTRODUCTION

In many applications, multiple nodes take measurements
from the same source to be combined later in order to obtain a
high resolution representation of the source. In order to achieve
that, nodes encode their digitized observations and share
information for the observations to be replicated at a common
location. Lossless distributed source coding aims to encode
the observations in a way to minimize the rate of exchanged
information for all observations to be perfectly replicated
at a certain location. The nodes exploit the correlations in
their observations to build an efficient code. Following the
seminal work by Slepian and Wolf [17], there has been a vast
interest in lossless distributed source coding (DSC) including
applications in quantum key distribution [12], distributed video
coding [8] and wireless sensor networks [20].

We address the lossless distributed source coding problem
for a pair of nodes, observing a random source with time-
varying statistics, unknown to the nodes before the session
starts. Our objective is to minimize the delay for the second
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Fig. 1: A sample scenario for our problem.

node to losslessly replicate the observations of the first node,
subject to a given desired probability of outage. Communica-
tion from the first node to the second node occurs over a finite-
rate channel. Slepian-Wolf (SW) coding in its traditional form
cannot be applied in our scenario, since the encoder requires
the joint statistics of the observations causally to encodeinfor-
mation. The alternative is to encode across a time period, long
enough to exploit long-term variations of the source. However,
with this approach, the corresponding decoding delay is very
high. To that end, we develop a system and associated novel
strategies for joint distributed source coding (encoding and
decoding) and transmission control in order to achieve low
end-to-end delay. We evaluate the performance of our strate-
gies both analytically and via real-world experimentation. We
first derive upper and lower bounds on the expected delay.
Our bounds show that the delay achieved by our strategies are
order optimal as the conditional entropy of the source (given
the observation at the second node) approaches to the channel
capacity. Next, we use two cameras recording videos of a
common scene at different angles to obtain experimental data.
After evaluating the possible joint source distributions based
on the observations, we apply our schemes and show major
improvements in end-to-end delay over existing traditional
Slepian-Wolf based coding schemes. Theanalytical results
show us that the delay performance of our schemes are very
close to that of a highly-optimistic imaginary scenario, in
which the joint distribution of the source observations are
causally available to encoder, without seeing the observation
at the decoder. Theexperimentalresults show that, even if
we use highly coarse quantization for the source statistics,
the average data rate at which an encoder shares information
to achieve lossless replication at the decoder is reduced by
∼ 50% (compression ratio), at an average end-to-end delay of
6-9 secs.

Sample scenario:In Fig. 1, we provide an example for a
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typical setting1 that we consider in this paper. Here, two
security surveillance cameras observe the action in the en-
vironment, which is time-varying and uncertain. Therefore,
the joint distribution of the observations of the two cameras is
not causally available at these two locations. One of the nodes,
holding a camera would like to replicate the video taken by the
other camera to increase the resolution, in order to enhancethe
detection performance of an intruder, for example. The brute
force approach would be to have the whole video transmitted
to the replicator node over the wireless channel. However, this
would lead to a waste of communication resources, especially
if the wireless channel has a limited capacity. Instead, thefirst
node can exploit the existence of highly correlated observation
at the second (replicating) node to send information merely
“sufficient” for its video to be replicated. This process is
known as lossless distributed source coding. In security appli-
cations, delay is of critical importance. Therefore, traditional
schemes that are based on the utilization of the long-term
statistical regularities are not viable. Furthermore, dueto time-
varying statistics (non-stationarity), the knowledge of the joint
statistics at the encoder is also not a valid assumption, which
calls for universalsolutions for coding.
Background, Related Work, and our Contributions: Loss-
less distributed source coding was first introduced by Slepian
and Wolf in [17]. There, two independently and identically
distributed (i.i.d.) random source sequences,{Xi}

∞
i=1,{Yi}

∞
i=1

with joint cumulative distribution function (cdf)FXY (x, y)
are observed at the encoder and the decoder, respectively. The
objective is to reconstruct sequence{Xi}

∞
i=1 losslessly at the

decoder. Instead of encoding{Xi}
∞
i=1 with its full entropy rate

H(X), SW coding enables lossless replication at an encoding
rateRX = H(X |Y ), regarding{Yi}

∞
i=1 as side information at

the decoder. To achieve this rate, SW coding (i) encodes the
source sequence across infinitely many blocks to achieve an
arbitrarily low probability of decoding error; (ii) requires the
knowledge of the joint cdf,FXY at the encoder. These two
assumptions make direct application of SW coding, but are
inappropriate in some delay-sensitive applications (e.g.live
video meeting, online video streaming etc.) or for cases in
which the joint statistics is unknown, and/or time-varying/non-
stationary in certain situations (e.g. the encoder and decoder
are moving while communicating).

These issues were addressed in a variety of studies, follow-
ing [17]. Many practical coding schemes have been proposed,
e.g. [15], [19]. And most of them are based on channel codes
[18], especially low-density parity check (LDPC) codes [11],
[13]. Nevertheless, perfect knowledge of joint cdf remainsa
widely adopted assumption. Csiszar and Korner first extended
SW coding to achieve universality [3], where neither encoding
nor decoding depends on source statistics. They also analyzed
the finite-block behavior and provided the universally attain-
able error exponent when encoding rates are within the SW-
region, i.e., the region of rates for which lossless replication of
sources is possible with arbitrarily low probability of outage
as the block size goes to infinity. In [1], end-to-end delay is

1In fact, the illustrated scenario is the very case we evaluate in our
experimental observations.

studied in a SW coding setup. There, decoding error exponent
is derived for a given end-to-end delay. If a feedback channel
from the decoder to the encoder is present, [14] proposed
a scheme under lack of the knowledge for the joint cdf.
There, by carefully choosing a sequence of codes, the average
encoding rate is minimized over each frame at the encoder.
Similarly, [9] exploited the feedback channel to send some
information to the encoder for a better performance. With
unknown statistics, [16] studied the outage capacity of the
system and [5] proposed a compound source model to achieve
arbitrarily low probability of outage. In another direction, [4]
proposed universal incremental SW coding, in which an incre-
mental transmission and a universal sequential decision test is
applied by the encoder and decoder, respectively. The system
developed requires the availability of ACK/NAK feedback
from decoder to encoder.

None of the above studies addressed the time varying and
unknown source statistics in the context of delay minimization,
without an active use of a feedback channel. Indeed, if the
prior knowledge of the source statistics is not available, it
may not be possible to feed back the joint statistics without
actually feeding back the actual observation sequence itself.
With that motivation, the main contributions of our paper can
be listed as follows:
(1) We extend the existing studies on universal distributed
source coding by integrating time-varying and unknown joint
statistics, the use of finite-capacity channel from the encoder
to the decoder, and minimization of end-to-end delay.
(2) We specify two different classes of joint encoding, de-
coding, and transmission control strategies, named Wait-to-
Encode and Wait-to-Decode, and develop a strategy in each
class to achieve low-delay in universal distributed source
coding.
(3) We derive upper and lower bounds on the performance of
our strategies. While the bounds are valid in any regime, in
the heavy traffic limit as the channel capacity converges to
the long-term average source rate, we show that our strategies
achieve optimal delay scaling. To achieve that, we develop
and utilize new techniques in heavy-traffic analysis of queues.
We also point out a phase-transition phenomenon on the
achievable delay scaling to show that even a minor degradation
in the knowledge of joint statistics leads to a different scaling
regime.
(4) We implement our stategies in a setup that involves two
cameras recording videos of a common scene at different an-
gles. This setup enabled the real-world experimental evaluation
of the performance of our strategies. We demonstrated that,
even with a low-complexity quantizer, a compression ratio of
∼ 50% is achievable for lossless replication at the decoder, at
an average delay of a few seconds.

