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Abstract—In this paper, we expand the scope of PHY-layer
security by investigating TX-based friendly jamming (FJ) for
the wiretap channel in multi-link settings. For the single-link
scenario, creating a TX-based FJ is an effective and practical
method in improving the secrecy rate. In a multi-link setting,
several information signals must be transmitted simultaneously.
Thus, the design must guarantee that the FJ signal of a given
transmitter does not interfere with unintended but legitimate
receivers. Under the assumption of exact knowledge of the
eavesdropping channel, we first propose a distributed price-
based approach to improve the secrecy sum-rate of a two-link
network with one eavesdropper while satisfying an information-
rate constraint for both link. Simulations show that price-based
FJ control outperforms greedy FJ, and is close to the performance
of a centralized approach. Next, we propose a method based
on mixed strategic games that can offer robust solutions to the
distributed secrecy sum-rate maximization problem under the
assumption of an unknown eavesdropping channel. Lastly, we
use simulations to show that in addition to outperforming the
greedy approach, our robust optimization also satisfies practical
network considerations. In particular, the transmission time for
the robust optimization can be determined flexibly to match the
channel’s coherence time.

Keywords—Interference wiretap channel, friendly jamming,
pricing, pure and mixed strategic games.

I. INTRODUCTION

The broadcast nature of wireless communications makes
them vulnerable to wiretapping activities. Physical-layer secu-
rity provides cost-effective solutions to this problem through
keyless secret communications that do not require a hand-
shaking mechanism between the communicating parties [1],
[2]. Several approaches in the area of PHY-layer security have
been proposed in the last decade (see [3] and the references
therein). Among these is the use of artificial noise as a
friendly jamming (FJ) signal, which guarantees a non-zero
secrecy rate for a link without requiring the knowledge of
the eavesdropper’s location [4]. In this method, the transmitter
(Alice) uses multiple antennas to generate a FJ signal along
with the information signal, increasing the interference at the
eavesdropper (Eve) but without interfering with the legitimate
receiver (Bob).

In a multi-link scenario, to accommodate the simultaneous
transmission of several information signals, the FJ signal of
each transmitter must be designed to not interfere with other
legitimate receivers in the network. To avoid such interference

and yet prevent the leakage of users’ information, one can
exploit MIMO precoding, which ensures that the null space of
any FJ signal includes the locations of all legitimate receivers
but excludes potential eavesdropping locations. This solution,
however, is not practical when coordination between transmit-
ters is challenging (e.g., mobile ad-hoc networks). Therefore,
the need for distributed interference management is crucial to
guarantee a secure yet non-interfering communications.

Interference management roots back to the power control
problem in interference-channel networks, which has been
extensively investigated. The main challenge there is to manage
the interference at all receivers so as to maximize the sum of
individual rates. In an analogous manner, in the interference
wiretap channel, the unwanted interference from one trans-
mitter degrades the received signal at unintended receivers,
reducing the security of the network in terms of the secrecy
rate. However, the possibility of increasing the interference
at Eve makes the unwanted interference potentially useful
in terms of improving the security of the communications.
This idea was first introduced in [5] and [6]. The effect of
interference alignment in providing secure transmissions was
investigated in [7] and [8]. In some studies, a particular user
was assumed to be eavesdropped on, and the other users
coordinate with each other to increase interference at Eve while
maintaining their own rate requirements. As an example, in [9]
the authors considered a two-link SISO interference channel
with one Eve. By jointly optimizing the transmission powers of
the two users (without FJ), the authors tried to maximize the
secrecy rate for one link while maintaining a given quality
of service (QoS) for the other link. In [10], the authors
studied this problem in a two-tier downlink heterogeneous
network comprised of one macrocell and several femtocells.
They proposed a transmit beamforming method for the signals
intended to macrocell and femtocell users so as to maximize
the secrecy rate of one eavesdropped macrocell user. This
maximization is subject to satisfying the rate requirements of
all other macrocell users.

In other works, PHY-layer security was studied when
users have confidential messages and there is no Eve in the
network. The transmission of one user is not to be captured
by unintended receivers. In [11] game theory was used to
study the trade-off between the network performance and
fairness in a MIMO interference channel with confidential
messages. The work in [12] considered the secrecy-rate region
of the interference channel when users transmit FJ signal along
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with their information signal. They showed that by using FJ,
the secrecy-rate region will be larger than when FJ is not
employed.

In this paper, we present a game-theoretic framework for
FJ-based interference management in a MISO wiretap channel.
The selfish nature of contending links makes game theory an
appropriate tool for such a study. We consider a network of two
interfering MISO links in the presence of one eavesdropper.
Our approach is based on pricing; a well-known concept in
game theory. Contrary to intuition, we show that there is a
possibility that if one or both transmitters reduce their FJ
powers, the sum of the secrecy rates of the two links can be
increased. The reduction in FJ power must be done in a way
that the interference at each legitimate receiver is reduced, but
the aggregate interference at Eve remains high.

