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Abstract

We study network response to queries that require computation of remotely located data and seek to characterize

the performance limits in terms of maximum sustainable query rate that can be satisfied. The available resources

include (i) a communication network graph with links over which data is routed, (ii) computation nodes, over which

computation load is balanced, and (iii) network nodes that need to schedule raw and processed data transmissions.

Our aim is to design a universal methodology and distributed algorithm to adaptively allocate resources in order to

support maximum query rate. The proposed algorithms extend in a nontrivial way the backpressure (BP) algorithm

to take into account computations operated over query streams. They contribute to the fundamental understanding of

network computation performance limits when the query rate is limited by both the communication bandwidth and

the computation capacity, a classical setting that arises in streaming big data applications in network clouds and fogs.

Index Terms

Backpressure (BP) routing, Cloud Computing, Fog Computing, In-network Computation, Resource Allocation.

I. INTRODUCTION

In recent years, the gamut of services and applications that rely on big data analytics and computations has

significantly expanded. The game-changer in these platforms lies in their ability to perform computations and deliver

results in real time, in the form of a service or an application. This proliferation is much attributed to the advent

of smart-phones and wearable devices with multi-modal embedded sensors that facilitate data collection, and it has

created the need for impromptu service delivery to the mobile user. For instance, mobile augmented-reality apps rely

on real-time data retrieval from distributed data sources to offer a sense of an augmented world, supplemental to

the real one. In mobile crowd-sensing apps, smart-phones contribute data which is aggregated, and the aggregate is

provided in real time as a service to app subscribers. Further, the mobile health sector supports real-time personalized
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Fig. 1. Illustration of network computations. Shaded nodes are forwarding ones, i.e. without computation capabilities, and white nodes have

computation capabilities. Colorful nodes are sources and destinations, and colorful arrows denote routing of raw and processed data.

medical advice based on analytics on dynamic diverse data collected from smart-phones and wearable devices to

help people self-manage their health.

Data computations and analytics may be performed either (i) at the back-end i.e. at large-scale computation

platforms or high-performance computing clouds of interconnected nodes with computation and storage capabilities,

or (ii) at network-edge components i.e. mobile devices or base stations, according to the newly coined concept of

edge computing and the “fog” [1] wherein nodes with computation and storage resources are wirelessly connected.

A unifying model that captures the scenarios above is the following. A set of nodes are connected in a network

through links of certain communication bandwidth, and each node has some computation capacity resources. Se-

quences of queries for computation are generated in a streaming fashion. Each query sequence is characterized by

a type of computation, the sources where the data are collected from, and the destination where results are to be

delivered. In order to satisfy each computation request, an algorithm is needed to perform the following tasks: (i)

first, retrieval of data pertinent to the query, possibly from multiple source nodes in the network. These may be

either nodes that hold stored data such as databases in a computing cluster or mobile devices that provide data

on the spot. (ii) Next, determination of computation nodes in the network that will do computations on the data;

these nodes may have diverse computation resources. Computation may involve aggregates, functions of or statistics

on the data. (iii) Multi-hop routing of the unprocessed (raw) data through the network from the source nodes to

computation nodes, and multi-hop routing of the computation results (processed data) from computation nodes to the

destination, (iv) scheduling of traffic streams of unprocessed and processed data corresponding to different queries

through computation nodes of limited computational capacity and through links of limited bandwidth.

In this work, we ask the following question: Given a network graph G = (N ,L) with links of limited communication

bandwidth and nodes of limited computation resources, what are the performance limits of in-network computation

throughput? Namely, what is the maximum rate with which computation results can be conveyed to the destination
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when computations take place in the network? This question is a fundamental one to resolve in order to efficiently

handle the large volume of data analytics requests by optimally utilizing system resources.

A. Motivating Example

Consider a simple query involving three nodes (two sources 1, 2 and destination d), which form a fully connected

undirected graph. Let the node set be {1, 2, d} and let the link set be {(1, 2), (1, d), (2, d)}. Let Ci be the available

computation capacity of node i ∈ {1, 2, d}, measured in number of processed packets per second and Rij be the

available communication bandwidth of link (i, j), in packets/sec. Let xi, i = 1, 2 be a datum of source i, i = 1, 2.

Consider a stream of queries with rate λ queries/sec where each query seeks to compute, say the sum of a datum of

source 1 and a datum of source 2 and deliver the result to d.

If we restrict ourselves to single-path routing, the query stream can be handled in three different ways:

1) Source 1 sends data x1 to source 2 over link bandwidth R12. This leads to incoming data rate min{λ,R12}

to source 2. Source 2 performs addition with its own data x2 (of rate λ) and generates sums x1 + x2 at rate

min{C2, λ,R12}. It then sends the sums to the destination d over link bandwidth R2d. Here the computation

is performed at node 2, and the rate with which sums are received at d is min{C2, λ,R12, R2d}.

2) Source 2 sends data x2 to source 1 over link bandwidth R12. Source 1 performs addition with its data x1 (of

rate λ), it generates sums x1 + x2 and sends them to the destination d over link bandwidth R1d. Here, the

computation is performed at node 1, and the rate with which sums are received at d is min{C1, λ,R12, R1d}.

3) Source 1 sends data x1 to d over link of bandwidth R1d, and source 2 sends data x2 to d over link bandwidth

R2d. The destination d performs the addition and generates sums x1 + x2. Thus, the computation is performed

at d, and the rate with which the sums are generated is min{Cd, λ,R1d, R2d}.

Clearly, the maximum rate of received sums depends on which computation node was used, and the routing of data

on the network. The problem becomes further complicated if we allow routing through multiple paths. Moreover,

considering a stream of similar queries, it is possible to load balance queries over the different options, and hence

the problem obtains a multi-commodity form. The static scenario described above serves as a prelude to the dynamic

problem that arises in the presence of unknown dynamic query arrivals and accumulated traffic loads at various queues

in the network. The decisions in the dynamic scenario concern determination of the node to perform the computation

for each query, as well as queue management through traffic routing, link bandwidth sharing and computation capacity

allocation, and must be made adaptively.

B. Related Work

The problem of in-network computation has attracted a lot of attention recently. If network coding is allowed,

cut-set bounds for the computational capacity of networks defined on Directed Acyclic Graphs (DAGs) are proven in
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[2]. These cut-set bounds cannot be achieved by routing alone, and proper network codes need to be used. However,

in this paper we restrict ourselves to routing-only policies, which simplify adaptivity and distributed implementation.

Prior works pertaining to routing-only approaches study the problem in a static setup, with network flows as variables

[3]. The problem of finding an optimal flow when there is a computation cost at each node is considered in [4].

Steiner-tree packings are examined in [5] for solving function computation jointly with multicasting, albeit without

considering limitations on computation capacity of nodes. A line of work also deals with scaling laws of network

computational capacity, cf. [6] and followup papers.

