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Abstract—One practical open problem is the development of a
distributed algorithm that achieves near-optimal utility using only
a finite (and small) buffer size for queues in a stochastic network.
This paper studies utility maximization (or cost minimization) in
a finite-buffer regime and considers the corresponding delay and
reliability (or rate of packet drops) tradeoff. A floating-queue
algorithm allows the stochastic network optimization framework
to be implemented with finite buffers at the cost of packet
drops. Further, the buffer size requirement is significantly smaller
than previous works in this area. With a finite buffer size of
B packets, the proposed algorithm achieves withinO(e−B) of
the optimal utility while maintaining average per-hop delay of
O(B) and an average per-hop drop rate ofO(e−B) in steady
state. From an implementation perspective, the floating-queue
algorithm requires little modification of the well-known Dr ift-
Plus-Penalty policy (including MaxWeight and Backpressure
policies). As a result, the floating-queue algorithm inherits the
distributed and low complexity nature of these policies.

I. I NTRODUCTION

Stochastic network optimization is a general framework for
solving a network optimization problem with randomness [1].
The framework generates a control algorithm that achieves
a specified objective, such as minimizing power cost or
maximizing throughput utility. It is assumed that the network
has random states that evolve over discrete time. Every time
slot, a network controller observes the current network state
and makes a control decision. The network state and control
decision together incur some cost and, at the same time, serves
some amount of traffic from network queues. The algorithm is
designed to greedily minimize adrift-plus-penaltyexpression
every slot. This greedy procedure is known to minimize time
average network cost subject to queue stability.

This general framework has been used to solve several
network optimization problems such as network routing [2],
throughput maximization [3], dynamic power allocation [4],
quality of information maximization [5]. The framework yields
low-complexity algorithms which do not require any statistical
knowledge of the network states. Therefore, these algorithms
are easy to implement and are robust to environment changes.
Further, they achieve an[O(1/V ), O(V )] utility-delay trade-
off, whereV > 0 is a parameter that can be chosen as desired
to achieve a specific operating point on the[O(1/V ), O(V )]
utility-delay tradeoff curve.

This work is supported by the NSF under Career grant CCF-0747525.

Prior works attempt to improve network delay without
sacrificing reliability, where reliability is measured by the rate
of packet drops. Previous works [6] and [7] use an exponential
Lyapunov function and assumed knowledge of anǫ parameter,
whereǫ measures a distance associated with the optimal op-
eration point. They achieve an optimal[O(1/V ), O(log(V ))]
utility-delay tradeoff. A simpler methodology allows packet
drops in order to obtain an[O(1/V ), O([log(V )]2)] utility-
delay tradeoff [8], [9]. In [8], a steady state behavior is ob-
served to learn a placeholder parameter to achieve the tradeoff
in steady state. However, the algorithm does not gracefully
adapt to changes of the network state distribution. It would
need another mechanism to sense changes and then recompute
a new placeholder parameter with each change. The Last-
In-First-Out (LIFO) queue discipline is employed to resolve
this issue [9]. However, these works, which achieve average
queue size that grows logarithmically inV , still assume the
availability of infinite buffer space [7]–[9].

A practical implementation of the LIFO scheme is devel-
oped in [10]. The work in [10] also introduces afloating-
queuealgorithm, operating under the LIFO scheme, to deal
with finite buffers. The algorithm in [10] is heuristic, and it
is not clear how to analyze its behavior. The current work is
inspired by this floating queue idea of [10] and adopts the
same “floating queue” terminology, even though the floating-
queue algorithm developed here is different from [10]. Indeed,
the floating queue technique of this paper operates under the
First-In-First-Out (FIFO) scheme. It splits each queue into two
queues (one forreal and one forfake packets) and yields
analytical guarantees on utility, delay, and packet drops.

Several backpressure approaches [11]–[13] attempt to im-
prove network delay. However, those focus on specific as-
pects and do not have the theoretical utility-delay tradeoff.
Stochastic network optimization with finite buffers has been
studied previously in [14]. That work uses a non-standard
Lyapunov function and knowledge of anǫ parameter to derive
an upper bound on the required buffer size. However, theǫ
parameter can be difficult to determine in practice, and the
resulting utility-delay tradeoff is still[O(1/V ), O(V )]. An
implementation of that work is studied in [15].

This paper develops a floating-queue approach to general
stochastic network optimization with finite buffers. Our algo-
rithm is inspired by finite buffer heuristics in [10] and the
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steady state analysis in [8]. We propose the floating-queue
algorithm to solve the learning issue in [8]. The result obtains
the best of both worlds: It achieves the desired steady state
performance but is just as adaptive to network changes as
LIFO scheduling. For finite buffers of sizeB, deviation from
utility optimality is shown to decrease likeO(e−B) and packet
drops are shown to have rateO(e−B), while average per-hop
delay isO(B).

This paper is organized as follows. The system model is
described in Section II. Section III describes the standard
drift-plus-penalty approach. The floating queue algorithmis
introduced in Section IV. Performance of the floating-queue
algorithm is analyzed in Section V and is validated by simu-
lation in Section VI. Section VII concludes the paper.

II. SYSTEM MODEL

The network model of this paper is similar to that of [8].
Consider a network withN queues that evolve in discrete
(slotted) timet ∈ {0, 1, 2, . . .}. At each time slot, anetwork
controller observes the currentnetwork statebefore making
a decision. The goal of the controller is to minimize a time
average cost subject to network stability. An example of time
average cost is average power incurred over the network.
Utility maximization can be treated by defining the slot-t cost
as−1 times a slot-t reward. An example utility maximization
problem is to maximize time average network throughput.
The rest of the paper deals with cost minimization, with the
understanding that this can also treat utility maximization.

A. Network State

The network experiences randomness every time slot. This
randomness is called thenetwork stateand can represent
a vector of channel conditions and/or random arrivals for
slot t. Assume there areM different network states. Define
S = {s1, s2, . . . , sM} as the set of all possible states. Let
S(t) denote the network state experienced by the network at
time t. Let πm ∈ [0, 1] be the steady state probability that
S(t) = sm, i.e., πm = P {S(t) = sm}. For simplicity, it is
assumed thatS(t) is independent and identically distributed
(i.i.d.) over slots. The same results can be shown in the general
case of ergodic but non-i.i.d. processes (see [8]). The network
controller can observeS(t) before making the slot-t decision,
but the πm probabilities are not necessarily known to the
controller.

B. Control Decision

Every time slot, the network controller chooses a decision
from a set of feasible actions which depends on the current
network state. Formally, defineXS(t) as the decision set
depending onS(t), and letx(t) denote the decision chosen by
the controller at timet, wherex(t) ∈ XS(t). Assume the action
setX sm is finite for everysm ∈ S. On slot t, these control
decision and network state(x(t), S(t)) affects the network in
2 aspects:

1) A cost is incurred. The cost isf(t),f(x(t), S(t)) :
XS(t) → R. An example cost is energy expenditure. Another
example is−1 times the amount of newly admitted packets.

Fig. 1. Arrivals and services at a standard queue

2) Queues are served. The service variables areµij(t),
representing the integer amount of packets taken from queuei
and transmitted to queuej, for all i, j ∈ N,{1, . . . , N}. This
is determined by a functionµij(t),µij(x(t), S(t)) : XS(t) →
Z+. Further, the decision admitsµ0i(t),µ0i(x(t), S(t)) :
XS(t) → Z+ integer amount of exogenous packets to queue
i ∈ N . Packets depart from the network at queuej ∈ N with
an integer amountµj0(t),µj0(x(t), S(t)) : XS(t) → Z+.
Note that we setµii(t) = 0 for all i ∈ N ∪ {0} and for
all t. The transmission, admission, and departure are shown in
Figure 1.

