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Abstract—Given a universe U of n_elements and a collection ~ The new paradigm of crowd-sourcing also involves solving
of subse.tsS of U the maximum disjoint set cover problem the DSCP. In crowd-sourcind |[7]][8], a platform (public
(DSCP) is to partiion S into as many set covers as possible, \ijjityy advertises the set of tasks (the univetgethat it wants

where a set cover is defined as a collection of subsets WhOS? b lished thole tracki it .
union is U. We consider the online DSCP, in which the subsets 0 be accomplished (e.g. pothole tracking, community sexvi

arrive one by one (possibly in an order chosen by an adversajy €tc.). Each usersubmits a list of tasks); that it can perform,

and must be irrevocably assigned to some partition on arriva and the platform has to group/cluster subset of users in as
with the objective of minimizing the competitive ratio. The many groups as possible such that each group ensures task
competitive ratio of an online DSCP algorithm A is defined as coverage, i.e. all tasks should be performed by at least bne o

the maximum ratio of the number of disjoint set covers obtaired th in th Th d . bl ith task
by the optimal offline algorithm to the number of disjoint set € users In the group. The crowd-sourcing problem with tas

covers obtained by A across all inputs. We propose an online Coverage is equivalent to the DSCP.
algorithm for solving the DSCP with competitive ratio Inn. We The DSCP is also relevant for finding efficient supply chain

then show a lower bound of2(vInn) on the competitive ratio management solutions|[9], whenedistinct raw materials/sub-
for any online DSCP algorithm. The online disjoint set cover i55ks are required for producing a particular good by a

problem has wide ranging applications in practice, includhg machine. and each sub-contractor/auxiliarv-machi SUD-
the online crowd-sourcing problem, the online coverage Idtime ’ y o@n Sup

maximization problem in wireless sensor networks, and in ofine ~ Ply/accomplish only a subset of raw materials/sub-tasks
resource allocation problems. [10]. Finding the optimal allocation/routing of suppligub-

tasks to distinct machines in order to maximize the number of
simultaneously producible goods is equivalent to the DSCP.
Consider a univers& consisting ofn elements, i.e.l/ = In this paper, we consider an online version of the DSCP,
{1,2,...,n}. LetS = {51, 5o, ...} be a collection of subsetswhere subsets arrive sequentially in time, and each sulaset h
of U, whereS; C U V i. Then the disjoint set cover problemto be assigned to a partition irrevocably without knowledfje
(DSCP) is to find as many partitions 8fas possible such thatfuture subset arrivals. The objective is similar to the iearl
the union of the subsets in each partitiorlis The DSCP is case: to maximize the number of partitions such that the
known to be NP-hard [1], and has an optimal approximatiamion of subsets in each partition is equalfoat the end
ratio of Inn with any polynomial time algorithm, by [2][ [3]. of all subset arrivals, but now relative to the optimal offlin
The DSCP is a fundamental combinatorial optimizatioalgorithm. The offline algorithm refers to the case when the
problem that has widespread applications. Maximizing tleequence of arrival of subsets is revealed to the algorithm i
coverage lifetime (MLCP) of a sensor network [3]] [4] is onadvance. To study the effectiveness of online algorithimes, t
example. HerelU is the set of targets, and each sensoan competitive ratio, which measures the ratio of the profithaf t
cover/track targets; C U. The objective is to find a sensoroptimal offline algorithm and a particular online algorithm
operation (on/off) schedule such that the total time foralhi is the metric of choice[[11]. The smaller the competitive
all targets are covered is maximized. One common approaelio of an online algorithm, the better its performanceteNo
to solve the MLCP is to find the DSCP solution, and use eattat here we make no assumption on the complexity of the
of the disjoint set covers in distinct time slots [1]) [3]][5 offline/online algorithm, the optimal offline or any online
Another DSCP application of interest is in resource allocalgorithm is allowed to have exponential complexity.
tion and scheduling problems|[6]. A canonical example of a Studying the online version of DSCP is important, since
resource allocation problem is where the univéisepresents finding an efficient online algorithm for the DSCP is equivile
the set of files or sub-files of a movie or large file, and eadb solving the online versions of the optimization problems
serveri contains a subsef; of those files. Each server hasdefined above. For example, the online DSCP corresponds to
limited capability, and can serve at most one user at anyngivéhe online MLCP in a natural way, where sensors arrive/wake-
time. Thus, maximizing the number of users that can accésswg) sequentially in time, and each sensor’s on-off schedule
files of the movie (and consequently the revenue) is equitaldas to be decided in an online fashion so as to maximize
to solving the DSCP. the coverage lifetime. Similarly, the online DSCP correstmo
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to online crowd-sourcing, where users submit their reque®efinition 1 (DSCP [3]) Given a universelJ and a set of
sequentially in time, and must be grouped with other usesabsetsS, find as many set covels as possible such that
irrevocably without knowledge of task sets of future users. they are all pairwise disjoint (i.eC; N C; = ¢ V i # j).

There is also a natural correspondence between the onIin?n the offline case of the DSCP, an allocation is made with

DSCP and the online resource allocation problem, Wheﬁ%owledge ofS in its entirety. However, in this paper, we are

servers become active or acquire the subset of files atm'trinterested in the scenario in which the algorithm is foraed t

tlml.es’ fan(tj]. servgtL-us?rk assi)c(;atlonf r]:ats to be done_ ml fiSe an allocatioonline An online algorithm must assign a
oniine fashion without knowledge of Tulure Server arvaly, ;o 14 gne of the partitiorfd as soon as it arrives, and this

