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Abstract

Full-duplex radio technology is becoming mature and holds potential
to boost the spectrum efficiency of a point-to-point wireless link. However,
a fundamental understanding is still lacking, with respect to its advantage
over half-duplex in multi-cell wireless networks with contending links.
In this paper, we establish a spatial stochastic framework to analyze the
mean network throughput gain from full-duplex, and pinpoint the key
factors that determine the gain. Our framework extends classical stochastic
geometry analysis with a new tool-set, which allows us to model a trade-
off between the benefit from concurrent full-duplex transmissions and
the loss of spatial reuse, particularly for CSMA-based transmitters with
random backoff. The analysis derives closed-form expressions for the
full-duplex gain as a function of link distance, interference range, network
density, and carrier sensing schemes. It can be easily applied to guide the
deployment choices during the early stage of network planning.
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1

Introduction

1.1 Background

At early 1960s, Edward first proposed to apply stochastic geometry
model to networks in his paper [1]. Since then, there is a significant
amount of researches related to stochastic geometry for different wireless
network technologies (e.g. sensor networks, mobile ad hoc networks, cellular
networks). The corresponding models and analysis in these researches
provide a better understanding of wireless network performance under
different scenarios. For example, one can characterize random CSMA
wireless networks [2] or non-slotted Aloha [3] wireless network. These
works also help us to design current networks(e.g., [4]), and even predict
future networks.

The stochastic geometry in wireless networks can characterize the
randomization of wireless network structure nature; the locations of the
users in mobile or cellular networks, is quite random and is hard to predict.
Therefore, such stochastic models are more flexible when dealing with
the dynamic of wireless networks. Furthermore, these tools can provide
closed-form or semi-closed-form expressions for different network matrix
such as signal-to-interference-plus-noise ratio, network throughput.

Based on aforementioned merits, in this work, we first explore the
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limitation of current stochastic geometry approaches. Then, we propose
a new stochastic analysis framework for wireless network. Finally, we
apply it to full-duplex wireless networks, which is a novel technique that
allows wireless nodes to transmit and receive at the same time within
single channel. Below we briefly describe the full-duplex background,
and provide a primer on stochastic geometry.

1.1.1 Full Duplex Background

There is an increasing demand in on our limited wireless spectrum in
recent years. By the year 2018, 61 % of all IP traffic will be Wi-Fi and mobile
traffic, while wired traffic will only account for 39 % [5]. One the hand, the
FCC recently released white space band as well as 60 Ghz band to relieve
the spectrum crisis. One the other hand, researchers investigates different
ways to improve current spectral efficiency. Among them, full-duplex
networks gain a significant attention during these years.

This breakthrough technique defeats the long-held opinion among
researchers that full-duplex wireless communication is infeasible. The
main challenge of realizing full duplex is because of strong loopback self-
interference between Tx chains and Rx chains. In general, this can be done
by self-interference suppression, and people can achieve that through
Digital cancellation, or Analog cancellation, or Antenna cancellation [6].
Recent advances in radio hardware and signal processing are pushing
full-duplex wireless communications close to commercialization [7].

The full-duplex techniques will bring lot of benefits to future wireless
network. Firstly, it greatly improved spectrum efficiency by factor of
two theoretically, since it can transmit and receive simultaneously using
the same channel. Secondly, it can use periodic feedback to inform the
transmitter about the current channel state to perform the rate adaptation.
Third, it can simplify communication initialization process, since RTS/CTS
mechanism might not be necessary. Therefore, it can reduce the round trip
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Figure 1.1: (L) ALOHA networks: TX initially distributed as a Poisson
point process. (R) CSMA networks: Matèrn hard-core point process. The
discs represent an exclusion zone around each transmitter because of
carrier sensing process.

time and future reduce network congestion indirectly. Finally, it also bring
some benefits to MAC layer design; there will be not hidden and exposed
terminal problem since transmitter can continuous sense the channel.

1.1.2 Primer on Stochastic Geometry

Stochastic geometry provides average-case analysis of network, wherein
the averages are made over a large number of nodes randomly located in
the spatial domain. Most existing work focus on ALOHA networks and
CSMA networks. The Fig. 1.1 shows a example of how to apply stochastic
geometry to them.

Recent stochastic geometry models of 802.11 CSMA networks com-
monly apply a two-step approach [8]. First, nodes are assumed to be
deployed following a Poisson Point Process (PPP). Then, the distribution
of simultaneously active transmitters after CSMA contention is approx-
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imated by a Matèrn hard core point process (HCPP). Simply put, the
HCPP thins the parent PPP and models the winning nodes after random
backoff. Second, the interference experienced by a typical winning node is
approximated by the interference resulting from a PPP which has the same
intensity as the HCPP. Such approximation has been shown to be fairly
accurate, mainly because the exact locations of the active transmitters mat-
ter less than the number of other active transmitters (interferers) and their
relative distances. Given the approximated HCPP, network performance
metrics such as transmission success probability (under interference) and
throughput can be easily derived. When applied to the ALOHA networks,
stochastic geometry model has similar a two-step approach expect the
CSMA contentions.

1.2 Motivations

Existing work mostly focused on full-duplex PHY-layer implementation
[9, 10] or MAC protocols [11, 12] that extend 802.11 CSMA/CA. Unlike
half-duplex wireless networks whose asymptotics have been investigated
extensively [13], the fundamental network-capacity implications of full-
duplex remain largely underexplored.

In distributed wireless networks, contending nodes’ transmissions
need to be separated in time, frequency, and/or space to avoid excessive
interference. Whereas full-duplex allows a pair of nodes to co-locate their
transmissions in the same time slot and frequency band, their spatial
interference footprint is heavier than a half-duplex pair. An accurate
characterization of this trade-off can lead to a fundamental understanding
of the full-duplex network capacity and the achievable gain, thus guiding
the practical protocol design and network deployment.

Furthermore, when applied to modeling the full-duplex gain, exist-
ing stochastic geometry models fall short of accuracy from three aspects.
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(i) They mainly focus on potential transmitters through a homogeneous
point process model. The spatial reuse between transmitters and receivers
cannot be modeled but is the most critical factor that determines the full-
duplex gain [14]. (ii) They assume a unit disk exclusive region around
each transmitter, and omit the carrier sensing artifacts, such as exposed
and hidden terminals, which again account for the discrepancies in theo-
retical and practical limit of both half-duplex and full-duplex networks.
(iii) They commonly approximate the received signal-to-interference-plus-
noise ratio (SINR) using the SINR at the transmitter side, yet whether a
transmission succeeds depends SINR at the receiver side (or both sides
for full-duplex).

We remedy the above limitations by marrying stochastic geometry
with the two interference models proposed in Gupta and Kumar’s seminal
work on ad-hoc network capacity analysis [13].

1.3 Research Objectives and Contributions

The objective of this work is to provide an analytical framework al-
lowing one to access the key properties of full-duplex wireless networks
running carrier-sensing based random access protocols. The insights we
seek to obtain include, e.g., what is the network throughput (gain) when
using full-duplex radios compared with half-duplex ones? What are the
key factors that determine the gain and how to engineer such design knobs
to maximize full-duplex’s potential? With this framework, we also seek
to derive general guidelines for deploying full-duplex multi-cell wireless
LANs, e.g., for an anticipated AP density, which type of radio is more
cost-effective?

For such an analytical model, the main challenge lies in a need to
take into account interference, random contention, and the resulting spa-
tial reuse among contending links. Such factors, of course, are topology
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dependent. One cannot traverse the enormous number of possible config-
urations, but must instead consider a statistical spatial model for the node
locations, and extracts insights from there.

Following this principle, we assume certain statistical distribution
of AP/client locations, and derive spatial averages of critical network
quantities, e.g., interference and spatial density of successful transmitters.
Such a spatial averaging technique, widely referred to as stochastic geometry
[15], has been used in a variety of wireless network examples, like ad-hoc
networks, in order to perform average-case analysis of network throughput,
by modeling the interference experienced by nodes under a random access
MAC protocol.