II. SYSTEM MODEL

In this paper, we use boldface to represent vectors, upper
case to represent random variables and vectors, and lower case
to represent realizations of random variables and vectors,or
deterministic parameters.

First, we introduce oursource model. In our system, there
are two nodes that take correlated measurements of a random
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Fig. 2: System model.

source. Time is slotted and a single source symbol is taken
by each node in each time slot. We further group time slots
into blocks of sizen time slots and denote the random
measurement taken by the nodes in blockt as Xt and Yt,
respectively. Hence, we will refer to the nodes as nodeX
and nodeY in the sequel. Source symbols are discrete, taking
on values from associated finite setsX andY, for nodeX
and nodeY , respectively. We denote the joint cumulative
distribution function (cdf) of the observed source symbols
in block t with FXtYt

(x,y), and the associated probability
mass function (PMF) withPXtYt

(x,y). We assume the joint
statistics of the blocks to be time varying from one block to
another, but to remain constant within each block (analogous
to block fading models in channel coding) ofn symbols, large
enough to invoke random source coding arguments. Also, the
symbols observed by nodeX andY are i.i.d. in each block:

FXtYt
(x,y) =

n∏

i=1

FXtYt
(xi, yi),

PXtYt
(x,y) =

n∏

i=1

PXtYt
(xi, yi),

whereFXtYt
(x, y) andPXtYt

(x, y) denote the joint cdf and
the associated PMF of a symbol pair in blockt, respectively.
In the sequel, we simply useF(t)(x, y) and P(t)(x, y). We
further assume thatFXtYt

(x, y) takes values from a finite
set F , of possible joint cdfs. Without loss of generality,
we group the joint cdfs inF into m groups as follows:
F = {F11, . . . F1l1 ;F21, . . . F2l2 ; . . . ;Fm1, . . . Fmlm}, where
each group,{Fij}

li
j=1, of joint cdfs have identical marginal

cdfs, i.e.,Fi(x) , Fi1(x,∞) = · · · = Fili (x,∞), Fi(y) ,

Fi1(∞, y) = · · · = Fili (∞, y) for all i, 1 ≤ i ≤ m. Since
nodesX andY merely have their own observationsXt and
Yt, they only have the knowledge of the marginalsFXt

(x) and
FYt

(y), available at the end of blockt, but they do not have
any knowledge ofFXtYt

(x, y) beyond the possible group that
it belongs toF . However, the nodes have the knowledge of
the PMF,PF (Fij) of each possible joint cdf of the node. Note
that, the existence of such a PMF implies a doubly stochastic,
stationary, and ergodic structure in our source model: the joint
cdf in each blockt is chosen at random, i.i.d. with probabilities
parameterized by PMFPF (Fij). Then the source symbols are
chosen at random, according to the associated joint cdfFij .

Next, we present thesystemthat we consider, as illustrated
in Fig. 2. NodeX is connected to nodeY via a noiseless
channel with constant transmission ratec bits per slot. Node
X (source) encodes the observed symbols{Xt} into a string
of bits, which we refer to as the message. We denote the
message created in blockt with Mt. For each block, node
X andY also (possibly) exchange the indices of the marginal

distributions (between1 andm)2, i.e., nodeX sends the index
of Xt and nodeY sends the index ofYt. Note that, to form
a message, the encoder can possibly combine multiple blocks
of source symbols. Consequently, there exist times in which
the encoder chooses to make further observations to combine
with the existing ones and not encode the current block at
the time. For such blocks, a blank message is generated.
For instance, in traditional SW coding, the encoder waits to
observe infinitely many blocks of symbols that are encoded
jointly to take advantage of long-term statistical averaging.
The size of the string dictates the instantaneous rate of the
encoder, denoted byRt bits/slot. Thus, the total number of
bits in messageMt = nRt. In case of a blank message after
block t, Rt = 0 for that block. We ignore the number of
bits the encoder uses to encode the index ofXt in calculating
the rate (i.e.,log2 m ≪ nRt for all non-blank messages).
These messages are transmitted over the channel to be (source)
decoded by the decoder at nodeY . The decoder combines the
received messages with its own observation sequence{Yt} (as
well as the indices of the marginals of blocksXt if available)
in order to losslesslydecode{Xt}. We denote the decoded
sequence with{X̂t}. If for certain blockt, X̂t 6= Xt, we say
that an outage occurred for blockt.

We refer to a strategy as a method that jointly selects the
encoder and the decoder. In particular, a strategy, parameter-
ized withπ, chooses the mapping from the sequence of blocks
{Xt} observed thus far to the messageMt , and the mapping
from the received sequence{Mt} to the decoded blocks{X̂t},
at the end of each block. The set of all strategies is denoted
with Π. Moreover, we do not impose any restriction on the
strategy space such as stationarity or ergodicity.

Finally, we provide thedelay model. We measure the delay
experienced by a block of source symbols as the time elapsed
between the slot that the first source symbol is observed and
the slot that all the symbols of the block is decoded. There
are three different components of the delay that experienced
by Xt. Firstly, for a given strategyπ, a block may experience
a delay,W (π)

E (t), at the encoder. This is due to the fact that
the encoder decides to group the symbols of the block with
the symbols of the subsequent blocks. Next, the messages
(encoded symbols) need to wait to be transmitted over the
channel, since the channel has a finite rate. For instance, if
the message at timet has a rateRt = 2 Mbits/slot and the
channel has a ratec = 1 Mbits/slot, then it takes the message
(encapsulating all blocks encoded) at least2n slots (or 2
blocks) to be transmitted over the channel, even if there is no
other message in transmission at the transmission queue when
the generated messageMt arrives. We denote the transmission
delay associated with a strategyπ with W

(π)
C (t). Lastly,

depending on the encoder strategy, the decoder may choose to
accumulate further information on a source block through fu-
ture messages and thus defer the decoding decision until later.
We denote the decoding delay associated with strategyπ with
W

(π)
D (t). The overall delay experienced in the system with

strategyπ is thus,W (π)(t) = W
(π)
E (t) +W

(π)
C (t) +W

(π)
D (t).

2This consumes a negligible amount of resources, compared tothe size of
the message, sincen is assumed to be large.
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We finalize the section noting that, systems studied in [14]
and [1] can be regarded as two special cases of our system.

III. PROBLEM STATEMENT

In this paper, our objective is to develop strategies that
minimize the end-to-end delay observed by the source, while
keeping the rate of blocks experiencing outage below a certain
desired thresholdǫ ∈ (0, 1). This goal can be achieved by
solving the following problem:

min
π∈Π

lim sup
T→∞

1
T

T∑
t=1

E[W
(π)
E (t) +W

(π)
C (t) +W

(π)
D (t)] (1)

s.t. P{X̂t 6= Xt} ≤ ǫ, ∀t = 1, 2, ...,∞,

where the expectation is taken over the PMF,PF (Fij), of the
source cdfs and the probability of outage is dictated by the
strategyπ, as well asPF (Fij). Note that, while the source
is stationary and ergodic, the strategies need not be stationary
nor ergodic. One thing to be careful about our formulation is
that, the outage probability is imposed onevery singleblock
individually, rather than on average.
Illustrative scenarios:
(1) Known joint cdfs:It is well-known that if the joint cdf,
F(t)(x, y), of the source were known at the encoder, then one
could apply SW encoding and decoding [17] (based on random
binning and typicality decoding) on a block-by-block basis.
Thus, the rate of the messageMt would be the conditional
entropy,H(t)(X |Y ), of the source associated with joint cdf
F(t)(x, y), which would lead to a long-term average encoding
rate of