For every sm ∈ S, we assume functionsf(·, sm) and
µij(·, sm) for i, j ∈ N ∪ {0} are time-invariant, and mag-
nitudes of

∑N
i=0 µin(·, sm) and

∑N
j=0 µnj(·, sm) are upper

bounded by constantδ(max) ∈ (0,∞) for every n ∈ N .
Furthermore, the network optimization is assumed to satisfy
the following Slater condition[8]: Let |X | be the cardinality
of set X . For everysm ∈ S and k ∈ {1, . . . , |X sm |}, there
exist probabilitiesζsmk (such that

∑|X sm |
k=1 ζsmk = 1 for all

sm ∈ S) that define astationary and randomized algorithm.
Whenever the network controller observes stateS(t) = sm,
the stationary and randomized algorithm chooses actionxsm

k

with conditional probabilityζsmk . The Slater condition assumes
there exists such a stationary and randomized algorithm that
satisfies:

M
∑

m=1

|X sm |
∑

k=1

πmζsmk





N
∑

i=0

µin(x
sm
k , sm)−

N
∑

j=0

µnj(x
sm
k , sm)





≤ −η for all n ∈ N ,

for someη > 0. In fact, this assumption is the standard Stater
condition of convex optimization [16].

C. Standard Queue

The network consists ofN standard queues. Let Qn(t)
denote the backlog in queuen at time t, and let
Q(t),(Q1(t), . . . , QN(t)) be the vector of these backlogs.
The backlog dynamic of queuen ∈ {1, . . . , N} is

Qn(t+1) = max



Qn(t)−
N
∑

j=0

µnj(t), 0



+

N
∑

i=0

µin(t). (1)

When there are not enough packets in a queue, i.e,Qn(t) <
∑N

j=0 µnj(t), blank packets are used to fill up transmissions.



Initialization: Q(0) = 0

for t ∈ {0, 1, 2, . . .} do
ObserverS(t) andQ(t).
Choosex(t) that solves (3).
UpdateQn(t+ 1) according to (1)∀n ∈ N .

end for

Fig. 2. The drift-plus-penalty algorithm

D. Stochastic Formulation

The controller seeks to minimize the expected time-average
cost while maintaing queue stability. The expected time aver-
age cost is defined by

f̄ = lim sup
T→∞

1

T

T−1
∑

t=0

E [f(t)],

and the queue stability is satisfied when

lim sup
T→∞

1

T

T−1
∑

t=0

N
∑

n=1

E [Qn(t)] < ∞.

The stochastic network optimization problemis

Minimize f̄ (2)

Subject to queue stability.

III. D RIFT-PLUS-PENALTY METHOD

A. Drift-Plus-Penalty Method

The drift-plus-penalty method of [1] can solve problem (2)
via a greedy decision at each time slot that does not require
knowledge of the steady state probabilities. The method has
parameterV ≥ 0. In the special case ofV = 0, this policy is
also called “MaxWeight” or “Backpressure”:

Drift-Plus-Penalty Policy: At every timet ∈ {0, 1, 2, . . .},
the network controller observes network stateS(t) and back-
log vectorQ(t). Decisionx(t) ∈ X sm is chosen to solve:

Minimize V f(x(t), S(t)) (3)

+

N
∑

n=1

Qn(t)





N
∑

i=0

µin(x(t), S(t)) −
N
∑

j=0

µnj(x(t), S(t))





Subject to x(t) ∈ XS(t).

Depending on the separability structure of problem (3), it
can be decomposed to smaller subproblems that can be solved
distributively. The algorithm is summarized in Figure 2.

It has been shown in [1] that

f (DPP) ≤ f (opt) +O(1/V ) (4)

lim sup
T→∞

1

T

T−1
∑

t=0

N
∑

n=1

E [Qn(t)] = O(V ), (5)

wheref (DPP) is the expected time average cost achieved by
the drift-plus-penalty policy, andf (opt) is the optimal cost of
problem (2). The inequality (4) implies that the drift-plus-
penalty policy achieves cost withinO(1/V ) of the optimal

cost, which can be made as small as desired by choosing
a sufficiently large value ofV . The equality (5) implies
that average queue backlog grows linearly withV . Applying
Little’s law gives the[O(1/V ), O(V )] utility-delay tradeoff
(see [17] for a standard description of Little’s law).

Notice that the drift-plus-penalty algorithm assumes infinite
buffer size at each queue, even though the average queue size
is bounded byO(V ).

B. Deterministic Problem

In order to consider a finite buffer regime, the steady-state
behavior of the drift-plus-penalty algorithm is considered. In
[8], the stochastic problem (2) is shown to have an associated
deterministic problem as follows:

Minimize V

M
∑

m=1

πmf(xsm , sm) (6)

Subject to
M
∑

m=1

πm

N
∑

i=0

µin(x
sm , sm)

≤
M
∑

m=1

πm

N
∑

j=0

µnj(x
sm , sm) ∀n ∈ N (7)

xsm ∈ X sm ∀m ∈ {1, . . . ,M}.

Let γ = (γ1, . . . , γN ) be a vector of dual variables associ-
ated with constraint (7). The dual function of problem (6) is
defined as:

g(γ) =
M
∑

m=1

πm inf
xsm∈X sm

{

V f(xsm , sm)

+
N
∑

n=1

γn

[

N
∑

i=0

µin(x
sm , sm)−

N
∑

j=0

µnj(x
sm , sm)

]}

. (8)

This dual function (8) is concave. Therefore, the following
dual problem is a convex optimization problem:

Maximize g(γ) (9)

Subject to γ ∈ R
N
+ .

Let γV ∗ = (γV ∗
1 , . . . , γV ∗

N ) be a vector of Lagrange mul-
tipliers, which solves the dual problem (9) with parameter
V . The following theorem from [9] describes a steady state
property of the drift-plus-penalty algorithm:

Theorem 1:SupposeγV ∗ is unique, the Slater condition
holds, and the dual functiong(γ) satisfies:

g(γV ∗) ≥ g(γ) + L
∥

∥γV ∗ − γ
∥

∥ for all γ ∈ R
N
+ ,

for some constantL > 0, independent ofV . Then under
the drift-plus-penalty policy, there exist constantsD,K, c∗,
independent ofV , such that for anyβ ≥ 0, the following
upper bound holds

P(D,Kβ) ≤ c∗e−β , (10)



where

P(D,Kβ)

, lim sup
T→∞

1

T

T−1
∑

t=0

P
{

∃n,
∣

∣Qn(t)− γV ∗
n

∣

∣ > D +Kβ
}

. (11)

Proof: Please see the full proof in [8].
As all transmissions, admissions, and departures are inte-

gers, the queue vector has a countably infinite number of
possibilities, and under a mild ergodic assumption the steady
state distribution of{Q(t) : t ≥ 0} exists. In this ergodic
case, theP(D,Kβ) value in (11) becomes the steady state
probability that backlog deviates more thanD+Kβ away from
the vector of Lagrange multipliers. Note that the probability in
(10) vanishes exponentially inβ. This implies that, in steady
state, a large portion of arrivals and services occur when the
queue backlog vector is close to the Lagrange multiplier vector
γV ∗. Thus, if we can admit and serve this portion of traffic
using finite-buffer queues, the network still operates nearits
optimal point.

IV. FLOATING-QUEUE ALGORITHM

In this section, the floating-queue algorithm is presented
as a way to implement the drift-plus-penalty algorithm using
finite buffers. The algorithm preserves the dynamics of the
drift-plus-penalty algorithm and hence inherits several of its
performance guarantees.

Recall that standard queuen ∈ N has dynamic (1). To
simplify notation, letan(t),

∑N
i=0 µin(t) denote aggregated

arrivals to queuen, and letbn(t),
∑N

j=0 µnj(t) denote ag-
gregated services from queuen at time t. This implies that
δ(max) upper bounds bothan(t) and bn(t). The dynamic (1)
can be written as

Qn(t+ 1) = max [Qn(t)− bn(t), 0] + an(t). (12)

For the rest of this paper, the above dynamic is considered for a
standard queue. Note thatan(t) andbn(t) are fully determined
after knowing allµij(t) from the drift-plus-penalty algorithm.