In dynamic setups, [4] examines the problem of function computation in cloud computing and use intuition from

the Lagrangian relaxation to derive a dynamic queue-based algorithm. The work in [7] deals with the problem of

computing a function of data generated at all nodes in a network, a problem that is mainly motivated by sensor

network applications. The authors relate the problem to the network broadcast (in the reverse manner) and they

propose a scheme based on the Random Useful Policy (adaptive broadcast policy [8]) to achieve maximum query

rate. On the contrary, in our scenario where data stem (possibly) from a strict subset of the nodes, the corresponding

(reverse) multicast method is not successful in general, indicating that the consideration of computation capabilities

at all nodes is crucial for such a methodology.

A common underlying assumption, at least implicitly, in the aforementioned works is that network nodes can process

data in an unrestricted way. Constraints on packet combinations are considered in the literature of processing networks

which is very much related to our work, see e.g. [9] for a recent review. These networks model the industrial assembly

of components, whereby the network blueprint determines where the combination of various types of components

takes place. Recent works on allocation of resources and utility optimization in processing networks include the work

in [10], where the use of “dummy components” is made to get around the processing restrictions, and [11], where

the authors advocate minimizing the drift of a suitably perturbed quadratic Lyapunov function. Our problem setup

generalizes the processing networks framework in the following manner: instead of combining any two components

of the same type (e.g. any bottle with any cork), here each query has a tag and we need to combine pairs of data

with the exact same tags.

C. Our Contribution

We study the dynamic resource allocation problem that arises in network computation with the aim to achieve

the maximum query response rate. We design a universal methodology and algorithm to solve this problem for a

broad class of operations on data encountered in practice such as arithmetic, logical, database-related or other types

of operations. We abstract the operation as ”summation”, with the understanding that it stands for any operation of

that broad class.

We consider a scenario with two data sources 1 and 2, and a stream of dynamically arriving queries, each of

which seeks to compute the sum of a datum from source 1 and a datum from source 2 and deliver the sum to a
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destination. The process takes place in a communication network with diverse computation and bandwidth resources.

The restriction to two sources and a query stream is deemed necessary for presentation purposes, but it will become

apparent that the analysis in the paper can easily be extended to multiple sources and multiple queries via a multiclass

queueing extension.

We design algorithms that orchestrate utilization of computation and bandwidth resources by performing (i) dynamic

load balancing of computations on available nodes, (ii) unprocessed (raw) and processed data routing from source

nodes to computation nodes and from computation nodes to the destination respectively, (iii) scheduling of data from

different queries on communication links and computation nodes. The proofs of algorithm optimality require non-

trivial modifications of the well-known Backpressure (BP) routing and scheduling, including computation thresholding

for capturing the tag constraint, randomization for decoupling routing and computation, and the use of stochastic

coupling. The contributions of our work are as follows.

• We formulate the problem of max-throughput distributed computation and derive necessary conditions for queue

stability, which correspond to an upper bound on the maximum attainable query rate.

• For the optimal policy, we deploy our approach in stages. For a pre-specified computation node, we first derive

the optimal policy under the restriction that the network infrastructure for communicating raw data is separated

from the one for processed data. We then extend our approach to the unrestricted case. The optimal policy

involves Backpressure for scheduling and routing and appropriate combining at computation nodes, and the

optimality is derived through a novel queueing structure abstraction at those nodes.

• We extend to multiple computation nodes where computations need to be load balanced across the available

options. The extended optimal policy is the one that is based on the join-the-shortest-sum-of-queues rule.

The organization of the paper is as follows. In section II, we provide the model and assumptions. In section III

we deploy our approach for a single computation node and we extend it to multiple possible computation nodes in

IV. Numerical results are presented in section V and the paper is concluded in section VI.

II. MODEL AND PROBLEM STATEMENT

A. Network, Resources and Query Streams

We consider a network abstracted as a graph G = (V, E) where V is the set of nodes and E is the set of edges.

We assume there exist two source nodes s1, s2 ∈ N and a destination node d. Edge (m, l) ∈ E between nodes m

and l has a fixed capacity of Rml packets per slot. A network example is given in Fig. 1.

We study a stream of queries, where each query concerns the computation of the sum of a datum from source 1

and a datum from source 2, while the network is agnostic to specificities of data. 1 This situation is abstracted as

1An extension here is to consider networks that are aware of data specificities and can exploit them to improve performance; e.g. use caching

or multicast.
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Fig. 2. Computation DAGs. In this paper we focus on a single operation with two sources and a unique computation DAG (shown left).

follows. Upon arrival of each query, a corresponding packet (datum) is generated at each of the two source nodes,

and both packets are given the same tag. These packets need to be summed somewhere in the network, and the result

needs to be delivered to the destination d. Time is slotted, and at each slot t there are A(t) newly arrived queries

belonging to the same stream, where the process A(t) is assumed to be independent and identically distributed with

time, with E[A(t)] = λ.

Combination of packets corresponding to a query may take place in one among a subset of nodes, denoted by

NC = {n1, n2, ..., nNC
} ⊆ V; these are referred to as the computation nodes. Node ni has computational capacity

of Cni
, measured in number of produced processed packets per slot, where each processed packet concerns the sum

of two raw packets with the same tag when both are available to the computation node.

B. Operations and Embeddings

For demonstration purposes, our analysis is focused on a simple operation x1 + x2, but it is useful to discuss the

generality of our model. Each computation task is associated with a set of sources whose data are involved in the

computation, and the operation to be performed on their data. For instance x1 + x2 + x3 describes retrieval of one

datum from each of the sources 1, 2, 3 and their addition. From the network computation point of view however,

the description of the operation is completely specified only when we are given the entire order of how data are

combined. One way to provide such a description is the so-called computation graph, which is a directed acyclic

graph (DAG) whose nodes are the sources, the destination, and the operations themselves. The ordering of nodes

in this graph gives a description of the operation. Some operations are associated with a unique computation DAG

while some others do not. For example, the operation x1 + x2 is associated with a unique DAG with nodes 1, 2

and “+” denoting the summation, see Figure 2-(left). On the other hand, operation x1 + x2 + x3 has more than one

computation DAGs, each of which stems from the outcome of the associativity property of the addition operator. In

this work, we will assume that each task is associated with a unique computation DAG.

An embedding of the computation graph on the network graph is a mapping of DAG operation nodes to computation
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nodes of the network. Prior work has studied the problems of finding an embedding that minimizes delay and cost

and has shown that they are both NP-complete problems [12]. In this paper we focus on one query stream that can be

computed at NC nodes, and hence there are |NC | possible embeddings of our computation DAG onto G. Instead of

finding the best embedding, we use all embeddings available to load balance computation and achieve the maximum

attainable query rate.

We remark that our analysis can be generalized to multiple query streams and multiple computation DAGs using

a multiclass queueing approach that we omit here for brevity. Moreover, the case we are studying entails all the

complexity that arises from integrating routing and computation.