The contributions of this paper are as follows:

• We design a price-based distributed FJ mechanism
for a multi-link MISO system. We show that the
pricing method achieves a locally optimal solution for
the secrecy sum-rate maximization problem, and its
performance is close to the centralized solution.

• While maximizing the secrecy sum-rate, we consider
an additional constraint for each link, whereby a
certain level of information rate is to be satisfied.

• We derive a lower bound on the FJ power that achieves
a positive secrecy rate and guarantees the maximum
possible interference that prevents Eve from using
successive interference cancellation.

• Lastly, we relax the assumption of exact knowledge of
the eavesdropping channel and derive a robust price-
based FJ method. Simulations show that the locally
optimal solutions found with/without the knowledge
of Eve’s channel outperform the greedy FJ.

The rest of this paper is organized as follows. In Section II,
we introduce the system model. In Section III, we formulate
the FJ control problem as a game. In Section IV the robust
jamming control is proposed. In Section V the jamming control
algorithm is given and practical considerations are discussed.
In Section VI simulation results assess the performance of our
algorithm. Finally, Section VII concludes the paper.

II. SYSTEM MODEL

We consider the communication scenario in Fig. 1, where
two transmitters, Alice1 and Alice2 communicate with two
respective receivers, Bob1 and Bob2. Each transmitter q, q =
1, 2, has Nq transmit antennas, and each receiver q, q = 1, 2,
has one antenna. A passive eavesdropper (Eve) with one
antenna exists in the range of communication. The received
signal by the qth receiver, yq is:

yq = H̃qquq + H̃rqur + nq, r, q ∈ {1, 2}, r ̸= q (1)

where H̃qr is the 1 × Nq channel matrix between the qth
transmitter and the rth receiver, uq is the transmitted signal
from the qth transmitter, and nq is the complex AWGN with
the power N0 dBm. We assume that H̃qr is a zero mean
complex Gaussian matrix. Let G̃q denote the 1×Nq complex

Alice1 Bob1

Alice2 Bob2

Eve

!""

!##

!#"

!"#

$#$"

Fig. 1: System model.

channel matrix from the qth transmitter to Eve. Eve’s received
signal is

z = G̃quq + G̃rur + e (2)

where e has the same characteristics of nq . We assume that
channels remain stationary during each transmission. The
signal uq = sq + wq consists of an information bearing
signal sq and FJ signal wq . For the FJ signal, we write
wq = Zqvq , where Zq is an orthonormal basis for the null
space of H̃qq (H̃qqwq = 0) and vq is a vector of i.i.d. complex
Gaussian random variables with covariance matrix E[vqv

H
q ] =

σqI(Nq−1). The scalar value σq denotes the FJ power and
INq is the Nq × Nq identity matrix. Let H̃qq = UqΣqV

H
q

be the singular value decomposition (SVD) of H̃qq. We set
Zq = V

(2)
q where V

(2)
q is the matrix of Nq − 1 rightmost

columns of Vq . Thus, the FJ signal wq = Zqvq lies in the null
space of H̃qq . For the information bearing signal, sq = Tqxq

where Tq is the precoder and xq is the information signal.
We assume that a Gaussian codebook is used1. Furthermore,
let γq = tr{E[xqx

H
q ]} denote the information signal’s power,

where tr{.} is the trace operator and (.)H is the Hermitian of
a matrix. The power budget for transmitter q is written as

E[|uq|2] = tr
{
E[uqu

H
q ]
}
≤ Pq, (3)

⇒ tr{E[vqv
H
q ]}+ γq ≤ Pq

where Pq ≜ σq(Nq−1)+γq is a scalar value representing the
total power budget at the qth transmitter. We assume that the
qth receiver is able to estimate the channel H̃qq and feed it back
to the qth transmitter. Also, the process of acquiring channel
state information (CSI) is assumed to be done securely, so
that we can only focus on the secrecy of the data transmission
phase. To maximize the secrecy rate, the precoder Tq is set to
Tq = V

(1)
q , where V

(1)
q is the first column of Vq [4].

III. PROBLEM FORMULATION

Given that H̃qqV
(2)
q = 0, we set Hqq ≜ H̃qqV

(1)
q , Hqr ≜

H̃qrV
(1)
q , Hjq ≜ H̃qrV

(2)
q , Gq ≜ G̃qV

(1)
q , Gjq ≜ G̃qV

(2)
q ,

where (q, r) ∈ {1, 2}, q ̸= r. The terms Gq and Gjq indicate
the eavesdropping channel components. Hence,

yq = Hqqxq +Hrqxr +Hjrvr + nq (4)
zq = Gqxq +Gjqvq +Grxr +Gjrvr + eq. (5)

The information rate for the qth link can be written as

Cq = log

(
1 +

|Hqqxq|2

|Hrqxr|2 + |Hjr |
2 σr +N0

)
. (6)

The channel between the two Alices and Eve can be modeled
as a multiple-access channel because Eve is simultaneously

1In the case of finite codebooks (e.g., QAM), the (secrecy) rate can be
approximated using the gap approximation [13, Chapter 9].
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Fig. 2: Achievable rate pairs for a two-user multiple access channel.