The online version of supp_ly chain management has a S'm'fﬁsignment cannot be changed subsequently. The objestive i
correspondence to th? .onllne DSCP. . . to maximize the number aP;s that form set covers at the end
Let Fnin be the minimum number of times any unlvers%La" subset arrivals, relative to the optimal offline aligiom.
element occurs across all the subsets. In this paper, we mal Rs an analogy, one can picture the online version of
the following contributions. the DSCP as in FigurEl 1. Subsets are represented by balls
« We show that any online algorithm must be givER,, containing elements frori, and partitions by bins. The online
in advance to perform with a non-trivial competitive ratioalgorithm has the objective of assigning balls to bins, or in
« Through the online polychromatic coloring of a speciallpther words, making an allocation. The balls arrive one by
defined hypergraph, we propose an online algorithm fene, and the algorithm must drop each into a particular bin as
the online DSCP that has a competitive ratioflnn). and when it arrives. The objective is to ensure that after all
» We also show a lower bound on the competitive ratiGrrivals, the number of bins that form set covers is maxiahize
of Q(vInn), i.e. no online algorithm can have a betterelative to the optimal offline allocation.
competitive ratio tharf2(v/Inn). Note that no complex-  DefineT(M, S) as the number of;s that form set covers
ity assumptions are made on the online algorithm, argter an online allocationM is made on a subset sequence
the lower bound holds for online algorithms even witts. We also defineM;;(S) as the offline allocation that
exponential complexity. maximizesT' (M, S), and call this maximunt’ (M, ;, S).
Since,Ug,esS; = U, the following is trivially established:

[I. MODEL AND PRELIMINARIES .
T( offas) > 1. (1)

The universe of elementsis represented byU = . .
{1,2,3 n—1,n}, unless stated otherwise. We denote the To analyse the performance of online algorithms for the
co’lle7<:ti’on an sul;sets provided b§ = {51, 55....}, where DSCP, a figure of merit is theompetitive ratio[11]. In
S, C UV j. The number of subsets i57 thérefq@| we this paper, we will denote the competitive ratio of an online
;i C . . _ .
define a set cover as a collection of subggts S such that algorithm.A on a sequence of subs@dy s (A), defined as

Us,ecS; = U. We assume that at least one set cover exists in T(M;ff, S) )

S, ie., Us,esS; = U, ns( ) = TS 2
Note that we are interested in amline scenario, in which ]

subsets arrive one at a time, and so the order of the subdu@{e thatus(A) > 1V S, A. Also define the worst case

becomes important. In order to take this into account, Wi@mPpetitive ratiou(A) of an algorithmA as its highest

define an ordered tuple of subsets, which we will call §oMPpetitive ratio over all subset sequences.

subset sequence, Iy = [S1, S2,...]. Note that a permuta- T(Mj;;,S)

tion of S is distinct fromS. When S is mentioned in the #(A) = max pg(A) = max TMAS) )

context of an offline algorithm however, it is equivalentSp v

since all subset arrivals are known in advance to an offline Our objective is to design online algorithms with minimum

algorithm. We also define theoncatenationof two subset worst-case competitive ratio. From hereon, the term compet
sequences, = [S¢,S9,...,5% andS, = [S?,S¢,..., s itive ratio will be used to mean worst case competitive ratio
by SuAS, = [S¢, S8 ga S{f S8 S?]. Similarly S/\% unless mentioned otherwise. A good online algoritinwill

) yr x? 3 yr Yy . 1 . . . . .
for some subsef corresponds to addingj to the end of subset Nave(A) close to unity; an online algorithm with 1.(A)

sequenceS. For the creation of from subsets, we use thelncreasing with the input parameters is not desirable.
familiar ordered set notation, e.§.= [S, : S; = {j},j € U] We now introduce some notation that will be used in the rest

is effectivelyS = [{1}, {2}, ..., {n}]. of this paper. GiverV andS (or S), it is useful to define the_
Define anallocation M as a partition ofS into Py, P»,.... [T€duency; (S) of elementi € U as the number of subsets in
An allocation made by an algorithmd on a sequence of S thatitappearsin, i.e;(S) = #{5; € §:i € 5;}. We also
subsetsS is denoted byM_4(S). We would like to make an 9€fin€ Fnin(S) = min; F5(S). In order to simplify notation,
allocation M such that the maximum number &fs form set We Will use justF; and %,;,, when there is no ambiguity

covers. This is equivalent to solving theaximum disjoint set 2P0ut the sequence of subsets under consideration.
cover problem(DSCP) [3], defined as follows: Itis easy to see thaft,,;, is an upper bound on the optimal
i solution of the DSCP, since each set cover must contain the
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Fig. 1. An online allocationM 4 by an online algorithmA for the universelU = {1,2...,9} and a sequence of subs&sdepicted by balls. Notice that
P, requires the element 4 and 7 to form a set cover. Also, red balls can no longer be reakmtar (M Iz S)=2andT(Mu4,S) <1, sinceF; = 2.
Note also that the online algorithm may choose to eitherepkadall along with others in a pre-existing bin, or createttamobin.

element with frequencyf’,,;, and all set covers must be Proof: We will present two sequences of subsgtsand
disjoint. Therefore, for all algorithmgl: S, such thatminy max ( us, (A), s, (A)) = Fpin, Where

the minimum is taken over all online algorithnds This would
serve as a proof of Theordm 11l.2, by (3).

FindingT'(M:, ;,S) optimally for arbitraryS (or providing L€t the universe b&/ = {1,2,...,n}. This is given to the
an offline algorithm to the DSCP) is NP-complefé [1]. I/Pnline algorithm a-priori, along withs|. Therefore,|S,| =
this paper, however, we will calculate the competitiveaati/S2| = 5] is fixed. Let|S| be sufficiently large.
of our online algorithmsy, without restricting the optimal  DefineScon = [{1,2},{1,3},{1,4},..., {1, n}]. Note that
offline algorithm to run in polynomial time. We will therefer [Scom| = n — 1. Also defineS,, = {1} {1}, ... 18] -
take T'(M;,,,S) to be the number of disjoint set coverdn — 1) timeg. Now, let S; = Scm A Si,. Note that
returned by the optimal offline algorithm, notwithstanditey 7' (M5, S1) = 1, since a set cover can be obtained by the
time complexity. However, finding even an expression fdiombination of all the subsets B.,.

