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Abstract—Although Software-Defined Networking (SDN) en-
ables flexible network resource allocations for traffic engineering,
current literature mostly focuses on unicast communications.
Compared to traffic engineering for multiple unicast flows,
multicast traffic engineering for multiple trees is very challenging
not only because minimizing the bandwidth consumption of a
single multicast tree by solving the Steiner tree problem isalready
NP-Hard, but the Steiner tree problem does not consider the
link capacity constraint for multicast flows and node capacity
constraint to store the forwarding entries in Group Table of
OpenFlow. In this paper, therefore, we first study the hardness
results of scalable multicast traffic engineering in SDN. Weprove
that scalable multicast traffic engineering with only the node
capacity constraint is NP-Hard and not approximable within
δ, which is the number of destinations in the largest multicast
group. We then prove that scalable multicast traffic engineering
with both the node and link capacity constraints is NP-Hard and
not approximable within any ratio. To solve the problem, we
design aδ-approximation algorithm, named Multi-Tree Routing
and State Assignment Algorithm (MTRSA), for the first case and
extend it to the general multicast traffic engineering problem.
The simulation and implementation results demonstrate that the
solutions obtained by the proposed algorithm outperform the
shortest-path trees and Steiner trees. Most importantly, MTRSA
is computation-efficient and can be deployed in SDN since it can
generate the solution with numerous trees in a short time.
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I. I NTRODUCTION

Software-defined networking (SDN) provides a new cen-
tralized architecture with flexible network resource manage-
ment to support a huge amount of data transmission [1]. Dif-
ferent from legacy networks, SDN separates the control plane
from switches and allows the control plane to be programmable
to efficiently optimize the network resources. OpenFlow [1]
in SDN includes two major components: controllers (SDN-
Cs) and forwarding elements (SDN-FEs). Controllers are in
charge of handling the control plane and install forwarding
rules based on different policies, while forwarding elements
in switches deliver packets according to the rules specifiedby
the controllers. Compared with the current Internet, routing
paths no longer need to be the shortest ones, and the paths
can be distributed more flexibly inside the network. It has
been demonstrated that SDN provides a better overview of
network topologies and enables centralized computation for
traffic engineering for multiple unicast flows [2], [3], [4].
However, multicast traffic engineering for multiple multicast
trees in SDN has attracted much less attention in previous
studies.

Compared to unicast, multicast has been shown in empiri-
cal studies to be able to effectively reduce overall bandwidth
consumption in backbone networks by around 50% [5]. It
employs a multicast tree, instead of disjoint unicast paths, from

the source to all destinations of a multicast group, in order
to avoid unnecessary traffic duplication. The current Internet
multicast standard, i.e., PIM-SM [6], employs a shortest-
path tree to connect the source and destinations, and traffic
engineering is difficult for PIM-SM since the path from the
source to each destination is the shortest one. A shortest-path
tree tends to lose many good opportunities to reduce the band-
width consumption by sharing more common edges among
the paths to different destinations. In contrast, to minimize
the bandwidth consumption, a Steiner tree (ST) [7] in Graph
Theory minimizes the number of edges in a multicast tree.
Nevertheless, ST only focuses on the routing of a multicast
tree, instead of jointly optimizing the resource allocations of
all trees. Therefore, when the network is heavily loaded, a link
will not be able to support a large number of STs that choose
the link. Most importantly, Group Table of an SDN-FE will
be insufficient to store the forwarding entries of the STs due
to the small TCAM size [8].

Compared to the shortest-path routing in unicast, unicast
traffic engineering in SDN is more difficult to aggregate
multiple flows in Flow Table of an SDN-FE, and the scalability
has been regarded as a serious issue in the deployment of
SDN for a large network [2], [9]. The scalability problem
for multicast communications is even more serious since
the number of possible multicast groups isO(2n), wheren
is the number of nodes in a network, and the number of
possible unicast connections isO(n2). To remedy this issue, a
promising way is to exploit thebranch forwarding technique
[10], [11], [12], which stores the multicast forwarding entries
in only thebranch nodes, instead of every node, of a multicast
tree, where a branch node in a tree is the node with at least
three incident edges. The branch forwarding technique can
remedy the multicast scalability problem since packets are
forwarded in a unicast tunnel from the logic port of a branch
node in SDN-FE [1] to another branch node. In other words,
all nodes in the path exploit unicast forwarding in the tunnel
and are no longer necessary to maintain a forwarding entry
for the multicast group. Furthermore, when a branch node is
not multicast capable for a tree (ex. Group Table is full in
this paper), localunicast tunnelingfrom a nearby multicast
capable node has been proposed in MBONE [13] and PIM-
SM1 to allow multiple unicast tunnels to pass through the
branch node to other nodes in the tree (an example will be
presented later in this section). Nevertheless, compared to
multicast, it is envisaged that local unicast tunneling will incur
more bandwidth consumption since duplicated packets will be
delivered in a link. Therefore, there is a trade-off betweenthe
link capacity and node capacity, because each branch node

1http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipmulti_pim/configuration/xe-
3s/imc-pim-xe-3s-book/imc_tunnel.html
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can act as either abranch state nodewith the corresponding
multicast forwarding entry stored in Group Table or abranch
stateless nodethat exploits the unicast tunneling strategy.

In comparison with the ST problem,scalable multicast traf-
fic engineering, which jointly allocates the network resources
for multiple trees, is much more challenging because both the
link capacity and node capacityconstraints are involved in
the problem. The link capacity constraint states that the total
rate of all multicast trees on each link should not exceed the
corresponding link capacity, while the node capacity constraint
ensures that Group Table of each node is sufficiently large to
support the multicast trees with the node as a branch state node.
Moreover, scalable multicast traffic engineering with branching
forwarding and unicast tunneling techniques is able to allocate
the network resources more flexibly. When Group Table of a
node is full, unicast tunneling moves the resource requirement
from the node to its incident links, whereas the rerouting of
the tree is also promising by exploiting the resources of the
nearby nodes and links. Therefore, it is necessary for scalable
multicast traffic engineering to carefully examine both the
routing and the allocation of the branch state nodes of all
multicast trees. In this paper, we explore the Scalable Multicast
Traffic Engineering (SMTE) problem for SDNs. Given the
data rate requirement of each multicast tree, SMTE aims to
minimize the total bandwidth cost of all trees, by finding a
tree connecting the source and destinations of each group and
assigning the branch state nodes for each tree, such that both
the link capacity and node capacity constraints can be ensured.

Fig. 1 presents an illustrative example. Fig. 1(a) is the orig-
inal network with the unit bandwidth cost specified beside each
link. The bandwidth cost of each link is the total bandwidth
consumption of the link multiplied by the unit bandwidth cost.
The node capacity of each node is1. The link capacity of edge
es,a is 1, and the link capacities of the other edges are∞ in
this example. There are two multicast trees with both flow rates
as1. The source of the first tree iss1 = s, and its destination
set isD1 = {d1, d2, . . . , d7}. The source of the second tree is
s2 = s, and its destination set isD2 = {d′1, d

′
2, . . . , d

′
7}. Fig.

1(b) shows the first shortest-path tree (blue) and the second
shortest-path tree (red). The branch nodes and branch state
nodes of the first tree are{c, u, v} and{u}, respectively. The
branch nodes and branch state nodes of the second tree are
{c, v} and{c, v}, respectively. Note thatv is not assigned as a
branch state node of the first tree, andu thus needs to exploit
unicast tunneling tod6 and d7 directly. Therefore, traffic of
the first tree are duplicated in edgeeu,v. On the other hand,
if v was assigned as a branch state node for the first tree,
traffic duplication ineu,v would be more serious for the second
tree sincev has three downstream nodesd′5, d′6, d′7. The total
bandwidth cost of the two shortest-path trees in Fig. 1(b) is
99.