C. Queueing Model

Data packets at each node may be (i) unprocessed (raw) source data on their way from the source to the computation

node, or (ii) processed data on their way from the computation node to the destination. We introduce a packet

classification with respect to the computation node that a particular packet will be (or was) computed. The raw

packets can be further classified according to the source where they stem from. To capture all packet classes we

define the following queues:

• Q(i,n)
k (t), i = 1, 2: Data queue at node k containing raw packets generated at node si that have to be computed

at node n; Q(i,n)
k (t) denotes its length. We make the convention that Q(i,n)

n (t) = 0.

• X (i)
n (t), i = 1, 2: Computation queue at node n containing raw packets generated at node si that have to be

computed at this node; X(i)
n (t) denotes its length.

• Q(0,n)
k (t), i = 1, 2: Data queue at k containing processed packets from computing node n, that have to be delivered

at the destination node; Q(0,n)
k (t) denotes its length. We make the convention that Q(0,n)

d (t) = 0, ∀n ∈ NC .

Moving packets between queues corresponds to control decisions to be taken each slot:

• The set of raw packets with tags U (i,n)
mk (t) originated from node si, destined to computation node n, that are

transmitted from node m to node k; U (i,n)
mk (t) is the number of packets of this decision. We allow to allocate

more service than packets waiting in the queue, in which case ”zero” packets are transmitted (these packets will

be dropped at the other side of the link).

• The pairs of raw packets to be combined at each computation node n. Let Zn(t) be the set of corresponding

tags and Zn(t) be the number of combined packets.

• The set of processed packets, combined at node n, U (0,n)
mk (t) to be transmitted from node m to node k; U (0,n)

mk (t)

is the number of such packets.

We have the following constraints. The total number of transmitted packets over a link are limited by link capacity∑
i∈{0,1,2},
n∈NC

(
U

(i,n)
ml (t) + U

(i,n)
lm (t)

)
≤ Rml, ∀(ml) ∈ E . (1)
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Further, the number of combined pairs cannot exceed the computation capacity or any of the individual raw packet

queue lengths,

0 ≤ Zn(t) ≤ min
[
Cn, X

(1,n)
n (t), X(2,n)

n (t)
]
, ∀n ∈ NC . (2)

Moreover, a pair of packets can be combined only if both packets with the same tag have already arrived at the

computation node, i.e.,

Zn(t) ⊆ X (1)
n (t) ∩ X (2)

n (t), ∀n ∈ NC . (3)

We point out that the last constraint involves consideration of packet tags and would complicate the description of

the system state. However, our approach will be to define a simpler system state with queue lengths only, and then

establish that the considered policies indeed satisfy (3).

We define the set of permissible policies in our system ΠC as mappings of the network state (queue lengths) to

control variables for routing U (i,n)
ml (t) and computation Zn(t), subject to capacity and computation constraints (1)-(3).

D. Problem Formulation

We say that the system is stable under a policy π if all queues in the system are strongly stable, i.e. if

lim sup
T→∞

1

T

T∑
t=1

E
{
Q

(i,n)
k (t)

}
<∞, ∀i ∈ {0, 1, 2},∀k ∈ N

lim sup
T→∞

1

T

T∑
t=1

E
{
X(i)
n (t)

}
<∞, ∀i ∈ {1, 2}, ∀n ∈ NC .

We are interested to find the maximum attainable query rate, λ∗ that can be delivered by some policy in the class

ΠC subject to system stability, as well as to find a policy π∗ ∈ ΠC that stabilizes the system for every query rate

λ < λ∗.

It is important to note that strong (or at least steady-state) stability of all queues is actually necessary to ensure that

all computations are made and results are delivered to the destination. Indeed, if some queues are only mean-rate- or

rate-stable (these are weaker notions of stability), there may be a growing number of queries in time that are never

executed.

III. SINGLE COMPUTATION NODE

We begin our analysis by fixing attention to one computation node, say node n. This special case contains the crux

of the problem, which is to deal with (i) the challenging constraint (3), and (ii) integration routing and computation.
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A. Query Rate Upper Bound λ∗

First we revisit the standard multicommodity flow problem. For a set of commodities C, consider the multicom-

modity flow feasibility region ΛG(C) of network G which is defined as the set of arrival rate vectors (λ(c))c∈C for

which there exists a feasible flow that successfully decomposes the arrivals. Feasibility in this case includes, (i) flow

conservation constraints ∀c ∈ C

∑
k∈OUT(m)

f
(c)
mk −

∑
k∈IN(m)

f
(c)
km =


λ(c) m = src.

−λ(c) m = dest.

0 otherwise,

(4)

(ii) capacity constraints, ∑
c∈C

f
(c)
mk ≤ Rmk, ∀(m, k) ∈ E , (5)

and (iii) standard flow constraints, f
(c)
mk = 0 m = dest.

f
(c)
mk ≥ 0 otherwise

∀(m, k) ∈ E , ∀c ∈ C. (6)

The feasibility region, given by the convex polytope

ΛG(C) = {(λ(c))c∈C | (4)− (6)}

is also the set of arrival rates for which the system with dynamic routing policies (for the same network and commodity

setting) is stable, under mild assumptions for arrival processes [13].

Consider now the standard multicommodity routing problem with three commodities C3 = {(s1, n), (s2, n), (n, d)},

and corresponding feasibility region ΛG(C3). We have:

Theorem 1. For a query stream from sources s1, s2, destined to d and computed at node n, the following are

necessary conditions for system stability:

(λ, λ, λ) ∈ ΛG(C3), λ ≤ Cn.

Proof: Recall that the policy set ΠC , whose stability region we are interested in bounding, involves the challenging

constraint (3). To obtain the upper bound on the performance of this class, we relax this constraint in the following

way. Consider a new set of control policies Π, whereby we select routing variables U (i,n)
ml (t) subject to instantaneous

capacity constraint Rml, and computation variable Zn(t) subject to capacity Cn, while constraint (3) is relaxed and

any two raw packets can be combined. Note that policies in set Π \ ΠC may interleave raw data from different

queries, which harms the system.

The conditions in the statement of the theorem are necessary for stability for any policy π ∈ Π; the first condition

is necessary for routing all raw packets from the sources to n and the combined packets from n to the destination
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Fig. 3. Example where the networks of raw and combined data are non-overlapping.

and the second is necessary for performing all computations. Then the proof is complete by noting that if π ∈ ΠC

then π ∈ Π as well–this is due to the fact that Π is obtained from ΠC by relaxing a constraint, hence it also includes

policies that satisfy the constraint.

Equivalently, for a stable system the query rate is upper bounded by

λ∗ = max
(λ,λ,λ)∈ΛG(C3)

λ<Cn.

λ.

In the next subsections we propose policies in ΠC that provably stabilize any λ < λ∗, thus establishing that in fact

λ∗ is the maximum query rate.