T(M;,;,S) combinatorially is not tractable, and so finding NOW, letSo, =[S : S5 =U\{l,j+1},1<j <n-—1].
u exactly is difficult. We will therefore usél(4) to boupd ~ Also defineSy. = [{2},{2},...|S| — (2n — 2) times. Let

We will now analyse in the next section exactly how mucf2 = ScomAS2rASqe. Itis clear thatl (M7, S;) = n—1 =

information an online DSCP algorithm would need in advandanin(S2), since thejth subset ofS, is the complement of

in order for it to perform with a non-trivial competitive fat the jth subset irS.,,,, with respect toU.
Notice that the firstn — 1 subsets of botls; and S, are

I1l. ESSENTIAL INFORMATION FOR ANONLINE DSCP identical, and represented by the sequefice,. Consider two
ALGORITHM classes of online algorithms representedtyand). Let any
o ) ) o algorithm A € X make an allocatiotM 4 such that all subsets
Befp_re going into thg crux of this section, we first introducg, S.om €nd up in the same partition, and let any algorithm
the trivial online algorithmGr eedy Cover V. B € Y make an allocationV 4 such that all subsets .o,
Definition 2 (G eedyCover V) The allocation My is do not end up _in the same partition. Note Fhat the glaQSes
made such that it always completes a set cover before movitifl Y are disjoint and together span all online algorithms for
on to the next one. In other words, each incoming subsetthe DSCP. The following relations become immediately clear
placed in partitionP; until P; becomes a set cover, after which
the next subset is placed iR ;.

T(M.Av S) < T(Mfoa S) < Fin. (4)

ps,(A) =1V Ae X,

Lemma Ill.1 The competitive ratio oF, j(V) < Fyin. ps,(B) =00 V B €Y,

Proof: Algorithm V will always return at least one set ps, (A) = Frin VA E X,
cover, sinceJg,esS; = U V S. In other words{' (M, S) > 1 s, (B) =1 for someB € .
vV S. The proof of Lemm&TILIL follows from[{4), sincg},.;,
is an upper bound off" (M, S). m We therefore arrive at the fact that

Similarly, it is clear thaj(A) < F),;,, for all algorithms.A .

that always produce at least one set cover. We will now show oo max (u51 (A), s (A)) = Finin, ®)
that no online algorithm can perform better than algorittim . .
with prior knowledge of just/ and|S|. Bey X (MSI(B)’ Hsz (B)) - ©)

Theorem Ill.2 The competitive ratio of any online algorithmThis shows that
is lower bounded by, i.e., u(A) > F,.;, even whend )
is given the univers&/ and number of subsets| a-priori. min max (Msl(c),ucz (C)) = Frnin, ()



where the minimum ove€ = X U Y is taken over all online Definition 4 (Polychromatic Colouring) Colour the vertices
algorithms for the DSCP. The proof is therefore complete. W the hypergraph with the maximum number of colours such
also point out here that,,;,(S1) =1 andF,,;»(S2) =n—1, that each hyperedge contains vertices of all colours.
so if the online algorithm was provided with,,,;,, it could
have chosen to use just one partition 8arandn —1 partitions
for S, thus improving its worst case competitive ratio. m
No online algorithm can therefore outperform the trivi
G eedyCover algorithm) (Definition[2) with knowledge of
justU and|S], from Lemmag&Tl.1l anfTI.R. One can similarly
show that even ifmax; F; or 2>, F; are provided along B. Deterministic Offline Algorithni[3]

with U to an online algorithm, its competitive ratio is lower The offline algorithm in [[3] solves the DSCP through
bounded byF,;,. We will therefore assume the following. ihe polychromatic colouring oft{ys. Let us first refresh
Remark I11.3 From hereon, all online algorithms know ~Some notation from 3], and then present a slightly différen
and F.;,, a-priori. exposition of the algorithm from_[3]. Le¥’(e) denote the
set of vertices in hyperedge An incomplete colouring of
In the next section, we we will construct an online algorithrg hypergraph is one in which there exist colours that are
that is providedF’,;, in advance and performs with a nonnot present in all hyperedges. These colours are said to be
trivial competitive ratio. invalid, since the subset collections that they correspond to
do not form set covers. Let us colour the hypergraph using
IV. AN ONLINE DSCP ALGORITHM ¢ = Fun/In(nlnn) colours, using the seff]. Given an
We will use the offline DSCP algorithm of [[3], and makencomplete colouring of a hypergraph using colours in set
modifications such that it becomes an online algorithm. Wé|, we denote by random variable the number of invalid
will first present a few ideas and the algorithm fram [3].  colours. We also define an indicator random variakilefor
_ eachc € [¢], which is1 if colour ¢ is invalid and0 otherwise.
A. Hypergraph representation The following relation is readily established, as

The universd/ and set of subsetS can also be represented .

. : L= Xe. (8)

as a hypergraph, as shown in_[12]. Define a hypergraph E

Hu.s(V, E) representing a univerdé and subsets, having <l

vertex setV’ and hyperedge séf as follows: We also define another indicator random varigiile for each
o ) hyperedge-colour paie € E, ¢ € [{]), which is1 if hyperedge

Definition 3 (Hu,s(V;, E)) Each subsetS; € S is repre- . goes not contain any vertex coloured with coleyrand0

sented b}’ a vertex; € V. A hyperedger; € E contains otherwise. The relation betweeti, andY, , is as follows:
vertexv; if element; € U is such thati € S;. ’
Xe <Y Yoo, Vel 9)

the corresponding hypergraph representatiorty: e

S.
Figure[2 illustrates an example constructiorf s(V, E) And so, by [(8) and[{9),
from U and S. Note that there argS| vertices andn hyper- L< Z Z Yee. (10)
edges inHy s(V, E). The set of vertices in hyperedge is ccll] ceE
denoted byV (e;), and so|V (e;)| = F;. Hence, the smallest
number of vertices in any hyperedgen; |V (e;)| = Fonin-

Note that each colour in a polychromatic colouring7{; s
corresponds to a set cover bf using subsets i5. The fact
Ehat vertices must have different colours forces the setisoo
%e disjoint, and maximizing the number of colours maximizes
the number of disjoint set covers, i.e., solves the DSCP.