A. Queue Transformation

In the floating-queue algorithm, each standard queuen ∈ N
of Section II-C is a combination of areal queueand a
fake queue. The real queue has buffer sizeB for stor-
ing real packets. The fake queue containsfake packets
and only requires a counter to implement. LetQr

n(t) and
Qf

n(t) denote respectively the amount of backlogs in the real
queue and the fake queue of the standard queuen. Define
Qr(t),(Qr

1(t), . . . , Q
r
N(t)) and Qf (t),(Qf

1 (t), . . . , Q
f
N(t))

as vectors of real and fake queue backlogs. We use the term
floating queuen to refer to the 2-queue combination consisting
of real and fake queuesn.

Fig. 3. Transformation of a standard queue to a floating queue

B. Real and Fake Parts of Arrivals and Services

At each queuen ∈ N , let brn(t) and bfn(t) denote the
aggregated real and fake serviced packets at timet. the
floating-queue algorithm always serves real packets before
fake packets as:

brn(t) = min [Qr
n(t), bn(t)] (13)

bfn(t) = bn(t)− brn(t). (14)

It is easy to see thatbn(t) = brn(t) + bfn(t). Also, brn(t) and
bfn(t) are fully determined, sincebn(t) andQr

n(t) are known.
To differentiate the real and fake packets in the drift-plus-

penalty variableµij(t), let µr
ij(t) andµf

ij(t) denote the real
and fake parts ofµij(t) for i, j ∈ N ∪ {0}. All µij(t) are
non-negative integers. Sinceµii(t) = 0, we haveµr

ii(t) =
µf
ii(t) = 0 for all i ∈ N ∪ {0}. All exogenous arrivals are

considered as real packets, so knowing the value ofµ0j(t), we
setµr

0j(t) = µ0j(t) andµf
0j(t) = 0 for everyj ∈ {1, . . . , N}.

The real and fake parts ofµij(t) for i ∈ N , j ∈ N ∪ {0} can
be set arbitrarily to satisfy:

brn(t) =

N
∑

j=0

µr
nj(t), bfn(t) =

N
∑

j=0

µf
nj(t) ∀n ∈ N

µij(t) = µr
ij(t) + µf

ij(t) ∀i ∈ N , j ∈ N ∪ {0}

Therefore, allµr
ij(t) andµf

ij(t) for all i, j ∈ N ∪{0} are fully
determined. This is illustrated in Figure 3.

Let arn(t) =
∑N

i=0 µ
r
in(t) and afn(t) =

∑N
i=1 µ

f
in(t) be

the aggregated real and fake parts ofan(t). They are fully
determined andan(t) = arn(t) + afn(t).

The floating-queue algorithm always admits a real packet
to a real queue as much as allowed by its buffer space. Let
ar

′

n (t) denote the amount of packets inarn(t) that are admitted
to the real queuen at timet. Another part ofarn(t), which is
dropped, is denoted bydn(t) and becomes fake packets. Let
af

′

n (t) denote the admitted fake arrivals, including original fake
arrivalsafn(t) and dropped packetsdn(t). The arrival dynamic
of queuen ∈ N is

ar
′

n (t) = min [B −Qr
n(t), a

r
n(t)] (15)

dn(t) = arn(t)− ar
′

n (t) (16)

af
′

n (t) = afn(t) + dn(t). (17)

It is easy to see thatar
′

n (t) + af
′

n (t) = arn(t) + afn(t).



C. Real and Fake Queuing Dynamics

The dynamics of real and fake queues of standard queue
n ∈ N are

Qr
n(t+ 1) = Qr

n(t)− brn(t) + ar
′

n (t) (18)

Qf
n(t+ 1) = max

[

Qf
n(t)− bfn(t), 0

]

+ af
′

n (t). (19)

Lemma 1:From any timet0, when Q(t0) = Qr(t0) +
Qf (t0), it follows that

Q(t) = Qr(t) +Qf(t), ∀t ≥ t0.

Proof: We prove this lemma by induction. Fort0,
Q(t0) = Qr(t0) + Qf(t0) by the assumption. Suppose
Q(t) = Qr(t) +Qf (t) at time t. At queuen ∈ N , we have

Qn(t+ 1) = max [Qn(t)− bn(t), 0] + an(t)

= max
[

Qr
n(t) +Qf

n(t)− brn(t)− bfn(t), 0
]

+ ar
′

n (t) + af
′

n (t). (20)

When there are not enough real packets,Qr
n(t) < bn(t),

it follows that Qr
n(t) − brn(t) = 0 from (13). Equation (20)

becomes

Qn(t+ 1) = max
[

Qf
n(t)− bfn(t), 0

]

+ af
′

n (t) + ar
′

n (t) + 0

= Qf
n(t+ 1) +Qr

n(t+ 1).

When there are enough real packets,Qr
n(t) ≥ bn(t), we

have thatbfn(t) = 0 from (13) and (14). Equation (20) becomes

Qn(t+ 1) = Qf
n(t) + af

′

n (t) +Qr
n(t)− brn(t) + ar

′

n (t)

= Qf
n(t+ 1) +Qr

n(t+ 1).

Thus,Qn(t+ 1) = Qf
n(t) +Qr

n(t) for all n ∈ N .
The implication of Lemma 1 is that, although the floating-

queue algorithm implements these real and fake queues in-
stead of the standard queues, the dynamics ofQ(t) and
Qr(t) + Qf (t) are the same. Hence, when decisionx(t) is
chosen by solving (3) withQr(t)+Qf (t) instead ofQ(t), all
decisions{x(t)}∞t=0 under the standard algorithm (in Figure
2) are identical to the decisions{x(t)}∞t=0 under the floating-
queue algorithm (in Figure 4), given thatQr(0) + Qf(0) =
Q(0). Yet, the buffer size of each real queue in the floating-
queue algorithm isB. Let Qf (0) ∈ Z

N
+ be a predefined

fake backlogs. The floating-queue algorithm is summarized
in Figure 4.

We prove a useful lemma of the floating-queue algorithm,
which will be used in Section V-B.

Lemma 2:Under the floating-queue algorithm, when the
buffer size of the real queuen ∈ N is B ≥ 2δ(max), if dn(t) >
0, thenQf

n(t+ 1) > Qf
n(t).

Proof: Eventdn(t) > 0 implies thatarn(t) > ar
′

n (t) from
(16) andar

′

n (t) = B−Qr
n(t) from (15), soQr

n(t) > B−arn(t).
WhenB ≥ 2δ(max), we haveQr

n(t) > 2δ(max)−arn(t) ≥ δ(max),
and there are enough real packets for all services. Therefore,
all services take real packets andbrn(t) = bn(t) andbfn(t) = 0
from (13) and (14). From (19) and (17), we have

Qf
n(t+1) = Qf

n(t)+af
′

n (t) = Qf
n(t)+afn(t)+dn(t) > Qf

n(t).

Initialization: Qr(0) = 0 andQf (0)
for t ∈ {0, 1, 2, . . .} do

ObserverS(t) and letQ(t) = Qr(t) +Qf(t).
Choosex(t) that solves (3).
Calculate(an(t), bn(t)) ∀n ∈ N .
Calculate(brn(t), b

f
n(t)) as (13) and (14)∀n ∈ N .

Adjust (ar
′

n (t), a
f ′

n (t)) as (15)–(17)∀n ∈ N .
Qr

n(t+ 1) = Qr
n(t)− br

′

n (t) + ar
′

n (t) ∀n ∈ N .
Qf

n(t+1) = max
[

Qf
n(t)− bfn(t), 0

]

+ af
′

n (t) ∀n ∈ N .
end for

Fig. 4. The floating-queue algorithm

The interpretation of Lemma 2 is that, for any queuen with
buffer sizeB ≥ 2δ(max), if real packets are dropped at timet,
then the fake backlogs at timet+ 1 always increase.