B. Achieving maximum sustainable query rate in Non-overlapping Networks

To ease exposition, we examine first the special case where the network connecting the sources to the computation

node is non-overlapping with the network connecting the computation node to the destination, see Fig. 3. When this

is true, the networks containing s1, s2, n and n, d do not have common nodes (except n) and hence the routing is

decoupled from computation, and the only remaining complication is the challenging constraint (3).

We first consider the case where the destination is also the node that performs the computations. The results will

be generalized in a straightforward way at the end of the section. Consider the following policy π1:

• The controls U (i,n)
mk (t) are obtained by applying BP routing and scheduling; see the text box and [14], [15] for

details.

• At node n, let Pn(t) denote the number of packet tags that satisfy (3). Combine the maximum number of

available paired packets (i.e. min{Pn(t), Cn} pairs).
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Review on Backpressure (BP) Routing and Scheduling [14]: BP is a distributed dynamic algorithm that reacts

on current data queue backlogs and decides on the number of packets to be routed across each link in order to

balance queues. For wired multicommodity routing, the BP algorithm to be executed at each link/slot is:

Select the commodities that maximize differential backlog:

c∗mk(t) = arg max
c∈C

∣∣∣Q(c)
m (t)−Q(c)

k (t)
∣∣∣ , ∀(m, k) ∈ E

Route any U (c)
ij (t) packets from commodity c, where:

U
(c)
mk(t) =

 Rmk if c = c∗mk(t) and Q(c)
m (t) > Q

(c)
k (t)

0 otherwise.

BP is a maximum-throughput policy for wired multicommodity routing.

The main result of this section follows:

Theorem 2. For non-overlapping networks and a query stream computed at any one node n, policy π1 is stable for

any query rate λ < λ∗.

We prove the result by tackling constraint (3). To avoid tracking packet tags, define X(t) as the number of raw

packets in the system excluding node n, and S
(1)
n , S

(2)
n as the number of raw packets with unique tags at node n,

whose counterpart is still in X(t). Recall that Pn(t) is the number of raw pairs with same tag waiting at node n.

Breaking down the packets at node n we have

X(1)
n (t) +X(2)

n (t) = 2Pn(t) + S(1)
n (t) + S(2)

n (t)

≤ 2Pn(t) +X(t)

where inequality becomes strict equality if all packets X(t) have different tags. Thus the number of pairs waiting at

n to be computed is lower-bounded by

Pn(t) ≥ X
(1)
n (t) +X

(2)
n (t)−X(t)

2
,

from which we observe that, if

X(1)
n (t) +X(2)

n (t) ≥ 2Cn +X(t) , (7)

then there are at least Cn pairs of packets with the same tag in the computation node. Hence we may directly replace

constraint (3) with the restriction (7). The idea behind the proof is to use a slightly different restriction from (7),

where, instead of using X(t) (which is correlated with network events), we make use of a large constant X .

Consider a policy π′1 that works as follows:

• The controls U (i,n)
mn (t) are obtained by applying backpressure routing and scheduling, as in π1.

January 18, 2016 DRAFT



12

• At node n: choose the computations as follows:

Zn(t) =

 Cn if X
(1)
n (t) +X

(2)
n (t) ≥ 2Cn +X

0 otherwise

The main idea is to prove the statement of Theorem 2 for policy π′1 and then prove the theorem itself by showing

that π′1 is stochastically dominated by π1. First, we prove that π′1 satisfies the largest possible query rate:

Lemma 1. For any λ < λ∗, there exists a threshold X that depends on the parameters G, Cn, λ, such that the

network is stable under policy π′1.

Proof: We give here a sketch of the proof. The complete version of this proof as well as all other proofs of

results here is in the Appendix. Since BP routing stabilizes the network queues, and leads to a stationary distribution

for their lengths, we pick a large enough value X so that the probability that X(t) > X is made sufficiently small.

Then we consider the T -slot drift for the computation queues and show that they are also stable, using the fact that

the restriction (7) is violated only very rarely.

Policy π′1 achieves the computational capacity of the network but has some shortcomings. First, computation of an

appropriate threshold X can be tedious and requires the statistics of the query arrival processes. Second, policy π′1

adds delays in delivering the result to destination, since due to large X used, the computing node does not perform

any computations until many packets have arrived. Both issues above are resolved by policy π1, which does at least

as good as π′1 in terms of stability, as implied by the following result:

Lemma 2. For all thresholds X , we have

X(i),π1
n (t) ≤st X

(i),π′1
n (t), ∀i ∈ {1, 2}.

Proof: We compare what happens when both policies start with the same network state at time t = 0 and the

sample paths of routing decisions and arrival processes are the same. The sample paths of the computations made,

however, are different between the two policies. Let t′ the time slot index where the constraint for π′1 to be active

holds for the first time. The main point is that, in the meantime, policy π1 can serve packets, therefore all packets

that will get combined by π′1 at t′ will have been combined earlier, ot at t′ if its the first time pairs of packets appear.

That is, the Cn packets that are combined by π′1 have either been combined already by π1 if some of these were

paired earlier than t′, or they have been combined by π1 if all of these are paired on t′, so X(i),π1
n (t′) ≤ X(i),π′1

n (t′). In

addition, since for t < t′ no packets are served by π′1, while maybe served by π1, so X(i),π1
n (t) ≤ X(i),π′1

n (t),∀t < t′.

We can show, using similar arguments that this inequality holds also for t > t′.

Since this is proven for every sample path for arrivals and routing decisions, the statement in the Lemma follows.

Finally, the proof of Theorem 2 follows from the above lemmas.
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C. Achieving maximum sustainable query rate in Overlapping Networks

Next, we relax the topological restriction and we allow processed packets to compete with raw packets for the

same network resources. The arising technical problem here is the dependence of network state on the outputs of the

computation node, which means that certain steps used to prove Lemma 1 can not be used directly.

In order to overcome this technicality, we randomize the output of the computation node by purposefully inserting

dummy packets at random. In particular, we introduce an additional queue Yn(t) in the computing node that keeps

the results of the computation and forwards Fn(t) processed packets to the queue Q(0,n)
n (t), where F (n)(t) includes

both useful and dummy packets. The network then treats these dummy packets as real ones, delivering them to the

destination. This structure is shown in Fig. 4.

5789

6710

34+

1

D

2

D

DD

dummy packets pool

network

queueing structure of computation node n

F (n)(t)

Yn
X (1)

n

X (2)
n

Q(0,n)
nQ(1,n)

n Q(2,n)
n

Fig. 4. Illustration of queueing structure for computation node n. Numbered packets are either raw (red and blue) or processed (purple)

useful packets, while packets noted with “D” are dummy packets. At slot t, Fn(t) packets depart the queue Yn and arrive at the network

queue Q(0,n)
n , where Fn(t) potentially includes both dummy and useful packets.