Afterward, Fig. 1(c) shows the first Steiner tree (blue) and
the second Steiner tree (red), and the branch state nodes of
the two trees are also{u} and {c, v}, respectively. The total
bandwidth cost of the trees in Fig. 1(c) is103. Note that
the total bandwidth cost in Steiner trees is higher since the
assignment of branch state nodes are not carefully examined.
Finally, Fig. 1(d) presents the first tree (blue) and the second
tree (red) in SMTE with the same branch state nodes specified
above. The total bandwidth cost of the trees in Fig. 1(c) is
79, and hereu is directed connected tod1, d2, and d3 to
avoid unicast tunneling, even though the edge cost is higher
(i.e., 2) compared to the cost (i.e., 1) of the edge fromv in
the first Steiner tree. Therefore, this example manifests that it
is necessary to consider the tree routing and the assignment
of branch state nodes of multiple trees jointly for scalable
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(d) MTRSA

Fig. 1. Comparison of different strategies for multicast traffic engineering

multicast traffic engineering.
SMTE is very challenging. The ST problem is NP-Hard

but can be approximated within the ratio 1.55 [14] and is thus
in APX of Complexity Theory. In other words, there exists
an approximation algorithm for ST that can find a tree with
the total cost at most 1.55 times of the optimal solution. In
contrast, we first prove that SMTE-N (i.e., SMTE with only
the node capacity constraint, while the link capacity constraint
is relaxed) is NP-Hard but cannot be approximated withinδ,
which denotes the number of destinations of the largest mul-
ticast group. Afterward, we prove the SMTE (i.e., with both
the link and node capacity) cannot be approximated within
any ratio. To solve SMTE-N, we propose aδ-approximation
algorithm, namedMulti-Tree Routing and State Assignment Al-
gorithm (MTRSA), which can be deployed in SDN-C. MTRSA
includes two phases: Multi-Tree Routing Phase and State-Node
Assignment Phase, to effectively minimize the total bandwidth
cost of all trees according to the node capacity constraint.
We first focus on the node capacity (i.e., SMTE-N), instead
of the link capacity, because the scalability in Group Table
is unique and crucial for SDN and has not been explored in
previous studies of multicast tree routing for other networks.
Since no (δ1−ǫ)-approximation algorithm exists in SMTE-
N for arbitrarily small ǫ > 0, MTRSA achieves the best
approximation ratio. Afterward, we extend MTRSA to support
SMTE with the link capacity constraint.

The rest of this paper is organized as follows. Section 2
introduces the related work. Section 3 and 4 formulate SMTE
with Integer Programming and describe the hardness results.
We present the algorithm design of MTRSA in Section 5, and
Section 6 shows the simulation and implementation results on
real topologies. Finally, Section 7 concludes this paper.

II. RELATED WORK

The issues of traffic engineering forunicast trafficin SDN
have attracted a wide spectrum of attention in the literature.
Sushant et al. [15] developed private WAN of Google Inc.
with the SDN architecture. Qazi et al. [16] designed a new
system in SDN to control the middleboxes, and Mckeown et
al. [1] studied the performance of OpenFlow in heterogeneous
SDN switches. Agarwal et al. [2] presented unicast traffic
engineering in an SDN network with only a few SDN-FEs,



while the other routers in the network followed a standard
routing protocol, such as OSPF. However, the above studies
focused on only unicast traffic engineering, and multicast
traffic engineering for multiple multicast trees in SDN has
attracted much less attention.

To support the multicast communications, the current mul-
ticast routing standard PIM-SM [6] relies on unicast routing
protocols to discover the shortest paths from the source to the
destinations for building a shortest-path tree (SPT). However,
SPT is not designed to support traffic engineering. Although
the Steiner tree (ST) [7] minimizes the tree cost and the volume
of traffic in a network, ST is computationally intensive and
is not adopted in the current Internet standard. Overlay ST
[17], [18], on the other hand, presents an alternative way
to construct a bandwidth-efficient multicast tree in the P2P
environment. However, the path between any two P2P clients
is still a shortest path in Internet, and it is, therefore, difficult
to optimize the routing of the P2P tree. Most importantly, both
SPT and ST are designed to find the routing of a tree, instead
of jointly optimizing the resource allocation of multiple trees.

Flow table scalability is crucial to support large-scale SDN
networks due to the limited TCAM size. Kanizo et al. [9], who
showed that the major bottleneck in SDN is the restricted table
sizes, proposed a framework called Patette to decompose a
large SDN table and distribute its entries across a network.
Leng et al. [19] proposed a flow table reduction scheme
(FTRS) to reduce flow table usage with omnipotent controller
functions. DIFANE [8] distributed the flow entries to multiple
SDN switches. Zhang at al. [20] built a multicast topology
(single backbone tree) for NFV, while Craig et al. adjusted
the link weights for shortest-path trees in SDN [21]. Huang
et al. also tried to optimize the routing of single multicast
tree in SDN [22], [23]. Nevertheless, the above studies were
not designed for minimizing the total resource consumption
in multicast traffic engineering with multiple trees subject to
both the node and link capacity constraints in SDN.

III. PROBLEM FORMULATION

In this paper, we explore theScalable Multicast Traffic
Engineering(SMTE) problem for SDN. Given the data rate
requirement of each multicast group, SMTE aims to minimize
the total bandwidth consumption of all multicast groups in the
network, by finding a tree connecting the source and destina-
tions of each group, and assigning the branch state nodes for
each tree, such that the number of multicast forwarding states
will not exceed the size of Group Table in each node, and the
total multicast flows on each edge will not exceed the link
capacity. Note that a branch node can only facilitate unicast
tunneling for a multicast group if it is not assigned as a branch
state node in the corresponding multicast tree.

More specifically, given a networkG(V,E), whereV and
E denote the set of nodes and directed edges, respectively, let
bv denote the maximal number of branch state nodes that can
be maintained by nodev2. Let N+

v (N−
v ) denote the set of

out-neighbor (in-neighbor) nodes ofv in G. Nodeu is in N+
v

(N−
v ) if ev,u (eu,v) is a directed edge fromv to u (from u to

v) in E, andcu,v is the capacity ofeu,v, while ku,v is the unit
bandwidth cost ofeu,v. Let T = (T1, T2, . . . , Tt) denote the
set of multicast trees, whilesi acts as the root of treeTi ∈ T ,
i.e., the source with data ratefi, and the destination setDi

contains the set of destinations inTi ∈ T . In the following,
we first formally define SMTE, while the derivation of the

2In the following, we first assume that the memory size allocated in Group
Table to maintain the branch state node of each multicast tree is the same,
and later we extend it to the general scenario that supports different memory
sizes for different multicast trees according to the degrees of the node in the
trees [1] in Section V-C.

bandwidth consumption will be explained later in this section
in the proposed Integer Programming formulation. Dynamic
group membership with user join and leave will be discussed
later in Section V-C.

Definition 1. For networkG(V,E) and multicast groupsT ,
SMTE is to find the routing of each treeTi in T spanningsi
and Di and assign the branch state nodes inTi to minimize
the total bandwidth cost, such that each nodeu acts as the
branch state nodes of at mostbu trees, and total multicast
bandwidth consumption in each edgeeu,v is at mostcu,v.