V. PERFORMANCEANALYSIS

The steady-state performance of the floating-queue algo-
rithm is analyzed by bounding from below the admitted real
arrivals at each queuen ∈ N . DefineΘn(t),

(

arn(t), a
f
n(t), a

r′

n (t), af
′

n (t), brn(t), b
f
n(t), Q

r
n(t), Q

f
n(t)

)

as a sample path of the arrivals, services, and backlogs of
queuen that is generated by the floating-queue algorithm at
time t. For any positive integerT and starting timet0, a sample
path of queuen from t0 to t0+T is denoted by{Θn(t)}

t0+T
t=t0

.
Note thatQn(t) can be recovered from this sample path as
Qn(t) = Qr

n(t) +Qf
n(t).

From sample pathΘn(t), the amount of real arrivals are
arn(t), and the amount ofadmitted real arrivals arear

′

n (t),
which depend on the floating-queue mechanism (15). To lower
bound this admitted real arrivalar

′

n (t), we construct another
mechanism, called “lower-bound policy”, that operates over
the sample path. It has a different rule for counting admitted
real packets (later defined aŝarn(t)), which is part of the
real arrivalsarn(t). We will show (Lemma 6) that the amount
of admitted real arrivals under the floating-queue algorithm
is lower bounded by the amount of admitted real arrivals
under the lower-bound policy. Using this lower bound the
performance of the floating-queue algorithm can be analyzed.

A. Lower-Bound Policy

In this section, queuen ∈ N is fixed and the lower-bound
policy is defined for this queue. For simplicity, assume that
the buffer sizeB is even andB ≥ 2δ(max).

Recall thatγV ∗ is the Lagrange multiplier of problem (9),
andδ(max) is the upper bound onan(t) andbn(t). Define

Bn,

[

γV ∗
n −B/2 + δ(max), γV ∗

n +B/2− δ(max)
]

.

Let ârn(t) denote the number of admitted real packets under
the lower-bound policy at timet. Given any sample pathΘn(t)



Fig. 5. Time intervalT (T ) is partitioned intoTH(T ) andTL(T ).

having real arrivalsarn(t) and total backlogsQn(t), the lower-
bound policy counts real packets as

ârn(t) =

{

arn(t) , Qn(t) ∈ Bn

0 , Qn(t) /∈ Bn.
(21)

Let d̂n(t) denote the number of dropped packets under the
lower-bound policy at timet. It satisfies

d̂n(t) = arn(t)− ârn(t). (22)

Notice thatârn(t) and d̂n(t) are artificial numbers and are not
real and fake packets in a real system. These values can be
determined byarn(t) andQn(t) of sample pathΘn(t).

B. Sample Path Analysis

The goal of this section is to show (Lemma 6) that, for any
sample path{Θn(t)}

∞
t=t0

of queuen ∈ N and any positive
integerT , the admitted real arrivals under the floating-queue
algorithm with buffer sizeB is lower bounded by

t0+T−1
∑

t=t0

ar
′

n (t) ≥
t0+T−1
∑

t=t0

ârn(t)−B.

In this section, queuen is fixed and analyzed; however, the
analysis results hold for every queuen ∈ N .

For any starting timet0 and any positive integerT , define
T (T ),{t0, . . . , t0 + T} as a time interval of consideration. It
can be partitioned into disjoint setsTH(T ) andTL(T ), which
are illustrated in Figure 5, where

TH(T ),
{

t ∈ T (T ) : Qf
n(t) ≥ γV ∗

n −B/2
}

TL(T ),
{

t ∈ T (T ) : Qf
n(t) < γV ∗

n −B/2
}

.

Time interval TL(T ) can be partitioned into disjointed
intervals of time that starts when the fake queue in the sample
path satisfiesQf

n(t) < γV ∗
n −B/2 and ends when it does not.

This is illustrated in Figure 6. Fork ∈ {1, 2, . . .}, let

tk = arginft∈{t′
k−1

+1,...,t0+T}

{

Qf
n(t) < γV ∗

n −B/2
}

t′k = arginft∈{tk+1,...,t0+T}

{

Qf
n(t) ≥ γV ∗

n −B/2
}

− 1,

where t′0 = t0 − 1 and arginft∈{A,...,B}{C(t)} = B + 1 if
A > B or C(t) is not satisfied for allt ∈ {A, . . . , B}. Let
K(T ) = argmaxk≥0 {tk < t0 + T + 1} denote the number of
intervals{tk, . . . , t′k} contained inT (T ).

Fig. 6. PartitioningTL(T ) into intervals oftk , t′
k

, t−
k,j

, andt+
k,j

WhenK(T ) > 0, the time interval in interval{tk, . . . , t′k}
for k ∈ {1, 2, . . . ,K(T )} can be partitioned into in-
tervals between local minima and local maxima. Define
U(t), arginfτ∈{t+1,t+2,...}

{

Qf
n(τ) > Qf

n(t)
}

to be the first
time index aftert that the fake queue increases. Fork ∈
{1, 2, . . . ,K(T )}, j ∈ {1, 2, . . .}, let

t−k,j = min

[

arginft∈{t+k,j−1+1,...,t′k}

{

Qf
n(t) < Qf

n(t− 1) and

Qf
n(t) ≤ Qf

n(τ) ∀τ ∈ {t+ 1, . . . , U(t)}
}

, t′k

]

t+k,j = min
[

arginft∈{t−k,j+1,...,t′k}

{

Qf
n(t) > Qf

n(t+ 1)
}

, t′k

]

,

where t+k,0 = tk − 1 and Qf
n(t0 − 1) = ∞. Intuitively,

during {tk, . . . , t′k}, t−k,j is the first time index that thej th

local minimum is reached, andt+k,j is the last time index of
the j th local maximum. This is illustrated in Figure 6. Let
J(k) = arginfj>0

{

t+k,j = t′k

}

denote the number of local

maxima during{tk, . . . , t′k}.
For a technical reason (used in Lemma 4), letTA(T ),{(tk−

1) ∈ T (T ) : k ∈ {1, . . . ,K(T )}. The following lemmas hold
for the real arrivals inTH(T )\TA(T ) andTL(T ) ∪ TA(T ).

Lemma 3: When B ≥ 2δ(max), given any sample path
{Θn(t)}

t0+T
t=t0

, the following relation holds
∑

t∈TH(T )\TA(T )

ar
′

n (t) ≥
∑

t∈TH(T )\TA(T )

ârn(t).

Proof: Two cases are examined.
1) WhenQn(t) ∈ Bn for any t ∈ TH(T )\TA(T ), we have

ar
′

n (t) = arn(t), because real queuen has enough buffer space:

Qr
n(t) = Qn(t)−Qf

n(t)

≤
(

γV ∗
n +B/2− δ(max)

)

−
(

γV ∗
n −B/2

)

≤ B − δ(max).

The first inequality holds because ofQn(t) ∈ Bn and t ∈
TH(T ). For the lower-bound policy, we havêarn(t) = arn(t),
becauseQn(t) ∈ Bn. So ar

′

n (t) = ârn(t).
2) WhenQn(t) /∈ Bn for any t ∈ TH(T )\TA(T ), we have

ar
′

n (t) ≥ ârn(t) = 0, becauseQn(t) /∈ Bn andar
′

n (t) ≥ 0.



These two cases implies the lemma.
Lemma 4: When B ≥ 2δ(max), given sample path

{Θn(t)}
t0+T
t=t0

with Qr
n(t0) = 0, the following holds

∑

t∈TL(T )∪TA(T )

ar
′

n (t) ≥
∑

t∈TL(T )∪TA(T )

ârn(t).

Proof: For k ∈ {1, . . . ,K(T )}, j ∈ {1, . . . , J(k)}, 3
cases are examined.