It is, however, non-trivial to apply the classical stochastic geometry
model to full-duplex networks, because of two new barriers. First, existing
stochastic geometry analysis [8, 16] uses a hard-core point process (HCPP)
to model the distribution of winning transmitters. The contention region
of a point in HCPP is defined by a unit disc containing no other points.
With full-duplex, the spatial footprint of two neighboring transmitters
can become correlated, which can no longer be handled by conventional
stochastic geometry models. Second, existing models only focus on win-
ning transmitters after CSMA/CA contention, but ignore the receiver
which itself has an exclusive region and is vulnerable to artifacts of carrier
sensing such as hidden terminals. Such artifacts are critical to spatial reuse
and to the real gain from full-duplex.

In light of the above challenges, we propose a new stochastic framework
that can analyze the average spatial footprint of a typical full-duplex pair,
as well as the spatial distribution of full-duplex pairs that win contention.
Our approach leads to closed-form expressions for the average throughput
of full-duplex networks with Poisson-bipolar distributed links. It also
enables closed-form analysis of half-duplex throughput under carrier
sensing artifacts, e.g., hidden/exposed terminals. Consequently, we can
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derive the full-duplex throughput gain under a variety of topological
parameters and protocol imperfectness.

We find that the most critical factor that determines full-duplex gain is
the mean link distance d relative to the carrier sensing range. A smaller
d amplifies full-duplex gain since, intuitively, it reduces the interference
footprint of a full-duplex link. For a fixed d, full-duplex gain tends to be
larger in a very sparse deployment of APs, yet the gain saturates quickly
as density increases. More interestingly, we found a major contributing
factor to full-duplex gain lies in full-duplex nodes’ capability to implicitly
remove hidden/exposed terminals. Thus, the full-duplex gain tends to
be amplified under imperfect carrier sensing. In addition, we show that
our analytical framework can be applied to guide the choice between
full-duplex or half-duplex technologies during deployment stage, given
various objectives and constraints, e.g., client/AP density and cost of half-
and full-duplex radio.

1.4 Thesis Organization

The rest of this paper is structured as follows. We first present a back-
ground on our network models in Sec. 2. Then we analyze the full-duplex
gain under two sets of interference models, in Sec. 3 and 4. In Sec. 5,
we apply our models to full-duplex network planning. Sec. 6 discusses
related work and finally, Sec. 7 concludes the thesis.
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2

Overview of Network Model

2.1 Full-duplex Communication Model

A full-duplex node can simultaneously transmit and receive differ-
ent packets. State-of-the-art full-duplex radio [10] can isolate the self-
interference from transmitted signals to received ones, although perfect
elimination is infeasible. Our analysis mainly focuses on the network-level
impacts of full-duplex transmissions, assuming perfect full-duplex radio
hardware.

When applied to multi-cell wireless LANs, full-duplex links can oper-
ate in two modes [9]. Bidirectional transmission mode (Fig. 2.1(a)) allows a
pair of AP-client to transmit packets to each other simultaneously. Cut-
through transmission mode (Fig. 2.1(b)) enables a full-duplex AP to simulta-

(a) (b)

Primary 
transmitter

Secondary 
transmitter Transmitter Primary 

receiver
Secondary 

receiver

Figure 2.1: Full-duplex transmission modes in a wireless LAN: (a) bidirec-
tional transmission and (b) cut-through transmission.
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neously serve two clients, one for uplink and the other downlink. When
applied to multi-hop networks, it is also referred to as wormhole relaying
[14]. We first focus on the former mode, and then prove that the latter
results in lower capacity (Sec. 3.4.2).

2.2 Network Topology Model

We model the locations of transmitters/receivers as some realizations
of random point process. Unlike existing CSMA stochastic geometry anal-
ysis that commonly focus on Poisson-distributed transmitters (Fig. 2.2(a)),
we model the transmitter and receiver locations using a Poisson bipolar
model [17].

For a half-duplex network, transmitters are distributed following a PPP.
Each transmitter TX associates with a receiver RX, located in a direction
θ (Fig. 2.2(b)), random uniformly distributed in [0, 2π). We first assume
link distance is fixed to d, and then generalize our model to random link
distance (Sec. 3.4). The links in a full-duplex network follow the same distri-
bution, except that a receiver is a transmitter at the same time (assuming
bi-directional transmission mode). We refer to the node that initialized
the full-duplex transmission as primary transmitter T1 and the other as
secondary transmitter T2.

Our model of a network with transmitter-receiver pairs can be consid-
ered as a snapshot of a multi-cell WLAN with multiple clients per cell,
wherein every AP is communicating with one associated client at any one
time instant. Over time, the network can be considered as realization of
multiple snapshots, and its performance mainly depends on the mean
spatial throughput (density of successful transmissions) in each snapshot.
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(a)

θ θ

(b) (c)

Figure 2.2: (a) Existing stochastic model widely assumes Poisson dis-
tributed potential transmitter nodes. (b) Our half-duplex model focuses
on links with Poisson bipolar model with mean link distance d. (c) Our
full-duplex model focuses on bi-directional transmission links.

2.3 Contention Models

MAC protocols(e.g. ALOHA, CSMA) provide medium access control
mechanism so that multiple network nodes can access the shared channel
simultaneously. In other worlds, the network nodes need to content with
each other to obtain the privilege to access medium. To characterize dif-
ferent MAC protocol, we consider two typical contention models in our
analysis, unslotted ALOHA and CSMA-based network.

2.3.1 ALOHA Networks

In an ALOHA network, every node can access the channel indepen-
dently with a certain probability pm without checking current channel
state. Because of this random approach, the maximum throughput is
18.4% for unslotted ALOHA, and 37% for slotted ALOHA comparing
with the optimal one. The fundamental reason for the low throughput
is excessive collisions due to the random access. The simplicity of this
mechanism makes it easy to be analyzed, and ALOHA plays an important
and fundamental role for other MAC protocol analysis.



11

2.3.2 CSMA-based Networks

In CSMA-based network, this problem is partially solved by a simple
idea: listening the channel before transmitting;if the channel is busy, then
the transmission will be deferred, and a collision will be avoided. This
mechanism greatly improve the wireless network performance,and one
modification version called CSMA with collision avoidance is a part of
current IEEE 802.11 wireless MAC standard. In our model, we consider
different sensing models separately in Sec. 3, and analyze how it affect
network throughput.

2.4 Interference Models

Our analytical framework inherits the simplicity of the interference
models from Gupta and Kumar [13], but enhances them with a stochastic
geometry model of random CSMA contention.

2.4.1 Protocol Model

In the protocol model, each transmitter has a fixed transmission range,
interference range, and carrier sensing range. For simplicity, the inter-
ference and carrier sensing range are assumed to be the same value RI,
whereas the transmission range RS can be smaller. A successful transmis-
sion depends on two conditions: First, the transmitter can be activated
after carrier sensing and contention(discussed in 2.3), i.e., the transmitter
has the lowest backoff counter among all candidates it can sense. Effec-
tiveness of the carrier sensing depends on the sensing models, and will
be treated case-by-case in Sec. 3. Second, no other concurrent transmitters
are activated within the corresponding receiver’s interference range.
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2.4.2 Physical Model

The physical model differs in the second condition. Instead of a fixed
interference range, the transmission succeeds only if the link SINR exceeds
a threshold β. The interference power is the cumulative interference from
all concurrent transmitters, which still exist outside the transmitter’s carrier
sensing range after CSMA contention. We defer the formal mathematical
definition to Sec. 4.



13

3

Full-duplex Gain Under the Protocol Model

In this section, we describe our stochastic geometry framework that
establishes a closed-form analysis of full-duplex gain under the protocol
interference model. The analysis derives the spatial throughput of two
different network models: ALOHA networks and CSMA-Like networks. In
ALOHA network, because there is no carrier sensing process, we only need
to consider full-duplex and halp-duplex networks. However, in CSMA-
Like networks, the wireless networks are also depended on contention
models. Therefore, we need will consider four different network models:
: full-duplex; half-duplex with perfect carrier sensing, imperfect carrier
sensing, and RTS/CTS. In each case, the analysis follows two major steps:
(i) analyze the mean contention region around a typical pair of nodes. (ii)
derive the probability of successful transmission for the typical pair that
runs the CSMA random backoff, given the Poisson bipolar distributed
contending links within its mean contention region. Then we compute
and compare the full-duplex spatial throughput with all the half-duplex
models to obtain the full-duplex gain in each case.
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Figure 3.1: Spatial reuse effects due to carrier sensing: (a) half-duplex
networks with perfect carrier sensing; (b) half-duplex networks with im-
perfect carrier sensing; (c) RTS/CTS reduces hidden terminals but does
not completely remove them; (d) full-duplex results in perfect carrier sens-
ing. To simplify the illustration, we assume interference range and carrier
sensing range overlap.