While dealing with a sequence of subs&tswe will denote

The offline algorithm of[[B]Pol yOf f operates in two phases.
In Phase |, it colours all vertices uniformly randomly using
¢ = Fn/Inlnn colours. At this point, note froni_(10) that

EL] <Y S PYe.=1<n-¢-(1- %)IV@I,

cE[l] e€E
< ngef\V(e)VE < ngefln(nlnn)v
={/Inn. (11)

This essentially achieves a randomized polychromaticurelo
ing with at most/ In n invalid colours. After this comes Phase
Fig. 2. Hypergraph Hu.s for U = {1,2,3,4} and S = Il of the Pol yOf f aIgoriFhm - the recollo_urilng phasc_e - which
{{1,2,4},{2,3},{1,3}} works as follows to achieve a deterministic colouring. @rde
the vertices arbitrarily as;, vo, ... andrecolour them in this
The DSCP orl/ andS can be solved offline ofiy.s by order. Let vertexv; be recoloured by colout;. Let |[V*(e)|

an operation known agolychromatic colouring denote the number of vertices in hyperedgthat have not
been recoloured. Now for all hyperedgeshe probability that




e does not contain colour given that the vertices;,...,v; We will prove Theoreni IVl by constructing a deterministic
have been recoloured with colours . . ., ¢; is 0 if there exists online algorithm called th&ol yOn algorithm. Note that the

a vertex ine which has already been recoloured with coleur hypergraph#y; s is not available in advance to any online
Otherwise, the probability is given bl — 1/4)“/“(6)', since algorithm, and must be constructed as and when subsets.arriv
verticesv 1, . . ., v|s) were each coloured uniformly randomlyTo aid in this construction, we introduce a few concepts.

with one of thel colours in Phase I. So, Definition 5 (Shrinking) Shrinking a hyperedgeof a hyper-
0, if 3q<istueVie) graph_G(V, E) to k vertices (or sizek) corresponds to
removing elements df (e) such that|V (e)| becomes equal
P[Yee=ler,co,.0y 0] = _andeg=c to k. The removed elements ©f(e) can be arbitrary. Note
(1- 1/£)'V © otherwise. that the vertex seV’ is not disturbed; hyperedge is simply
(12) made to connect fewer vertices.

After the verticesvy, v, . .., v; are recoloured, we denote the

conditional expectation of the number of invalid colours bket i(e) represent the elementc U that was represented by
E[L|c1, 2 ¢;]. Note that yperedgee in Hy s. Note that shrinking a hyperedgein
» €2, 1B

Hu,s to k vertices corresponds to removing sorfig,) — k
E[L|ci,ca,...,¢] < Z Z P[Y..=1lc,co,...,c]. occurrences of the elemeif{) from the subsets that contain
e€E celf] it. For example, in Figur&l2, the hyperedyean be shrunk
) ) to size1 either by modifying the subsdtl, 2,4} to {2,4}, or
Recolour v; uniformly randomly from [¢]. Given that by modifying the subsef1, 3} to {3}.
v1,...,v;_1 have been recoloured, recolowrsuch that We will now present the following Lemma.

E[Lle1,c2,. .. cim1,¢] S E[Lfer, ea,. .. cim1] (13)  Lemma IV.2 Let the hyperedges in hypergragh be shrunk
Note that such a recolouring exists, since due to the caigurit® arbitrary sizes to produce another hypergrapti. Then

of Phase | being uniformly random, any feasible polychromatic colouring @’ will be a feasible
polychromatic colouring of{.
E[L|01,CQ7...,Ci_1]:(1/2) Z E[L|Cl,CQ,...,Ci_17Ci]7 , ,
el Proof: Let hyperedge edge € H be shrunk toe’ € H'.

L N : Consider a feasible polychromatic colouring#f with some
which is a convex combination. So there exists at least one - ) !
c colours. By definition, all hyperedges € H’ contain all

colour ¢; for which (I3) holds. Before recolouring (at the colours. By Definitior b, for every’ in H’, V(e/) C V(e)

end of Phase 1),L{11) tells us that the number of IrNa“%heree is the corresponding hyperedge#h Therefore, each
colours was less tha#/ Inn, and we can ensure throughou . o :
. . eredges € H contains allc colours. This is a feasible
the recolouring process that that number does not increas . .
olychromatic colouring of{. [ ]

Therefore, at the end of the algorithm, the number of colou? ,
Let a hypergrapht{’s represent the hypergraph con-

S
that f lych ti louri is at least L .
atform a polychromatic colouring diu.s is at leas structed fromHy s by shrinking each of its hyperedges to
_ bt Fain(, Inln+1 (14) SiZ€Finin. As a corollary to LemmBIVI2, we therefore have:
Inn  Inn In(nlnn) )

The vertices coloured with the invalid colours do not corr
spond to set covers. Tl yOf f algorithm therefore obtains
Fuim (1 — o(1)) disjoint set covers, where the1) term is ~ The Pol yOn algorithm will aim to construct hyper-
< 1/2 and goes to zero as — co. graph#/¢" and polychromatically colour it witht,,;, / Inn
colours, online. Note that two things must be accomplished
C. The Online Extension together:(a) Online shrinking ofH{ys to produceH s from
Recall RemarKIILB, by which we will assume that all onliné: and(b) Online polychromatic colouring off;'".
algorithms knowF,,;,, in advance. We will now extend ideas The Pol yOn algorithm will accomplish(a) by the follow-
from the Pol yOf f algorithm presented in Sectidn T¥-B toing Onl i neShri nk method. Note that hypergragty;'s’ can
produce thePol yOn online algorithm. be constructed from a sequence of subSetsy constructing
Before we do that however, we introduce a randomizéiother sequenc&™" as and when subsets $arrive, such
online algorithm,RandCol our , which colours each subsetthat F;(S™"") = Fnin(S) V i € U. One can simply do this
with one of F,,.;,, / In n colours uniformly randomly on arrival. Online by ignoring all occurrences of all elementafter their
This effectively performs Phase | of tl yOf f algorithm F,..n(S)th occurrence. To present this formally, let us denote

on the incoming subsets and produces, in expectation, stt I S; the sub-sequence & containing its firstj subsets
Foin/Inn(1— o(1)) disjoint set covers, by {14). and letsS; denote thejth subset ofS. Similarly defineS7*"

and subsetS’;’”". For every subset arrivab;, as long as
Fi(Sj) < Fnin(S) Vi € U, we setS["" = S;. If after
Theorem IV.1 There exists a deterministic online algorithmsome subse$; arrives, if F;(S;) > F,,:»(S) for somei € U,
for the DSCP with competitive ratim n. we setS7" = S;\{i}. We can thereby ensure that after all