1) For real arrivalsarn(t) during t ∈
{

tk − 1, . . . , t−k,1 − 2
}

(if exists), the fake backlogsQf
n(t) is non-increasing by

the definition of t−k,1. From Lemma 2, the non-increasing
implies no packet drops andar

′

n (t) = arn(t) for t ∈
{

tk − 1, . . . , t−k,1 − 2
}

. Since ârn(t) ≤ arn(t), it follows

that
∑t−k,1−2

t=tk−1 a
r′

n (t) ≥
∑t−k,1−2

t=tk−1 â
r
n(t). For a special case

when t1 = t0, same argument can be used to obtain
∑t−1,1−2

t=t1 ar
′

n (t) ≥
∑t−1,1−2

t=t1 ârn(t).

2) For real arrivalsarn(t) during t ∈
{

t−k,j − 1, . . . , t+k,j

}

, it

can be shown that
∑t+k,j

t=t−
k,j

−1
ar

′

n (t) ≥
∑t+k,j

t=t−
k,j

−1
ârn(t). This

result is proven in Appendix.
3) For real arrivals arn(t) during t ∈

{

t+k,j + 1, . . . , t−k,j+1 − 2
}

(if exists), the fake backlogs

Qf
n(t) is non-increasing by the definitions oft+k,j and t−k,j+1.

Lemma 2 implies that
∑t−k,j+1−2

t=t+k,j+1
ar

′

n (t) ≥
∑t−k,j+1−2

t=t+k,j+1
ârn(t).

SinceQr
n(t0) = 0, the time interval{tk, . . . , t′k} for k ∈

{1, . . . ,K(T )} starts with either the first case or the second
case and ends with the second case. Thus, it is clear that, if
real arrivals under the lower-bound policy are dominated over
every subinterval, then they are also dominated over the union
of these subintervals.

Lemma 5: When B ≥ 2δ(max), given sample path
{Θn(t)}

∞
t=t0

with Qr
n(t0) = 0 and positive integerT , it holds

that
t0+T−1
∑

t=t0

ar
′

n (t) ≥
t0+T−1
∑

t=t0

ârn(t).

Proof: Disjoint time intervalsTH(T − 1)\TA(T − 1) and
TL(T − 1) ∪ TA(T − 1) are the partitions ofT (T − 1). Then
Lemma 3 and Lemma 4 imply the lemma.

The above lemma is not general, since it requiresQr
n(t0) =

0. Now its general version is provided.
Lemma 6:When B ≥ 2δ(max), given any sample paths

{Θn(t)}
∞
t=t0

and positive integerT , it holds for anyQr
n(t0) ∈

{0, 1, . . . , B} that

t0+T−1
∑

t=t0

ar
′

n (t) ≥
t0+T−1
∑

t=t0

ârn(t)−B.

Proof: Construct sample path
{

Θ̃n(t)
}∞

t−1

with Θ̃n(t) =
(

ãrn(t), ã
f
n(t), ã

r′

n (t), ãf
′

n (t), b̃rn(t), b̃
f
n(t), Q̃

r
n(t), Q̃

f
n(t)

)

and

• t−1 < t0,
• Θ̃n(t) = Θn(t) for all t ∈ {t0, t0 + 1, . . . },

• Q̃f
n(t) = Qf

n(t0) for all t ∈ {t−1, . . . , t0 − 1},
• Q̃r

n(t−1) = 0, Q̃r
n(t0) = Qr

n(t0) =
∑t0−1

t=t−1
ãr

′

n (t),

• ãf
′

n (t) = b̃rn(t) = b̃fn(t) = 0 for all t ∈ {t−1, . . . , t0− 1}.

The last two conditions automatically set the values of
{

ãrn(t), ã
f
n(t), Q̃

r
n(t)

}t0−1

t−1

. This new sample path satisfies

Lemma 5. Let ˆ̃arn(t) denote the admitted real arrivals un-
der the lower-bound policy of the new sample path. Since
∑t0+T−1

t=t0
ãr

′

n (t) =
∑t0+T−1

t=t0
ar

′

n (t), it follows that

t0−1
∑

t=t−1

ãr
′

n (t) +

t0+T−1
∑

t=t0

ar
′

n (t) =

t0−1
∑

t=t−1

ãr
′

n (t) +

t0+T−1
∑

t=t0

ãr
′

n (t)

≥
t0−1
∑

t=t−1

ˆ̃arn(t) +

t0+T−1
∑

t=t0

ˆ̃arn(t) =

t0−1
∑

t=t−1

ˆ̃arn(t) +

t0+T−1
∑

t=t0

ârn(t).

The first inequality is the application of Lemma 5, and the last
equality holds, because{Qn(t)}

∞
t=t0

of both original and new
sample paths are identical.

Therefore, we have

t0+T−1
∑

t=t0

ar
′

n (t) ≥
t0+T−1
∑

t=t0

ârn(t)−B.

The inequality uses the facts that
∑t0−1

t=t−1

ˆ̃arn(t) ≥ 0 and
∑t0−1

t=t−1
ãr

′

n (t) = Qr
n(t0) ≤ B.

C. Performance of Floating-Queue Algorithm

1) Average Drops:The average drops at each queue is
analyzed using the steady state and sample path results. Recall
that constantsD,K, c∗ are defined in Theorem 1.

Lemma 7:SupposeB > 2(δ(max) +D). In the steady state,
the average drops at real queuen ∈ N under the floating-
queue algorithm is bounded by

lim
T→∞

1

T

t0+T−1
∑

t=t0

E [dn(t)] ≤ δ(max)c∗e
−[B/2−δ(max)

−D]
K .

Proof: We consider queuen ∈ N . Let I {A} be an
indicator function of statementA such thatI {A} = 1 if
statementA is true; otherwiseI {A} = 0. Equation (21)
can be written aŝarn(t) = arn(t)I {Qn(t) ∈ Bn} = arn(t) −
arn(t)I {Qn(t) /∈ Bn}. Then we have that

1

T

t0+T−1
∑

t=t0

E [ârn(t)]

=
1

T

t0+T−1
∑

t=t0

E [arn(t)− arn(t)I {Qn(t) /∈ Bn}]

Dividing the result in Lemma 6 byT and taking an
expectation yields

1

T

t0+T−1
∑

t=t0

E

[

ar
′

n (t)
]

≥
1

T

t0+T−1
∑

t=t0

E [ârn(t)]−
B

T
.



Combining the above two relations gives

1

T

t0+T−1
∑

t=t0

E

[

ar
′

n (t)
]

≥
1

T

t0+T−1
∑

t=t0

E [arn(t)]−
B

T

−
1

T

t0+T−1
∑

t=t0

E [arn(t)I {Qn(t) /∈ Bn}].

It follow from (16) that

1

T

t0+T−1
∑

t=t0

E [dn(t)] ≤
1

T

t0+T−1
∑

t=t0

δ(max)
P {Qn(t) /∈ Bn}+

B

T

Taking limit asT approaches infinity yields

lim
T→∞

1

T

t0+T−1
∑

t=t0

E [dn(t)]

≤ δ(max) lim
T→∞

1

T

t0+T−1
∑

t=t0

P {Qn(t) /∈ Bn}. (23)

In steady state, Theorem 1 withβ = B/2−δ(max)−D
K yields

lim
T→∞

1

T

t0+T−1
∑

t=t0

P {Qn(t) /∈ Bn}

≤ lim sup
T→∞

1

T

t0+T−1
∑

t=t0

P

{

∃n,
∣

∣Qn(t)− γV ∗
n

∣

∣ > B/2− δ(max)
}

= P(D,B/2− δ(max) −D) ≤ c∗e−[B/2−δ(max)−D]/K .

Applying the above bound to (23) proves the lemma.
2) Delay: At each queue, the average delay experienced by

real packets is derived by invoking Little’s law [17]. Define

ārn, lim
T→∞

1

T

t0+T−1
∑

t=t0

E [arn(t)], ān, lim
T→∞

1

T

t0+T−1
∑

t=t0

E [an(t)].