In the following, we present the Integer Programming (IP)
formulation for SMTE. SMTE includes the following binary
decision variables to find the routing of each multicast tree
and the assignment of branch state nodes. Let binary variable
πi,d,u,v denote if edgeeu,v is in the path fromsi to a
destination noded in Di in Ti. Let integer variableεi,u,v
denote the number of times that each packet ofTi is sent in
edgeeu,v via multicast (once) or unicast tunneling (multiple
times according to the number of tunnels). Let binary variable
βi,v, denote ifv is a branch state node inTi. Intuitively, when
we are able to find the path fromsi to each destination noded
of Ti with πi,d,u,v = 1 on every edgeeu,v in the path, together
with the set of state branch nodesβi,v, the routing of the tree
(the set of edgeseu,v with εi,u,v ≥ 1) can be constructed
according to the paths fromsi to all destination nodes inDi.

The objective function of the IP formulation for SMTE is
as follows.

min
∑

1≤i≤t

∑

eu,v∈E

fi × ku,v × εi,u,v.

The objective function minimizes the total bandwidth cost of
all multicast trees. For each treeTi, the following constraints
first describe the routing assignment (i.e.,πi,d,u,v) for the
path connecting the sourcesi and each destination inDi.
Afterwards, we assign the branch nodes (i.e.,βi,u) in different
nodes and then derive the bandwidth consumption (i.e.,εi,u,v)
of Ti via multicast and unicast tunneling.

∑

v∈N
+
si

πi,d,si,v −
∑

v∈N
−

si

πi,d,v,si = 1, ∀1 ≤ i ≤ t, d ∈ Di, (1)

∑

u∈N
−

d

πi,d,u,d −
∑

u∈N
+

d

πi,d,d,u = 1, ∀1 ≤ i ≤ t, d ∈ Di, (2)

∑

v∈N
−

u

πi,d,v,u =
∑

v∈N
+
u

πi,d,u,v,

∀1 ≤ i ≤ t, d ∈ Di, u ∈ V, u 6= d, u 6= si, (3)
πi,d,u,v ≤ εi,u,v, ∀1 ≤ i ≤ t, d ∈ Di, ∀eu,v ∈ E, (4)
−|Di|

2 × βi,u +
∑

v∈N
+
u

εi,u,v ≤
∑

v∈N
−

u

εi,v,u, (5)

∀1 ≤ i ≤ t, u ∈ V, u 6= si,∑
1≤i≤t

βi,u ≤ bu, ∀u ∈ V, (6)
∑

1≤i≤t

fi × εi,u,v ≤ cu,v, ∀eu,v ∈ E. (7)

The first three constraints, i.e., (1), (2), and (3), are the
flow-continuity constraints for each treeTi to find the path
from si to every destination noded in Di. More specifically,
si is the source node, and constraint (1) states that the net
outgoing flow from si is one, implying that at least one
edge ei,si,v from si to any neighbor nodev needs to be
selected withπi,d,si,v = 1. Note that here decision variables
πi,d,si,v and πi,d,v,si are two different variables because the
flow is directed. On the other hand, every destination noded
is the flow destination, and constraint (2) ensures that the net
incoming flow to d is one, implying that at least one edge



ei,u,d from any neighbor nodeu to d must be selected with
πi,d,u,d = 1. For every other nodeu, constraint (3) guarantees
thatu is either located in the path or not. Ifu is located in the
path, both the incoming flow and outgoing flow foru are at
least one, indicating that at least one binary variableπi,d,v,u

is 1 for the incoming flow, and at least one binary variable
πi,d,u,v is 1 for the outgoing flow. Otherwise, bothπi,d,v,u

andπi,d,u,v are0. Note that the objective function will ensure
that πi,d,v,u = 1 for at most one neighbor nodev to achieve
the minimum bandwidth consumption. In other words, both
the incoming flow and outgoing flow amongu and v cannot
exceed1.

Constraints (4) and (5) are formulated to find the routing
of the tree and its corresponding branch state nodes, i.e.,εi,u,v
andβi,u. Constraint (4) states thatεi,u,v is at least1 if edge
eu,v is included in the path fromsi to at least oned, i.e.,
πi,d,u,v = 1. The treeTi is the union of the paths fromsi to
all destination nodes inDi. Constraint (5) is the most crucial
one. For each nodeu in Ti, if it is not a branch state node,
i.e., βi,u = 0, u does not maintain a forwarding entry ofTi

in Group Table and thereby facilitates unicast tunneling. In
this case, constraint (5) and the objective function guarantee
that the number of packets received from an incoming link
ev,u must be the summation of the number of packets sent
to every outgoing linkeu,v. By contrast, whenβi,u = 1,
constraint (5) becomes redundant because the Left-Hand-Side
(LHS) is smaller than0 and thereby imposes no restrict on the
Right-Hand-Side (RHS). In this case, constraint (4) ensures
that εi,v,u = 1 for every incident edgeev,u with πi,d,v,u as 1.
Therefore,u is multicast capable forTi, and each packet is
delivered once in every incident link.

The last two constraints are capacity constraints. Constraint
(6) states that each nodeu can act as a branch state node of at
mostbu trees inT , while constraint (7) describes that the total
multicast bandwidth consumption of in each directed edgeev,u
cannot exceedcu,v.

IV. H ARDNESSRESULTS

In the following, we first show that SMTE-N is very
challenging in Complexity Theory by proving that it is NP-
Hard and not able to be approximated withinδc for every
c < 1, whereδ = max1≤i≤t |Di|. Afterward, we prove that
SMTE cannot be approximated within any ratio.

The Steiner tree problem is a special case of SMTE-
N. However, SMTE-N is much more challenging than the
Steiner tree problem because the Steiner tree problem can be
approximated within ratio1.55 and is thus in APX in Com-
plexity Theory. In contrast, we find out that SMTE is much
more difficult to be approximated. The following theorem first
proves that SMTE-N cannot be approximated withinδc for
everyc < 1, whereδ = max1≤i≤t |Di|, by a gap-introducing
reduction from the 3SAT problem.

Theorem 1. For any ǫ > 0, there exists no
(δ1−ǫ)-approximation algorithm for SMTE-N, where
δ = max1≤i≤t |Di|, assuming P6= NP.

Proof: We prove the theorem with the gap-introducing
reduction from the 3SAT problem.

The 3SAT problem is a simplification of the regular SAT
problem. An instance of 3SAT is a conjunctive normal form
(CNF) in which each clause contains exactly three variables.
The 3SAT problem is to decide, given a Boolean expressionφ
in CNF such that each clause contains exactly three variables,
whetherφ is satisfiable.

For any instanceφ of the 3SAT problem, we build an
instanceG(V,E) of SMTE-N with two multicast trees, where

the destination sets areD1 and D2. Let OPT(G) denote
the optimal solution ofG for SMTE-N. The goals of the
reduction are two-fold. 1) Ifφ is satisfiable thenOPT(G) ≤
4pq+1. 2) If φ is not satisfiable thenOPT(G) > (4pq+1) ×
(max{|D1|, |D2|})

1−ǫ. In the above two goals,n is the number
of Boolean variables inφ, m is the number of clauses inφ,
p = max{m,n} andq is a large number (derived later).