receiving signals from both Alices. If Eve is capable of using
successive interference cancellation (SIC), she might be able to
simultaneously decode both signals. The achievable-rate region
of Eve’s multi-access channel is shown in Fig. 2, where Ceq
denotes the the achievable rate at Eve while decoding the qth
signal (q = 1, 2). The points Gq and Fq are defined in the
following. Fig. 2 suggests that to prevent Eve from using SIC,
we must have Cq > Gq for q = 1, 2 [9], i.e.,

log

(
1 +

|Hqqxq|2

|Hrqxr|2 + |Hjr |
2 σr +N0

)
> Gq (7)

where

Gq ≜ log

(
1 +

|Gqxq|2∣∣Gjq

∣∣2 σq + |Grxr|2 + |Gjr |
2 σr +N0

)
.

(8)

More specifically, since the two links do not coordinate to
implement time-sharing, then if the qth link’s information
rate is higher than the decodable rate of Eve, it can be
guaranteed that Eve does not have complete knowledge of
the qth information signal. Therefore, Eve cannot subtract
this signal and decode the other signal without interference.
In other words, if inequality (7) is satisfied, Eve has to
decode the second information signal while considering the
first information signal as interference. Thus, the achievable
rate at Eve while decoding rth signal, r = 1, 2, is Cer = Gr

and the secrecy rate of rth link is

Csec
r ≜ max {Cr − Cer , 0} = (9)

log

(
1 +

|Hrrxr|2

|Hqrxq|2 +
∣∣Hjq

∣∣2 σq +N0

)
−

log

(
1 +

|Grxr|2

|Gjr |
2
σr + |Gqxq|2 +

∣∣Gjq

∣∣2 σq +N0

)
, r ̸= q.

If (7) is not satisfied, Eve has complete knowledge of the first
signal (i.e., the qth signal, q = 1, 2). Hence, Eve can consider
the second signal (i.e., the rth signal, r ̸= q) as interference and
decodes the first signal. Knowledge of the first signal allows
Eve to deduct the first signal from the received signal and
obtain the second signal without interference. Hence, Cer =
Fr and

Csec
r = max

{
log

(
1 +

|Hrrxr|2

|Hqrxq|2 +
∣∣Hjq

∣∣2 σq +N0

)
−Fr, 0

}
(10)

where

Fr ≜ log

(
1 +

|Grxr|2∣∣Gjq

∣∣2 σq + |Gjr |
2 σr +N0

)
. (11)

It is obvious from (7) and (10) that in order to achieve
the maximum secrecy, the two transmitters have to choose a
transmission rate higher than Eve’s decodable rate. As can
be seen in (9) and (10), the interference caused by the FJ
signal can degrade the received SINR at unintended receivers,
but it also adds interference at Eve. This creates a conflicting
situation. The performance of the network is comprised of the
performance of both links. Hence, we define the term secrecy
sum-rate to be Csec = Csec

1 +Csec
2 . We aim to maximize Csec

while ensuring a minimum information rate for both links. This
problem can be formally written as:

maximize
{γ1,γ2,σ1,σ2}

Csec (12)

s.t.
{
γq + σq(Nq − 1) ≤ Pq

Cq ≥ cq
, ∀q ∈ {1, 2}

where the second constraint ensures a minimum information
rate cq for each link q.

The optimization in (12) is non-convex. Thus, solving it is
prohibitively expensive. One relaxation to this problem is to
eliminate the dependency of the problem on γ1 and γ2. To do
that, we assume that the rate constraint in (12), is satisfied with
equality, i.e., Cq = cq . Considering that this rate constraint is
satisfied for some γq , the second constraint can be embedded
into the objective function and the first constraint. Hence, we
have2

maximize
{σ1,σ2}

Csec (13)

s.t. σq ≤ Pq − γq
Nq − 1

, ∀q ∈ {1, 2}.

Considering how we prevent Eve from applying SIC in
(7), the FJ power has to be chosen such that inequality (7) is
satisfied. Reducing (7), we have

σq >
Aq

Bq
, (14)

where

Aq ≜ |Gq|2γq
(
|Hrq|2γr + |Hjr |2σr +N0

)
− (15)

|Hqq|2γq(|Gr|2γr + |Gjr |2σr +N0),

Bq ≜ |Gjq |2|Hqq|2γq.

Simplifying (14), we can establish the following constraints
on σq:

σq =
Pq − γq
Nq − 1

if
Aq

Bq
>

Pq − γq
Nq − 1

(16)

σq >
Aq

Bq
if Aq > 0 &

Aq

Bq
<

Pq − γq
Nq − 1

, (17)

σq > 0 if Aq < 0. (18)

For the case in (16), no power can prevent Eve from using
SIC to decode two information messages, and the solution to
(13) would be infeasible. Hence, we assume that if (16) is true
for any of the links, they will not start any communications.
Since the inequality in (18) strictly suggests that the FJ power
has to be positive, we define ∆σq to be the smallest value that

2Later, as we present our FJ control algorithm, we provide more explanation
of this simplification.
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λq =
|HjqHrr|2γr

(|Hqr|2γq + |Hjq |2σq +N0)(|Hqr|2γq + |Hjq |2σq + |Hrr|2γr +N0)
− (22)

|GjqGr|2γr
(|Gq|2γq + |Gjq |2σq + |Gjr |2σr +N0)(|Gq|2γq + |Gjq |2σq + |Gr|2γr + |Gjr |2σr +N0)

, r ̸= q, (r, q) ∈ {1, 2}2.