Lemma 8:SupposeB > 2(δ(max) +D). In the steady state,
the average delay at real queuen ∈ N under the floating-
queue algorithm is bounded by

Per-hop delay≤
B

ārn − δ(max)c∗e−[B/2−δ(max)−D]/K
.

Proof: Since the buffer size of queuen ∈ N is B, Little’s
law implies:

Per-hop Delay= B

/

[

lim
T→∞

1

T

t0+T−1
∑

t=t0

E

[

ar
′

n (t)
]

]

= B

/

[

lim
T→∞

1

T

t0+T−1
∑

t=t0

E [arn(t)− dn(t)]

]

≤ B

/

[

ārn − δ(max)c∗e−[B/2−δ(max)−D]/K
]

.

The implication of Lemma 8 is that, whenB is large enough
such thatδ(max)c∗e−[B/2−δ(max)−D]/K and the number of drops
at other queues are negligible,ārn is approximatelȳan, and the
average delay isO(B).

3) Objective Cost: The average objective cost is
considered in two cases. Letf (FQ)(t) denote the cost
under the floating-queue algorithm at timet, and
f (FQ), limT→∞

1
T

∑t0+T−1
t=t0

E
[

f (FQ)(t)
]

denote the expected
time-average cost under the floating-queue algorithm.

Drop-Independent Cost:
In this case, packet drops do not affect the objective cost. Such
cost can be the energy expenditure that is spent to transmit
both real and fake packets. Due to this independence, the
average cost follows immediately from the result of drift-plus-
penalty policy (4).

Theorem 2:Suppose each real queue has buffer sizeB >
2(δ(max) + D). WhenV > 0 and packet drops do not incur
any penalty cost, the floating-queue algorithm achieves:

f (FQ) = f (DPP) ≤ f (opt) +O(1/V )

Per-hop delay≤ O(B/(1 − e−B)) = O(B)

Average drops≤ O(e−B).

It can be shown that the transient time of the drift-plus-penalty
algorithm isO(V ), so parameterV cannot be set to infinity.

Drop-Dependent Cost:
In this case, packet drops affect the objective cost. Such cost
can be the amount of admitted packets. Letκ < ∞ be a
maximum penalty cost per one unit of packet drop. Then we
have the following result.

Theorem 3:SupposeB > 2(δ(max) +D). WhenV > 0 and
κ is a maximum penalty cost per one unit of packet drop, the
floating-queue algorithm achieves:

f (FQ) ≤ f (opt) +O(1/V ) +O(e−B)

Per-hop delay≤ O(B/(1 − e−B)) = O(B)

Average drops≤ O(e−B)

Proof: Recall thatf(t) is a cost incurred at timet under
the drift-plus-penalty policy. At each timet, we have

f (FQ)(t) ≤ f(t) + κ

N
∑

n=1

dn(t).

Summing fromt0 to t0 +T − 1, dividing byT , and taking an
expectation gives

1

T

t0+T−1
∑

t=t0

E

[

f (FQ)(t)
]

≤
1

T

t0+T−1
∑

t=t0

E [f(t)]

+
κ

T

t0+T−1
∑

t=t0

N
∑

n=1

E [dn(t)].

Taking a limit asT approaches infinity gives

lim
T→∞

1

T

t0+T−1
∑

t=t0

E

[

f (FQ)(t)
]

≤ f (DPP) + κNδ(max)c∗e−[B/2−δ(max)−D]/K

≤ f (opt) +O(1/V ) +O(e−B)



Fig. 7. Line network
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Fig. 8. Results of power minimization problem withV = 200

VI. SIMULATION

A line network with 4 queues, shown in Figure 7, is
simulated in two scenarios. The common network configu-
ration is as follows. In each time slot, an exogenous packet
arrives with probability0.92. Transmissionµij(t) is orthog-
onal and depends on channel state that is “good” with
probability 0.9 and “bad” with probability0.1 for (i, j) ∈
{(1, 2), (2, 3), (3, 4), (4, 0)}.

A. Power Minimization

In this scenario, all exogenous arrivals are admitted. When
channel state is “good”, one packet is transmitted using1 unit
of power; otherwise2 units of power are used. The goal is to
stabilize this network while minimizing the power usage. Note
that the optimal average minimum power is1×0.9+2×0.02 =
0.94 per hop, and the average total power is3.76.

Simulation results of this scenario are shown Figure 8. The
time average power expenditure is3.761 for all buffer sizes
B. In Figure 8, the average delay increases linearly with the
buffer size, and the average drops decrease exponentially with
the buffer size. This result confirms the bounds in Theorem 2.

B. Throughput Maximization

In this scenario, a network decides to admit random exoge-
nous arrival in each time slot. The goal is to maximize the
time-average end-to-end throughput, which are real packets.
Packet drops reduce the value of this objective function.
Transmissionµij(t) = 1 is possible if its channel state is
“good”; otherwise the transmission is not allowed. Note that
the maximum admission rate is0.9, because of the limitation
of the average transmission rate. Figure 9 shows the simulation
results of this scenario, which comply with the bounds in
Theorem 3.

VII. C ONCLUSION

We propose the general floating-queue algorithm that allows
the stochastic network optimization framework to operate with
finite buffers. When the buffer size at each queue isB, we
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Fig. 9. Results of throughput maximization problem withV = 200

prove the proposed algorithm achieves withinO(e−B) of
optimal utility, while the average per-hop delay isO(B). The
finiteness incursO(e−B) drops, decreasing exponentially. We
confirm the theoretical results with simulations.
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APPENDIX

To prove case 2 of Lemma 4, we first show that, for
any sample path{Θn(t)}

τ ′

t=τ whoseQf
n(t) is non-decreasing,

there is a simple one that preserves the queue dynamics and
the amount of admitted real arrivals under the floating-queue
algorithm and the lower-bound policy. This simple sample path
is then used to simplify the later proofs.

Lemma 9:Given sample path{Θn(t)}
τ ′

t=τ satisfying all
dynamics in Section IV whereΘn(t) =

(

arn(t), a
f
n(t), a

r′

n (t), af
′

n (t), brn(t), b
f
n(t), Q

r
n(t), Q

f
n(t)

)

with Qf
n(t) ≤ Qf

n(t + 1) for t ∈ {τ, . . . , τ ′}, a new sample

path
{

Θ̃n(t)
}τ ′

t=τ
whereΘ̃n(t) =

(

arn(t), a
f
n(t), a

r′

n (t), af
′

n (t), brn(t), b̃
f
n(t), Q

r
n(t), Q

f
n(t)

)

with b̃fn(t) = min
[

Qf
n(t), b

f
n(t)

]

preserves all dynamics in
Section IV.

Proof: From the dynamic of fake queue (19),b̃fn(t) is
the actual number of fake packets that is served at time
t under the floating-queue algorithm, i.e.,Qf

n(t + 1) =
max

[

Qf
n(t)− bfn(t), 0

]

+ af
′

n (t) = Qf
n(t) − b̃fn(t) + af

′

n (t).
Therefore, the dynamic of fake queue (19) in the new sample
path is still valid. The dynamic of real queue (18) is valid,
because the real part is not modified.

The implication of the Lemma 9 is that, instead of an
original sample path, we can consider its alternate version,
in which fake services do not excess the amount of fake
backlogs. Both sample paths shares the same admitted real
arrivals ar

′

n (t) under the floating-queue algorithm. Further,
both sample paths shares the same the admitted real arrivals
ârn(t) under the lower-bound policy, becauseQn(t) andarn(t)
of both sample paths are identical. Notice that we need to
preserve all dynamics in Section IV, in order to use those
dynamics and properties in Section IV and Section V-A, when
an alternate sample path is considered.