To achieve the above goals, we build the instance of SMTE-
N from each instance of the 3SAT problem as follows. Given
an instanceφ of 3SAT with n Boolean variablesx1, . . . , xn

and m clausesC1, . . . , Cm, we construct a directed graph
G(V,E) in the following way. 1) The node setV is partitioned
into four node sets{s}, U , D1, andD2. 2) U includes2n
nodesu1, u1, u2, u2, . . . , un, un (nodesui andui correspond
to the Boolean variablexi), and for eachi with 1 ≤ i ≤ n,
there are directed edges(s, ui) and (s, ui). 3) D1 hasmpq

nodesd(k)j , where1 ≤ j ≤ m and 1 ≤ k ≤ pq (nodesd(k)j ,
1 ≤ k ≤ pq, corresponding topq copies of the clauseCj), and
there exists a directed edge(ui, d

(k)
j ) ((ui, d

(k)
j )) if and only

if the variablexi (xi, resp.) appears inCj . 4) D2 contains
npq nodesw(k)

i , where 1 ≤ i ≤ n and 1 ≤ k ≤ pq, and
there are directed edges(ui, w

(k)
i ) and(ui, w

(k)
i ) for eachi, k

with 1 ≤ i ≤ n and 1 ≤ k ≤ pq. Note thatG only has the
directed edges described above,p = max{m,n}, andq is the
smallest integer such thatq ≥ (3 + logp 4)/ǫ. Fig. 2 presents
an illustrative example of an SMTE-N instance.

The cost of each edge froms to U is set aspq, and the cost
of the other edges are set to be1. The capacity of each node
is set as1. Let s andD1 be the source node and destination
set of T1 respectively, and lets andD2 be the source node
and destination set ofT2 respectively.

If φ is satisfiable, there is a truth assignment toxi such
thatφ is true. LetA = {ui : xi is assigned to be true}∪{ui :
xi is assigned to be false}. Consider the treeT1 rooted ats
that includes 1) the edges betweens andA, and 2) the edges
betweend(k)j and one of its neighbor inA (the existence of
its neighbor inA comes from thatφ is satisfiable). Consider
the treeT2 that includes 1) the edges betweens andU \A, 2)
the edges betweenU \A andD2. Then(T1, T2) is a feasible
solution of SMTE-N, and it can act as an upper bound of
SMTE-N in G. The total edge cost ofT1 is npq +mpq, and
the total edge cost ofT2 is npq+npq. Since the node capacity
is sufficient, the total bandwidth cost of this feasible solution
is 3npq +mpq ≤ 4pq+1. Hence, we haveOPT(G) ≤ 4pq+1.

On the other hand, ifφ is not satisfiable, let(T1, T2) be any
feasible solution. For1 ≤ k ≤ pq, let Ik be the set consisting
of every i with 1 ≤ i ≤ n, such thatui andui are adjacent
to some nodes in{d(k)j : 1 ≤ j ≤ m} along the edges in
T1. Sinceφ is not satisfiable,Ik is not empty for eachk with
1 ≤ k ≤ pq. By pigeonhole principle [24], there exists at least
one i∗ with 1 ≤ i∗ ≤ n such thati∗ is in at leastp

q

n
sets of

{I1, I2, ..., Ipq}. In T1, therefore,ui∗ has at leastp
q

n
≥ pq−1

downstream destination nodes, andui∗ has at leastp
q

n
≥ pq−1

downstream destination nodes. On the other hand, inT2, ui∗

andui∗ need to dominatepq downstream destination nodes of
T2. If ui∗ or ui∗ is not a branch state node inT1, then the
total cost is at leastp2q−1. On the other hand, ifui∗ andui∗

both are branch state nodes inT1, since the capacity of node
ui∗ andui∗ are 1, neitherui∗ nor ui∗ are branch state nodes
in T2. The total cost is at leastp2q.

Therefore, the total cost of the optimal solution is
larger than p2q−1, and we haveOPT(G) > p2q−1 =

(4pq+1)(pq−2−logp 4) = (4pq+1)(pq+1)
q−2−logp 4

q+1 =



Fig. 2. An illustration of instance building from 3SAT to SMTE-N

(4pq+1)(pq+1)1−
3+logp 4

q+1 ≥ (4pq+1)(pq+1)1−ǫ ≥
(4pq+1)(max{|D1|, |D2|})

1−ǫ. Since ǫ can be arbitrarily
small, for any ǫ > 0, there is no(max{|D1|, |D2|})

1−ǫ

approximation algorithm for SMTE-N, assuming P6= NP.
The theorem follows.

In the following, we prove that SMTE cannot be approxi-
mated within any ratio.

Theorem 2. For any polynomial time computable function
f , SMTE cannot be approximated within a factor off(|V |),
unless P = NP. In other words, for arbitrary positive integer
k, SMTE cannot be approximated within|V |k.

Proof: Assume, for a contradiction, that there is a polyno-
mial time approximation algorithmA with the approximation
raio f(|V |) for SMTE. This proof will show thatA can be
used for deciding the 3SAT problem in polynomial time, thus
implying P = NP.

Specifically, given a graphG, let OPT(G) denote the
optimal solution ofG for SMTE. For any instance of the 3SAT
problem, we build an instanceG(V,E) for SMTE with two
multicast trees with the destination setsD1 andD2. The goals
of the reduction are two-fold:

1) if φ is satisfiable thenOPT(G) ≤ m+ 3n, and
2) if φ is not satisfiable thenOPT(G) > (m+3n)×f(|V |),

where n is the number of Boolean variables,m is the
number of clauses, andf is a polynomial-time computable
function.

To achieve the above goals, we build the instance of SMTE
from each instance of the 3SAT problem. Given an instanceφ
of 3SAT with n Boolean variablesx1, . . . , xn andm clauses
C1, . . . , Cm, we construct a directed graphG(V,E) such that

1) the node setV is partitioned into four node setss, U ,
D1, andD2;

2) U contains2n nodesu1, u1, u2, u2, . . . , un, un (nodesui

andui are corresponding to the Boolean variablexi), and
for eachi with 1 ≤ i ≤ n, there are directed edges(s, ui)
and (s, ui);

3) D1 containsm nodesd1, . . . , dm (nodedj corresponds to
the clauseCj ), and there exists a directed edge(ui, dj)
((ui, dj)) if and only if the variablexi (xi, resp.) appears
in Cj ;

4) D2 containsn nodesd′1, . . . , d
′
n and for eachi with

1 ≤ i ≤ n, there are directed edges(s, d′i), (ui, d
′
i), and

(ui, d
′
i);

5) G only has the directed edges described above.

The cost of each edge froms to D2 is set as(m+ 3n)×
f(|V |) , and the cost of every other edge is set to be 1. The
capacity of each directed edge is set to be 1, and the data rate
of each tree is also 1. The node capacity is set as 2.

Let s andD1 be the source node and destination set ofT1,
respectively Lets andD2 be the source node and destination
set ofT2 respectively.

If φ is satisfiable, there is a truth assignment toxi such that
φ is true, letW = {ui : xi is assigned to be true}∪{ui : xi is
assigned to be false}. Consider the treeT1 rooted ats including
1) the edges betweens andW and 2) the edge between each
dj and one of its neighbor inW (the existence of its neighbor
in W comes from thatφ is satisfiable). Consider the treeT2
which includes 1) the edges betweens andU \W and 2) the
edges betweenU \ W and D2. Then (T1, T2) is a feasible
solution of SMTE and it can act as an upper bound of SMTE
in G. The total edge cost ofT1 is m + n and the total edge
cost of T2 is 2n. Since the node capacity is sufficient, the
total bandwidth cost of this feasible solution ism+3n. Hence
OPT(G) ≤ m+ 3n.

On the other hand, ifφ is not satisfiable, let(T1, T2) be
any feasible solution. Sinceφ is not satisfiable, there is ani
such that both edges(s, ui) and (s, ui) appear inT1 for any
feasible solution of SMTE, in order to span all destinationsin
D1. Therefore, the edges(s, ui) and(s, ui) cannot be included
in T2 due to the link capacity constraint, andT2 thereby needs
to choose the directed edge(s, d′i). The total edge cost of
T2 is at least(m + 3n) × f(|V |) in this case, and the total
bandwidth cost of the optimal solution in SMTE is greater than
(m+3n)× f(|V |). Therefore SMTE cannot be approximated
within a factor off(|V |), unless P = NP.