σ∗
q =

[
1

|Gjq |2

(√
|GqGjq |2

γq
λq

+
|Gq|4γ2

q

4
− |Gq|2γq

2
−
(
|Gr|2γr + |Gjr |

2σr +N0

))]Pq−γq
Nq−1

χq

. (23)

σq can take. Considering that we can have either of (17) or
(18), the optimization in (13) becomes

maximize
{σ1,σ2}

Csec (19)

s.t. σq ∈ Dq, ∀q ∈ {1, 2}

where Dq ≜
[
max

{
Aq

Bq
,∆σq

}
,
Pq−γq

Nq−1

]
and [a, b] represents a

continuous interval between a and b. The optimization in (13)
aims to find the best tradeoff between the FJ powers of the
two transmitters. In other words, the Pareto-optimal FJ powers
can be found by solving (19)3. Unfortunately, the optimization
in (19) is still non-convex. Furthermore, it requires the exact
knowledge of the eavesdropping channel components (i.e., Gq

and Gjq ).

A. Game Formulation

1) Greedy FJ: One solution to reduce the complexity of
(13) is to let each Tx maximize its own secrecy rate and
ignore the effect of its FJ on the unintended Rx. This locally
optimized FJ control leads to a game theoretic interpretation of
this network. Assuming that each player myopically chooses
the best strategy for itself, we formulate this scenario as a
non-cooperative game, in which the best strategy of each link
q, q = 1, 2, is

maximize
σq

Csec
q (20)

s.t. σq ∈ Dq.

In this game, the utility function of each player (link) is
its secrecy rate and his strategy is to choose the best FJ
power to maximize its utility subject to a power constraint
(i.e., strategy set). The existence of Nash equilibrium (NE)
in this game can be proven by showing that the strategy set
of each player is a non-empty, compact, and convex subset
of R, and the utility function of each player is a continuous
and quasi-concave function of the FJ power. Verifying these
properties in our game is straightforward and is skipped for
brevity. Since the objective function in (20) is strictly concave
in σq , the best strategy that maximizes the secrecy rate of the
qth player is to select the maximum available FJ power, i.e.,
σq = P jam

q =
Pq−γq

Nq−1 , q = 1, 2. When σq = P jam
q ∀q, no

player will be willing to unilaterally change its own strategy
because choosing any FJ power less than that can degrade
the individual secrecy rate of that player. Therefore, the point
σq = P jam

q , ∀q is the NE. This result is in line with [4] for
the single-link case.

This NE point, however, may not always be efficient,
because selfish maximization of the secrecy rate by each player

3Details of the relationship between the Pareto-optimal points and sum
utility optimization can be found in [14].

is not always guaranteed to be Pareto-optimal. As an intuitive
explanation, consider the case where the interference from
Alice2 is large enough such that it interferes with Bob1’s
reception; the interference from Alice1 is not large enough to
affect Bob2; and Eve is much closer to Alice1 than to Alice2.
Considering almost equal FJ power constraints, if both players
select the maximum FJ power, Alice1 can make its transmis-
sion more secure by applying maximum FJ power without
affecting Bob2. However, although Alice2 is not that much
in the risk of being eavesdropped, it chooses the maximum
possible FJ power which has little impact on its own secrecy
rate, but can degrade the received SINR at Bob1. Degradation
of C1 makes the transmission of Alice1 less secure, so the
secrecy sum-rate of the network will be reduced.

2) Price-based FJ: The efficiency of the NE in the greedy
FJ approach can be improved by using appropriate pricing
policies. Hence, for q ∈ {1, 2}, the objective function of player
q in (20) would be modified into:

maximize
σq

{
Csec

q − λqσq

}
(21)

s.t. σq ∈ Dq

where λq is a pricing factor for the qth link, defined in
(22). The rationale behind pricing has been discussed in many
works (e.g., [15]–[17]). In brief, pricing is a mechanism that
incentivizes players to spend their FJ powers more wisely
by charging each player a price per unit of FJ power, thus
discouraging players from acting selfishly. In this work, a
linear pricing will be used to improve the efficiency of FJ
control. The optimal FJ power can be found by writing the
K.K.T conditions for (21). Hence, close-form representation
of the optimal FJ power for the qth link can be written
as in (23), where [•]ab ≜ min {max{•, b}, a} and χq ≜
min

{
max{Aq

Bq
,∆σq}, P jam

q

}
. It is easy to verify that by

setting λq = 0, we end up with the previously mentioned
greedy FJ approach.