3.1 Mean Contention Region (MCR)

We first introduce a novel analytical technique called mean contention
region (MCR) that overcomes the aforementioned limitations of classical
stochastic geometry models.

Definition: Given a typical link Lo and a bounded region Ω ∈ R2

around Lo. We arbitrarily partitionΩ into n small regions represented by
their areas: ∆Ω1,∆Ω2, · · · ,∆Ωn. Let σ = max16j6n∆Ωj. We randomly
select a point Xi from region ∆Ωi, and define the Mean Contention Region
as,

lim
σ→0

∑n
i=1 p(Xi)∆Ωi, (3.1)

where p(Xi) is the probability that a transmitter of another link Li located
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at Xi contends with typical link Lo. If the limit exits and is unique, then
we can cast it as:

∫
Ω
p(X)dΩ. Since p(X) is a continuous function on a

bounded region, the integral exists and is finite.
Intuitively, MCR represents a spatial average of the area within which

contenders/interferers may be located. Since the link locations follow a
stationary distribution, it suffices to analyze the MCR of a typical link Lo,
comprised of a transmitter and a receiver (or two full-duplex bi-directional
transmitters).

3.1.1 ALOHA Networks

In ALOHA networks, we only need to consider half-duplex and full-
duplex network separately. For half-duplex networks, at any time, the
successful transmission only happens when there is not other receiver within
transmitter’s interference range, and no other transmitter within receiver’s inter-
ference range. Essentially, this condition is the same as that in half-duplex
with perfect carrier sensing in CSMA networks. Therefore, in such two
scenarios, they share the same spatial reuse region, and thus the same
MCR. Similarly, full-duplex ALOHA and CSMA networks have the same
MCR as well. We defer the related MCR calculation in Sec. 3.1.2.1 and Sec.
3.1.2.4.

3.1.2 CSMA-based Networks

For CSMA networks, the definition of contenders/interferers, and the
corresponding p(X), depend on not only the duplex mode, but also the
carrier sensing. Hence the MCR needs to be analyzed separately, for the 4
categories below.
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Figure 3.2: Analyzing mean contention region of : (a) half duplex network
with perfect carrier sensing, (b) half duplex network with imperfect carrier
sensing and (c) full duplex network.

3.1.2.1 Half-duplex with Perfect Carrier Sensing

Perfect carrier sensing assumes perfect knowledge of contenders: each
transmitter is well aware of which receivers it interferes with and which
transmitters interfere with its receiver. Therefore, there exist no hidden/-
exposed terminals and spatial reuse is perfect (Fig.3.1(a)). This model is
especially useful considering the recent advances in cross-layer implemen-
tation that minimizes the impact of hidden [18] and exposed terminals [19].
It is also the basic assumption behind Gupta and Kumar’s protocol model
for CSMA networks [13]. The following theorem offers a closed-form
characterization of the corresponding MCR. For simplicity of exposition,
we only provide the essential steps behind our analysis.
Theorem 3.1. The mean contention region for half-duplex CSMA networks with
perfect carrier sensing is given by

VHP = πR2
I +

2
π

∫RI+d
RI−d

(π− θ)θrdr (3.2)

θ = arccos(
d2 + r2 − R2

I

2dr ).
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Proof sketch: Consider a typical link Lo whose transmitter TX is located at
the origin and its receiver at distance d along the x-axis (Fig. 3.2(a)).

First, the receiver’s interference range (white area in Fig. 3.2(a)) should
be counted deterministically within MCR (first term on the RHS of Eq.
(3.2)), because any transmitter from other contenting link L ′ therein will
contend with the typical link Lo.

Second, consider a contending link L ′ whose transmitter TX ′ is within
the shaded area in Fig. 3.2(a). If its receiver RX ′ is located within the inter-
ference range of TX (red solid arc), then RX ′ will be interfered. Otherwise
(green dashed arc), it needs not contend with the typical link and can
transmit concurrently under perfect carrier sensing. Under Poisson bipo-
lar model, the orientation of a receiver w.r.t. its transmitter is uniformly
distributed in [0, 2π). Thus, we can obtain the probability of RX ′ located
in TX’s interference range by calculating the ratio of θ to 2π. Since this
probability p(X) depends on the transmitter’s location, we can integrate
the probability throughout the shaded area to obtain the spatial average
(second term on the RHS of Eq. (3.2)).

For any other transmitter outside the above two regions, its receiver
RX ′ can never fall within TX’s interference range, and thus it should not be
counted into the MCR.

3.1.2.2 Half-duplex with Imperfect Carrier Sensing

In the basic 802.11 protocol (Fig. 3.1(b)), a node defers its transmission
whenever it senses a busy channel. This mechanism reduces the risk of
collision but often leads to the exposed terminal problem, i.e., some nodes
may not interfere a receiver, but are unnecessarily suppressed by the
corresponding transmitter. In addition, it suffers from the hidden terminal
problem, i.e., other nodes outside the ongoing transmitter’s carrier sensing
range but inside the ongoing receiver’s interference range can still cause
collisions. We refer to this category of protocol as imperfect carrier sensing,
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and analyze the MCR as follows.

Theorem 3.2. Under imperfect carrier sensing, the mean contention region for
CSMA networks is given by

VHI = Vu +
2
π

∫RI+d
RI

(π− θ)θrdr (3.3)

Vu = 2πR2
I − 2R2

I arccos( d2RI
) + d

√
R2
I −

d2

4

θ = arccos
(d2 + r2 − R2

I

2dr

)

Proof sketch: The transmitter TX suppresses all other transmitters within its
interference range which, together with the receiver’s interference range,
become a deterministic contention region (the Vu term above, correspond-
ing to the white region in Fig. 3.2(b)). Spatial average of contention region
for the shaded area can be derived in a similar way to Theorem 3.1.

3.1.2.3 Half-duplex with RTS/CTS Signaling

An enhanced version of 802.11 uses RTS/CTS to alleviate hidden termi-
nals (Fig. 3.1(c)). Yet it still bears the exposed terminal problem. Moreover,
there may still be hidden terminals outside the CTS transmission range but
within the receiver’s interference range. Denote the transmission range as
RS, then we can derive the MCR under RTS/CTS signaling as follows.
Theorem 3.3. The mean contention region for half duplex network using RT-
S/CTS is given by

VHRC =

V1 + V2 + V3 + 2(V4 − V5) d > RI − RS

VHI d 6 RI − RS
(3.4)

V1 = 2πR2
I − 2R2

I arccos( d2RI
) + d

√
R2
I −

d2

4

V2 =
2
π

∫RI+d
RI

(π− γ1 − θ2)θ1rdr
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V3 =
2
π

∫RS+d
RI

(π− γ2 − θ3)θ4rdr

V4 =
1

2π

∫d
0

∫π−θ6+γ1

θ5−γ2

(ϕ1 +ϕ2 +ϕ3)rdrdθ

V5 =
1

2π

∫RI
RS

∫π−γ2−θ3

π−θ1

(ϕ4 +ϕ5 + θ4)rdrdθ

The γ1, γ2, θ1 to θ5 and ϕ1 to ϕ5 are intermediate parameters. Detailed expres-
sions are put in Appendix A.1 for simplicity of exposition.

The proof follows similar steps as the full-duplex case below, and is
thus omitted to avoid redundancy.

3.1.2.4 Full-duplex

For full-duplex links, we assume a carrier sensing model similar to the
FuMAC in [20]. A bi-directional full-duplex transmission can start only if
both the primary and secondary transmitter sense an idle channel. Such
synchronous full-duplex scheme has proven to have superior performance
than one that mixes half-duplex with full-duplex transmissions [20]. In
addition, (i) it eliminates hidden terminals because every receiver is a trans-
mitter at the same time that uses its transmission as a busy-tone to protect
itself from interferers. (ii) exposed terminals no longer exists, because
no transmitter can coexist with other transmitter (and simultaneously a
receiver) within the carrier sensing range anyway (Fig. 3.1(d)).