Corollary IV.3 Any polychromatic colouring dﬂ?},? with &
%olours is a polychromatic colouring @y, s with k& colours.

We now make the following claim:



subset arrivalsF;(S™") = F,,;»(S) ¥ i € U. We construct Gr eedyCover algorithm).
He asHy,gmn, in an online fashion. The second advantage is that tRel yOn algorithm is
Since the shrinking of hypergraghiy s to produceH{}fg” polynomial time optimal. It was shown inl[2] that no poly-
can be accomplished online, from hereon, we will assum@mial time algorithm (offline or online) can produce more
that the Onl i neShrink process is carried out by thethanT(M;,,S)/Inn disjoint set covery S unlessN P C
Pol yOn algorithm for any arrival sequence of subsets. NovDT]ME(n'O(loglogn))_ Therefore, no online algorithm that
we can assume that the subset sequeSice’ arrives, and runs in polynomial time can have a better competitive ratio
aim to achieve(b) simultaneously with(a), i.e. to poly- than thePol yOn algorithm. ThePol yOn algorithm also
chromatically colourHy,smi» (Or Hpjg') online, as follows, matches the performance of the best polynomial time offline
by the Onl i neCol our method: algorithm.
The Pol yOn algorithm will first create the set of Tne following Lemma confirms the third advantage.
Frin/In(nlnn) colours [¢]. It will assume that all subsets
(Vertices) in S™n have a|ready been coloured uniformh)_emma IV.4 There exists an infinite famlly of subset se-
randomly with a colour fronj¢] prior to arrival. It will now quencesS for which the competitive ratio of th€ol yOn
recolour each incoming vertex with the prior knowledge thalgorithm is1, i.e. ug(P) = 1.

all hyperedges inH;; g=i» have exactlyF,,;, vertices, i.e. Proof: We will show an infinite family of subset se-

|.V(e)| — F".”” ¥ ¢. Recall Phase I of th_@OI yd'f algo- quencesS for which T'(M;,,S) < Fp,/Inn. Note that
rithm, in which we calculated the probability that hyperedg for these sequenceps(P) = 1. To show this, consider the

does not contain colourafter vertices); throughv; had been minimum set coveproblem ( nSet Cover ), in which given

recoloured, aP[Ye,c = 1ler, ez, ..., ¢;]. The expression for 1y an4¢ we are required to find the set cov®rC S such that
P[Yec = llci,ca,...,¢;] was given by [(IP). Theéol yOn |C| is minimized. The integer programming (IP) formulation
algorithm will attempt to recolour vertex; similarly. but it e v+ L sat cover is known to have an integrality gap n

Is not provided|V“(ed)| directly. It carll, however, caquIate[la]' or in other words, for any problem instar€gthe ratio of
Ve(e)l = V()| = [V(e)l = Fnin —[V(e)|, where|VE(e)| e 1ps optimal solution@PT(IP7)) to the LP relaxation's
is the number of vertices in hyperedgethat have been optimal solution Q PT'(LPr)), in which each subset is given

recoloured. This is all information that is available to thg coefficient betweeh and 1. is at mostlnn. Consider one
online algorithm, and it can therefore calculate suchlnn integrality gap instanc&, in which the frequency

0, if 3¢g<istuy, eVie) of all elements is equal tdf,,?m, and %ﬁg = Inn.
P[Y..=1lcr,ca,...,¢5) = ande, = c For an example of such an instanfg we refer the reader

Frin—|V(e)| to Example 13.4 of [14]. Note th@® PT (L Pz,) = |S|/Fmin,
(1 B 1/2) else. which is accomplished by setting the coefficient of each subs
for each hyperedge-colour paife,c) in an online fash- in S to 1/F,,;,. The optimal IP solutionrOPT (IPz,) will
ion! The Pol yOn algorithm can then usd_(IViC) to cal-therefore be at Ieasggﬂ Inn, since this is dnn integrality
culate the conditional expectation of the number of irgap instance. Each set cover in this instance thereforéstsns
valid coloursE[L|cy, ¢z, ¢l < 3 cpDeciqP[Yee = of at leastN = %hm subsets, and so the number of
1le1, ez, ..., ¢;]. It will then recolour vertexv; 1 such that disjoint set covers can be at mdst|/N = F,i,/Inn. We
E[L|cy,co,. .. ci—1,¢iv1] < E[L|e,co,...,¢], V i. Note have therefore shown an infinite family (for differem} for
that after all vertex arrivals, this will result in a polydmatic which T'(M; ¢, S) < Fin/Inn and us(P) = 1. [ |
colouring of the hypergrapH; gmi» With F,;,,/ Inn colours,
by an equation similar to[(14). By Corollafy_1V.3, this is V. THE LOWER BOUND
also a polychromatic colouring of the hypergrafify,s with
Fpin/Inn colours, and so th&ol yOn algorithm has pro- In this section, for ease of exposition, we will first show a
duced F,.;,,/Inn disjoint set covers ofy from S in an lower bound of((Inn)'/%) on the competitive ratio of any
online manner, by executing both ti@l i neShri nk and online algorithm, which we will then improve @ ((Inn)*/2).
Onl i neCol our operations together. We first present a brief overview of our method.