V. A LGORITHM DESIGN

In the following, we first propose aδ-approximation al-
gorithm, namedMulti-Tree Routing and State Assignment
Algorithm (MTRSA), for SMTE-N, whereδ = max1≤i≤t |Di|.
Note that we first focus on the node capacity, instead of the link
capacity, because the scalability in Group Table is crucialin
SDN and has not been explored in previous studies of multicast
tree routing for other networks. Since Theorem 1 proves that
there is no(δ1−ǫ)-approximation algorithm of SMTE-N for
any ǫ > 0, MTRSA achieves the best approximation ratio.
Afterward, we extended it to support SMTE.

A. Algorithm Description
MTRSA includes two phases: 1) Multi-Tree Routing Phase

and 2) State-Node Assignment Phase. Multi-Tree Routing
Phase first constructs an initial multicast tree for each multicast
group to minimize the total bandwidth consumption and bal-
ance the distribution of branch nodes in different trees. State-
Node Assignment Phase then finds the branch state nodes for
each multicast tree to follow the node constraint.

1) Multi-Tree Routing Phase:Initially, Multi-Tree Rout-
ing Phase constructs a shortest-path tree with sourcesi and
destination setDi for each treeTi ∈ T . A nodeu is full if
it acts as a branch node forbu multicast trees. By contrast,
u is overloadedif it acts as a branch node for more than
bu trees. In this case,u needs to act as a branch stateless
node for some of those trees and thereby will incur more
bandwidth consumption. To address this issue, after findingthe
shortest-path trees, if there is an overloaded node, we adjust
the local tree routing nearby the overloaded node to move the
branch node to another node that has not been full, in order
to balance the distribution of branch nodes among different
multicast trees.

More specifically, if any nodeu is an overloaded node and
a branch node in any treeTi, MTRSA chooses a nodev of Ti

such that: 1)v is a downstream tou in Ti, 2) v is a branch node
or a destination node ofTi, and 3) there is no other branch
node or destination node in the path fromu to v in Ti. In
other words,v is a nearby downstream branch node ofu and



a destination node. MTRSA reroutes the path (fromu to v)
to another path (fromw to v) as follows, in order to alleviate
the storage load inu. Let ℓ denote the total bandwidth cost of
the path fromu to v in Ti. We find a new path fromw to v
such that: 1) the total cost of the new path is at mostℓ, 2) the
new path does not pass through any exiting node inTi, and 3)
this new path starts from an on-tree nodew such that i) it is
not a leaf node ofTi, and ii) it is not full or overloaded. We
update treeTi by substituting the old path fromu to v in Ti

with the new path fromw to v, and the overload situation in
u can be alleviated accordingly. Afterward, we process every
other downstream branch nodev of u until u is no longer a
branch node forTi. The above process is repeated for every
treeTi′ iteratively untilu is no longer overloaded.

Example. Consider the following example in Fig. 3(a).
Let G(V,E) be the network with two multicast treesT1 and
T2 with the data rate as 1. The number on each edge is the
unit bandwidth cost of this edge, and the node capacity of
each node is1. The sources1 of the first treeT1 is s with the
corresponding destination setD1 = {d1, d2, . . . , d8}, while
the sources2 of T2 is alsos, but the destination set isD2 =
{d′1, d

′
2, . . . , d

′
6}. In Multi-Tree Routing Phase, we first find

the blue and red shortest-path treesT1 and T2 in Fig. 3(b).
Afterward, we adjust the multicast trees for overloaded nodes.
Specifically, the node capacity ofa is 1, buta is a branch node
of both T1 and T2. Therefore,a is an overloaded node, and
MTRSA examines nodesd1, d2, v, c, which are downstream
nodes ofa in T1. MTRSA first reroutes the path{a, b, c} in
treeT1. Since nodey is overloaded, nodec cannot be rerouted
from nodey. In contrast, nodev is a full branch node ofT1,
and MTRSA reroutes nodec from nodev for T1 as shown in
Fig. 3(c). Note that the bandwidth cost is efficiently reduced
since the new path fromv to c is much smaller than the one
from a to c. Therefore, Multi-Tree Routing Phase addresses
both the node capacity and the bandwidth consumption for
scalable multicast traffic engineering.

2) State-Node Assignment Phase:It is worth noting when
the network is heavily loaded, the first phase may not be
able to ensure that every overloaded node can be successfully
adjusted to balance the distribution of branch nodes in different
trees, and State-Node Assignment Phase is crucial in this
case to minimize the increment of bandwidth consumption
due to unicast tunneling through branch stateless node. More
specifically, State-Node Assignment Phase includes two stages:
1) Greedy Assigning Stage, and 2) Local Search Stage. Greedy
Assigning Stage assigns the branch state nodes by iteratively
maximizing the reduction of the number of branch state nodes,
and later in Section V-B we prove that the number of branch
state nodes reduced by the Greedy Assigning Stage is at least
half of the number of branch state nodes reduced by an optimal
strategy. Local Search Stage then improves the solution by
further alleviating the assignment on overloaded nodes and
rerouting the trees to further reduce the total bandwidth cost.
We detail the two stages as follows.

For each multicast treeTi obtained in Multi-Tree Routing
Phase, letWi denote the set of branch nodes inTi, andW =
∪1≤i≤tWi. On the other hand, letAi be the set of branch state
nodes inTi to be decided in this phase, andAi thereby is a
subset ofWi. Let c(Ti, Ai) denote the total bandwidth cost of
Ti with the set of branch state nodes asAi. More precisely,
c(Ti, Ai) =

∑
v∈Ai∪Di

c(Pv), wherePv is the path from the
closest upstream branch state node inAi or the source tov,
such that all internal nodes ofPv are not inAi, andc(Pv) is
the cost of all edges inPv. In other words, if there is no branch
stateless node inPv, every packet is delivered only once on
every link ofPv. By contrast, ifPv includes a branch stateless
nodeu, each packet is sent multiple times on the links from

the closest upstream branch state node tou, corresponding to
the unicast tunneling case.

An assignmentA of branch state nodes can be defined as
follows: A is a0, 1-matrix with the rows indexed by{1, . . . , t}
and columns indexed byW , such that 1) the1’s in row i can
only be the columns indexed inWi, and 2) the number of1’s
in columnw ∈ W is no more than the node capacitybw. We
assign a branch state nodew ∈ W to treeTi if and only if the
(i, w) entry ofA is 1. In other words, the first condition ensures
that a branch state node can only be assigned to a branch
node ofTi, while the second condition is the node capacity
constraint. Given an assignmentA of branch state nodes, let
Ai = {w ∈ W : the (i, w) entry ofA is 1} denote the set of
branch state nodes forTi, and the total bandwidth cost for the
setT of all multicast trees with the state-node assignmentA is
c(T , A) =

∑
1≤i≤t c(Ti, Ai). Since an assignmentA of branch

state nodes can also be regarded as a subset ofN , whereN =
{1, . . . , t}×W , letM be the family of subsets ofN satisfying
the above two conditions (henceM is the family of all feasible
assignments of branch state nodes toT ), and we usec(T ,∅)
to denote the total bandwidth cost ofT without assigning any
branch state node. Now let the set functionz :M→ R such
that z(A) represents the cost reduced by assignmentA. More
formally, z(A) = c(T ,∅)− c(T , A) for eachA ∈M.