By iteratively using (23) to set the FJ power for both
players, the games converges to a NE from which neither
player is willing to deviate. In what follows, we further explain
the feasibility of converging to a NE using pricing. The
following theorem clarifies the reason for setting the pricing
factor as in (22).

Theorem 1. The NE of the game wherein the players use (22)
as the pricing factor to solve the optimization in (21) equals
to that of a locally optimal solution of (19).

Proof: See Appendix A.

Next, we introduce two properties of the price-based FJ
control.

Proposition 1. The greedy FJ approach is the optimal FJ
control if λq ≤ 0, ∀q ∈ {1, 2}.
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s1\s2 ∆σ2 2∆σ2 . . . P jam
2

∆σ1 R1(∆σ1,∆σ2), R2(∆σ1,∆σ2) R1(∆σ1, 2∆σ2), R2(∆σ1, 2∆σ2) . . . R1(∆σ1, P
jam
2 ), R2(∆σ1, P

jam
2 )

2∆σ1 R1(2∆σ1,∆σ2), R2(2∆σ1,∆σ2) R1(2∆σ1, 2∆σ2), R2(2∆σ1, 2∆σ2) . . . R1(2∆σ1, P
jam
2 ), R2(2∆σ1, P

jam
2 )

...
...

...
...

...
P jam
1 R1(P

jam
1 ,∆σ2), R2(P

jam
1 ,∆σ2) R1(P

jam
1 , 2∆σ2), R2(P

jam
1 , 2∆σ2) . . . R1(P

jam
1 , P jam

2 ), R2(P
jam
1 , P jam

2 )

Table I: Strategy table for the two-link finite jamming game with pricing.

Proof: See Appendix B.
Proposition 2. If λq > 0 the NE tuple of FJ powers (σ1, σ2)
will take one of the following forms:

(σ1, σ2) = (σint, χ2) or (σint, P
jam
2 ) or (χ1, σint) or

(P jam
1 , σint) or(χ1, χ2) or(P

jam
1 , P jam

2 ), (24)

where χq < σint < P jam
q .

Proof: See Appendix C.

IV. ROBUST OPTIMIZATION PROCEDURE

So far, we proved that price-based FJ control results in
locally optimum FJ powers. The next challenging question
is how to determine the best price without having exact
knowledge of the eavesdropping channel.

When such knowledge is available, iterative computation
of σ∗

q in (23) converges to the NE. Also, the price-based
FJ results in locally optimal solutions of the secrecy sum-
rate. However, the unknown eavesdropping channel makes it
difficult to compute σ∗

q and λq . In the following, we propose
a method to overcome this issue.

Let Rq(s1, s2) be the utility of the qth player, where s1
and s2 represent the strategy taken by player 1 and player 2,
respectively. The strategy space for each player q is a contin-
uous interval that can be written as σq ∈ [∆σq, P

jam
q ]. The

strategy set of the players has infinitely many real numbers. If
we are to analyze this game using strategy tables, then the
strategy set of each player should be countable and finite.
In order to create a finite strategy set, we discretize the FJ
power. Assuming that we have n bits to convey M = 2n

power levels, the power level increment is ∆σq =
P jam

q

2n .
Hence, the strategy set would be Sq = {∆σq, 2∆σq, . . . , (M−
1)∆σq, P

jam
q }. Considering that sq ∈ Sq , a utility matrix

Rq, q = 1, 2, can be obtained such that its (i, j) entry is
[Rq]ij =

{
Rq(i∆σq, j∆σq)| (i, j) ∈ {1, . . . ,M}2

}
.

Since the problem in (13) is non-convex w.r.t the FJ powers,
the Pareto-optimal points can be found via exhaustive search
in Table I. Considering a finite jamming game, the complexity
of this optimization is in the order of O(n2). Proposition 2
reduces the complexity to O(4n − 4) because only a small
set of FJ power tuples comprise the NE points of price-based
FJ, meaning that the locally optimal points of the secrecy
sum-rate can be found by searching a small part of Table I.
To get more intuition into the order reduction, we discuss a
special case of Proposition 2. Recalling the explanation used
to justify why Eve cannot use SIC to decode both signals from
Alices, if (18) is always satisfied for both players, then only
the rows corresponding to ∆σ1 and P jam

1 , and the columns
corresponding to ∆σ2 and P jam

2 need to be searched.

In order to proceed further with designing a robust op-
timization framework, we introduce the concept of mixed
strategic games.

Definition 1. A mixed strategy vector for the qth player Aq ={
[αi,q]

M
i=1 | 0 ≤ αi,q ≤ 1,

∑
i αi,q = 1, ∀q

}
is a probability

distribution of the qth player’s strategies. That is to say the
qth player chooses the power level i∆σq with probability αi,q.

In the mixed strategic jamming game, both players choose
their FJ power level based on probability distributions. Hence,
the best response of each player is to maximize the expected
value of its own utility. We should note that some games can
be limited to only pure strategies. In particular, if the utility
function of a player is concave w.r.t. its strategy, then using
Jensen’s inequality, we deduce that

Es1 [Es2 [R1(s1, s2)] ] ≤ Es2 [R1 (Es1 [s1], s2)] , (25)
∀(s1, s2) ∈ S1 × S2.