We know that thePol yOn algorithm (which we represent
now by P) returns at leasF’,;,,/ Ilnn set covers for all input
sequence$. Using [4), we can see that

T( :;ff7s) T( :;ff’s)

w(P) = mélx T(Mp,S) = ming T(Mp, S) <lInn.

Overview 1 We will generate a subset sequence for an online
algorithm consisting of 3 sub-sequences - let us call thém

Y and Z - in that order. We will first provide the sequence
X, on which an online algorithmd will make an allocation

M 4(X). Depending onM 4(X), we will then provide an

This proves Theorei ¥ 1. adversarial sequenc& (M 4(X)) that upper bounds the
) ) number of disjoint set covers that can be formedy astly,
D. Advantages of th@ol yOn Online Algorithm we will provide sequencé (M 4(X)) such that the optimal

Firstly, notice that for all input sequences in whigh,;,, > offline algorithm can construct a larger number of disjoiet s
Inn, the Pol yOn algorithm performs better than the trivialcovers by making reallocations, which is not allowed §ér



We thus obtain a lower bound on the competitive ratio of all} and partitionP, contains2 subsetsSy = {u; : uf =1}
online algorithms. and S; = {u; : u3 = 1}. In that case, the bottleneck elements
for partitions P, and P, are u,;) = 01111...q — 1 times
anduyp) = 10011...q — 3 times, respectively. All elements

of the universe that are not bottleneck elements are called
non-bottleneck elementslote that the frequency i8.,,, of

a bottleneck element of partitionis Fy(jy(Scom) = q — d;.

We will combine these bottleneck elements appropriately to
form the next sequence (correspondingYtan Overview[])
Note that[Seom| = ¢ and thatlS;| = 201V S, € Spom. We that upper bounds the number of disjoint set covers obt&nab

also see by definition that the frequency of elemerit S, by any online algorithm. . ! .
Fi(Seom) = #{k : uf = 1} = q — #{k : u* = 0}. Also, Note that all the quantities have been defined with respect

T(sz ,Seom) = 0, SINCEFpin (Seom) = 0. This is because to allocations ofS.,,,. We are now ready to prove that:

the all-zero element does not appear in any of the subsetsrifborem V.1 The competitive ratio of any online DSCP

Scom. ThereforeS..,, does not contain any set cover. algorithm is lower bounded by((Inn)'/3), i.e. u(A) =
We will use S.,,, as the start of the subset sequence, i'?l((lnn)l/?’) v A

sequenceX in Overview[d, in the proofs of Theorerms V.1 and

In this section, we define the universelas= {0,1}9. There
are therefore a total ofi = 2% elements, in which théth
elementu; is represented by thgbit binary representation of
7, and0 <7 < 27 — 1. We also definmf as thekth bit of
u;, for 0 < k < ¢ — 1. We now form a sequence of subset
Scom = [9j: 8 = {u; s u] =1},1 < j <], i.e. subseyj of
Scom contains all elements; that havel in their jth position.

V5. To that end, note the following. Let any online algomith Proof: We will provide a subset sequence; for
A make an allocation\ 4(Scom) 0N Scom, and partition its which T'( ;fﬂsl) = Q(Fmin(S1)), and T(M4,S1) =
subsets intd?,, P, .. .. After all subsets ir8.,,, have arrived Frnin(S1) 'V online algorithmsA. The firstq elements of

Inn)l/3
S vv(iII be identical toS.,,,. We will then create the remaining
elements ofS; adversarially depending on the allocation of
Scom in order to limit the number of disjoint set covers that
Er(M) = {u; :uf =0,k={0,1,...7(1)} can be created by any online algorithm.
for somer(1) > 0}.  (15) Consider an 0n|ir_1e algorithmd that makes an allocation
M 4(Scom) 0On the firstg subsets. We will assumE_{15), (16)
In words, partitionP; does not contain all those elementaind [17), which hold without loss of generality. We now
u; that have zeroes in their first(1) places, and hence construct the next sequence of subsetsadversarially. Create
contains the first(1) + 1 subsets irB.,,,. This can always be one copy of the subsetf = {z : © = wyj),j € D1}, which
accomplished by reordering thebits. Also, by the definition contains bottleneck elements of all partitions that contai
of subsets irS.,,,, the number of subsets iR is 7(1) + 1. exactlyl subset fron,,,. Note thatFy ) (Seom ASE) = q ¥
Similar to [15), we see that j € Dy. We will ensure that these bottleneck elemengs;,
B (M) = {u; : uf — 0 k= {r(1) +1,...7(2)} j € Pl never arrivellater in sequen&ys. N_ow Ioolk at all thg
partitions P; wherej € D;. They all require their respective
for somer(2) > (1)}, (16) potileneck elements in order to form set covers, and yeether
E;(M)={u;:uf =0,k ={r(j)+1,...7(Gj + 1)} is only one available subsé¥ that contains these bottleneck
for somer(j + 1) > r(j)} V M. (17) elements. Therefore, at mo};tpartitiqn amongpP;, j € D
can form a set cover. Extending this further, we now create
Let us denote the number of subsets in partitynby d; = the adversarial sequenSg containing/ copies of the subsets
r(j)—r(j—1) Vj = 1 (we definer(0) = —1 for consistency). §¢ = {2 : x = w,,j € D,} forall 1 < ¢ < L, in some
Without loss of generality, we can assume thiat, > d; for arbitrary order. Note that through thin(j)(Scom AS.) =g,
all allocationsM, by reordering partitions if necessary. V 4. Similar to the argument for partition8; where;j € D;,
After an allocationM 4(Scom ), let the maximum number we can argue that a maximum éfpartitions amongP; for
of subsets placed in any partition e where0 < L < ¢. j ¢ D, can form set covers. Also define a sequeficg;
Define the setdy(M) = {j : d; = ¢} for eachl < ¢ < L. which contains an arbitrarily large number of singletonsatb
In words, D, represents the indices of those partitions thaf all non-bottleneck elements in any arbitrary order. Let
contain exactly’ subsets fron$.,,, after an online allocation §; = S.,,, A S, A Sing-