E[H(t)(X |Y )] =
∑

1≤i≤m

∑

1≤j≤li

PF (Fij) ·Hij(X |Y ),

whereHij(X |Y ) is the conditional entropy givenFij .
With this approach, an arbitrarily low probability of outage

can be achieved asn → ∞ and thus the constraint is met.
The encoding delay is merely a single block for allt, since
each block is immediately encoded. The decoding delay is0
for all t, since each block is immediately decoded. Thus, the
only component of the delay experienced is the transmission
delay, which is finite ifc > E[H(t)(X |Y )].
(2) Accumulate and encode:Without the knowledge of the
joint cdfs, one possibility is to accumulate infinitely many
blocks at the encoder and encode them jointly. That way, node
X can exploit the law of large numbers as the empirical PMF
of the source statistic, converges toPF (Fij) with probability 1.
Thus, the situation becomes that of known joint statistics,and
the long-term average encoding rate ofE[H(t)(X |Y )] can still
be achieved at an arbitrarily low decoding error probability.
However, clearly the encoding delay will be arbitrarily large
with this approach and it cannot be a viable solution for our
problem.
(3) Block-by-block encoding:In the other extreme, where each
block is encoded separately, one has to pick the encoding rate
large enough to ensure the outage constraint is met in each
block. For instance, to achieve arbitrarily low probability of
outage, the encoding rate has to be picked as

Rt = max
1≤i≤m,1≤j≤li

Hij(X |Y ) , Hmax(X |Y ).

While the encoding delay is a single block, the highly con-
servative choice of encoding rate increases transmission delay
significantly, potentially to∞ if c < Hmax(X |Y ).

The above observations motivate us to find a solution
somewhere in between the two extreme approaches depicted in
(2) and (3). Note that, ifc ≫ E[H(t)(X |Y )] the problem be-
comes uninteresting (trivial ifc ≥ Hmax(X |Y )). The problem
becomes interesting forE[H(t)(X |Y )] < c < Hmax(X |Y ).
The major focus in performance analysis will be the case in
whichc is very close to, but slightly larger thanE[H(t)(X |Y )].

While the extension to the case of the time-varying/fading
channels is possible, the nature of the proofs change substan-
tially and the derivations become cumbersome, leading to a
loss in the main insights. Besides, our main objective in this
paper is to address the delay caused by the variations in the
source, as opposed to the temporal variations in the channel.
Therefore, we chose to use static channels in the sequel.

IV. PROPOSEDAPPROACHES

With the mere assumption thatF is a finite set, there
does not exist a well-structured closed-form solution for opti-
mization problem (1), for all possibilities ofF . However, we
propose two structured class of strategies, Wait-to-Encode and
Wait-to-Decode, and show that they are both able to achieve
optimal delay scaling as channel ratec approaches the long-
term average conditional entropyE[H(t)(X |Y )]. Also in both
classes of strategies, we provide ways to jointly encode and
decode multiple (can be single if needed) blocks of source
symbols together. In the rest of this section, our proposed
strategies are presented in details.

A. Wait-to-Encode Strategies

A strategy,πWE , is called Wait-to-Encode if it accumulates
blocks of symbols at the encoder and these blocks are jointly
encoded simultaneously. With Wait-to-Encode, a source block
is encoded only in a single message and no longer kept at the
encoder after encoding. At the end of each blockt, the encoder
makes a decision about generating messageMt, which is
based on whether a condition associated with strategyπWE is
satisfied or not. This condition is parameterized withC(πWE).
Any time a block,Xt, is deferred for future encoding, the
associated message,Mt, at that instant is blank. NodeY de-
codesMt immediately after receiving it, thusW (πWE)

D (t) ≡ 0.
Denoting the set of Wait-to-Encode strategies withΠWE , we
can summarize the general procedure as follows:

Algorithm 1 (Wait-to-Encode Strategy):
Observation:
At the beginning of blockt, supposeK − 1 blocks of source
symbols have been accumulated thus far, forK = 1, 2, . . .,
waiting to be encoded. By the end of blockt, nodeX and
Y observesxt andyt respectively and the marginalsF(t)(x)
andF(t)(y) are interchanged between nodes.
Encoding:
NodeX generates messageMt as follows:

If C(πWE) holds for the accumulated set of blocks
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Blank messageMt is generated, i.e.Rt = 0;
Else

MessageMt is generated via SW encoding at rate
Rt = RX(FK

X , FK
Y , ǫ),

whereFK
X andFK

Y represent the sequence of marginals for
the observations of nodeX and nodeY , respectively and the
encoding rate functionRX(FK

X , FK
Y , ǫ) is chosen as:

RX(FK
X , FK

Y , ǫ) =min RX (2)

s.t.
∑

FK∈F ′K

PF (F
K |FK

X , FK
Y ) ≤ ǫ,

where F ′K,

{

FK∈FK :
t
∑

τ=t−K+1

H(τ)(X|Y )≥RX

}

. SW encoding

is a random coding strategy, in which2
∑t

τ=t−K+1 H(τ)(X) pos-
sible typical nodeX observations are mapped into a binning
structure with2nRX(FK

X ,FK
Y ,ǫ) bins. Then, given the vector of

observations, nodeX finds the bin number of the associated
vector in the binning structure and uses it as messageMt.

Theorem 1:GivenxK , yK , FK
X , FK

Y and the outage proba-
bility constraintǫ > 0, the minimum achievable joint encoding
rate for Mt is the solution of the constrained optimization
problem (2).

Proof: The detailed proof can be found in theAppendix.
To prove this theorem, we utilized random coding and typi-
cality decoding ideas.
Possible choices for ConditionC(πWE): It is clear that the
main differentiator between different Wait-to-Encode schemes
is the choice of ConditionC(πWE). For instance, the two
extreme cases for this class of algorithms are the ones in which
C(πWE) is chosen such that (i)K = ∞ and (ii)K = 1, which
correspond to Illustrative Scenario (2) and (3), respectively. In
general, ConditionC(πWE) dictates the achievable point in the
tradeoff betweenE[W (πWE)

E (t)] andE[W (πWE)
C (t)]. If we try

to keep one of them small, then the other will increase. With
this observation, we propose the following Wait-to-Encode
strategyπ∗

WE , in which the conditionC(π∗
WE) is chosen to

be:
1

K
RX(FK

X , FK
Y , ǫ) > c. (3)

Thoughπ∗
WE is not necessarily optimal with respect to Prob-

lem (1), we prove in Section V that it achieves optimal delay
scaling as channel ratec approaches the expected entropy rate,
E[H(t)(X |Y )], of the observation at nodeX .