The inequality in (25) is satisfied with equality if and only if
s1 reduces to pure strategies. Hence, whatever the strategies of
other players are, every NE of the game is achieved using pure
strategies [14]. Sufficiency of pure strategies cannot be guar-
anteed if the utility function of a player is not concave w.r.t.
its action. Hence, mixed strategies should also be investigated
for non-concave utilities.

In price-based FJ, the utility function of each player
changes at every iteration. Furthermore, the terms
R1(i∆σ1, j∆σ2) and R2(i∆σ1, j∆σ2), (i, j) ∈ {1, . . . ,M},
in Table I only show the utilities of both players (at s1 = i∆σ1

and s2 = j∆σ2) assuming that iteratively using (23) for
both players converges to σ∗

1 = i∆σ1 and σ∗
2 = j∆σ2.

Hence, it is not possible to use the objective function in
(21) as a utility function in the strategy table. In order to
establish the strategy table, we inspect (19) again. Theorem
1 suggests that the K.K.T. conditions of (19) are met at the
NE point, so the utility of each player at the NE point is
Rq(s1, s2) = Csec(σq), q ∈ {1, 2}, which is a non-concave
function w.r.t. σq . By setting Csec as a function of σq , we
want to emphasize that each player locally computes its
own FJ power and checks its effect on the secrecy sum-rate.
Recalling Proposition 2, at a locally optimal point, only one
tuple of FJ powers at the corner entries of Table I happens.
Hence, the objective of the first player is

maximize
{αi,1}M

i=1

M∑
i=1

αi,1R1(i∆σ1, s2), (26)

s.t.
M∑
i=1

αi,1 = 1,

0 < αi,1 < 1, ∀i,

s2 ∈
{⌈χ2

M

⌉
∆σ2, P

jam
2

}
where {αi,1}Mi=1 is the probability set, and ⌈•⌉ is the ceiling
function. Problem (26) is a linear program, which can be
solved efficiently using numerical techniques. The second
player’s strategy can be found accordingly.
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So far, all the derivations are based on complete knowledge
of the eavesdropping channel. However, if Eve is a passive
device in the network , this assumption is unrealistic. For the
qth player, the computation of the secrecy rate defined in (9)
depends on Cq and Ceq . Since we assumed that Bob can
measure his received interference and Alice is aware of the
channel between her and her corresponding Bob, the compu-
tation of Cq can be done locally. However, the eavesdropping
channel is unknown, its components can be equivalently shown
as the product of some large-scale and small-scale fading,
so Gq = Ḡq(dq

−η) and Gjq = Ḡjq (djq
−η), where Ḡq and

Ḡjq are scalar and 1× (Nq − 1) matrix, respectively, and the
entries of both are i.i.d. standard complex Gaussian random
variables with unit variance (the same representation can be
done for Hqr and Hjq ). The terms d−η

q and d−η
jq

are the
corresponding distances where d−η

q is a scalar and d−η
jq

is an
(Nq − 1)× (Nq − 1) diagonal matrix, and η is the equivalent
path-loss exponent. The secrecy rate in such a setting is given
by

Csec
q = Cq − E[dq, Ḡq,dr, Ḡr,Ḡjq , Ḡjr ]

[Ceq] = Cq− (27)

E

[
log

(
1 +

|Gq|2 γq∣∣Gjq

∣∣2 σq + |Gr|2 γr + |Gjr |
2 σr +N0

)]
(28)

where E[dq,Ḡq,...,Ḡjr ]
[•] ≜ Edq

[
EḠq

[
. . .
[
EḠjr

[•]
]]]

. We
rewrite (28) as

E[dq, Ḡq,dr, Ḡr,Ḡjq , Ḡjr ]
[Ceq] = E[dq, Wq,dr, Yq]

[
log

∣∣∣∣∣WqΓ1qW
H
q

YqΓ2qY H
q

∣∣∣∣∣
]

(29)
where Wq ≜ [Ḡq, Ḡjq , Ḡr, Ḡjr , eq], Yq ≜ [Ḡjq , Ḡr, Ḡjr , eq],
and

Γ1q = diag{γq, σq [1, ..., 1]︸ ︷︷ ︸
Nq−1

(
djq
dq

)−2η

,

(
dr
dq

)−2η

γr, (30)

σr [1, ..., 1]︸ ︷︷ ︸
Nr−1

(
djr
dq

)−2η

, (dq)
2ηN0},

Γ2q = diag{σq [1, ..., 1]︸ ︷︷ ︸
Nq−1

(
djq
dr

)(−2η)

, γr, (31)

σr [1, ..., 1]︸ ︷︷ ︸
Nr−1

(
djr
dr

)−2η

, (dr)
2ηN0}

with diag{FT } representing an m × m diagonal matrix
whose diagonal entries are the entries of F (F is a vector
of size m ). The expectation in (29) w.r.t. Wq and Yq can
be efficiently computed using the random matrix result in
[18, Appendix A, Lemma 2]. However, according to (29)
Ceq is still a random variable over the distances dq and dr,
which corresponds to the spatial distribution of Eve. Since
we were not able to analytically formulate this distribution,
we numerically approximate the expectation of Ceq w.r.t. the
distances. To do this approximation, in simulations, we assume
that Eve is uniformly distributed within a circle of a given
radius, and the center of this circle is determined depending
on our simulation scenario (see Section VI for more details).
A similar idea can be found in [19]. Another example is [20]
where the authors assumed that the location of Eve follows a
Poisson point process.