At this point we refer to the old concept of regulators, first proposed in [16] to fix the arrivals of an intermediate

queue to be equal to the source. Later regulator queues were used for wireless scheduling in [17], [18], although in

these approaches the knowledge of the arrival rate is required. Our technique is slightly different since it does not

require this knowledge.

The proposed structure above leads to a situation where the number of packets going into Q(0,n)
n (t) does not depend

on the network queues, which greatly helps with the analysis. To perform the analysis, however, we additionally need

to design carefully the number of generated dummy packets to ensure that the adjusted packet rate remains inside
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region ΛG(C3), and that the virtual queue Y(t) is served enough to be strongly stable. These two properties then

imply that the useful processed packets will eventually be delivered.

We will consider the policy π2. At each time slot t:

• Controls U (i,n)
mk (t) are obtained by applying backpressure routing and scheduling.

• At node n, all paired packets that can be combined (i.e. at most Cn pairs) are combined and pushed to the

queue Yn(t).

• F (n)(t) packets are pushed from the queue Yn(t) to the queue Q(0,n)
n (t). F (n)(t) is a random variable with

mean λ′ ∈ (λ, λ∗). If there are not enough packets, then dummy packets are used. These dummy packets are

routed exactly as the normal processed packets.

For the process that serves queue Yn(t) we use

F (n)(t) = (1 +B(n)(t))A(t), (8)

where B(n)(t) is a Bernoulli random variable, independent of everything in the network, with success probability

εB; this parameter can take an arbitrarily small positive value.

The main result of this subsection is that the policy described above achieves a computation rate arbitrarily close

to the upper bound:

Theorem 3. For one query stream computed at n, policy π2 is stable for any query rate λ <
(

1− εB
1+εB

)
λ∗.

This theorem can be proved in a similar way as Theorem 2, by defining a policy π′2 that is the same as π2, except

that it does computations only if X(1)
n (t) +X

(2)
n (t) ≥ 2Cn +X . Similarly to the previous subsection, we first prove

stability under π′2:

Lemma 3. For any λ <
(

1− εB
1+εB

)
λ∗, there is a threshold X such that the the network is stable under policy π′2.

Proof Outline: The crucial observation is that, due to the randomized input to queue Q(0,n)
n (t) and the use of

dummy packets,
(
Q

(0,n)
k (t)

)
k∈N

do not depend on the state of the queues with raw packets.For the network excluding

node n, then, it is as if we had three commodities: s1 → n, s2 → n, n → d with rates (λ, λ, (1 + εB)λ inside the

stability region of the system and correlated arrival processes, but i.i.d. in time. This implies that Q(i,n)
k (t), ∀i ∈

0, 1, 2,∀k ∈ V \ {n} are strongly stable under π′2 (since backpressure routing is applied).

In addition, strong stability implies steady-state stability of the aforementioned queues, so X(t) has a steady-state

distribution with zero limit as it goes to infinity. We can then apply the same methodology as in the proof of Theorem

2 to show that there exists a threshold X for which X (i)
n (t), i ∈ {1, 2} are strongly stable.

The final step is to show that queue Yn(t) is stable as well. Indeed, since Q(i)
n (t), i ∈ {1, 2} are stable, the input

to this queue is a Markov modulated process with mean λ. Since the service process of Yn(t) is i.i.d. over time with

mean
(

1− εB
1+εB

)
λ∗ > λ, strong stability of Yn(t) follows.
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Then, we prove that the threshold is not really needed, in the same way as Lemma 2.

Lemma 4. For all thresholds X , X(i),π2
n (t) ≤st X

(i),π′2
n (t),∀i ∈ {1, 2}

Theorem 3 is then a consequence of Lemmas 3 and 4 and the observation that the number of packets (including

dummy ones) injected in queue Q(0,n)
n (t) at every time slot t is the same for both policies π2, π

′
2. As a final remark,

note that policy π2 can achieve any fraction of the computational capacity upper bound of Theorem 1 by requiring

only access to the number of requests at every slot. In fact it can be proven that even delayed information about the

number of requests is sufficient for this policy to achieve any fraction of the computational capacity of the network

[13, §4.7].

In summary, we have shown that for one stream with two sources and one destination, where the streams need

to be combined at specified node n, the maximum query rate is characterized by Theorem 1, and achieved in a

distributed way by policy π2. In the next section we generalize to multiple computation nodes.

IV. MULTIPLE POSSIBLE COMPUTATION NODES

In this section, we consider the more general model where the summation can take place at any one of the

NC = {n1, . . . , nNC
} computation nodes.

A. Query Rate Upper Bound λ∗

In this scenario, we have three commodities for every one of the NC computation nodes, hence we need to define

the set C̃3 with 3NC unicast commodities, as follows: there are three commodities for each computation node n ∈ NC ,

(1, n) delivering packets from s1 to n, (2, n) delivering packets from s2 to n, and (n, d) delivering packets from n to

d. Consider the multicommodity flow with rates λ = (λ1
1, λ

2
1, λ

0
1, . . . , λ

1
NC
, λ2

NC
, λ0

NC
), where λ1

m = λ2
m = λ0

m = λm,

and ∑
m∈NC

λm
λ

= 1,

i.e., the quantities (λm

λ )m∈NC
can be seen as the time-share coefficient for queries computed at node m. Then we

have the following upper bound for the query rate:

Theorem 4. For a query stream with sources s1, s2, destined to d and computed at the set of computation nodes

NC , the following is a necessary condition for stability:

λ ∈ ΛG(C̃3), λm ≤ Cm, ∀m ∈ NC ,
∑
m∈NC

λm = λ.

The upper bound characterized by Theorem 4 can be actually achieved arbitrarily close by a dynamic policy, as

discussed in the next subsection.
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B. Achieving maximum sustainable query rate with Multiple Computation Nodes

In addition to the queues specified in II-C, we need to define NC other queues, denoted with Hn(t), whose role

is to ensure that each computing node does not receive more computational load than its capacity. Queues Hn(t)

evolve as

Hn(t+ 1) =
[
Hn(t) + Ã(n)(t)− Cn

]+
.

The dynamic policy π3 we consider here is the following:

• Load Balancing: At each slot, choose n∗(t) equal to

arg min
n∈NC

(1 + εB)Q(0,n)
n (t) +

∑
i=1,2

Q
(i,n)
i (t) +Hn(t)

 (9)

where εB ∈ (0, 1) is a control parameter. Then the newly arrived queries are assigned to the class that corresponds

to this computation node,

Ã(n)(t) =

A(t), n = n∗(t)

0, otherwise.
(10)

• Routing and scheduling: Use BP over class pairs. For every link (m, k) ∈ E choose the class pair

(i∗mk(t), n
∗
mk(t)) = arg max

i∈{0,1,2}
n∈NC

∣∣∣Q(i,n)
m (t)−Q(i,n)

k (t)
∣∣∣ ,

where i∗mk(t) is the best class of packets between raw packets and processed packets, and n∗mk(t) is the best

class of packets w.r.t. the computation node. Then choose the routing variables as,

U
(i,n)
mk (t) =

 Rmk if (i, n) = (i∗(t), n∗(t))

0 otherwise.