M. To S|mpl_|fy notatlon, we will useD, to repr_esean(M) Note thatF,,,i, (S1) = Fy;(S1) for anyj, andFy;(S1) =
when there is no ambiguity about the allocatio. ¢V j, since the non-bottleneck elements appear an infinite
After the allocationM 4(Scon) is done, we also define anymper of times. Now that we have construcaddepending

bottleneck elementor each partitionP; as u,;, such that 4, MA(Seom), We present the following Lemma.

up(y) € Ej(M) and#{k : ug;) = 0} is minimum, i.eu;) is

the element with the fewest zeroes that does not appear4in g@mma V.2 The number of disjoint set covers that can be
tition j. For example, take an allocation in whidh = 1 and formed by any online algorithm fror$; is O (¢*/3), i.e.

dy = 2, i.e. partitionP; contains one subset; = {u; : ul = T (M4, S1) =0 (¢*/3) V online algorithmsA.

K2

and been allocated, denote the elememtse U that are
missing from partitionP; by the setF;(M). We can assume
the following without loss of generality, for all allocatie M



Proof: Let A, denote the number of disjoint set coversy, ) € S, andu,) € S,. For someg # h, by definition,
that can be formed by partitions that hadesubsets from S, = {u; : uf = 1}, and S, = {u; : ul' = 1}. Als0, uy(s) €
Scom- Thus, Ay = #{P; : j € Dy, P; forms a set covey. E,(M), and therefore byL(A 7)) is such thatu’g(s) =0V
By definition, 4, < |Dy|. Recall that we have ensured by — {r(s)4+1,...r(s+1)} andu’g(s) = 1 otherwise. Similarly,
providing S, that a maximum off partitions amongp; for wy(y) is such tham’b“(t) =0Vk={r{t)+1,...r(t+1)} and
j € D, can form set. covers for any_allocatlohlA(Scom). In u’;@ — 1 otherwise. Now note that & {r(t)+1,...r(t+1)}
other words A, < min((, | D|) partitions can form set covers ', ¢ {r(s)+1,...7(s + 1)}, since partitionsP, and P,
for eachD,. The optimization problem over all possible onhneare distinct. Thereforey, ) € S, anduy € S, n

allocationsM.(Scom) is therifore the following: From Proposition[ V4, it is clear that if an allocation
T M A(Scom) is such that subsets can be chosen pairwise
Maximize : A 18
; ¢ (18) from different partitions, the offline algorithm can proguc
I at least|S...|/2 = ¢/2 disjoint set covers. This is be-
Subject to Zg. |De| = q, (19) cause all bottleneck elements corre_sponding to the altotat
—l M 4(Scom) are covered by the union of two subsets from
Ay <min(f,|D)V1<(<L (20) different partitions, andS;,; provides an infinite supply of
o ~non-bottleneck elements. However, for allocatiovs (Scom)
where [18) corresponds to maximizing the number of disjoiBtich thatd; > |S..n|/2 for some partitionj, such a pairwise
set covers,[(19) is the constraint on the number of subsetfoice of subsets from different partitions is impossite.
available inS.,,, and [20) is the constraint imposed by th@roof for that case is provided in the Appendix. [
bottleneck elements ifi,. The optimization is ovefD;| (éach From Lemmad V2 and W3yus, (A) = Q(¢'/3) ¥ online
[De| = |De(M)]| corresponds to some allocationl 4(Scom)-  algorithms.A. Sinceq = log, n, Theoren{ V1L is proved. m
The optimal solution td (18) occurs whel,| = ¢,V . That e presented Theoref V.1 to show that the grouping of
would imply that the optimal online allocation corresponas pottieneck elements to form the subset sequéhcellows us

creating/ partitions P; each containing subsets fron8..m, tg |Jower boundZ'(M4, S1). We will build on these ideas in
i.e. 1 partition with 1 subset?2 partitions with2 subsets and e presentation of Theordm V.5.

so on. Even after the sequen$g is provided, each partition

created byM 4(S.om) can form a set cover. This is becausdheorem V.5 The competitive ratio of any online DSCP
S, can provide each partition with its bottleneck elemenglgorithm is lower bounded by2((Inn)!/?), i.e. u(A) =
andS;, s provides all non-bottleneck elements. Therefore, tHe((In n)l/Q) v A.

constraint[IP) evaluates to I Proof: We will use a technique similar to the proof of

ié- |Dy| = Zgz — g, (21) Theorem[ V1. Instead of creating the subset sequedice
=t =t however, we will now create the subset _sequeﬁge using
which implies tha (L?) = ¢, soL = O (¢'/3). The number a d|fferer]t adversarial sequen&s. Th_e first ¢ subsets in
of disjoint set covers is therefore S, are still the sequenc8.,,,. Depending on the allocation
L M A(Scom), we will use the subsets in sequer8:gas defined
Z min(¢, |Dy|) = Z (=0 (L2) =0 (q2/3) . (22) in the proof of Theorerh Vi1 to create the adversarial subsets
—1 —1 in Sp. Let S? = SfUSSU...S¢, S5 =S83US¢uU...S5%,
ThereforeT'(M.4,S1) = O (¢*/?) V online algorithmsA. m and so on, withS) = UL_,S¢. LetS, = [S; : S =
Sb1 < j < L]. Again, letS;,; be the infinite sequence

Lemma V.3 The number of disjoint set covers that can bg" non-bottleneck elements for the allocati® 4(Seom ). Let

formed fromS, by the optimal offline algorithm is lowerg, _ g As, A Sin;-
bounded by;/2, i.e. T(M;;,S1) > q/2. Note: Fyyin (Sa) = Fyj)(S2) for any j, Fy;(S2) = q ¥ J.