In other words, full-duplex carrier sensing implicitly removes the hidden/-
exposed terminals. Our later analysis will show that this is where the main
benefit of full-duplex comes from. Under this protocol, the MCR can be
characterized as follows.
Theorem 3.4. The mean contention region for a typical full-duplex link is given
by

VF = V1 + 2V2 + 2V3 (3.5)
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V1 = 2πR2
I − 2R2

I arccos( d2RI
) + d

√
R2
I −

d2

4

V2 =
2
π

∫RI+d
RI

(π− θ2 − θ3)θ1rdr

V3 =

∫d
0

∫ 3π− 2θ4 − θ5
2

2θ4 + θ5 − π

2

(
ϕ1 +ϕ2 +ϕ3

2π )rdrdθ

where θ1 to θ5,ϕ1 toϕ3, and δ1 to δ2 are intermediate parameters whose detailed
expressions are available in Appendix A.2.
Proof sketch: We consider three regions shown as different patterns in Fig.
3.2(c). The white region is a deterministic contention region, whereas
other two contribute to the MCR probabilistically, and can be analyzed
using a similar procedure as in Theorem 3.1. The detailed proof is put in
Appendix A.2.

3.2 Spatial Density of Successful
Transmissions

We now derive the mean transmission density, i.e., average number
of successful transmissions per unit area, after the typical pair of nodes
contend with peers in the MCR.

For the ALOHA networks (Sec. 2.3.1), it can be modeled as a Matèrn
Type I process [17] that thins the original PPP distributed based on medium
access probability pm. The Palm retaining probability that a point x of the
process is retained after Matèrn Type I thinning and independent medium
access is given by e−µpmV , where µ is the density of original PPP.

The CSMA contention (Sec. 2.3.2) can be modeled as a Matèrn Type
II process ([21]) that thins the original PPP distributed contenders within
the MCR. Given a stationary independently marked PPP of intensity µ,
the Palm retaining probability that a point x of the process having mark t is
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retained after Matèrn Type II thinning is given by e−µtV , where V is the
contention area [22].

We adapt this result to our analysis and obtain the density of successful
transmissions in the aforementioned 6 cases for both ALOHA networks
and CSMA-based networks. Unlike existing work for ALOHA networks
widely consider interference around transmitter side, our work is more
close to the reality in the sense that we focus on receiver side. Besides, their
work widely uses a deterministic unit disk to model V , whereas our MCR
model enables a spatial average analysis of the contention region that can
model all 4 cases for CSMA-base networks. In the following section, we
will first discuss spatial density of ALOHA networks and CSMA-based
networks.

3.2.1 ALOHA Networks

3.2.1.1 Half-duplex Model

We assume λp be the original deployment density of all potential trans-
mitter, and each transmitter independently decide to access the medium
with probability pm. Therefore, all the active transmitters is still a PPP
with density pmλp. Therefore, the probability of the typical successful
half-duplex pair is given by:

λHA = exp(−pmλpVHP) (3.6)

3.2.1.2 Full-duplex Model

In the full-duplex model, we assume the primary and secondary trans-
mitters access the medium at the same, which can be realized using hand-
shake protocols like [20]. Similarly, the probability of the typical successful
full-duplex pair is given by:



22

λFA = exp(−pmλpVF) (3.7)

3.2.2 CSMA-based Networks

3.2.2.1 Half-duplex Models

Let λp be the original deployment density of all potential transmitters.
For the perfect carrier sensing case, the probability of the typical pair
winning contention is exp(−λptVHP), where VHP follows Theorem 3.1.
The mean successful density after contention can be obtain by averaging
over all possible backoff counter t as:

λHP = λp

∫ 1

0
e−λpVHPtdt =

1
VHP

(
1 − e−λpVHP

)
(3.8)

Similarly, we can derive the successful transmission density for the
imperfect carrier sensing case and RTS/CTS case as:

λHI =
1
VHI

(
1 − e−λpVHI

)
, and λHRC =

1
VHRC

(
1 − e−λpVHRC

)

3.2.2.2 Full Duplex Model

For a full-duplex bi-directional link, we assume the primary and sec-
ondary transmitters hold the same backoff counter t, which can be realized
using handshake protocols like [20]. Suppose t follows the same uniform
distribution as in the half-duplex case, then the mean successful density
of full-duplex transmissions is:

λF = V
−1
F (1 − e−λpVF). (3.9)
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Figure 3.3: Successful transmission density vs. link distance for (a). half-
duplex and (b). full-duplex in ALOHA networks RI = RC = 100,pm = 0.6.

3.2.3 Simulation Verification

To verify the accuracy of the above closed-form models, we implement
a simulator that simulates the carrier sensing, contention, and collision
(due to hidden terminals) behaviors of each of the four network scenar-
ios. The simulator runs in a round-based manner, and outputs the links
that successfully transmit in each round. We run 20 randomly generated
topologies with Poisson bipolar link distribution within a 100 km2 region.
Interference range RI = 100m (equals carrier sensing range RC) and link
distance d ranges from 0 to RI. We assume pm is 0.6 for ALOHA networks.
We simulate a sparse network with per-node neighbor density of n = 1 and
dense network with n = 20. The corresponding deployment density is
λp = n/(πR2

I).
Fig. 3.4 and Fig. 3.3 compare the simulation results with the closed-

form model. We see that our analytical results match closely with the
simulated average across all the cases. In general, the successful transmis-
sion density decreases as d approaches RI, because a longer link-distance
is more vulnerable to interference and contention. This is true for both
ALOHA and CSMA-based networks.

The successful transmission density of the ALOHA networks drops
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Figure 3.4: Successful transmission density vs. link distance for half-
duplex CSMA networks with: (a) perfect carrier sensing; (b) imperfect
carrier sensing; (c) RTS/CTS; and (d) Full-duplex CSMA networks. RI =
RC = 100,RS = 80.

much than that of CSMA-based networks when d increases. The ALOHA
networks is much more vulnerable than CSMA-based network, since there
is not any mechanism to protect the transmission. For half-duplex in
CSMA-based networks, perfect carrier sensing results in higher density
than the other two cases. RTS/CTS alleviates hidden-terminals, but the
protection sacrifices spatial reuse, and results in similar density as the
imperfect carrier sensing. Although the density of full-duplex pairs is
similar to that of half-duplex when d is small, it decreases faster, implying
that it is more vulnerable to loss of spatial reuse as d increases.

We proceed to analyze the impacts of the successful transmission den-
sity on full-duplex gain.
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Figure 3.5: Full-duplex gain over half-duplex network with perfect carrier
sensing.
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Figure 3.6: (a) Gain of full-duplex over half-duplex ALOHA networks vs.
link distance (d) for several n, where n/πR2

I = λp (b) Gain of full-duplex
over half-duplex ALOHA networks vs. n for several values of link distance
d

3.3 Throughput and Full-duplex Gain

The mean density of successful transmissions can be regarded as
spatial-average of the network throughput, which also equals its time-
average across stationary topology realizations (Sec. 2.2). Therefore, we
can derive the full-duplex throughput gain over half-duplex perfect carrier
sensing as: GHP = 2λF/λHP, where a multiplier factor 2 is needed since
each full-duplex pair supports double link transmission. The gain over
other half-duplex cases in CSMA-based networks and ALOHA follows
the same derivation.
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Figure 3.7: (a). Gain under different carrier sensing schemes of half duplex
network (b).Density of Successful Transmissions under d ∼ unif[0, 80] for
Half-duplex networks with perfect carrier sensing and Full-duplex CSMA
networks.

In Fig. 3.6, we show the full-duplex gain in ALOHA networks under the
same simulation settings. It is clear that when link distance d increases to
RI, the gain drops quickly towards 0. The fundamental reason behind this
is the full-duplex networks are much more vulnerable than half-duplex
networks, since both primary and secondary transmitters might suffer
from interference. This becomes more significant when either link distance
b or density n increases.

From this analytical insights, we can conclude that under the protocol
interference model and ALOHA, the full-duplex gain is between 0% to 200%,
and full-duplex networks are much more vulnerable than half-duplex networks.

We plot the analytical full-duplex gain for all cases in Fig. 3.7, using
similar parameters as above (Note that RI = RC = 100m). A common
observation is that the gain may be close to 2 whend is near 0, but decreases
as d approaches RI. The reason behind is the same as the decreasing
transmission density as discussed above. Fig. 3.5 also shows that the
deployment density λp has minor impact under perfect carrier sensing:
for a given d, the gain quickly saturates as λp increases. We found the
imperfect sensing and RTS/CTS cases show similar behavior.