B. Wait-to-Decode Strategy

In a Wait-to-Decode strategy,πWD, the encoder generates
messageMt with encoding rateRt = c, at the end of each time
block t. For some blocks, this rate will be sufficient to decode
Xt at the desired probability of outage. For those blocks that
acquire higher encoding rates, blockXt is not dropped at the
encoder, but jointly encoded with the subsequent blocks of
source observations. Once the encoder decides that sufficient
information is accumulated at the decoder so that the group of
blocks encoded can be decoded with the desired probability
of outage, the blocks at the encoder are removed and the next

block is encoded by itself, to start the process afresh. With
Wait-to-Decode strategy, the main delay is experienced at the
decoder, since the messages are accumulated there. Once the
delay is calculated at the decoder, the other components of
delay can be written asW (πWD)

E (t) ≡ 1 andW
(πWD)
C (t) ≡

n·Rt

n·c = 1 time block (due to the encoding rateRt = c).
Motivated by the sequential binning strategy proposed

in [1], we propose the following Wait-to-Decode strategy:

Algorithm 2 (Wait-to-Decode Strategy):
Observation:
At the beginning of blockt, supposeK − 1 blocks of source
symbols and messages have been respectively accumulated
at nodeX and Y thus far, forK = 1, 2, . . ., waiting to be
decoded. By the end of blockt, nodeX andY observesxt

andyt respectively and the marginalsF(t)(x) andF(t)(y) are
interchanged between nodes.
Encoding:
Node X generates messageMt for jointly encoding xK

via sequential SW encoding at rateRt = c. Sequential
SW encoding is also a random coding strategy, in which
2
∑

t
τ=t−K+1 H(τ)(X) possible typical nodeX observations are

mapped into a binning structure as with2n·c bins. Then, given
the vector of observations, nodeX finds the bin number of
the associated vector in the binning structure and uses it as
messageMt. After accumulating the bin number sequence,
i.e. message sequence(Mt−K+1, ...Mt), this sequence of bin
numbers is sequentially connected and treated as the ‘bin
number’ in traditional SW coding.
Decoding:
After receiving messageMt, nodeY decodes the accumulated
messages(Mt−K+1, ...Mt) as follows:

If 1
K
RX(FK

X , FK
Y , ǫ) ≤ c holds

Jointly decode all the accumulated messages
(Mt−K+1, ...Mt), removexK from the encoder and
start afresh;

Else
All the messages(Mt−K+1, ...Mt) keep being ac-
cumulated at nodeY , waiting for the subsequent
message(s).

Notice that, we described only one Wait-to-Decode strategy,
without any control condition. The main reason is that, here,
we use a constant encoding rate (as opposed to thevariable-
rate encodingin Wait-to-Encode class of strategies) and at
the same time nodeY decides to decode the accumulated
messages as soon as the probability of outage goes below
the desired threshold. We show in Section V that our Wait-to-
Decode strategy also achieves optimal delay scaling as channel
ratec goes down toE[H(t)(X |Y )].

C. Comparison of Wait-to-Encode and Wait-to-Decode
Both proposed strategies have their own advantages and

disadvantages. Under our Wait-to-Encode strategyπWE , we
carefully control the encoding rate, which is variable. We
choose ConditionC(π∗

WE) in a way to minimize the encoding
delay by transmitting the group of blocks, as soon as the
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encoding rate goes below the channel rate. The optimal design
of C(πWE) is complicated due to the strong coupling between
the encoder and the channel, where the instant arrival rate of
the channel, i.e.Rt, depends on our control decisions.

On the other hand, under the Wait-to-Decode strategyπWD,
we only have messages accumulating at the decoder. Due to
the lack of control in our scheme, the end-to-end expected
delay can be fairly large for certain blocks (despite being order
optimal). For example, once a (very-long) block, demanding
large SW encoding rate is observed, i.e., the required encoding
rate is way abovec, the decoder needs to wait for many
subsequent blocks for things to smooth out in the long term.
This is identical to the so calledslow truck effectin First-in-
First-out type queue scheduling.

V. PERFORMANCEBOUNDS

In this section, we derive upper and lower bounds for the
end-to-end delay under both Wait-to-Encode strategyπWE and
Wait-to-Decode strategyπWD.

While our results aregeneralfor all possible values of the
parameters, one of our main focus will be on the case in which
the channel transmission ratec is larger than, but close to
E[H(t)(X |Y )]. To formalize this, we define parameterη with
0 < η < 1 such that

c =
1

(1 − η)
· E[H(t)(X |Y )]. (4)

The channel ratec can be varied (but remains constant once
given) by adjusting the value of the parameterη. The cases in
which η is close to0, i.e., c ≈ E[H(t)(X |Y )] are referred to
as theheavy trafficregime. Heavy-traffic regime is particularly
interesting in cases when we want to fully utilize the available
channel, while achieving a low finite end-to-end delay. The
results in this section reveal that both strategies achievethe
order-optimal delay performance with respect to Problem (1)
in heavy-traffic regime, i.e.,η ↓ 0. At the end of the section,
we illustrate the bounds via a simple numerical example.

Recall that the set of possible joint cdfsF =
{F11, . . . F1l1 ;F21, . . . F2l2 ; . . . ;Fm1, . . . Fmlm}. Note that if
li = 1, ∀1 ≤ i ≤ m, then the marginal distribution information
is equivalent to know the joint cdf information, for which the
delay analysis becomes trivial. In fact, as we will discuss later,
the delay scaling changes in the case of the availability of joint
cdf, pointing out aphase transitionphenomenon. The main
focus in this section is in the case where there exists anm∗

with 1 ≤ m∗ < m such thatli = 1 for any i ≤ m∗ andli > 1
for m∗ + 1 < i ≤ m. To simplify notations, we make the
following definitions:

φij , PF (Fij), φi ,

li∑

j=1

φij ,

Hmaxi
(X |Y ) , max

1≤j≤li
Hij(X |Y ),

where φi and Hmaxi
denote the sum probability and the

maximum conditional entropy of all joint cdfs in groupi.
Next, we define some quantities that we use in expressing

the performance. For all(i, j) such that1 ≤ i ≤ m, 1 ≤ j ≤

li, let

σ2
H ,

m∑

i=1

li∑

j=1

φij

(
Hij(X |Y )− E[H(t)(X |Y )]

)2
,

EHi
,

li∑

j=1

φij

φi

Hij(X |Y ), ci ,
1

1− η
· EHi

,

σ2
Hi

,

li∑

j=1

φij

φi

(Hij(X |Y )− EHi
)
2
.

Note that,σ2
H is defined as the variance of the conditional

entropies caused by variations in the joint cdff.EHi
and

σ2
Hi

denote the normalized expectation and variance of the
conditional entropies associated with the joint cdfs in group
i. Also, let us succinctly denote the objective function of
optimization problem (1) withE[W

(π)
(t)], i.e.,

E[W
(π)

(t)] , lim sup
T→∞

1

T

T∑

t=1

E[W
(π)
E (t) +W

(π)
C (t) +W

(π)
D (t)].

A. Delay Upper Bounds
In this section, we provide upper bounds on the end-to-end

delay achieved by Wait-to-Encode strategyπ∗
WE and Wait-to-

Decode strategyπWD to be valid for all values ofη.
Theorem 2:For a given set of possible joint cdfs,

F , expected average end-to-end delayE[W
(π∗

WE)
(t)] and

E[W
(πWD)

(t)] can be upper bounded as follows:

E[W
(π∗

WE)
(t)] ≤

3 · γ

2
·
1

η2
+

1

2
, (5)

E[W
(πWD)

(t)] ≤
γ

2
·
1

η2
+

3

2
, (6)

where

γ =
−2 ln ǫ · σ2

H

E[H(t)(X |Y )]2

[
(1− η)2 +

MHE[H(t)(X |Y )]

3σ2
H

· (η − η2)

]
,

MH = Hmax(X |Y )− E[H(t)(X |Y )].

Proof: Both strategies achieve their upper performance
bounds in the worst case scenario when the encoder and
the decoder do not use the marginal cdf of source symbols
(or the marginal cdfs are useless, e.g.m = 1, l1 > 1). In
such case, the joint encoding rate functionRX(FK

X , FK
Y , ǫ)

no longer depends onFK
X or FK

Y , but the value ofK. Hence,
RX(FK

X , FK
Y , ǫ) can be simply written asRX(K, ǫ). Based

on this fact, we define constantKc as:
Kc , min K (7)

s.t. P

{
t∑

τ=t−K+1

H(τ)(X |Y ) > K · c

}
≤ ǫ.