• Computation: At every node n ∈ NC , all possible computations are done. If there are more pairs than the

computation capacity of this node, then Cn pairs are selected using any tie breaking rule (e.g. priority can be

given to the oldest queries).

• Randomization with dummy packets: F (n)(t) = Ã(n)(t)
(
1 +B(n)(t)

)
packets resulting from a computation

are pushed to queue Q(0)
n (t), where B(n)(t) are an i.i.d. Bernoulli random variables with mean εB . If there are

not enough processed packets available at queue Yn, dummy packets are used.

The main result is that the policy above satisfies almost every query demand rate below λ∗, according to the choice

of the control parameter εB:

Theorem 5. Policy π3 stabilizes the network with multiple computing nodes for any query rate λ <
(

1− εB
1+εB

)
λ∗.

Next we provide a sketch of the proof of Theorem 5. By exploiting the randomization that decouples routing from

computation, we use classical Lyapunov drift techniques [15], [13, Theorem 4.5] to prove strong stability of network
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Fig. 5. (a) The grid topology used for simulations. (b) Average total queue lengths for π3 (solid lines), π̄3(dashed lines) vs. query rate for

C = 2, C = 3.(c) Running averages of the query rate, allocations among embeddings and total computations made for a simulation run of π3

with C = 2, λ = 6.

queues, excluding the ones that take part in the computation. In particular we obtain the following bound in the

Lyapunov drift expression:

∆L(Q(t),H(t)) ≤ B −
∑
n∈NC

CnHn(t) +
∑
n∈NC

E
{
Ã(n)(t)

}

×

(1 + εB)Q(0,n)
n (t) +

∑
i=1,2

Q
(i,n)
i (t) +Hn(t)


−
∑

(m,k)∈E
n∈NC

i=0,1,2

(
Q(i,n)
m (t)−Q(i,n)

k (t)
)(

E
{
U

(i,n)
mk (t)− U (i,n)

km (t)
})

where we observe that the right-hand side above is minimized by the load balancing, routing and scheduling actions

of our policy π3. Combining the expressions above with an optimal randomized routing policy, we have

Lemma 5. Under policy π3, all queues Q(i,n)
k (t), Hn(t), ∀k, i, n are strongly stable for any λ <

(
1− εB

1+εB

)
λ∗.

To complete the proof of Theorem 5 it remains to show strong stability for queues X(i)
n (t), Yn(t). For this we

extend the methodology of the previous section in a straightforward manner, e.g. Lemmas 3, 4.

C. Discussion on π3

The proposed policy π3 is adaptive, it requires only local information for routing, and it can react to changes in

the environment, providing robust efficient network computations. Using prior work [13], we may extend π3 to the

wireless case, covering applications within the range of edge and fog computing. Also note that the thresholds are

used only for the proofs and are not necessary in the implementations of policies.

Load balancing queries on different computation nodes requires some coordination, since there an agreement

needed to be made and communicated between remote sources on the exact computation node that each query is

using. This can be achieved by using an information exchange mechanism like [19]. To facilitate timely coordination,
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it is possible to modify load balancing in the following way. Sources agree on a weighted round robin policy on how

queries are assigned to computation nodes, and then frequently update weights in a coordinated fashion in order to

balance the terms in π3.

The main idea of the algorithms used is the intermediate queues Yn(t) whose services are independent of the

queues and routing controls in the network. This decouples the problem in a computation one (on which packets to be

combined at the nodes), a ”load balancing” one (on which embedding to use for new requests) and a communication

(on routing and scheduling at links). The cost is using dummy packets in the network and being able to satisfy

slightly smaller request rate than the maximum. A policy π̄3 that does not use the intermediate queues and does any

computations possible at every slot is conjectured to achieve any λ < λ∗.

V. SIMULATION RESULTS

In order to illustrate the computational capacity and network behaviour under our algorithms, we examine a 4× 4

grid topology with four computation nodes as shown in Fig. 5(a).

Each edge has a capacity of R = 5 packets per slot and the computation nodes have the same capacity, C. The

average total queue lengths versus the incoming query rate for policies π3 with εB = 0.01 and a policy p̄i3 that

does not use the randomized inputs are plotted in Fig. 5 (b) for C = 2, C = 3. We can observe that two policies

achieve the same computational capacity, supporting our conjecture that the randomized inputs to Q(0,n)
n are not

really needed. In addition, π̄3 has fewer packets in the network in light loads. We can also note that when C = 2,

the computational capacity of the network is λ∗ = 8, therefore limited by the capacity of the computing nodes, while

for C = 3 it around 9.8 and is therefore limited by the communication capacity of the network.

Finally, Fig. 5(c) shows the empirical averages of the queries arriving to the system, computations allocated per

computing node (i.e. on the load balancingphase of the algorithm) and computations executed. For this simulation,

C = 2 and λ = 6, so it is an achievable computation rate by the network. We can observe that as time passes, the

average computations made in the network matches the average query demand.

VI. CONCLUSIONS

This paper is a first step towards understanding the performance limits of the interaction of big data and the

underlying network resources. The big data challenge materializes as one of dealing with so-called 5 Vs (volume,

variety, velocity, variability, complexity). We attempt to deep-dive into two of the five Vs, namely volume and velocity

of data that stems from query streams. Our goal is to characterize the fundamental limits of the volume of queries

that can be processed in the presence of limited resources in a network setting. The study also aims to provide an

understanding of the velocity dimension above i.e. how fast the generated volume of data can be processed.

There exist several directions for future work. A non-trivial extension of our work includes the case of computation

queries with multiple possible computation graphs (DAGs) to choose from, where each computation graph may have

January 18, 2016 DRAFT



19

several embeddings in the network graph. Another interesting repercussion is the scenario where the computation

graph involves several types of operations, some of which are harder to perform than others. In that case, the rate at

which computations are performed at computation nodes would depend on the type of operation to be performed.
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APPENDIX

A. Proof of Lemma 1

All queues in G1 are strongly stable for λ < λ∗, since backpressure routing is applied and n is the destination

node, hence to prove the result we study the stability of the queues in node n.

As explained above, whenever condition (7) is true, there are Cn computations done in node n, therefore Cn

packets are removed from both queues.