Among all cases (Fig. 3.7(a)), the gain drops fastest in the perfect carrier
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sensing case. The underlying reason can be understood from Fig. 3.1(a).
For a half-duplex network with perfect carrier sensing, as d approaches
RI, a larger fraction of space can be reused by neighboring links, which
diminishes the full-duplex’s advantage in concurrent transmissions. The
trend is consistent with the protocol model in [14]. On the other hand, the
imperfect carrier sensing and RTS/CTS cannot fully take advantage of the
spatial reuse, thus amplifying the full-duplex gain at larger d. We found
that for the largest d (d = RI) in the former two cases, the full-duplex gain
is 1.4 and 1.71, and for the largest d (d = RS) in the RTS/CTS case it is 1.88.

From the above analytical insights, we can conclude that under the
protocol interference model and CSMA contention model, the full-duplex gain
is between 140% to 200%, and it largely comes from full-duplex’s capability to
overcome the imperfect carrier sensing in half-duplex.

3.4 Discussion

3.4.1 Beyond Fixed Link Distance

All the analysis above has assumed the same fixed distance d for all
links. We now show that the spatial average throughput is the same as
that under a random uniformly distributed link distance with mean d.

Denote the link distance of the typical link as r1 and a contending
link as r2. Unlike the previous MCR analysis, we should calculate the
MCR conditioned on r1 and r2. Denote the corresponding MCR as V(r1, r2).
Suppose link distance is uniformly distributed from [0,RS], where RS is the
transmission range, we can obtain the density of successful transmission
by averaging over all possible r1 and r2 as,

1
R2
S

∫RS
0

∫RS
0

1 − e−λpV(r1,r2)

V(r1, r2)
dr1dr2 (3.10)
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Figure 3.8: Cut-through transmission with (a) Perfect carrier sensing (b)
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This applies to both the full-duplex and half-duplex cases. To verify the
approach, we compare the resulting transmission density with simulation,
following similar setup as in the fixed-d case (Sec. 3.2.3). The results in
Fig. 3.7(b) show that the simulation results are in close agreement with
Eq. (3.10). We only show perfect carrier sensing for half-duplex, without
loss of generality. Given RS =80m, and hence mean link distance 40m, we
also compare the result from our previous fixed distance model for d = 40
with that of the uniformly distributed case in Fig. 3.7(b) and we can see
that the results match closely.

3.4.2 Full-duplex Cut-Through Transmission Mode

Using some elements of the foregoing analysis, and by extending the
Poisson Bipolar model, we now prove that the cut-through transmission
is always inferior to the bi-directional transmission mode. Denote the
transmitter T , primary receiver R1 and secondary receiver R2 (Fig. 2.1)
using their locationsXi, Yi andZi, respectively. We assume theXi follows a
PPP; Yi is at distance dwith a random orientation θi uniformly distributed
in [0, 2π). γi denotes the orientation of the secondary receiver w.r.t. the
primary receiver. Since we need to ensure that Zi is not interfered by Xi,
the range of link distance d should be [RI2 ,RI] and the range of γi should be
[θ−arccos( R

2
I

2d2 −1), θ+arccos( R
2
I

2d2 −1)] in which it is uniformly distributed.
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Similar to the bi-directional full-duplex model we assume Xi and Yi have
the same back-off counter, which are uniformly distributed in [0, 1). With
this model setup, we can prove that:
Proposition 1. The network throughput under bi-directional transmission mode
is no smaller than that of cut-through transmission mode with either perfect/im-
perfect carrier sensing.

Proof sketch: Based on Fig. 3.8 we elucidate the spatial occupation of cut-
through transmission. Observing both the transmitter and secondary
receiver operate in half-duplex, we prove that adding both of their MCR to
the primary receiver’s MCR will exceed MCR of a bi-directional transmis-
sion pair, with either perfect or imperfect carrier sensing. So the network
throughput is lower or equal. We put a detailed proof in Appendix A.3.
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4

Full-duplex Gain under the Physical Model

In this section, we first obtain a lower bound on the successful trans-
mission probability of a half-duplex link under the physical model, which
is shown to be tight through simulation. We only focus on the imperfect
carrier sensing (basic 802.11) case. Extension to other half-duplex cases is
trivial and omitted. Then, we derive an approximation of the full-duplex
links’ successful transmission probability, and subsequently obtain the
full-duplex network throughput gain. Our analysis is built on the Camp-
bell’s theorem [23], second-order product density of a stationary point process
and Jensen’s inequality.

4.1 Modeling Transmission Success for
Half-duplex

Usually, the nearby interference is much higher than the noise power [15].
Therefore, for a typical link, the successful transmission probability equals
the probability that its signal-to-interference ratio (SIR) exceeds a threshold
β, conditioned on this link wins the CSMA contention.



31

4.1.1 Modeling Contention and SIR

We leverage the Matèrn Type II point process [24] to model the winning
transmitters in half-duplex CSMA contention. A transmitter of the original
deployed PPP Φ̃o is chosen for the Matèrn process if it has the least backoff
counter among all other points that lie in its carrier sensing range RC.
DenoteΦHm as the thinned point process after all winning transmitters are
chosen, then its intensity is [25]:

λhm =
1 − e−λpπR

2
C

πR2
C

(4.1)

where λp is the intensity of Φ̃o, i.e., the deployment density.
For a winning transmitter Xi, the receiver Yi can successfully decode

its packets only if its SIR satisfies:

SIRYi :=
PhXiYid

−α∑
Xj∈ΦHm,j6=i PhXjYi‖Xj − Yi‖

−α> β (4.2)

where P represents the transmission power and hXY represents the channel
fading coefficient from a transmitter X to a receiver Y. We assume the
Rayleigh fading model, in which the {hXY} are a set of i.i.d. exponentially
distributed random variables with mean E(hXY) = 1. The path loss from a
node x to a node y is given by ‖x− y‖−α, where ‖x− y‖ is the Euclidean
distance between the nodes and α is the path loss exponent.

4.1.2 Successful Transmission Probability

We again consider a typical transmitter Xo ∈ ΦHm, located at the origin
o, and receiver Yo at a distance d with orientation φ uniformly distributed
in [0, 2π). Then we calculate the probability in Eq. (4.2) under the Reduced
Palm distribution P!o

ΦHm
ofΦHm. P!o

ΦHm
(SIRYo > β) denotes the probability that
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the SIR at receiver is greater than β given that Xo ∈ ΦHm, but not counting
Xo’s transmission as interference. With this setup, we can have:
Theorem 4.1. Under the physical model, the successful transmission probability
for a typical Poisson bipolar distributed half-duplex link can be bounded as:

P!o
ΦHm

(SIRYo > β) >

1
2π

∫ 2π

0
exp

{
−
λ2
p

λhm

∫∞
0

∫ 2π

0
k(r, θ)∆(r, θ,φ)rdrdθ

}
dφ.

where k(r, θ) denotes the probability that two transmitters of Φ̃o separated by a
distance r and having a phase angle difference θ are retained inΦHm and is given
in [25]. V(r) is the union of areas covered by the carrier sensing ranges of the
two transmitters separated by a distance r and is given by
V(r) = 2πRC2 − 2RC2 arccos( r

2RC ) + r
√
RC

2 − r2

4 , 0 6 r 6 2RC

and, ∆(r, θ,φ) = ln
(

1 + β
(

d2

r2+d2−2dv cos(θ−φ)

)α
2
)

.

Proof: Available in the Appendix A.4.
Fig. 4.1(a) compares the lower-bound with our simulation results

across 20 topologies. We observe that the bound matches tightly with the
simulated mean successful transmission density, across the entire range
of 0 < d 6 RS and for different λp (recall λp = n/(πR2

C)).

4.2 Modeling Transmission Success for
Full-duplex

In the case of full-duplex networks, a pair of nodes Xi and Yi that are
selected for transmission can successfully exchange packets between its
nodes only if SIRXi > β and SIRYi > β, where SIRXi is the SIR considered at
the primary transmitter Xi for its reception from the secondary transmitter
Yi, and
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Figure 4.1: Density of Successful Transmissions vs. link distance of (a) Half-
duplex CSMA networks (b) Full-duplex CSMA networks under physical
model.