Since {H(τ)(X |Y ), τ ≥ 0} is an i.i.d. process with mean
E[Ht(X |Y )], which is less than c, there always exists a
solution to (7) for all η ∈ (0, 1). Thus, it is clear that
RX(Kc, ǫ) ≤ c. Thus, in Wait-to-Encode strategyπ∗

WE ,
the encoder will always accumulateKc blocks to jointly
encode; while in Wait-to-Decode strategyπWD, the decoder
will always accumulateKc blocks to jointly decode (because
of the lack of side information from the observation of the
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marginals). Since everyKc blocks form a cycle which will
repeat over and over again in both strategies, the expected
average end-to-end delay under the worst case scenario, i.e.
E[W

(π∗
WE)

WC (t)] and E[W
(πWD)

WC (t)], can be easily derived as
follows:

E[W
(π∗

WE)

WC (t)] =
1

Kc

t∑

τ=t−Kc+1

[WE(τ) +WC(τ) +WD(τ)]

=
3Kc

2
+

1

2
, (8)

sinceWE(τ) = t− τ + 1, WC(τ) ≡
c·Kc

c
, andWD(τ) ≡ 0;

E[W
(πWD)

WC (t)] =
1

Kc

t∑

τ=t−Kc+1

[WE(τ) +WC(τ) +WD(τ)]

=
Kc

2
+

3

2
, (9)

sinceWE(τ) = WC(τ) ≡ 1, andWD(τ) = t− τ .

In general,Kc is difficult to be exactly evaluated. Yet, we
can make use of Chernoff bound to approximately calculate
Kc, denoted byK̃c. From Theorem 2.11 in [7], we have

P

{
t∑

τ=t−K+1

H(τ)(X |Y ) > K · c

}

≤ exp

{
−

Kη2c2

2(σ2
H +MH · c · η/3)

}
.

Therefore, if we definẽKc as:

K̃c = min K

s.t. exp

{
−

Kη2c2

2(σ2
H +MH · c · η/3)

}
≤ ǫ,

then we have

K̃c =
−2 ln ǫ · σ2

H

c2 · η2
·

(
1 +

MH · c

3σ2
H

· η

)
. (10)

By substituting (10) into (8) and (9), replacingKc and c

with K̃c and
E[H(t)(X|Y )]

1−η
respectively, we complete the proof.

Note thatγ scales asO(1) asη approaches0. Theorem 2
indicates that without any marginal distribution information,
the expected end-to-end delay under both WE and WD strate-
gies scales asO(1/η2). Next, we derive lower bounds for the
same delay and show that the lower bounds also have the
same scaling law. This indicates that our algorithms are order
optimal.

B. Delay Lower Bounds

Next, we evaluate lower bounds on the end-to-end expected
delay achieved for allπWE ∈ ΠWE andπWD.

Theorem 3:Given the set of possible joint cdfsF , ex-
pected delaysE[W

(πWE)
(t)] andE[W

(πWD)
(t)] can be lower

bounded as:

E[W
(πWE)

(t)] ≥ max
m∗+1≤i∗≤m



(1− η)

∑

i6=i∗

φiEHi

E[H(t)(X |Y )]

+ φi∗

(
4γi∗ · EHi∗

27 · E[H(t)(X |Y )](1 + βi∗)2
·
1

η2
+

1

6

)}
(11)

E[W
(πWD)

(t)] ≥ max
m∗+1≤i∗≤m




(1 − η)
∑

i6=i∗

φiEHi

E[H(t)(X |Y )]

+φi∗

(
2γi∗ · EHi∗

27 · E[H(t)(X |Y )](1 + βi∗)2
·
1

η2
+

1

2

)}
, (12)

whereγi∗ =
−2 ln ǫ·σ2

Hi∗

E2
Hi∗

·

[
(1− η)2 +

MHi∗
·EHi∗

3σ2
Hi∗

· (η − η2)

]
,

MHi∗
= Hmaxi∗

(X |Y )− EHi∗
, andβi∗ =

∑

i6=i∗
φiEHi

φi∗EHi∗
.

Proof: We only provide the detailed derivation of the
lower bound forπWE , since the lower bound ofπWD can
be derived by following identical steps.

First, we propose a genie-aided strategy whose delay per-
formance lower bounded all Wait-to-Encode strategies. Fix
any i∗ such thatm∗ + 1 ≤ i∗ ≤ m. We define this genie-
aided scenario corresponding toi∗ in which the instantaneous
joint cdf F(t) is provided to both of the nodes by a genie,
if F(t) /∈ {Fi∗1, ...Fi∗li∗}, i.e. F(t) does not belong to the
i∗th group of possible joint cdfs. Hence, all strategies can
achieve as good performances, if no better, by exploiting more
information about the joint source statistics. Consequently, the
expected delay achieved byπWE in the genie-aided scenario,
denoted byE[W

(πWE)

GCi∗
(t)], can serve as the lower bound of

the delay performance achieved by allπWE ∈ ΠWE , i.e.,

E[W
(πWE)

(t)] ≥ E[W
(πWE)

GCi∗
(t)]. (13)

Next, we further provide the lower bound onE[W
(πWE)

GCi∗
(t)]:

E[W
(πWE)

GCi∗
(t)] ≥ (1− η)

∑

i6=i∗

φici
c

+ φi∗

∞∑

K=1

α
(πWE)
K

(
K + 1

2
+

RX(FK
Xi∗

, FK
Yi∗

, ǫ)

c

)
, (14)

whereα(πWE)
K denotes the empirical probability such that K

blocks, with joint pdfs belong to thei∗ group, are jointly
encoded under strategyπWE . This inequality holds, since we
take the following procedures to further reduce the end-to-end
delay: 1) For the blocks with joint cdfFij (i 6= i∗), decode
them block by block with encoding rateHij(X |Y ) and only
take the transmission delay into account , i.e.Hij(X|Y )

c
; 2)

Assume that the channel is always idle and ready to serve
whenever a message arrives.
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For RX(K, ǫ) = RX(FK
Xi∗

, FK
Yi∗

, ǫ), we further derive the
lower bound of the second term in (14) as follows:

∞∑

K=1

α
(πWE)
K ·

(
K + 1

2
+

RX(K, ǫ)

c

)

(a)
=

K′−1∑

K=1

α
(πWE)
K ·

(
K + 1

2
+

RX(K, ǫ)

c

)
+

∞∑

K=K′

α
(πWE)
K ·

(
K + 1

2
+

RX(K, ǫ)

c

)

(b)

≥

K′−1∑

K=1

α
(πWE)
K ·

(1 + r(1 + βi∗)η) ci∗

c
+

∞∑

K=K′

α
(πWE)
K ·

(
K ′ + 1

2
+

K ′ · (1− η)ci∗

c

)

(c)
=

α · ci∗

c
· (1 + r(1 + βi∗)η) +

(1 − α) · ci∗

c
·

(
(K ′ + 1) · c

2ci∗
+K ′(1− η)

)

(d)

≥
·ci∗

c · (1 + r)
· (1 + r(1 + βi∗)η) +

r · ci∗

c · (1 + r)
·

(
(K ′ + 1) · c

2ci∗
+K ′(1− η)

)

(e)

≥
4ci∗

27c
· γi∗ ·

1

(1 + βi∗)2 · η2
+

1

6
, (15)

where step (a) holds for K ′ = K(1+r(1+βi∗)η)ci∗ , in which
constantK(1+r(1+βi∗)η)ci∗ is defined in the same way as in
(7) by replacingc with (1 + r(1 + βi∗)η) ci∗ , for somer > 0
and F(τ) ∈ {Fi∗1, ...Fi∗li∗}; step (b) follows from the fact
that 1

K
RX(K, ǫ) ≥ (1 + r(1 + βi∗)η) ci∗ for K < K ′, and

the fact that 1
K
RX(K, ǫ) ≥ (1− η)ci∗ (the equality can only

be achieved whenK → ∞); step (c) is true for takingα =
K′−1∑
K=1

α
(πWE)
K ; step (d) holds whenα achieves its maximum,

1
1+r

, under the average encoding rate constraint:
∞∑

K=1

α
(πWE)
K ·

RX (K,ǫ)
K

≤ (1 + (1 + βi∗)η) ci∗ ; step (e) follows by setting
K ′ = K̃ ′, and further bounding̃K ′ from below by K̃ ′ ≥
γi∗ · 1

(1+r)2(1+βi∗ )2η2 via similar steps we have used in the
proof of Theorem2 with r = 1

2 .
By substituting (15) into (14), taking the maximum over all

i∗, combining with inequality (13), and replacingc, ci andci∗
with

E[H(t)(X|Y )]

1−η
,

EHi

1−η
and

EHi∗

1−η
respectively, we have the

desired result.