Following the same technique used to manipulate (29), we

take the expectation of (14) and end up with:

σq >

(
|Hrq|2γr + |Hjr |2σr +N0

)
|Hqq|2

E[Gq,Gjq ]

[
|Gq|2

|Gjq |2

]
− (32)

E[Ḡr, dq, dr,Ḡjr , Ḡjq ]

[
(|Gr|2γr + |Gjr |2σr +N0)

|Gjq |2

]
.

The numerator and the denominator inside the first expectation
term in (32) correspond to a central Wishart matrix. The
numerator inside the second expectation term corresponds
to the quadratic form of a Wishart matrix, which preserves
Wishartness property [21]. Hence, both of the expectations
correspond to the ratio of two Wishart matrices. Since we
assumed a MISO system, all of the Wishart matrices are in
fact scalars. Hence, the expectations in (32) can be computed
using the result in [22, section 1]. Computing the expectation
w.r.t. dq and dr can be tackled numerically, as explained above.

Since (27) and (32) are computable, the objective function
and third constraint of (26) are defined without knowledge of
the eavesdropping channel. Hence, we can establish Table I
to solve (26). The next section describes an algorithm that
achieves a robust solution for (26).

V. ALGORITHM DESIGN

We now describe an algorithm that achieves a robust solu-
tion for the FJ control. In order to approximate the expectation
of Ceq w.r.t. the distances, the location of Eve will be assumed
to be uniformly distributed within a circle of radius r̂e, and
the center coordinates are (x̂e, ŷe). The pseudocode for our
algorithm is shown below as Algorithm 1. The computation in
lines 5 and 6 can be done using the method used to compute
(32) (with σr = χr), which requires both links to measure
the interference at their receivers and exchange the values
of σq and γq for q = 1, 2. Proposition 2 suggests that the
computation of line 5 only sets two power levels for σr (i.e.,
the loop in line 3 will be run once when σr = χr and once
when σr = P jam

r ). For the case of exhaustive search, instead
of two power levels, we should search using all power levels
in the interval [χr, P

jam
r ] (cf. Section IV for more details on

exhaustive search).

Line 7 ensures that the selected power in line 4 results in
a non-zero utility for the qth player. If the condition in line
7 is not satisfied, the probability assigned to that power level
(i.e., αi,q) is zero. Hence, one term will be removed from the
objective function and constraints of (26). The operation in line
8 (computed using (27)) requires that both links compute their
own secrecy rates using their local channel and the method
mentioned for (27). Then, the rth link should send the value
of its own secrecy rate to the qth link in order to compute Rq .
After doing the operations of lines 2-12, two different solutions
for {αi,q}Mi=1 will be found for the qth link (one for when σr =
χr and one for when σr = P jam

r ). As Rq is already stored
in line 8, line 14 chooses the probability set corresponding to
the largest expected utility. Creating a probabilistic FJ power
assignment is done by converting the uniform distribution to a
probability mass function corresponding to {αi,q}Mi=1 for q =
1, 2 [23]. Compared to the price-based solution with complete
knowledge of the eavesdropping channel, the robust FJ control
algorithm only needs exchanging secrecy rates, FJ powers, and
information signal powers.
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Algorithm 1 Robust Friendly Jamming Control

Input:


Nq, Pq, ϕq =

pq
σq(Nq−1)

, cq,M ∀q ∈ {1, 2}
r̂e % The radius of the circle within which

% Eve is uniformly distributed.
(x̂e, ŷe) % The center of the circle within which

% Eve is uniformly distributed.

Initialize: 0 < γq < pq, ∆σq =
P jam
q

M
∀q

1: repeat
2: for q = 1 to 2 do
3: for i = 1 to M do
4: Set σq = i∆σq .
5: Compute σr = χr , r ̸= q.
6: Compute χq .
7: if σq < χq then Set αi,q = 0.
8: else Compute and store Rq .
9: end if

10: end for % do the same loop again but change
11: % line 5 to “Set σr = P jam

r ”.
12: Find {αi,q}Mi=1 by solving (26). % once for σr = χr and
13: % once for σr = P jam

r .
14: Choose the probability set (i.e., {αi,q}Mi=1) that corresponds

to the largest expected utility.
15: end for
16: for q = 1 to 2 do
17: if Cq < cq − ϵ then Set γq = γq + δ.
18: if γq > Pq then Set γq = Pq .
19: end if
20: else
21: if Cq > cq + ϵ then Set γq = γq − δ.
22: end if
23: end if
24: end for
25: until cq − ϵ < Cq < cq + ϵ ∀q.