The above matrix representation plays a crucial role in
Greedy Assigning Stage when we prove the quality of the
state-node assignment based on Matroid Theory later in Sec-
tion V-B. This stage starts from a branch state node assignment
∅ and costc(T ,∅), and iteratively assigns one branch state
node for a tree inT until no more assignment can reduce
c(T , A). More precisely, in each iteration, if the present branch
state node assignment isA ∈M, we choose an elementx in
N − A such that: 1)A ∪ {x} is in M and follows the node
capacity constraint, and 2)z(A ∪ {x}) = maxy∈(N−A) z(A ∪
{y}). In other words, the first condition guarantees that the
new assignment is feasible, whereas the second condition
chooses the node leading to the maximal reduction onc(T , A).
Afterward, Local Search Stage first adjusts the assignment
of branch state nodes for overloaded nodes iteratively. In
each iteration, we first extract an overloaded nodeu and
then compute the reduction of the bandwidth cost with a
branch state node assigned tou for each treeT spanningu,
assuming that the state-node assignment of other nodes are
not changed. Afterward, this phase sorts the trees according
to the bandwidth reduction and chooses thebu trees with the
largest reduction, whereas the branch state nodes are assigned
to them accordingly. This stage is repeated until all overloaded
nodes are carefully examined. Afterward, this stage reroutes
the paths from other branch nodes of a tree in order to find a
smaller tree with the same assignment of branch state nodes.
More specifically, for any branch nodeu in treeTi, we choose
nodesv andw of Ti in the same way as the Multi-Tree Routing
Phase in order to find a new path fromw to v, andw is not
full.

Example. In Greedy Assignment Stage of the State-Node
Assignment Phase, when there is no branch state node, the total
bandwidth cost in Fig. 3(c) isc(T ,∅) = c(T1,∅)+c(T2,∅) =
142+92 = 234. If we assign a branch state node onv for tree
T1, the bandwidth cost of the paths, a, u, v can be reduced
by (4 − 1) times since there are4 downstream destination
nodesd3, d4, d5, d6 of v in T1. The reduced cost is the largest
among all possible branch state node assignments. Therefore,
MTRSA first assigns a branch state node onv for tree T1
with the cost reduced by(4− 1)× (ks,a + ka,u + ku,v) = 63.
It then assigns a branch state node ony to T2 with the cost
reduced by(3−1)× (ks,w+kw,y) = 30. Afterward, nodea is
assigned as a branch state node forT2 with the cost reduced by
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(d) State-Node Assignment Phase

Fig. 3. An example of MTRSA

(3−1)× (ks,a) = 18, and nodec is assigned as a branch state
node forT2 with the cost reduced by(2−1)×(ka,b+kb,c) = 7.
In Local Search Stage, there are three overloaded nodesa, c,
and y. For overloaded nodea, this phase moves the branch
state node ona from T2 to T1 without changing the branch
state nodes of the other nodes. If we assign a branch state
node ona to T1, it becomes possible to reduce the cost ofT1
by (3 − 1) × (ks,a) = 18. In contrast, if we assign a branch
state node ona to T2, we are able to reduce the cost ofT2 by
only (2 − 1)× (ks,a) = 9. Nodesc andy are then processed
similarly. Finally, in Fig. 3(d), since nodey has been a branch
state node, nodec can be re-routed to nodey in T2, and the
total bandwidth consumption is reduced from107 in Fig. 3(c)
to 93 in Fig. 3(d) accordingly.

B. Approximation Ratio and Time Complexity
In the following, we first examine the quality of assignment

for branch state nodes in the second phase. We prove that
(N,M) is a matroid and the set functionz : M → R is
a nondecreasing submodular set function. Therefore, accord-
ing to the Matroid Theorem for maximizing submodular set
function [25], we have the following theorem.

Theorem 3. The number of branch state nodes reduced by
the Greedy Assignment Stage is at least one half of the branch
state nodes reduced by the optimal assignment of branch state
nodes.

Proof: In the following, we first prove thatM is a
matroid.M is the family of subsets ofN = {1, . . . , t} ×W
(i.e., we put the elements ofN in a t× |W | array) such that
the elements in thei-th row are in the columns indexed by
Wi, and the number of elements in the column indexed byw
is at most the capacity ofw. Hence, by definition, we have:
1) ∅ ∈ M, 2) If A ⊆ B ∈ M, then A ∈ M, and 3) If
A,B ∈ M with |A| < |B|, then there is an elementb ∈ B
such thatA ∪ {b} ∈ M. ThereforeM is a matroid.

Now we prove that the set functionz :M ⊂ 2N → R is
submodular and nondecreasing. LetA,B ∈ M with A ⊆ B
and c ∈ N be the element in rowi and columnw such that
A ∪ {c}, B ∪ {c} ∈ M, sincez(A ∪ {c}) − z(A) is the cost
reduced by assigning a branch state node in nodew to treeTi

with branch state node assignmentA, and sincez(B ∪{c})−

z(B) is the cost reduced by assigning a branch state node in
nodew to treeTi with branch state node assignmentB, we
havez(A ∪ {c}) − z(A) ≥ z(B ∪ {c}) − z(B). Hence,z is
submodular. LetA,B ∈ M with A ⊆ B, by definition ofz,
we havez(A) ≤ z(B), andz thereby is nondecreasing.

Let ZOPT bemax{z(A) : A ∈ M} andZG be the result
from our algorithm. By a result on maximizing submodular set
function on matroid [25], we haveZOPT−ZG

ZOPT−z(∅) ≤
1
2 . Hence,

ZG ≥
1
2ZOPT . The theorem follows.

Then, we prove that MTRSA is aδ-approximation al-
gorithm for SMTE-N, whereδ is the maximum size of the
destination sets. Since Theorem 1 proves that there is no
approximation algorithm with ratioδ1−ǫ for any ǫ > 0,
the following theorem shows that MTRSA achieves the best
approximation ratio. In contrast, since SMTE cannot be ap-
proximate within any ratio unlessP = NP , it is impossible
to derive an approximation ratio for any algorithm of SMTE,
and we thereby evaluate MTRSA for SMTE in Section VI.

Theorem 4. MTRSA is a δ-approximation algorithm for
SMTE-N, whereδ = max1≤i≤t |Di|.

Proof: Let the set of multicast treesT ∗ = (T ∗
1 , . . . , T

∗
t )

with the assignmentA∗ of branch state nodes be the optimal
solution to SMTE-N, andW ∗ = ∪ti=1W

∗
i with W ∗

i as the
set of branch nodes ofT ∗

i , whereasA∗
i = {w ∈ W ∗ :

the (i, w) entry ofA∗ is 1} be the set of branch state nodes
in T ∗

i . Therefore, the optimal bandwidth cost isc(T ∗, A∗) =∑t

i=1 c(T
∗
i , A

∗
i ). For MTRSA, Multi-Tree Routing Phase first

constructs the shortest-path treesT (1) = (T
(1)
1 , . . . , T

(1)
t ),

and the rerouting procedure of the Multi-Tree Phase outputs
the new treesT (2). MTRSA finally generates the treesT (3)

with the assignmentA(3) of branch state nodes. LetA be
an assignment such that for each non-overloaded nodeu
within T (1), MTRSA assigns a branch state node onu to
each tree inT (1) with u as a branch node. According to the
State-Note Assignment Phase, we haveA ⊆ A(3). On the
other hand, in Multi-Tree Routing Phase, MTRSA updates the
trees only when the bandwidth cost does not increase, and
the branch state nodes can only reduce the cost. Therefore,
we havec(T (3), A(3)) ≤ c(T (2), A(3)) ≤ c(T (2), A). In the
rerouting procedure of Multi-Tree Routing Phase, suppose we
rerouteT to T ′. Since each rerouting step does not create
any new overloaded node, and the new path inT ′ ensures
that c(T ′, A) ≤ c(T , A). Therefore,c(T (2), A) ≤ c(T (1), A)
holds by induction, and we havec(T (3), A(3)) ≤ c(T (2), A) ≤