Note thatγi∗ scales asO(1) whenη approaches0. There-
fore, Theorem 3 reveals that the end-to-end delay scales as
Ω(1/η2) under both WE and WD strategies.

C. Delay Scaling with Known Joint Distribution

From Theorem 2 and Theorem 3, we showed that both WE
and WD strategies achieve order-optimal delay performance
that scales asO(1/η2) in the heavy-traffic regime, i.e.,η ↓ 0.
Also, one interesting observation is that the marginal distri-
bution information does not necessarily improve the delay

!"#$$%&'

c bits/slotH(t)(X|Y ) bits/slot

Mt

Fig. 3: Source symbols are enqueued as messagesMt, at the
input of the channel for transmission at fixed ratec bits/slot.

scaling. This is in contrast to the case where the perfect
knowledge of the joint cdf is available.

When the joint cdf is known, which refers to Illustrative
Scenario (1), traditional SW encoding and decoding can be
applied on a block-by-block basis. Hence, each source block
experiences unit time block delay and zero delay at the encoder
and decoder, respectively, i.e.:

W
(π)
E (t) ≡ 1, W

(π)
D (t) ≡ 0. (16)

Also, source blockXt is encoded asMt at rateH(t)(X |Y ),
and then transmitted over the channel. Thus, we have a queue
at the input of the channel with random arrivalsH(t)(X |Y )
and constant service ratec (bits/slot), as presented in Fig.
3. It can be proved that the expected delay experienced in
the channel,E[W (π)

C (t)], scales withO(1/η) (via a direct
application of [6, Lemma 4], which analyzes the delay scaling
in a single FIFO queue) in the heavy-traffic regime, i.e.η ↓ 0.
Together with (16), we can conclude that the expected end-
to-end delayE[Wπ(t)] scales with(1/η). This points out a
phase transition phenomenon: Even a minor degradation
in the knowledge of joint statistics at the encoder -from
perfect knowledge to a slightly imperfect knowledge- leads
to a different scaling regime in the expected delay.

D. Numerical Evaluation

To illustrate how the performance bounds vary with
η, we study a simple example as follows: (i)F =
{F11, F21, F22, F31, F32, F33}, ǫ = 0.01; (ii) φ11 = 0.1,
φ21 = φ22 = 0.2, φ31 = 0.12, φ32 = φ33 = 0.19; (iii)
Hij(X |Y ) = i + j. Thus the source entropy varies between
2−6 bits/symbol. In Fig 4, we plot the upper and lower bounds
on the expected delay for the observations taken at nodeX
to be replicated at nodeY , measured in number of blocks (n
slots), as a function of the heavy-traffic parameter inverse1/η.
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Fig. 4: Delay bounds for Wait-to-Encode and Wait-to-Decode
schemes: both x-axis and y-axis are in logarithmic scale.
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Examining the plots, one can see that both upper and lower
bounds scale asO(1/η2) as η → 0, which reflects the order
optimality of our proposed strategies. Also, for the above set of
parameters, the bounds slightly favor Wait-to-Decode strategy,
but note that, this is not a typical trend and one can come up
with another set of parameters for which the opposite holds.

VI. EXPERIMENTAL EVALUATION

To illustrate the performance of average end-to-end delay
and compare the proposed encoding and decoding strategies,
we set up an experiment which emulates a possible application
of our problem in real-time streaming networks. As shown
in Fig. 1 and discussed in Section I, we set two cameras at
different locations at still to record people walking by in a
busy street. The distance between the cameras is20 meters
and the directions they face are at a90◦ angle to one another.

After synchronization, we end up with two correlated un-
compressed video frame sequences. For the video signals,
each frame has a size1024 × 1024, where each pixel is
represented with3 bytes (associated with RGB-index), hence
each frame is a3 MB sample. The frame rate is60 frame/sec,
i.e. the streaming rate of the uncompressed video is180 Mbps.
We regard each frame as one video symbol (a very large
one) and pile up everyn = 180 symbols to form blocks
{Xt}, {Yt} in our model, i.e., a time slot is1/60 secs
long and a block is3 secs long. The empirically generated
time-varying joint (marginal) cdf sequences are represented
by {F(t)(x, y)}, {F(t)(x)}, and{F(t)(y)}.

To form the setF , we use a pilot shot over a certain
duration. Due to the huge size of the symbols and the unpre-
dictable environment, developing the exact representation of
setF is not possible. Thus, we quantize the set of all possible
distributions: Firstly, using the pilot sequence, we calculate
the relative entropy of each blockt with respect to block1,
i.e.D

(
F(t)(x, y)||F(1)(x, y)

)
, which gives us the sequence of

relative entropies{D(t)(x, y)}. Next, we quantize the values
of {D(t)(x, y)} into 128 intervals and treat each quantization
level as a single joint distribution, one which is randomly
picked from each interval. Hence, we end up with128 different
quantized joint cdfs{Fij(x, y)} in order to form the setF .
Finally, we repeat an identical quantization process for the
marginal cdf sequences{Fij(x)} and{Fij(y)}, but we set the
number of quantization intervals to8 this time. Thus, we have
64 different combinations of marginal cdf pairs. Recall that
F = {F11, . . . F1l1 ;F21, . . . F2l2 ; . . . ;Fm1, . . . Fmlm}, hence
m = 64 after the above quantization process. The empirical
PMFPF (Fij) can be calculated with respect to eachFij ∈ F ,
using the pilot shot. Hence, we use anextremely coarse quan-
tizer in the representation of the sources. One of our main
objectives is to show that, even with such coarse quantization,
it is possible to achieve a substantial compression ratio (e.g.,
reduction in the rate of data transmission from nodeX to node
Y ) for Xt to be replicated at nodeY . After the pilot shot, we
first quantize the observed new frames as described above.
After quantization, the conditional entropy rate we observed
from the combined pilot shots turned out to be76.5 Mbps,
which we take as the basic limit for the minimum rate node

X needs to transmit for lossless recovery (0-outage) at node
Y . Note that, once we obtain the video traces based on real-
world data and construct setF , we use simulations to evaluate
the performance of the system. We ran these real-world data-
driven simulations for106 blocks of video symbols.

In our first evaluation, we focus on the heavy-traffic sce-
nario. Transmission rate is fixed atc = 1

1−η
× 76.5 Mbps,

for a given heavy-traffic parameterη. The end-to-end delay
experienced by each block was stored and then used to
calculate the average delay over all106 blocks. Average delay
is plotted vs.η−1 in Fig. 5a for Wait-to-Encode strategyπ∗

WE ,
Wait-to-Decode strategyπWD, along with their associated
upper/lower bounds we derived in Section V. In the plot, ‘WE’
and ‘WD’stand for ‘Wait-to-Encode’ and ‘Wait-to-Decode’.