SIRXi :=
PhYiXid

−α∑
(Xj ,Yj)∈Φ

F
m ,j 6=i PhXjXi‖Xj−Xi‖

−α+PhYjXi‖Yj−Xi‖
−α > β.

The SIR at the secondary transmitter Yi can be defined similarly. The
channel fading coefficients follow the same model as in the half-duplex
case. Note however that the interference term is attributed to not only other
primary transmitters Xj, but also the associated secondary transmitters Yj.

Consider a given full-duplex pair qi. Assuming a symmetric channel
between the primary and secondary transmitter, we have hXiYi = hYiXi =
hi. Also, as the magnitude of received signal power at a node is domi-
nated by path-loss, we assume that the channel fading coefficients between
different nodes of two pairs qi and qj are the same i.e. hXjXi = hXjYi =

hYjXi = hYjYi . We denote the representative channel fading coefficient
from pair qj to pair qi by hij. So, we are left with one set of i.i.d represen-
tative channel fading coefficients {hij} between different pairs i and j. A
successful transmission thus needs to satisfy the following conditions for
SIRXi and SIRYi :

SIRXi :=
hid

−α∑
qj∈Φ

F
m ,j6=i h

i
j(‖Xj−Xi‖

−α+‖Yj−Xi‖−α)
> β

SIRYi :=
hid

−α∑
qj∈Φ

F
m ,j6=i h

i
j(‖Xj−Yi‖

−α+‖Yj−Yi‖−α)
> β



34

The probability that two nodes in a typical full-duplex pair (Xo, Yo) suc-
cessfully transmit to each other is then given by P!o

ΦFm
(SIRXo > β,SIRYo >

β), which we derive as follows.
Theorem 4.2. Under the physical model, the successful transmission probabil-
ity for a typical full-duplex bi-directional link can be approximated by:

P!o
ΦFm

(SIRXo > β, SIRYo > β) ≈

1
2π

2π∫
0

exp

−
λ2
p

2πλfm

∞∫
0

2π∫
0

2π∫
0

k(r, θ,φ, δ) ∆(r, θ,φ, δ)rdrdθdδ
}

dφ

where, k(r, θ,φ, δ) denotes the probability that two pairs qi and qj of Φ̃o
are retained in ΦFm and is given by,

k(r, θ,φ, δ) =

0, (r, θ,φ, δ) ∈ B1 ∪ B2 ∪ B3 ∪ B4

2g(V1), otherwise

and, g(V1) =
V1(1 − e−λpVF) − VF(1 − e−λpV1))

λ2
pVFV1(V1 − VF)

where VF follows Theorem 3.4, and λfm equals λF (Eq. 3.9). V1, B1 to B4

and ∆(r, θ,φ, δ) are parameters detailed in Appendix A.5.
Proof: Available in Appendix A.5.

In Fig. 4.1 (b) we compare the simulation results for the density of
successful transmissions of full-duplex CSMA networks and the above
approximation. We simulate 20 topologies and observe that the estimation
obtained is in close agreement with the simulation results across different
d and λp settings.

4.3 Full-duplex Gain under Physical Model

Under the physical model, the spatial network throughput can be
calculated as the product of the intensity of concurrent transmissions and
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Figure 4.2: Full-duplex gain under the physical model.

the probability that a transmission is successful. The throughput for the
half-duplex CSMA networks, denoted as TH, is thus given by,

TH = λhm P!o
ΦHm

(SIRYo > β)

where λhm is given by Eq. (4.1) and P!o
ΦHm

(SIRYo > β) can be obtained from
the result in Theorem 4.1.

For the full-duplex CSMA networks, the network throughput can be
derived as,

TF = 2λfm P!o
ΦFm

(SIRXo > β, SIRYo > β)

where λfm is given by Eq. (3.9) and P!o
ΦFm

(SIRXo > β, SIRYo > β) can be
obtained following Theorem 4.2. There is multiplication by a factor 2
because λfm is the density of transmission pairs and every pair has two
active transmissions.

In Fig. 4.2 we plot the network throughput gain of full-duplex over
half-duplex CSMA networks, TF/TH, with varying link distance d and
deployment density λp where λp = n/πR2

C. We observe that the full-duplex
gain shows similar trend as in the protocol model, i.e., it approaches 2 as d is
near 0, but decreases to around 1.4 as d approaches RS.

We also observed that the carrier sensing range RC is a crucial param-
eter that affects the spatial throughput. Fig. 4.3(a) plots the numerical
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full-duplex over half-duplex CSMA networks under physical model using
the optimal RC.

spatial throughput under different RC settings, with SIR threshold β = 10
dB, α = 4 and maximum link distance 100m. A smaller RC may not be able
to protect the receiver from interference, whereas a larger RC degrades
spatial reuse between links. Remarkably, the throughput-optimal RC for
full-duplex is smaller than that of half-duplex, again because of full-duplex’s
capability of perfect carrier sensing. Each full-duplex receiver itself is a
transmitter, and hence it does not require the other transmitter to extend
RC to protect it. From Fig. 4.3 (b) we can see that under the optimal RC
values the full-duplex can provide a throughput gain larger than 2 for
smaller link distances (e.g., 2.3× for d = 10m). This is another aspect that
network planners need to consider to capitalize on full-duplex technology.
Given the consistency of physical and protocol model, we expect a varying
RC will affect the full-duplex gain in the protocol model as well. We leave
the detailed exploration for future work.
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5

Application to Full-duplex Network Planning

In this section, we extend our analytical results to derive guidelines
for deploying full-duplex multi-cell wireless networks. For network plan-
ners, an important consideration is to balance achievable throughput with
deployment cost. This can be reflected in a throughput-per-cost metric,
denoted as η. So, given an anticipated coverage area, one approach to
network planning would be to compare the η of full- and half-duplex AP
deployment, and choose the one that is more profitable.

But before the deployment, it is necessary to ensure that the AP density
is sufficient to cover the region of interest. The fraction fA, of an area A,
covered by a homogeneous PPP deployment with density λ is given by:
fA = 1 − e−λπR2

C , where RC represents the carrier sensing range of an AP
[22]. Thus, the deployment density should satisfy:

λ > λ0 = − ln(1 − fA)/πR
2
C (5.1)

For a given client population, suppose each client associates to the
nearest AP. For an arbitrarily located client, its mean distance to the nearest
AP can be modeled by [22]: d = (2

√
λ)−1.

Naturally, as the APs’ deployment density λ increases, the mean AP-
client link distance decreases.
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Let λH and λF denote the density of successful transmissions (inm−2)
for half- and full-duplex deployment. Taking the protocol model in Sec. 3
for example, we can express λF and all three cases of λH as a function of d,
RC and λ. Suppose the cost of a half-duplex and full-duplex AP equals
cH and cF, and throughput-per-cost equals ηH and ηF, respectively. For a
per-link (one-direction) bit-rate bMbps, we have:

ηH =
λHAb

λAcH
, and ηF =

2λFAb
λAcF

(5.2)

Given that d = (2
√
λ)−1, the ηH (ηF) can be expressed as a function of

λ,RC,b andA. In practice, the latter three parameters are known, and thus
ηH (ηF) is only a function of λ, which can be straightforwardly proven to be
monotonically decreasing using the closed-form formulas in Sec. 3. Consider
the following set of practical parameters: cH = 50$, cF = KcH;A = 9e4m2,
RC = 100m, b = 6 Mbps, and fA = 90% which can be fed into Eq. (5.2).
We depict the results in Fig. 5.1(a) , considering only the practical cases of
imperfect carrier sensing and RTS/CTS for λH. We observe that η is high
for a sparse network, but decreases fast as network density increases The
rate of decrease drops as the network becomes denser, primarily because
of the saturation of spatial throughput. ηH can outperform ηF only for
large K values.

This inspires us to examine the sweet-spot K value, Kt, below which a
full-duplex deployment becomes more cost-effective. Observing ηH and
ηF are monotonic, we can set ηH = ηF, and based on Eq. (5.2), solve for Kt:

Kt = cF/cH = 2λF/λH (5.3)

which in turn becomes a function of λ. With the aforementioned con-
figurations, numerical results in Fig. 5.1(b) show that Kt sits above 1.8
and increases monotonically with deployment density. With the above
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Figure 5.1: (a) Throughput/Cost vs. network density for different K, and
(b) The trade-off point Kt under different AP densities.

analytical framework, network planners can easily obtain the sweet spot
and decide the optimal choice.
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6

Related Work

Recent research on full-duplex mainly focuses on implementing new
radio hardware architecture and signal processing algorithms. Choi et
al. [9] is the first to realize single-channel full-duplex over ZigBee radios,
which inspired substantial follow-on efforts. In particular, Bharadia et al.
[10] recently implemented the first in-band full-duplex WiFi radio with a
single antenna.