~

Proof: SinceS; was created adversarially based on the
allocation made by the online algorithm, we will find th
optimal offline solution by reallocating subsets from théiroan formed by any online algorithm frorS, is O(q1/2) ie

solution. Consider an allocatiotM 4(S1). The following _ 1/2 : :
proposition will clarify how the reallocation must be doneT(MA’SQ) =0 (q ) ¥ online algorithmsA.

S.emma V.6 The number of disjoint set covers that can be

Proof: Let Ay = #{P; : j € D,, P; forms a set cove},
defined as before. Note that the total number of disjoint set
covers that can be formed is upper-boundedbgince there
are onlyL subsets ir8; that contain bottleneck elements, and
each partition requires its bottleneck element in ordeotonf

Proof: Note that by definition,S, U S, contains all a set cover. Note that onlypartition P;, j € D, can be made
bottleneck elementsy,;, ¥V j # {s,t}. In order to show into a set cover, i.eA; < 1, since only one subsef} € S,
that it also containsu,) and u;), we will show that contains the bottleneck elementg;, V j € D;. After that

Proposition V.4 The union of any two subsets, S, € Scom
taken such that, € P, and S, € P, and s # t, will contain
all bottleneck elements;(;) V j.



set cover is formed, only partition P;, j € D, can be made

into a set cover by using the subsgt< S,, which is the only 450
remaining subset ii$, that contains the bottleneck elements 400 el
uy(j) V j € Ds. Alternatively, an online algorithm could have 350 o = 500
allocated S and S3 to 2 partitions P;, j € D, and made - 300 -
them set covers. Mathematicallyl. < 2 — A;. This logic ¢ 250
can be extended for all partition3;, j € D, V3 < ¢ < L, g 200 -
to give rise to the constraiml, < min(|Dy|, ¢ — Zi;ll Ag). & 1504
The optimization problem over all possible online allocat 100
M A(Scom) is therefore the following: 50
L 07\\\\\\\\\\\\\\\\\\\\
Maximize : ZAg (23) 10 30 50 70 90 110 130 150 170 190
ézl Number of filesn
SUbjeCt to Z - |D€| =g, (24) Fig. 3. Plot of the number of set covers obtained byPRio¢ yOn algorithm
(=1 T(Mp,S) versus the number of files for 3 values of Fiy;p,.
-1
Ap <min(|Dy|, £ =) A,)V1<L< L (25)
x=1

I?Wer bound on the competitive ratio for all online algonit,
Ahd presented an online algorithm that performed comparabl
U that lower bound for reasonable We conjecture that
the tight lower bound on the competitive ratio lisn, but

it will most likely require an entirely different approacb t

: Show. Analysis of the average case competitive ratio ofnenli
for |[Def =1V 1</{<L forwhichd, =1V 1< {< algorithms for the DSCP is still an open problem.

L. 1tis po_ssmlg to mtmtwgly see th? reason for .th'.s’ SINC€ The results of this paper can be extended to produce online
an allocation with constrain{-(24) will try to maximize the

. - algorithms with competitive ratid for all problems that
number of partitions that contain onlysubset fron8,,,, and g P n P

then tw bsets frord d f hich trai tinvolve finding disjoint bases in a polymatroid [15]. Some
€n tWo SUDSELS TTorRcom, and So on, after which constrain examples of such problems are the domatic number problem
(29) will ensure that a maximum of one partition containin

¢ subsets fronS.,,, can form a set cover. For this solutioanJ’ which has applications in the connectivity of WSNs|[16]

o : : and in packing element-disjoint Steiner trees|[17]. Thedow
= 1/2 . . .

itis clear "0.".‘ gonstra|nﬂ:(24) thak = O (q ) and is the bound on the competitive ratio also carries over to the géner

number of disjoint set covers.

The objective function[{23) represents the maximization
the number of disjoint set covers. Constralnil (24) is beea
of the number of subsets available $.,,, and constraint
(23) arises out of the structure of subset$in in the fashion

Note thatl'(M; , ;,S2) = g/2. The proof is identical to that polymatroid problem of [15].
of LemmalV3, sinceS, also containsS.,,,, andS;,. Like
with Lemma[\/3, there is a slight technicality, which is deal
with in the Appendix. So from LemmaV.Gs, (A) = Q(q'/?)

v online algorithmsA, whereq = log, n. [ ]

(1]

VI. SIMULATIONS [2]

For lack of space, we present only one simulation resuE]
for the Pol yOn algorithm P. We considered the online
resource allocation problem, in which each server acquires
the files uniformly randomly, each with probabiligy, from 4]
the universe ofn files to form the subset sequenSe Note
that E[F,,,in(S)] = |S|p = k (say). We then appended subsets
to ensure thatF,,;, = k. Simulations were carried out for [5]
three different values of,;,. The plot of the number of
set covers returned by thBol yOn algorithm T'(Mp,S)  [6]
versusn is provided in Figurd]3. We can see that we get
approximatelyF,,.;,,/ lnn set covers for all the three scenarios,m
thus validating our theoretical analysis in Secfion IV-C.

VIl. CONCLUDING REMARKS [8]

We presented and analysed online algorithms for the DSCP
in terms of their worst case competitive ratios. We found o]
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APPENDIX

Offline Solution for the special case:When M 4(S.om)
was such thatl; > ¢/2 for somej = k (say), the offline
solution could no longer be found by pairing subsets from
different partitions. Note that only one such partitiéh can
exist. For this case alone, after the allocati®tis (Scom ), We
generate the adversarial subset sequence (efheor S;),
differently. We consider partitio®, to consist of2 partitions
Py, and Py,, each of size less thag/2, and consider each
to have its own bottleneck element. We then construct the
adversarial sequence with this assumption of an additional
bottleneck element. Now, all online algorithms are subject
all the constraints of[(18) (and_(23)), except that they can,
in addition, makeP, a set cover. Therefore, the statements
of Lemmas[V.2 (and_VI6) still hold. The offline algorithm,
however, will produce/2 disjoint set covers, wherzsubsets
can now be chosen pairwise frof, and Py,. For this case
too, Theorem§ V|1 and \.5 hold.
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