It is possible to simplify this alternate sample path.
Lemma 10:SupposeB ≥ 2δ(max). Then given sample path

{Θn(t)}
τ ′

t=τ satisfying dynamics in Section IV whereΘn(t) =

(

arn(t), a
f
n(t), a

r′

n (t), af
′

n (t), brn(t), b
f
n(t), Q

r
n(t), Q

f
n(t)

)

with Qf
n(t) ≤ Qf

n(t + 1) and bfn(t) ≤ Qf
n(t) for t ∈

{τ, . . . , τ ′}, a new sample path
{

Θ̃n(t)
}τ ′

t=τ
whereΘ̃n(t) =

(

arn(t), ã
f
n(t), a

r′

n (t), ãf
′

n (t), brn(t), b̃
f
n(t), Q

r
n(t), Q

f
n(t)

)

with
i) b̃fn(t) = 0,
ii) ãfn(t) = afn(t)− bfn(t), and
iii) ãf

′

n (t) = ãfn(t) + (arn(t)− ar
′

n (t))
preserves all dynamics in Section IV.

Proof: For the given sample path{Θn(t)}
τ ′

t=τ , fake
backlogs are non-decreasing andQf

n(t) ≤ Qf
n(t + 1) for

t ∈ {τ, . . . , τ ′}. Sincebfn(t) ≤ Qf
n(t), it follows from (19) that

Qf
n(t+1) = Qf

n(t)−bfn(t)+af
′

n (t). From the non-decreasing,
we have

bfn(t) ≤ af
′

n (t). (24)

From (13) and (14), ifbfn(t) > 0, thenQr
n(t) < bn(t) ≤ δ(max)

and dn(t) = 0, sinceB ≥ 2δ(max). From (17), it follows
that af

′

n (t) = afn(t). Using (24), we havebfn(t) ≤ afn(t)
andafn(t) − bfn(t) ≥ 0. Therefore, the new sample path with
ãfn(t) = afn(t)− bfn(t) and b̃fn(t) = 0 preserves the fake queue
dynamic (19), i.e.,

Qf
n(t+ 1) = max

[

Qf
n(t)− bfn(t), 0

]

+ afn(t) + dn(f)

= Qf
n(t)− bfn(t) + afn(t) + (arn(t)− ar

′

n (t))

= Qf
n(t)− b̃fn(t) + ãfn(t) + (arn(t)− ar

′

n (t))

= max
[

Qf
n(t)− b̃fn(t), 0

]

+ ãf
′

n (t),

whereãf
′

n (t) = ãfn(t)+ (arn(t)− ar
′

n (t)). The dynamic of real
queue (18) is valid, because the real part is not modified.

The implication of Lemma 9 and Lemma 10 is as fol-
lows. Given an original sample path{Θn(t)}

τ ′

t=τ with non-
decreasing fake backlogs, we can consider an alternate simple

sample path
{

Θ̃n(t)
}τ ′

t=τ
, in which all dynamics and prop-

erties of the floating-queue algorithm and the lower-bound
policy still holds. Technically, the fake-backlog dynamic(19)
becomes simpler, i.e.,Qf

n(t + 1) = Qf
n(t) + ãfn(t) for all

t ∈ {τ, . . . , τ ′} becausẽbfn(t) = 0. Also, the amount of
admitted real arrivals under both float-queue algorithm and
lower-bound policy are not changed. These simplify the later
proofs. Before the main lemma, several properties are proved.

Lemma 11: SupposeB ≥ 2δ(max). Given any sample
path {Θn(t)}

t0+T
t=t0

satisfying all dynamics in Section IV
for any t0 and positive integerT , the following holds for
k ∈ {1, . . . ,K(T )}, j ∈ {1, . . . , J(k)}, t−1,1 − 1 ≥ t0, and
t+K(T ),J(K(T )) + 1 ≤ t0 + T :

• Qr
n(t

−
k,j) = arn(t

−
k,j − 1),

• ârn(t
−
k,j − 1) = 0,

• Qf
n(t

−
k,j − 1) < γV ∗

n −B/2 + δ(max),
• Qf

n(t
+
k,j + 1) < γV ∗

n −B/2 + δ(max).

Proof: For the first property, all real backlogsQr
n(t

−
k,j−1)

must be served at timet−k,j−1, in order to havebfn(t
−
k,j−1) > 0

and Qf
n(t

−
k,j − 1) > Qf

n(t
−
k,j), so Qr

n(t
−
k,j − 1) − brn(t

−
k,j −



1) = 0. From Lemma 2,Qf
n(t

−
k,j) < Qf

n(t
−
k,j − 1) implies

arn(t) = ar
′

n (t). Thus, it follows from (18) thatQr
n(t

−
k,j) =

0 + arn(t
−
k,j − 1), which proves the first property.

For the second property, Letb̃n(t
−
k,j − 1) =

min
[

Qn(t
−
k,j − 1), bn(t

−
k,j − 1)

]

. We shows that

Qn(t
−
k,j − 1) /∈ Bn by considering the dynamic of the

standard queue (12):

Qn(t
−
k,j − 1) = Qn(t

−
k,j) + b̃n(t

−
k,j − 1)− an(t

−
k,j − 1)

= Qr
n(t

−
k,j) +Qf

n(t
−
k,j) + b̃n(t

−
k,j − 1)− an(t

−
k,j − 1)

= arn(t
−
k,j − 1) +Qf

n(t
−
k,j) + b̃n(t

−
k,j − 1)− an(t

−
k,j − 1)

< γV ∗
n − B/2 + δ(max) /∈ Bn.

The last equality uses the first property. The last inequality
uses the facts thatarn(t

−
k,j −1) ≤ an(t

−
k,j −1) andQf

n(t
−
k,j) <

γV ∗
n −B/2.
The third property can be proved from (19) as follows:

Qf
n(t

−
k,j) = max

[

Qf
n(t

−
k,j − 1)− bfn(t

−
k,j − 1), 0

]

+ af
′

n (t−k,j − 1)

≥ Qf
n(t

−
k,j − 1)− bfn(t

−
k,j − 1),

and

Qf
n(t

−
k,j−1) ≤ Qf

n(t
−
k,j)+bfn(t

−
k,j−1) ≤ γV ∗

n −B/2+δ(max).

The last inequality uses the fact thatQf
n(t

−
k,j) < γV ∗

n −B/2.
Similarly, the last property can be proved from (19) as

follows:

Qf
n(t

+
k,j + 1) = max

[

Qf
n(t

+
k,j)− bfn(t

+
k,j), 0

]

+ af
′

n (t+k,j)

≤ Qf
n(t

+
k,j) + af

′

n (t+k,j)

< γV ∗
n −B/2 + δ(max).

The last inequality uses the fact thatQf
n(t

+
k,j) < γV ∗

n −B/2.
We now quantify packet drops under the floating queue

algorithm via a modified sample path. The sample paths
betweent−k,j and t+k,j for somek and j can be either “non-
decreasing (at the end)” type or “decreasing (at the end)”
type. This depends on the non-decreasing or decreasing of
fake backlogs at the end of the sample path. For example,
in Figure 6, a sample path betweent−2,2 and t+2,2 is the non-
decreasing type, and a sample path betweent−2,1 and t+2,1 is
the decreasing type. We prove each type separately.

Lemma 12: When the buffer size of real queuen is
B ≥ 2δ(max), given a non-decreasing-type sample path

{Θn(t)}
t+k,j

t=t−k,j−1
with bfn(t) = 0 for all t ∈

{

t−k,j , . . . , t
+
k,j

}

,

the following holds

t+k,j
∑

t=t−
k,j

−1

ar
′

n (t) ≥

t+k,j
∑

t=t−
k,j

−1

ârn(t). (25)

Proof: We first consider drops under the floating-queue
algorithm. From (19) withbfn(t) = 0, it follows thatQf

n(t +

1) = Qf
n(t) + af

′

n (t) for all t ∈
{

t−k,j , . . . , t
+
k,j

}

. Summing

from t = t−k,j to t+k,j yields

Qf
n(t

+
k,j + 1) = Qf

n(t
−
k,j) +

t+k,j
∑

t=t−
k,j

af
′

n (t)

= Qf
n(t

−
k,j) +

t+k,j
∑

t=t−k,j

[

afn(t) + dn(t)
]

,

where the last equality uses (17). Rearranging terms gives

t+k,j
∑

t=t−k,j

dn(t) = Qf
n(t

+
k,j + 1)−Qf

n(t
−
k,j)−

t+k,j−1
∑

t=t−k,j

afn(t).