c(T (1), A) ≤ c(T (1),∅). Since the pathP (1)
si,d

from the source

si to noded in Di in treeT (1)
i is the shortest path fromsi to d

in G, andT ∗
i has a path fromsi to d, we havec(P (1)

si,d
) ≤ c(T ∗

i )

for every i and everyd ∈ Di. Thereforec(T (3), A(3)) ≤

c(T (1),∅) =
∑t

i=1 c(T
(1)
i ,∅) ≤

∑t

i=1

∑
d∈Di

c(P
(1)
si,d

) ≤∑t

i=1

∑
d∈Di

c(T ∗
i , A

∗
i ) =

∑t

i=1 |Di| × c(T ∗
i , A

∗
i ) ≤

δ(
∑t

i=1 c(T
∗
i , A

∗
i )) = δ × c(T ∗, A∗). The theorem follows.

Time Complexity. We first find the shortest path be-
tween any two nodes inG with Johnson’s algorithm in
O(|V ||E|+|V |2 log |V |) time as the pre-processing procedure.
Multi-Tree Routing Phase constructs the shortest-path tree for
each sourcesi and its corresponding destination setDi, and
MTRSA compares the distance from a destination node to all
other nodes inO(|V |) time. Processing alld ∈ Di requires
O(|V ||Di|) = O(δ|V |) time, and processing all shortest-path
trees requiresO(tδ|V |) time. After constructing the shortest-



path trees, MTRSA reroutes the paths from each overloaded
node to some of its downstream nodes. Since there are at most
tδ branches in the tree set, we reroute at mostδ paths for each
branch node, and each rerouting requires the comparison of at
most |V | distances of paths. Therefore, the above procedure
requiresO(tδ2|V | log |V |) time, and Routing Phase requires
O(tδ2|V | log |V |) time.

Afterward, in Greedy Assigning Stage of State-Node As-
signment Phase, there are at mostt|V | branch state nodes
required to be assigned, and this stage has at mostt|V |
iterations. In each iteration, we first derive the minimum cost
reduced by assigning a branch state node on each nodev of
every Ti in O(t|V |) time, and we update the cost reduced
by assigning each new branch state node to the treeTi in
O(|Ti||E|) = O(|V ||E|) time. Therefore, this stage requires
O(t|V |(t|V |+|V ||E|)) = O(t|V |2(t+|E|)) time. Then, Local
Search Stage carefully examines the overloaded nodes. In each
iteration, we adjust the branch state nodes on each nodeu
in different trees without changing other branch state nodes
to find the new bandwidth cost inO(t|E|) time, and this
stage takesO(t|V ||E|) time because there are at most|V |
iterations. Therefore, State-Node Assignment Phase requires
O(t|V |2(t+ |E|)) time to allocate the branch state nodes and
O(tδ2|V | log |V |) time for rerouting, and MTRSA requires
O(tδ|V |2 log |V |(t+ |E|)) time.

C. Extension to SMTE

For SMTE, since the number of times that each packet
is delivered in a link cannot be acquired before assigning
the branch state nodes, we first present the concept ofweak
edge capacity constraint. Let ε′i,u,v = 1 if εi,u,v is a positive
integer in our Integer Programming formulation, andε′i,u,v = 0
otherwise. MTRSA needs to ensure

∑
1≤i≤t fi× ε′i,u,v ≤ cu,v

holds for∀eu,v ∈ E before assigning the branch state nodes.
In addition, in the general case of SMTE, the storage size of
each branch state nodeu in Group Table is proportional to the
degree ofu in the corresponding multicast tree [1]. Therefore,
let βi,u denote the node weight (i.e., storage size) of assigning
a branch state node onu to treeTi, andbu here denotes the
size of Group Table inu. For SMTE, we extend MTRSA as
follows.

Before Multi-Tree Routing Phase, we sort the multicast
trees inT according to their data rates in the ascending order,
f1 ≤ f2 ≤ · · · ≤ ft. In Multi-Tree Routing Phase, we find the
first shortest-path treeT1 in T and decrease the link capacity
cu,v for every edge inT1 by its flow ratef1. Note that any
edgeeu,v with insufficient residual capacity to supportf2 will
be removed since it cannot support the rest of the multicast
flows. The above procedure is repeated for other trees inT .

In the rerouting procedure of Multi-Tree Routing Phase,
we reroute each multicast treeTi according to the weak edge
capacity constraint, such that any new path fromw to v in Sec-
tion V-A must have sufficient capacity to supportfi. In Greedy
Assignment Stage, we find an elementx = (i, u) in N − A

according to z(A∪{(i,u)})−z(A)
βi,u

= max{ z(A∪{(i′,u′)})−z(A)
βi′,u′

:

A ∪ {(i′, u′)} ∈ M}, which represents the normalized cost
reduction. In other words, the node weightβi,u is considered
during the assignment of branch state nodes.

In Local Search Stage, optimizing the state-node assign-
ment of one node becomes the same as the knapsack problem
because each candidate branch state node now has a profit (i.e.,
cost reduction) and a size (i.e., node weight), and we exploit
Polynomial-Time Approximation Scheme for knapsack [26] to
find the solution. In the rerouting procedure of Local Search

Algorithm 1 Multi-Tree Routing and State Assignment Algo-
rithm (MTRSA)
Require: A networkG = (V,E), source nodess1, s2, . . . , st,

destination setsD1, D2, · · · , Dt, and State-Node tableA.
Ensure: Multicast treesT1, T2, · · · , Tt, si is the root ofTi,

andDi is in Ti.
1: //Multi-Tree Routing Phase
2: for i ∈ {1, 2, . . . , t} do
3: Ti ← shortest path tree containingDi with root si
4:
5: for overloaded nodeu do
6: Reroute an appropriate downstream nodev of u to

balance the distribution of branch nodes
7:
8: //State-Node Assignment Phase 1) Greedy Assigning Stage

9: A← [0]
10: while there isx ∈ N −A such thatA ∪ {x} ∈ M do
11: xmax ← arg max

x∈N−A
{Z(A ∪ {x}) : A ∪ {x} ∈ M}

12: A← A ∪ {xmax}
13:
14: //State-Node Assignment Phase 2) Local Search Stage
15: for overloaded nodeu do
16: Re-assign node state onu to maximizing reduction
17:
18: for overloaded nodeu do
19: while nodeu is overloadeddo
20: for each nodez in V do
21: if nodez is not overloadedthen
22: Reroute node the downstream nodev of u to

nodez
23: Break the for loop
24: return T1, T2, · · · , Tt andA

Stage, since now the branch state nodes have been specified,
we reroute each multicast treeTi according to the original
edge capacity constraint(7), such that any new path fromw
to v must have sufficient capacity to supportfi. If the amount
of multicast flows in any edge exceeds the capacity constraint,
we also reroute its closest upstream state nodeu in a treeTi

to w, such that the new path fromw to v follows the link
capacity constraint.

MTRSA can support the dynamic multicast group mem-
bership as follows. When a userv joins or leaves a multicast
group, MTRSA adds or trims (if no other users are located
downstream to the user) the corresponding branch from the
upstream branch nodeu in the same way as Multi-Tree Rout-
ing Phase. Afterward, State-Node Assignment Phase adjusts
the new branch state node if necessary. Therefore, it does not
need to re-compute the whole tree.