The development of full-duplex radios is marching steadily towards
commercialization [7]. In contrast, the impact of full-duplex on higher
network layers remains largely underexplored. Centralized scheduling
and decentralized random access protocols [12, 11] have been proposed
for full-duplex wireless LANs. Each of these protocols modifies the cur-
rent CSMA MAC to capitalize on the concurrent transmission/reception
capability. The performance limit of full-duplex and its dominating factors
are yet to be investigated.

Since the landmark paper of Gupta and Kumar [13], substantial effort
has focused on analyzing wireless network capacity under various topolo-
gies and PHY layer technologies [26]. Existing analysis mostly assumes
half-duplex radios, and targets capacity scaling laws under an asymp-
totically growing node population. Information theoretic properties of
single-cell full-duplex WLAN are analyzed recently [27]. Yet it remains an
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open problem what is the fundamental gain when full-duplex interplays
with multi-cell interference and spatial reuse.

Recent work of Yang et al. [28] used a simplified unit-disk model to
compare the asymptotic dominance relation (higher or lower) between
MIMO and full-duplex radio modes. Xie et al. [14] are the first to derive
an upperbound of full-duplex network capacity through disk-packing. In
contrast, our approach leverages stochastic geometry for an average-case
analysis of the full-duplex capacity and its gain over half-duplex. Our
analysis shows consistent trend with [14], i.e., the gain decreases as link
distance approaches interference range. However, our framework can
analyze the impact of a more comprehensive set of network parameters,
carrier sensing models, and interference model.

Stochastic geometry has shown great potential in quantifying the spa-
tial reuse in wireless networks [15]. Particularly to IEEE 802.11 networks,
the key analytic question lies in approximating the sparsified winning node
distribution after contention [21]. In [8], an HCPP model is proposed to
capture key properties of 802.11 networks (for Poisson node distribution).
Alfano et al. [29] extended model to analyze the nodes’ throughput vari-
ation under a minimum link-distance constraint. Substantial work has
focused on more accurate approximation of contention behavior [21]. To
our knowledge, our analytical framework is the first to advance stochastic
geometry to analyze full-duplex wireless networks. Our analysis over-
comes the limitations of classical stochastic geometry (Sec. 1), and enables
an investigation of different carrier sensing schemes for both full- and
half-duplex networks.
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7

Conclusion

We have devised a spatial stochastic framework, which is tailored to
analyzing the spatial footprint of full-duplex and half-duplex links under
perfect/imperfect carrier sensing and RTS/CTS signaling. Our framework
introduces a new analytic tool, i.e., the mean contention region, that inte-
grates classical stochastic geometry with the protocol interference model.
This allows us to establish closed-form formulas for the full-duplex gain
under different topological properties and protocol imperfectness. Our
analysis under the physical model, though consistent with the protocol
model, builds on probabilistic approximations. Our immediate next step
is to derive a more accurate and concise model along this line of analysis.
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A

Appendix

A.1 Proof of Theorem 3.3 (See page 18)

The expressions in Theorem 3.3 are given by:

γ1 = arccos(R
2
I + d

2 − R2
S

2dRI
) γ2 = arccos(R

2
S + d

2 − R2
I

2dRS
)

θ1 = arccos(d
2 + r2 − R2

I

2dr ) θ2 = arccos(r
2 + R2

I − d
2

2rRI
)

θ3 = arccos(r
2 + R2

S − d
2

2rRS
) θ4 = arccos(d

2 + r2 − R2
S

2dr )

θ5 = arccos( r

2RS
) θ6 = arccos( r2RI

)

ϕ1 = arccos(δ1
2 + d2 − R2

I

2dδ1
) ϕ2 = arccos(δ1

2 + δ2
2 − d2

2δ1δ2
)

ϕ3 = arccos(δ2
2 + d2 − R2

S

2dδ2
) ϕ4 = arccos( 2r2 + 2dr cos(θ)

2r
√
d2 + r2 + 2dr cos(θ)

)

ϕ5 = arccos(2d2 + r2 + 2dr cos(θ) − R2
I

2d
√
d2 + r2 + 2dr cos(θ)

)

δ1 =
√
r2 + R2

I + 2rRI cos(θ− γ1) δ2 =
√
r2 + R2

S − 2rRS cos(θ+ γ2)

The proof follows similar steps as the full-duplex case below, and is
thus omitted to avoid redundancy.
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Figure A.1: (a) The left-hand side area in second situation, (b) the over-
laying area of left-hand side area and right-hand side area, (c) the area in
third situation.

A.2 Proof of Theorem 3.4 (See page 19)

Proof: We consider three regions shown as different patterns in Fig. 3.2(c)
around typical link Lo.

First, the union of primary transmitter T1’s and secondary transmitter
T2’s interference range (V1), which is blank region, should be counted as a
deterministic contention region.

Second, consider a contending link L ′ whose primary transmitter T ′

1

exists within the grey area in Fig. A.1(a), then its associated secondary
transmitter T ′

2 may be located within T1’s interference range, which leads
to contention with Lo. The derivation of this spatial averaged contention
region (V2) is similar to Theorem 3.1. The symmetric region on the RHS in
the same figure can be calculated in the same way.

There is a small area (shaded area in Fig. A.1(b)) that needs special con-
sideration: if another primary transmitter T ′

1 resides there, its secondary
transmitter T ′

2 could fall in T1 or T2’s interference range. For the LHS, we
only need to consider T ′

2 is located within T1’s interference range; and
similarly RHS for T2’s interference range.

Third, consider a contending link L ′ with its transmitter lying in the
upper shaded area in Fig. A.1(c). The associated secondary transmitter
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T
′

2 can reside in both primary transmitter T1 and secondary transmitter
T2’s interference range. This is different from situation 2 as the potential
location of T ′

2 is continuous, which corresponds to V3.
Finally, any area outside the above cases falls outside the potential

contention region of the typical full-duplex link.

A.3 Proof of Proposition 1 (See page 29)

Proof: From Fig. 3.1(d), the condition for successful bi-directional full-
duplex transmission is that the shaded region cannot be reused by other
T1/T2, and we can obtain MCR for it as VF(Theorem 3.4). Based on Fig. 3.8
we elucidate the spatial occupation of cut-through transmission. Observ-
ing both the transmitter and secondary receiver operate in half-duplex
mode. So we consider two situations here.

First, considering the case of perfect carrier sensing, the condition
for successful transmission as shown in Fig. 3.8(a) is the blue hatched
region cannot be reused by any other T/R1, grey shaded region cannot be
reused by any other R1/R2 and the blank region cannot be reused any other
T/R1/R2. If we assume that the blank region can be reused by other R2

then the MCR of R1 ↔ R2 link is equivalent to that of a bi-directional link
(VF). In fact, if we restrict other R2 from being present in the blank region,
then the above MCR would be larger than VF. Furthermore, as MCR for
the grey region is nonzero, the total MCR for cut-through transmission
with perfect carrier sensing is larger than that of a bi-directional link.

Second, for imperfect carrier sensing case, the successful transmission
condition should be no other T/R1/R2 in the grey region and no other
T/R1 in the blue hatched region. Suppose that the grey region can be
reused by other R2. Then, the MCR of T ↔ R1 link is equivalent to that of
a bi-directional link. Actually, if allow other R2 in the grey region then the
above MCR would be larger than VF. Furthermore, as the MCR for blue
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hatched region is nonzero, the total MCR for cut-through transmission
with imperfect carrier sensing is larger than that of a bi-directional link as
well.

We conclude that in either case the spatial occupation for cut-through
transmission is always larger than that of bi-directional transmission, and
therefore its network throughput is lower.

A.4 Proof of Theorem 4.1 (See page 32)

Proof: We first calculate the probability of SIR coverage at the receiver
conditioned on its orientation φ with the horizontal i.e. we first calculate
P!o
ΦHm

(SIRYo > β | φ). Then, in the end we get P!o
ΦHm

(SIRYo > β) by decondi-
tioning on φ. To reduce notational complexity, in this proof we will hence-
forth refer to probability of coverage conditioned onφ as P!o,φ

ΦHm
(SIRYo > β).