SinceQf
n(t

−
k,j) is a local minimum andQf

n(t
−
k,j) < Qf

n(t
−
k,j−

1), Lemma 2 implies thatdn(t
−
k,j − 1) = 0. From the above

equation, we have that

t+k,j
∑

t=t−k,j−1

dn(t) = Qf
n(t

+
k,j+1)−Qf

n(t
−
k,j)−

t+k,j
∑

t=t−k,j

afn(t). (26)

Now, drops under the lower-bound policy is considered. We

suppose that
∑t+k,j

t=t−k,j−1
dn(t) > 0; otherwise, there is no drop

under the floating-queue algorithm, and

t+k,j
∑

t=t−
k,j

−1

ar
′

n (t) =

t+k,j
∑

t=t−
k,j

−1

arn(t) ≥

t+k,j
∑

t=t−
k,j

−1

ârn(t).

From Lemma 11, we know that̂arn(t
−
k,j−1) = 0. Therefore,

we suppose thatQn(t) ≥ γV ∗
n − B/2 + δ(max) for somet ∈

{

t−k,j , . . . , t
+
k,j

}

; otherwise, the lower-bound policy drops all
real arrivals, and

t+k,j
∑

t=t−k,j−1

ârn(t) = 0 ≤

t+k,j
∑

t=t−k,j−1

ar
′

n (t).

When the above assumptions are imposed, we let

t∗k,j = arginft∈{t−k,j ,...,t
+
k,j}

{

Qn(t) ≥ γV ∗
n −B/2 + δ(max)

}

,

be the first time thatQn(t) is at leastγV ∗
n −B/2+δ(max). This

is illustrated in Figure 6. Notice thatt∗k,j ∈
{

t−k,j , . . . , t
+
k,j

}

by the later assumption.
From (18) and (19) withbfn(t) = 0, it holds for t ∈

{

t−k,j , . . . , t
∗
k,j − 1

}

that

Qn(t+ 1) = Qr
n(t+ 1) +Qf

n(t+ 1)

= Qr
n(t)− brn(t) + ar

′

n (t) +Qf
n(t) + af

′

n (t)

= Qn(t)− brn(t) + ar
′

n (t) + af
′

n (t).



Summing the above equation fromt = t−k,j to t∗k,j−1 yields

Qn(t
∗
k,j) = Qn(t

−
k,j) +

t∗k,j−1
∑

t=t−k,j

[

−brn(t) + ar
′

n (t) + af
′

n (t)
]

= Qn(t
−
k,j) +

t∗k,j−1
∑

t=t−
k,j

[

−brn(t) + arn(t) + afn(t)
]

,

and
t∗k,j−1
∑

t=t−k,j

arn(t) = Qn(t
∗
k,j)−Qn(t

−
k,j) +

t∗k,j−1
∑

t=t−k,j

[

brn(t)− afn(t)
]

≥ Qn(t
∗
k,j)−Qn(t

−
k,j)−

t∗k,j−1
∑

t=t−k,j

afn(t)

≥ γV ∗
n −B/2 + δ(max) −Qn(t

−
k,j)−

t∗k,j−1
∑

t=t−k,j

afn(t)

> Qf
n(t

+
k,j + 1)−

[

arn(t
−
k,j − 1) +Qf

n(t
−
k,j)

]

−

t∗k,j−1
∑

t=t−k,j

afn(t).

The last steps uses Lemma 11 and the facts thatQn(t
−
k,j) =

Qr
n(t

−
k,j) +Qf

n(t
−
k,j).

From the definition oft∗k,j , we know thatQn(t) < γV ∗
n −

B/2+δ(max) and all real arrivals under the lower-bound policy

are dropped,arn(t) = d̂n(t), for all t ∈
{

t−k,j , . . . , t
∗
k,j − 1

}

.

The third property in Lemma 11 also implies thatarn(t
−
k,j −

1) = d̂n(t
−
k,j − 1). Therefore, the above inequality yields

t∗k,j−1
∑

t=t−k,j−1

d̂n(t) =

t∗k,j−1
∑

t=t−k,j−1

arn(t)

> Qf
n(t

+
k,j + 1)−Qf

n(t
−
k,j)−

t∗k,j−1
∑

t=t−k,j

afn(t)

≥ Qf
n(t

+
k,j + 1)−Qf

n(t
−
k,j)−

t+k,j
∑

t=t−k,j

afn(t)

=

t+k,j
∑

t=t−k,j−1

dn(t),

where the last step uses (26). Then we have

t+k,j
∑

t=t−k,j−1

d̂n(t) >

t+k,j
∑

t=t−k,j−1

dn(t).

Applying (16) and (22) proves the lemma. Note that the
equality holds in some situations when the both algorithms
do not drop any real packets.

Lemma 13:When the buffer size of real queuen is B ≥

2δ(max), given a decreasing-type sample path{Θn(t)}
t+k,j

t=t−k,j−1

with bfn(t) = 0 for all t ∈
{

t−k,j , . . . , t
+
k,j − 1

}

andQf
n(t

+
k,j) >

Qf
n(t

+
k,j + 1), the following holds

t+k,j
∑

t=t−k,j−1

ar
′

n (t) ≥

t+k,j
∑

t=t−k,j−1

ârn(t).

Proof: We construct a new sample path
{

Θ̃n(t)
}t+

k,j
−1

t=t−k,j

where Θ̃n(t) = Θn(t) for all t ∈
{

t−k,j , . . . , t
+
k,j − 1

}

.
Applying Lemma 12 on the new sample path implies that

t+k,j−1
∑

t=t−k,j−1

ar
′

n (t) ≥

t+k,j−1
∑

t=t−k,j−1

ârn(t).

Since Qf
n(t

+
k,j + 1) < Qf

n(t
+
k,j), Lemma 2 implies that

ar
′

n (t
+
k,j) = arn(t

+
k,j). This means thatar

′

n (t
+
k,j) ≥ ârn(t

+
k,j).

Using this and the above relation proves the lemma.
Finally, the second case of Lemma 4 can be proved.
Lemma 14:When the buffer size of real queuen ∈ N

is B ≥ 2δ(max), given any sample path{Θn(t)}
t=t+

k,j

t=t−k,j−1

satisfying all dynamics in Section IV, it holds that

t+k,j
∑

t=t−k,j−1

ar
′

n (t) ≥

t+k,j
∑

t=t−k,j−1

ârn(t).

Proof: We construct a new sample path and apply a
previous lemma, depending on the type of the original path.

Let
{

Θ̃n(t)
}t+

k,j

t=t−k,j−1
be a new sample path with̃Θn(t

−
k,j −

1) = Θn(t
−
k,j − 1).

WhenQf
n(t

+
k,j + 1) ≥ Qf

n(t
+
k,j) (non-decreasing type), let

{

Θ̃n(t)
}t+k,j

t=t−k,j

be a result of applying Lemma 9 and Lemma

10 on {Θn(t)}
t+k,j

t=t−k,j

. Then, applying Lemma 12 on the new

sample path proves the lemma.
When Qf

n(t
+
k,j + 1) < Qf

n(t
+
k,j) (decreasing type), let

{

Θ̃n(t)
}t+k,j−1

t=t−k,j

be a result of applying Lemma 9 and Lemma

10 on {Θn(t)}
t+k,j−1

t=t−k,j

, and let Θ̃n(t
+
k,j) = Θn(t

+
k,j). Then,

applying Lemma 13 on the new sample path proves the lemma.
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