As can be observed in Fig. 5a, the expected delay of all
proposed strategies scale asO( 1

η2 ) as η → 0. Note that,
even thoughπWD achieves better performance thanπ∗

WE

in our experiment, this is not necessarily a common trend
for all possible Wait-to-Encode strategies. Also, it is worth
mentioning that the bounds become tighter, as the traffic load
gets lower.

Next, we plot the encoding rate chosen by our Wait-to-
Encode strategy,π∗

WE , as a function of time, for various values
of η and outage probability constraintǫ. Note that, in Wait-to-
Decode strategy,πWD, the encoding rate is always identical
to c, which we choose to be1

1−η
× 76.5 Mbps in these plots.

In Fig. 5b, we illustrate the encoding rate, measured regularly
across blocks. In particular, we take one sample per104 blocks
through the entire trace. The channel rate (thus the encoding
rate forπWD) is c = 102 and 77.3 Mbps for η = 0.75 and
0.99, respectively. One can see in Fig 5b, if the traffic is light
(i.e., the average conditional entropy of the source is much
smaller than the channel rate),π∗

WE chooses the encoding rate
high, since the fixed channel transmission rate is sufficiently
large to choose encoding rate more aggressively to reduce
delay. Also, as expected, a smaller value ofǫ requires higher
encoding rate to keep the outage constraint to be met. Finally,
note that the long-term average encoding rate withπ∗

WE will
always be smaller than that withπWD, but the ratio of the
average encoding rates will be no less than1− η.

Another interesting observation from this plot is the follow-
ing. Recall that the rate of the uncoded video is180 Mbps;
thus, with the available channel rates, it is not possible for
the uncoded video to be transmitted from nodeX to nodeY .
However, even with the highly coarse quantization that we use
for the source observations, we reduced the average encoding
rate (i.e., the rate at which nodeX transmits to nodeY ) to
between75-85 Mbps at an outage probability of0.05, which
corresponds to a compression ratio of approximately50% at
a reasonably low block delay, which will be analyzed next.

Finally, we focus on the delay for two different values
of ǫ at η = 0.25, which corresponds to a75% utilization.
We plot the sample path for the end-to-end block delay in
Fig. 5c for strategiesπ∗

WE and πWD. In these experiments,
c = 102 Mbps. With only a delay of6-9 secs, we achieve
an outage probability of0.05. This delay achieved, combined
with the 50% compression ratio demonstrates the efficacy of
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Fig. 5: Experimental Results. With a delay of a few blocks, the compression ratio of around50% is achievable for lossless
replication subject to a probability of outage of0.05.

our system. We believe much higher compression ratios could
be possible with finer quantizers and higher correlations be-
tween sources. Finally, note that the end-to-end delay becomes
constant as the transmission rate increases (low utilization),
leading to Illustrative scenario (3), depicted in Section III. In
that case, block-by-block encoding becomes the best scheme.
Discussion: There is another alternative for our system de-
sign that we did not consider here, as it pertains to video
compression. The observed video signal at nodeX can be
compressed via standard video compression techniques (non-
distributed), independently of the observation of nodeY . The
basic limit for the rate after that process isE[H(t)(X)], while
one can achieve a much smaller rateE[H(t)(X |Y )] (i.e., a
much higher compression ratio) with the distributed approach.
One important question that we are planning to answer as a
part of future work is the comparison of our schemes with
standard video compression. We will study systematic ways
to develop quantizers (possibly more complex than we have
here) that are simple, yet provide significant gains over the
best available non-distributed video compression techniques.

VII. C ONCLUSIONS

We studied the lossless distributed source coding problem
in which there exists a pair of nodes, observing a random
source with time-varying statistics, unknown to the nodes
before the session starts. We formulated the problem as that
of minimization of end-to-end delay for the observations of
one of the nodes to be replicated at the other node, subject
to a certain desired outage probability. Even though, it is not
possible to come up with well-structured solutions to the basic
problem, due to the generality of the set of distributions, we
developed two different classes of strategies, Wait-to-Encode
and Wait-to-Decode that areprovably order optimal in the
heavy traffic limit. After analytically deriving general bounds
for the expected delay achieved by our schemes, we fur-
ther experimentally demonstrate the efficacy of the schemes,
using a setup involving two cameras, obtaining videos of
a common scene at different angles. We showed that, even
with a very low-complexity quantizer, a compression ratio of
approximately50% is achievable for lossless replication at the
decoder, at an average delay of5-10 seconds.

APPENDIX

Proof: Without loss of generality, in the proof, we replace
‘ t’ and ‘t − K + 1’ in the statement of the theorem with
‘ t+K − 1’ and ‘t’ respectively.

First, we define the typical sequencesAKn
ǫ (X |FK

X ),
AKn

ǫ (Y |FK
Y ) and joint typical sequenceAKn

ǫ (X,Y |FK) as
following:

AKn
ǫ (X |FK

X ) =
{
xK : |S′K

X − S
K

X | ≤ ǫ
}

AKn
ǫ (Y |FK

Y ) =
{
yK : |S′K

Y − S
K

Y | ≤ ǫ
}

AKn
ǫ (X,Y |FK) =





(xK ,yK) :

|S′K

X − S
K

X | ≤ ǫ

|S′K

Y − S
K

Y | ≤ ǫ

|S′K

XY − S′K

XY | ≤ ǫ






where

S′K

X = −
1

Kn

t+K−1∑

τ=t

logP(τ)(xτ ),

S
K

X =
1

K

t+K−1∑

τ=t

H(τ)(X),

S′K

Y = −
1

Kn

t+K−1∑

τ=t

logP(τ)(yτ ),

S
K

Y =
1

K

t+K−1∑

τ=t

H(τ)(Y ),

S′K

XY = −
1

Kn

t+K−1∑

τ=t

logP(τ)(xτ ,yτ ),

S
K

XY =
1

K

t+K−1∑

τ=t

H(τ)(X,Y ).

And the (joint) typical sequences have following properties:
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1)

2−n
(
SK
X

)+
≤

t+K−1∏

τ=t

P(τ)(xτ ) ≤ 2−n
(
SK
X

)−

2−n
(
SK
Y

)+
≤

t+K−1∏

τ=t

P(τ)(yτ ) ≤ 2−n
(
SK
Y

)−

2−n
(
SK
XY

)+
≤

t+K−1∏

τ=t

P(τ)(xτ ,yτ ) ≤ 2−n
(
SK
XY

)−

2)

P
{
(xK ,yK) ∈ AKn

ǫ (X,Y |FK)
} n→∞
−−−−→ 1

P
{
xK ∈ AKn

ǫ (X |FK
X )
} n→∞
−−−−→ 1

P
{
yK ∈ AKn

ǫ (Y |FK
Y )
} n→∞
−−−−→ 1

3)

(1 − ǫ) · 2n
(
SK
X

)−
≤ |AKn

ǫ (X |FK
X )| ≤ 2n

(
SK
X

)+

(1− ǫ) · 2n
(
SK
Y

)−
≤ |AKn

ǫ (Y |FK
Y )| ≤ 2n

(
SK
Y

)+

(1− ǫ) · 2n
(
SK
XY

)−
≤ |AKn

ǫ (X,Y |FK)| ≤ 2n
(
SK
XY

)+

4) ∀ yK ∈ AKn
ǫ (Y |FK

Y ),

|AKn
ǫ (X |FK ,yK)| ≤ 2n

(
SK
X|Y

)+

where

SK
X =

t+K−1∑

τ=t

H(τ)(X),

SK
Y =

t+K−1∑

τ=t

H(τ)(Y ),

SK
XY =

t+K−1∑

τ=t

H(τ)(X,Y ),

SK
X|Y =

t+K−1∑

τ=t

H(τ)(X |Y ),

(S)− = S − δ(ǫ), (S)+ = S + δ(ǫ).