D. Pseudo Code
The pseudo code of MTRSA is shown in Algorithm 1.

VI. PERFORMANCEEVALUATION

In this section, we first compare MTRSA and other
approaches with real topologies. Afterward, we deploy our
algorithm in a small experimental SDN network with HP SDN
switches to evaluate the video performance with YouTube HD
traffic that requires a large amount of bandwidth consumption..

A. Simulation Setup
We simulate our algorithm in two real networks: Vtl-

Wavenet2011 and Columbus [27]. VtlWavenet2011 includes
91 nodes and 96 links, while Columbus has 70 nodes and 85
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Fig. 4. Cost with different|T | (bu = 7, |D| = 6)

links. Our simulation is divided into small-scale and large-
scale cases. The numbers of trees in the small-scale cases are
smaller than 100, whereas there are more than 2000 trees in the
large-scale cases. The link capacity in the topologies is set to
the level that the maximal bottleneck link utilization reaches
100% [28], and the edge cost of each link is set as 1. We
vary the number of multicast trees, the number of destinations,
and node capacity. The source and destinations are chosen
randomly from each network.

We compare MTRSA with the following algorithms: 1)
the shortest-path tree algorithm (SPT), 2) the Steiner tree(ST)
algorithm3 [7], and 3) CPLEX [29], which finds the optimal
solutions of SMTE problem by solving the IP formulation in
Section III. In SPT and ST, the branch state nodes of different
trees are randomly assigned to a branch node when node is
fully utilized, i.e., the number of branch state nodes reaches
the node capacity. Each SPT and ST is added to the network
iteratively. If an edge does not have sufficient residual capacity
to support the multicast flow of a new SPT or ST, it will be
removed accordingly to avoid choosing the edge in the SPT or
ST. We implement all algorithms in an HP DL580 server with
four Intel Xeon E7-4870 2.4 GHz CPUs and 128 GB RAM.
Each simulation result is averaged over 100 samples.

B. Small-Scale Evaluation
In the small-scale cases, we compare the total bandwidth

costs of all trees in MTRSA, SPT, ST, and CPLEX with dif-
ferent number of trees (|T |), different node capacity (bu), and
different number of destinations|D|. As shown in Fig. 4 and
Fig. 5, MTRSA generates a solution with the total bandwidth
cost very close to the optimal solution. Although SPT chooses
the shortest path to the destinations, it does not carefully
examine the node capacity, and its cost is thus higher than
MTRSA. Compared with SPT, the distance from the source to
a destination in ST is usually higher because the path needs to
be deviated from the shortest one in order to share more edges
with another path. Therefore, more branch nodes are usually
involved in ST. Without a sophisticated allocation of branch
state nodes, ST incurs a slightly higher cost than SPT due to the
additional bandwidth consumption in unicast tunneling forthe
branch nodes with full Group Table. The difference becomes
more significant when the number of trees increases as shown
in Fig. 4. Similarly, Fig. 5 manifests that the total bandwidth
cost of each tree increases as the number of destinations grows,
because each tree becomes larger in this case.

C. Large-Scale Evaluation
In the following, we evaluate MTRSA, ST, and SPT in

larger-scale cases, where the number of multicast tree is
ranged from 2000 to 10000, the number of destinations is
from 5 to 25, and the node capacity is between 50 and 250.
Compared with smaller-scale cases, the advantage of MTRSA

3There are some single-tree multicast routing algorithms with differernt
purpuses (such as QoS), but they are not included in this study because ST
(i.e., the optimal solution for single tree) outperforms those approaches in
terms of the bandwidth consumption.
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TABLE I. RUNNING TIME OF MTRSA (SECONDS)

|T | |D| = 5 |D| = 10 |D| = 15 |D| = 20 |D| = 25
2000 1.00 2.29 3.01 3.43 3.99
4000 3.09 6.33 8.71 11.06 12.39
6000 5.82 12.52 17.94 22.37 25.53
8000 8.80 20.10 29.89 37.52 43.78
10000 12.83 32.32 48.44 57.01 73.40

is more significant in larger-scale cases. In Fig. 6, the total
cost increases with the number of trees. For a larger network,
the source and any destination are inclined to be located with
distantly, but there is also a higher chance to find a node with
sufficient capacity as a branch node for rerouting. Therefore,
MTRSA effectively reduces the total bandwidth cost by 66%
and 59%, respectively, compared to ST and SPT. In addition,
Fig. 7 shows that the bandwidth costs can be effectively
reduced when we increase node capacity, and setting the node
capacity as 100 is sufficient for MTRSA. On the other hand,
the bandwidth cost grows with the number of destinations,
because all trees are required to span more nodes as shown in
Fig. 8.

Table I summarizes the running time of MTRSA with
different |T | and|D|. With a smaller input, such as 2000 trees
and 5 destinations in each tree, the running time for MTRSA
is around 1 second. As|T | and |D| increase, MTRSA only
requires around 73 seconds in the largest case with 10000
multicast trees. Therefore, it is envisaged that our algorithm is
practical to be deployed in SDN.
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Fig. 9. Implementation results of the experimental SDN

D. Implementation
To evaluate MTRSA in real environments, we implement it

in an experimental SDN with HP Procurve 5406zl OpenFlow-
enabled switches. We use Floodlight as the OpenFlow con-
troller to install the multicast forwarding rules in SDN-FEs.
We install multicast group information in group table and
create virtual ports mapping to multiple physical ports to
forward multicast traffic. MTRSA is running on the top of
Floodlight. Our testbed includes 12 nodes and 24 links as
shown in Fig. 9, where the link capacity and node capacity
are set as 50Mbps and 5, respectively. We randomly select 10
nodes as the video multicast sources, where each source is
connected to a Youtube proxy to facilitate YouTube multicast.
We implement the Youtube proxy by using VLC player, which
can request video stream from Youtube and work as a video
server. To support multicast, we modify TCP to aggregate TCP
ACKs from multiple clients. The full-HD test video is in 460
seconds encoded in H.264 with the average bit rate as 10Mbps.
For each source, we randomly assign 10 destinations that play
videos using the VLC player. Fig. 9(b) shows that the total
bandwidth consumption during playback, and we average the
bandwidth consumption every 40 seconds. The results manifest
that the bandwidth consumption of MTRSA is 46% and 35%
lower than ST and SPT, respectively. Therefore, MTRSA can
effectively support multicast traffic engineering in SDN.

VII. C ONCLUSION

Recent studies on traffic engineering for SDN mostly focus
on unicast, while most existing multicast routing algorithms
are designed to find the routing of a multicast tree, instead of
multiple trees. In this paper, therefore, we have formulated
Scalable Multicast Traffic Engineering Problem (SMTE) to
minimize the total bandwidth cost according to the link and
node capacity constraints for multiple trees in SDN. We have
proved that SMTE-N is NP-hard and not able to be approxi-
mated withinδ, while SMTE cannot be approximated within
any ratio. To solve the problem, we have proposed Multi-Tree
Routing and State Assignment Algorithm (MTRSA), which is
a δ-approximation algorithm for SMTE-N, while MTRSA has
been extended to support SMTE as well. Simulation based
on real topologies and implementation with Youtube traffic
manifest that MTRSA can effectively find the routing of
multiple multicast trees and assign the branch state nodes in
order to reduce the total bandwidth cost, while the computation
time to construct numerous trees is also reasonable for practical
SDN. Since the tree obtained by MTRSA is not delay bounded,
we will extend it to support QoS multicast in the future work.
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