P!o,φ
ΦHm

(SIRYo > β)

= P!o,φ
ΦHm

(
PhXoYod

−α∑
Xj∈ΦHm PhXjYo‖Xj − Yo‖

−α > β

)

= P!o,φ
ΦHm

 hXoYo > βdα ∑
Xj∈ΦHm

hXjYo‖Xj − Yo‖
−α


= E!o,φ

ΦHm,hXjYo

 exp
−βdα

∑
Xj∈ΦHm

hXjYo‖Xj − Yo‖
−α


 (A.1)

= E!o,φ
ΦHm

 EhXjYo

 ∏
Xj∈ΦHm

exp
{
−βdαhXjYo‖Xj − Yo‖

−α }  
= E!o,φ

ΦHm

 ∏
Xj∈ΦHm

EhXjYo
[
exp
{
−βdαhXjYo‖Xj − Yo‖

−α } ]  (A.2)

= E!o,φ
ΦHm

 ∏
Xj∈ΦHm

1

1 + β
(

d
‖Xj−Yo‖

)α




47

= E!o,φ
ΦHm

 exp
−

∑
Xj∈ΦHm

ln
(

1 + β

(
d

‖Xj − Yo‖

)α )


> exp

−E!o,φ
ΦHm

 ∑
Xj∈ΦHm

ln
(

1 + β

(
d

‖Xj − Yo‖

)α ) (A.3)

= exp

−E!o,φ
ΦHm

 ∑
(r,θ)∈ΦHm

∆(r, θ,φ)


= exp

{
−

1
λhm

∫∞
0

∫ 2π

0
ρ(2)(r, θ)∆(r, θ,φ)rdrdθ

}
(A.4)

= exp

{
−
λ2
p

λhm

∫∞
0

∫ 2π

0
k(r, θ)∆(r, θ,φ)rdrdθ

}
(A.5)

To get Eq. (A.1) we condition on the point processΦHm and hXjYo and
use the fact that hXoYo is an exponential random variable with E(hXoYo) =
1. As {hXjYo} are a set of i.i.d random variables, we get Eq. (A.2). To get Eq.
(A.3) we apply Jensen’s inequality using the fact that exp(−.) is a strictly
convex function. We get Eq. (A.4) by applying Campbell’s theorem [23] to
the previous step. To get Eq. (A.5) we use the relation between second-order
product density of the stationary point process ΦHm and k(r, θ) based on
[30]. Finally, by deconditioning Eq. (A.5) w.r.t φ, we can get the statement
of Theorem 4.1.

A.5 Proof of Theorem 4.2 (See page 34)

Proof: We first introduce the following quantities. Consider the two full-
duplex pairs qi and qj shown in Fig. A.2. We define,
(a) B1 to be the set of (r, θ,φ, δ) values such that Xj and Xi are within RC
of each other. We similarly define B2, B3, B4 for the cases when Xj and Yi
are within RC of each other, Yj and Xi are within RC of each other, and Yj
and Yi are within RC of each other, respectively. Thus we have,
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Figure A.2: Illustration of two full-duplex pairs

B1 = {(r, θ,φ, δ) : r 6 RC},

B2 = {(r, θ,φ, δ) : r2 + d2 − 2rd cos(θ− φ) 6 R2
C},

B3 = {(r, θ,φ, δ) : r2 + d2 + 2rd cos(θ− δ) 6 R2
C},

B4 = {(r, θ,φ, δ) : [(r cos θ+ d cos δ) − d cosφ]2 +

[(r sin θ+ d sin δ) − d sinφ]2 6 R2
C}

(b) V1(r, θ,φ, δ) is the mean contention region around two pairs qi and qj
that are contending with other full-duplex links.
(c) ∆(r, θ,φ, δ) =

ln
(

1 +
β

2 d
α
{
r−α +

(
r2 + d2 + 2rd cos(θ− δ)

)−α
2

+
(
r2 + d2 − 2rd cos(θ− φ)

)−α
2
+ ( [(r cos θ+ d cos δ) − d cosφ]2

+ [(r sin θ+ d sin δ) − d sinφ]2 )−
α
2
})

The probability that two nodes in a pair successfully transmit to each
other, P!o

ΦFm
(SIRXo > β,SIRYo > β) can be upper bounded by,
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P!o
ΦFm

(
ho >

β

2 d
α
∑
qj∈ΦFm

hoj { ‖Xj − Xo‖
−α + ‖Yj − Xo‖−α+

‖Xj − Yo‖−α + ‖Yj − Yo‖−α }

)
(A.6)

Later in the proof, we get a lower bound on (A.6) using Jensen’s inequality
which serves as an estimate of P!o

ΦFm
(SIRXo > β,SIRYo > β). We validate

this estimate by comparing it to the simulation results. We first obtain (A.6)
by conditioning it the orientationφ of the secondary transmitter of the typ-
ical pair. To reduce notational complexity, we will denote this conditioning
in the Reduced Palm measure as P!o,φ

ΦFm
. Then, in the end we obtain the esti-

mate by deconditioning w.r.tφ. Also, in the following lines of the proof we
will denote the term

{
‖Xj − Xo‖−α + ‖Yj − Xo‖−α + ‖Xj − Yo‖−α + ‖Yj − Yo‖−α

}
in (A.6) by loj . Thus we have,

P!o,φ
ΦFm

 ho > β

2 d
α
∑
qj∈ΦFm

hoj l
o
j



= E!o,φ
ΦFm,hoj

 exp
−

β

2 d
α
∑
qj∈ΦFm

hoj l
o
j


 (A.7)

= E!o,φ
ΦFm

 Ehoj

 ∏
qj∈ΦFm

exp

{
−
β

2 d
αhoj l

o
j

}  
= E!o,φ

ΦFm

 ∏
qj∈ΦFm

Ehoj

[
exp

{
−
β

2 d
αhoj l

o
j

} ]  (A.8)

= E!o,φ
ΦFm

 ∏
qj∈ΦFm

1
1 + β

2 d
αloj


= E!o,φ

ΦFm

 exp
−

∑
qj∈ΦFm

ln
(

1 +
β

2 d
αloj

)
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> exp

−E!o,φ
ΦFm

 ∑
qj∈ΦFm

ln
(

1 +
β

2 d
αloj

) (A.9)

= exp

−E!o,φ
ΦFm

 ∑
qj∈ΦFm

ln
(

1 +
β

2 d
α
(
‖Xj − Xo‖−α+

‖Yj − Xo‖−α + ‖Xj − Yo‖−α + ‖Yj − Yo‖−α
) )]}

(A.10)

= exp

−E!o,φ
ΦFm

 ∑
(r,θ,δ)∈ΦFm

∆(r, θ,φ, δ)


= exp

{
−

1
λfm

∫∞
0

∫ 2π

0

∫ 2π

0
ρ(2)(r, θ,φ, δ)∆(r, θ,φ, δ)rdrdθdδ

}
(A.11)

= exp

{
−

λ2
p

2πλfm

∫∞
0

∫ 2π

0

∫ 2π

0
k(r, θ,φ, δ)∆(r, θ,φ, δ)rdrdθdδ

}
(A.12)

To get Eq.(A.7) we condition on the point processΦFm and hoj and use
the fact that ho is an exponential random variable with E(ho) = 1. As
{hoj } are a set of i.i.d random variables, we get Eq.(A.8). To get Eq.(A.9)
we apply Jensen’s inequality using the fact that exp(−.) is a strictly convex
function. We get Eq.(A.10) by just replacing loj with term of (A.6) men-
tioned previously. We get Eq.(A.11) by applying Campbell’s theorem [23]
to the previous step. To get Eq.(A.12) we use the relation between second-
order product density of the stationary point process ΦFm and k(r, θ,φ, δ)
based on [30]. Finally, by deconditioning Eq.(A.12) w.r.t φ, we get a lower
bound on (A.6) which is the estimate mentioned in the statement of Theo-
rem 4.2 . We note that the function g(V1) can be obtained in an analogous
manner to the derivation of the function η(V) given in the analysis of mean
interference for Matern type II process in Zhong et al. [16].
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