Now we turn to the choice of X . The idea is to choose a threshold big enough for (7) to be satisfied with high

probability if X(1)
n (t) +X

(2)
n (t) ≥ 2Cn+X . For any λ < λ∗, all queues in N1 are strongly stable since backpressure

is applied at this network, therefore steady state stable as well [20]. Therefore we have

lim
t→∞

P{X(t) > x} = p(x) (11)

and

lim
x→∞

lim
t→∞

P{X(t) > x} = 0, (12)

from which we can deduce that, for every ε > 0, there is a X = X(ε) such that

p(x) < ε,∀x > X. (13)

For any ε, we can then find a X = X(ε) such that (13) is true. By construction of π′1, the average service for

each queue X
(i)
n (t) is zero if X(1)

n (t) + X
(2)
n (t) < 2Cn + X . On the other hand, we can bound E {Z(t)} for

X
(1)
n (t) +X

(2)
n (t) ≥ 2Cn +X(ε) using the following reasoning: Define Z ′(t) such that

Z ′(t) =

Cn, if X
(1)
n (t) +X

(2)
n (t) ≥ 2Cn +X and (7) is true

0, otherwise

Clearly, Z(t) = Z ′(t) if (7) is true and if X(1)
n (t) + X

(2)
n (t) < 2Cn + X (in the latter case both are zero) and

Z(t) ≥ Z ′(t) if X(1)
n (t) +X

(2)
n (t) ≥ 2Cn +X but (7) is not true (there may still be pairs in the computation node).

The latter event happens with probability P
(
X(t) > X(ε)

)
= p(X(ε)) < ε so we have, for that

E {Z(t)} ≥ E
{
Z ′(t)

}
= (1− ε)Cn, (14)

for X(1)
n (t) +X(2)

n (t) ≥ 2Cn +X.

The probability distribution p(x) depends on the network G1 and the query arrival rate (since it depends on the

probability distribution of
(
Qik(t)

)
k∈N1,i∈{1,2}, hence the dependence of X on G1, λ.

Now define δ = (λ∗ − λ)/2 and select a X such that (13) holds for some ε < 1 − (λ + δ)/Cn. Define L(q) =

1
2(q1 + q2) and the T -slot drift ∆T (q) = E {L(Xn(t+ T ))− L(Xn(t))|Qn(t) = q}. In addition, we define A′i(t) =
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∑
k∈N (n) U

(i)
kn (t) the arrivals at queue X(i)(t). Note that A′i(t) is a function of the queue state of the network G1

only. Since this network is strongly stable, for any δ > 0, there exists a T0 <∞ such that∣∣∣∣∣ 1

T

t+T−1∑
τ=t

E{A′i(τ)|Q(t) = q} − λ

∣∣∣∣∣ < δ, ∀i ∈ {1, 2}

for all T > T0,q ∈ Z2N1

+ . Choosing such a T , we have

∆T (Xn(t)) ≤ DT 2 +

2∑
i=1

X(i)
n (t)

t+T∑
τ=t

(
E{A′i(τ)} − E{Z(τ)}

)
where D = 1

2

(
C2
n + (

∑
j∈Nin(n)Rjn)2

)
. The T−slot drift is bounded by a constant for X(1)

n (t) + X
(2)
n (t) ≤

2TCn + X , while for X(1)
n (t) + X

(2)
n (t) > 2TCn + X we can argue that there are at least TCn pairs in the

computation node at the beginning of slot t and the condition of π′1 holds for every of the next T slots therefore

∆T (Xn(t)) ≤ DT 2 − (X(1)
n (t) +X(2)

n (t))T ((1− ε)Cn − (λ+ δ))

From the choices of the threshold, we can deduce that there exists some δ′ > 0 such that ∆T (Xn(t)) ≤ DT 2 −

Tδ′(X
(1)
n (t)+X

(1)
n (t)) for X(1)

n (t)+X
(1)
n (t) > 2TCn+X , therefore X (1)

n ,X (2)
n are strongly stable. The dependence

of the threshold X on λ,Cn comes from the choice of ε in the proof.

What is left is to prove stability of all queues in G2. Indeed, since X (1)
n ,X (2)

n are strongly stable, the arrival

process at this network is a Markov modulated process with mean rate λ; this network is then stable as λ < λ∗ and

backpressure routing is applied.

B. Proof of Lemma 5

The proof is similar to the one in [15]. Consider any query rate λ <
(

1− εB
1+εB

)
λ∗ = λ∗

1+εB
:= λ̄ and define

δ = λ̄− λ. Also, define the set of commodities C = {1→ n, 2→ n, n→ d,∀n ∈ NC}. Then, the vector (λ∗n)n∈NC

corresponding to the vector satisfying the conditions of Threorem 4 is a point on the boundary of the throughput

region of the network, therefore the traffic vector from which λ∗n
1+εB

is in the interior of the throughput region (the

corresponding traffic demand vector of the multicommodity problem is strictly dominated by the one that is defined

by (λ∗n)n). Now, for the query rate λ, we define a traffic demand vector such that the demand rate for commodities

1 → n, 2 → n is λn = λ̄n − δ/NC and for commodity n → d is (1 + εB)λn = (1 + εB)(λ̄n − δ/NC) =

λ∗n − (1 + εB)δ/NC . We can see that this vector is also strictly dominated by the one defined by (λ∗n)n, therefore it

lies inside the throughput region of the multicommodity flow problem, which in turn implies that there exist a flow

allocation
(
f̄

(i,n)
kl

)
such that the constraints are met with inequality (see e.g. the proof of [13, Theorem 4.5]); define

then ε′ the munimum difference of the RHS minus the LHS over all flow conservation inequality constraints.

A corresponding policy that achieves satisfies the query rate λ is then π̄ according to which U (i,n)
km (t) = f̄

(i,n)
km for

all slots t and n∗(t) = n with probability λ̄n−δ/NC

λ . However, from eq. (11) is follows that policy π3 minimizes at
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every slot the bound on the drift of the Lyapunov function, therefore we have

∆L(Q(t),H(t)) ≤ B −
∑
n∈NC

Hn(t) (Cn − λn)

−
∑
n∈NC

[
Q(0,n)
n (t)

 ∑
l∈N (n)

f̄
(0,n)
nl − f̄ (0,n)

ln − (1 + εB)λn


−

2∑
i=1

Q
(i,n)
i (t)

 ∑
l∈N (n)

(f̄
(i,n)
il − f̄ (i,n)

li )− λn


−
∑
k∈V

2∑
i=1,i 6=k

Q
(i,n)
k (t)

 ∑
l∈N (n)

(
f̄

(i,n)
kl − f̄ (i,n)

lk (t)
)

−
∑
k∈N

Q
(0,n)
k (t)

(
f̄

(0,n)
kl − f̄ (0,n)

lk

)]
(15)

≤ B − ε′
 ∑
k∈V,i∈{0,1,2},n∈NC

Q
(i,n)
k (t) +

∑
n∈NC

Hn(t)

 ,

Inequality (15) follows from replacing the actions taken by policy π̄ and the fact that π3 minimizes the drift.The

latter expression also implies that the queues are strongly stable, completing the proof.

C. Proof of Theorem 5

Theorem 5 is a direct consequence of Lemma 5 and Lemmas 6, 7 that follow.

Lemma 6. There exists a threshold X such that the queues X
(i)
n (t), Yn(t) are stable under π′3 for any λ <

λ∗
(

1− εB
1+εB

)
.