And δ(ǫ) > 0 is a function ofǫ satisfying:δ(ǫ)
ǫ→0
−−−→ 0. Prop-

erty 1 follows by the definition of (joint) typical sequences;
Property2 can be proved by laws of large numbers(LLN);
Property3 follows by the first two properties; Property4 can
be achieved with the first three properties.

Second, we focus on the encoding and decoding process for
Wait-to-Encode and Wait-to-Decode strategies:
Wait-to-Encode Strategy: Codebooks are generated accord-
ing to the number of blocks K, thus we have a sequence of
codebooks:{CK}. To generate each codebookCK , all pos-
sible sequencesxK are uniformly distributed into2nRt+K−1

bins, whereRt+K−1 is the chosen joint encoding rate for
Mt+K−1. These codebooks are shared between the encoder
and decoder beforehand. Upon receiving theX symbol se-
quencexK , the encoder checks whether this is a typical
sequence. If so, the encoder finds out the bin number, denoted
asB(xK) and shortly asBK , in which the sequence locates.

Otherwise, setBK equal to 1. Then the encoder sendsBK

to the decoder as encoded message, i.e.Mt+K−1 = BK .
Upon receiving the encoded messageBK , the decoder picks
each sequencêxK in the bin BK which satisfiesx̂K ∈
AKn

ǫ (X |FK
X ), and tests if there existŝFK such that the fol-

lowing two conditions hold: (1)(x̂K ,yK) ∈ AKn
ǫ (X,Y |F̂K);

(2) PF (F̂
K |FK

X , FK
Y ) > 0. If there exits more than one

sequencêxK with its correspondinĝFK satisfying the afore-
mentioned two conditions, then select the sequence with
highest value ofPF (F̂

K |FK
X , FK

Y ) as the decoded message.
And if there exists no such sequence, the decoder reports an
failure of decoding.
Wait-to-Decode Strategy: For k = 1, 2, ...K, codebooks
are generated according to the numberk, thus we have a
sequence of codebooks:{Ck}. To generate each codebookCk,
all possible sequencesxk are uniformly distributed into2n·c

bins, wherec is the chosen joint encoding rate forMt+k−1,
i.e. Rt+k−1 = c. These codebooks are shared between the
encoder and decoder beforehand. Upon receiving theX sym-
bol sequencexk, the encoder checks whether this is a typical
sequence. If so, the encoder finds out the bin number, denoted
asB(xk) and shortly asBk, in which the sequencexk locates.
Otherwise, setBK equal to 1. Then the encoder sendsBk to
the decoder as the encoded message, i.e.Mt+k−1 = Bk. Upon
receiving the encoded message sequence{Bk}, the decoder
picks each sequencêxK , which has the same bin number
sequence{Bk} and satisfieŝxK ∈ AKn

ǫ (X |FK
X ), and tests if

there existsF̂K such that the following two conditions hold:
(1) (x̂K ,yK) ∈ AKn

ǫ (X,Y |F̂K); (2) PF (F̂
K |FK

X , FK
Y ) > 0.

If there exits more than one sequencex̂
K with its correspond-

ing F̂K satisfying the aforementioned two conditions, then
select the sequence with highest value ofPF (F̂

K |FK
X , FK

Y )
as the decoded message. And if there exists no such sequence,
the decoder reports an failure of decoding.

Third, we finalize the proof with decoding error analysis
for both strategies. There exists three decoding error events,
denoted asε1, ε2 andε3, which are defined as following:

ε1 =
{
(xK ,yK) 6∈ AKn

ǫ (X,Y |FK)
}

ε2 =

{
∃x̂K 6= xK :

B̂K = BK , (x̂K ,yK) ∈ AKn
ǫ (X,Y |FK)

}

ε3 =

{
∃x̂K 6= xK , F̂K 6= FK :

BK = B̂K , (x̂K ,yK) ∈ AKn
ǫ (X,Y |F̂K)

}

whereB̂K = B(x̂K), FK denotes the true joint cdf sequence.
Wait-to-Encode Strategy:By asymptotic equipartition prop-
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erty(AEP), we have:P{ε1} → 0 asn → ∞.

P{ε2} ≤
∑

(xK ,yK)

t+K−1∏

τ=t

P(τ)(xτ ,yτ ) ·

∑

x̂K 6=xK :x̂K∈AKn
ǫ (X|FK ,yK)

P{B̂K = BK}

≤
∑

(xK ,yK)

t+K−1∏

τ=t

P(τ)(xτ ,yτ ) ·
|AKn

ǫ (X |FK ,yK)|

2nRt+K−1

≤
1

2nRt+K−1
· 2n
(
SK
X|Y +δ(ǫ)

)

= 2−n
(
Rt+K−1−SK

X|Y −δ(ǫ)
)

Thus, under the conditionRt+K−1 > SK
X|Y + δ(ǫ), we have:

P{ε2} → 0 asn → ∞.

P{ε3} ≤
∑

F̂K 6=FK

PF (F̂
K |FK

X , FK
Y ) ·

∑

(xK ,yK)∈AKn
ǫ (X,Y |F̂K)

t+K−1∏

τ=t

P̂(τ)(xτ ,yτ ) ·

∑

x̂K 6=xK :x̂K∈AKn
ǫ (X|F̂K ,yK)

P{B̂K = BK}

≤
∑

F̂K 6=FK

PF (F̂
K |FK

X , FK
Y ) ·

∑

(xK ,yK)∈AKn
ǫ (X,Y |F̂K)

t+K−1∏

τ=t

P̂(τ)(xτ ,yτ ) ·

|AKn
ǫ (X |F̂K ,yK)|

2nRt+K−1

≤
1

2nRt+K−1
· 2n
(
SK
X|Y +δ(ǫ)

)

= 2−n
(
Rt+K−1−SK

X|Y −δ(ǫ)
)

Similarly, under the conditionRt+K−1 > SK
X|Y + δ(ǫ), we

have:P{ε3} → 0 asn → ∞. We define the outage probability

P
K
out as:PK

out
∆
= P

{
X̂

K
6= XK

}
. Then we can derive the upper

bound ofPK
out as following:

P
K
out ≤ P{Rt+K−1 > SK

X|Y } ·
(
P{ε1}+ P{ε2}+ P{ε3}

)

+P{Rt+K−1 ≤ SK
X|Y }

≤ (1 − ǫ) ·
(
P{ε1}+ P{ε2}+ P{ε3}

)
+ ǫ

n→∞
= (1 − ǫ) · 0 + ǫ

= ǫ

Notice thatK can take any value of integers, andPK
out for

∀K. Let α(π)
K denote the empirical probability for a block to

be jointly encoded with otherK − 1 blocks under strategyπ,
the overall outage probabilityPout

∆
= P

{
X̂t 6= Xt

}
, can be

derived as following:

Pout ≤

∞∑

K=1

α
(π)
K · PK

out

≤

∞∑

K=1

α
(π)
K · ǫ

≤ ǫ

Hence, with encoding rateRt+K−1 for Mt+K−1, the outage
probability constraintǫ can be achieved.
Wait-to-Decode Strategy:a similar decoding error analysis
can be derived by replacingBK with {Bk}.

This completes the proof.
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