The above lemma is proven using strong stability of Q(t),H(t)], and its proof is given in the next subsection.

Lemma 7. X(i),π3
n (t) ≤st X

(i),π′3
n (t),∀i ∈ {1, 2} for all thresholds X .

The proof of the above Lemma is identical to the one for Lemma 2.

D. Proof of Lemma 6

The proof for the queues X(i)
n (t) is similar to the proof of Lemma 1. We define S(t) = [Q(t),H(t)]. Take

any λ <
(

1− εB
1+εB

)
λ∗ and denote Xn(t) =

∑2
i=1

∑
m∈V\{n}Q

(i,n)
m (t) the number of uncombined packets in the

network that have to be combined at node n. Using the same arguments of the proof of Lemma 1 for each computing

node nNC , we can argue that Cn computations are made if

X(1)
n (t) +X(2)

n (t) ≥ 2Cn +Xn(t). (16)
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However, policy π′3 injects packets in the network and routes them in the same way as π3 does, therefore the queues

in S(t) are strongly stable for λ <
(

1− εB
1+εB

)
λ∗, which implies that this process is positive recurrent with finite

mean for every queue. A stationary probability distribution p(s), s then exists, and |pt(s)− p(s)|TV → 0. Since the

arrivals A(n)′

i (t) =
∑

k∈N (n) U
(i,n)
kn (t) at each queue X(i)

n (t) depend on S(t), it follows that for any δ > 0, there

exists T0(δ) > 0 such that∣∣∣∣∣ 1

T

t+T−1∑
τ=t

E{A(n)′

i (τ)|S(t) = s} − λ̄n

∣∣∣∣∣ < δ, ∀i ∈ {1, 2},∀n ∈ NC (17)∣∣∣∣∣ 1

T

t+T−1∑
τ=t

P{Xn(t) > x|S(t) = s} − p(n)(x)

∣∣∣∣∣ < δ, ∀x > 0,∀n ∈ NC (18)

for any T > T0(δ) and q ∈ ZNCK
+ . The quantities λ̄n satisfy the conditions of Theorem 4. In addition, for every

ε > 0 there is a xε such that p(n)(x) < ε,∀x > xε.

We now denote δn = Cn − λ̄n > 0 and choose δ = min
n

[
δn

4Cn

]
, some T > T0(δ) and ε < δ. For the T−slot drift

of the quadratic Lyapunov function at every node n ∈ NC we have:

∆
(n)
T (X(t)) = E {L(X(t+ T ))− L(X(t))|X(t)} (19)

≤ DnT
2 +

2∑
i=1

X(i)
n (t)

t+T−1∑
τ=t

E
{
A

(n)′

i (t)− Zn(t)|X(t)
}
. (20)

The sum over t can be written as follows for
∑

iX
(i)
n (t) > 2TCn + X̄ .

t+T−1∑
τ=t

E
{
A

(n)′

i (t)− Zn(t)|X(t)
}

= (21)

t+T−1∑
τ=t

E
{
A

(n)′

i (t)|X(t)
}
−
t+T−1∑
τ=t

E {Zn(t)|X(t)} ≤ (22)

t+T−1∑
τ=t

E
{
A

(n)′

i (t)|X(t)
}
−
t+T−1∑
τ=t

E
{
Cn1Xn(t)<X̄ |X(t)

}
= (23)

t+T−1∑
τ=t

E
{
A

(n)′

i (t)|X(t)
}
−
t+T−1∑
τ=t

Cn(1− P
{
Xn(t) > X̄|X(t)

}
) (24)

≤ T (λ̄n + δ − Cn(1− p(n)(X̄)− δ)) (25)

≤ T (Cn − δn + δ − Cn(1− ε− δ))

< T

(
2
δ

4
+

δ

4Cn
− δ
)
≤ −δ

4
. (26)

In the above, we have used the fact that since
∑

n,iX
(i)
n (t) > 2TCn+X̄ , at time t+t′ there are at least (T−(t′−t))Cn

pairs in node n. The first inequality is true since the right hand side assumes that computations are made only when
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Xn(t)XX̄ . For the last parts we used the definitions of the constants ε, δ, X̄ . For each computing node we then have

∆
(n)
T (X(t)) ≤

D
′
n, if

∑
iX

(i)
n (t) ≤ 2TCn + X̄

Dn − δ
4T
∑2

i=1X
(i)
n (t), otherwise,

where D′n = DnT + 2(2TCn + X̄)
∑

k∈N Rkn <∞. The above can then be rewritten as

∆
(n)
T (X(t)) ≤ D̂n −

δ

4
T

2∑
i=1

X(i)
n (t), (27)

where we have defined D̂n = max
[
Dn, D

′n+ 2TCn + X̄
]
. For the drift taking into account all queues with packets

waiting to be combined ∆n(X(t)) = E
{
L(X(t+ T ))− L(X(t))

∣∣X(t)
}

=
∑

n∈NC
∆

(n)
T (X(t)), it follows from (27)

that, for D∗ =
∑

n∈NC
D̂n,

∆T (X(t)) ≤ D∗ − Tδ

4

∑
n∈NC

2∑
i=1

X(i)
n (t),

thus X(t) are strongly stable. To finish with the proof, we should show that the queues Yn(t), n ∈ NC are strongly

stable. Indeed, the arrival processes to these queues are

A
(n)
Y (t) =

Cn, if
∑

iX
(i)
n (t) > 2Cn + X̄

0, otherwise
, (28)

thus the corresponding mean arrival rates are

λ̂n = Cn lim sup
T→∞

1

T

T−1∑
t=0

P

(
2∑
i=1

X(i)
n (t) > 2Cn + X̄

)
. (29)

Strong stability of the queues X(i)
n (t) implies, in addition, that λ̂n = λ̄n. To see this, note that: 1) If λ̂n < λ̄n then

the queues X(i)
n (t) would be unstable and 2) No more pairs of packets than the ones received can be combined and

send a packet to Yn(t). For every δ > 0 then, since the queues X(t) are strongly stable, there exists T0(δ) <∞ such

that ∣∣∣∣∣CnT
T−1∑
t=0

P

(
2∑
i=1

X(i)
n (t) > 2Cn + X̄

)
− λ̄n

∣∣∣∣∣ < δ, ∀T > T0(δ) (30)

The average service rate of queue Yn(t) is, in turn,

µ̂n = lim sup
T→∞

1

T

T−1∑
t=0

E
{
Ã(n)(t)(1 +B(n)(t))

}

= (1 + εB) lim
T→∞

1

T

T−1∑
t=0

E
{
Ã(n)(t)

}
= (1 + εB)λ̄n.

The limit exists because it depends only on Q(t), which is a positive recurrent process with finite mean. Strong

stability of Yn(t) can be shown exploiting the above discussion and (30) and taking an appropriate T−slot drift.
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