Lines 16 to 25 constitute the outer loop of the algorithm that
corresponds to satisfying the rate constraints of both links.
For some choice of δ and ϵ, as long as the rate requirements
are feasible, the linear adjustment used in lines 17 and 21
converges without the need for central control (similar pro-
cedure can be found in [24, Algorithm 1]). Hence, this linear
adjustment ensures each link achieves its minimum target rate.
If the target rates are not achievable, then the line 18 limits
the links to their maximum total transmit powers.

VI. NUMERICAL RESULTS

In this section, we simulate the FJ control methods pre-
sented before. In all of the simulations, the variance of additive
noise at both receivers and at Eve (i.e., noise floor) is set to
N0 = −50 dBm. The information rate constraints are chosen
such that the transmitters use no more than 1/3 of their total
transmit powers for the information signal. The horizontal axis
in all figures is the horizontal coordinate for the center of the
circle within which Eve is uniformly distributed. Each point
on the plots is the result of averaging over 10 random locations
of Eve (in order to approximate (27) w.r.t. distances). At each
random location, 500 channel realizations are simulated and
then averaged.

Fig. 3 shows the variation of the secrecy sum-rate with of
Eve’s location for a given total power constraint. It can be
seen that greedy FJ outperforms no-jamming for all of Eve’s
locations. Furthermore, when x̂e ∈ [−8,−2], the performance
of price-based FJ is equal to the performance of greedy FJ

Fig. 3: Effect of Eve’s location on the secrecy sum-rate,
(Alice1 = (−5, 8), Bob1 = (5, 8), Alice2 = (−5,−8), Bob2 =

(5,−8), ŷe = 3.5, r̂e = 1.6, Pq = −32 dBm, Nq = 3).

and that of exhaustive search4, which indicates that greedy FJ
is optimal in these scenarios. Also, in all of Eve’s locations,
the pricing scheme has a performance close to the exhaustive
search approach. Throughout our simulations, the optimality of
greedy FJ was observed only at very low power constraints.

In Fig. 4 and Fig. 5, we show the secrecy sum-rate as
well as individual secrecy rates for when constraint (14) is
into account in pricing method (indicated as “Pricing (Full
CSI) and for when it is not (indicated as “Pricing (No Positive
Secrecy)”). It can be seen that considering (14) in our jamming
control significantly affects the secrecy sum-rate such that if
it is overlooked, the performance of the pricing method can
be even lower than the greedy approach at some locations of
Eve. Furthermore, satisfying (14) guarantees non-zero secrecy
rate for each link. However, if it is ignored, zero secrecy rate
happens to one or both links for some locations of Eve.

In Fig. 6, we compare the performance of Algorithm 1
(indicated as “Robust”) with other approaches. The spatial
distribution for Eve is the same as in previous simulations,
but with Pq = 10dBm. For the pricing method with full
CSI, transmitters sequentially apply (23) to optimize their FJ
powers (i.e., the Gauss-Seidel algorithm is used [16]). Note
that since the performance of the pricing method depends on
the starting point for the iterative procedure, for each channel
realization, the performance of the pricing method is the result
of averaging the convergence point of Gauss-Seidel method
over 30 different starting points. For the robust FJ control
algorithm, we use 8 bits to quantize of power levels. After
finding the probability set {αi,q : i = 1, . . . , } that maximizes
the expected utility in (26), probabilistic assignment of the
FJ powers in robust jamming control is done as follows. The
qth player generates a sample from the {αi,q : i = 1, . . . , }.
Depending on the value of this sample, player q selects FJ
power, say i∆σq , and starts transmission. Lastly, the achievable
rate is computed using the method in (27). This procedure
is repeated 50 times per channel realization and the expected
utility in (26) is approximated by averaging over these samples.
It can be seen that the robust approach is 25% better than the
greedy approach. When the eavesdropping channel is known,
the advantage of price-based FJ becomes more significant.

4Note that we assume to have complete knowledge of eavesdropping
channel components in the exhaustive search approach.
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Fig. 4: Effect of Eve’s location on the secrecy sum-rate,
(Alice1 = (−50, 10), Bob1 = (5, 10), Alice2 = (−50,−10), Bob2

= (50, 10), ŷe = 0, r̂e = 10, Pq = 0 dBm, Nq = 3).

Fig. 5: Effect of Eve’s location on individual secrecy rates,
The configurations are the same as Fig. 4.

The expected value in (26) must be computed after av-
eraging over several samples of data transmissions within
one channel realization. However, in practical scenarios, the
coherence time is not long enough to accommodate more
than a few transmissions. In order to test this limitation, we
compare the performance of robust optimization between 50
data transmissions and 1 data transmission per each channel
realization so as to compute the expected utility in (26). Fur-
thermore, in order to fix the other parameters that might affect
this comparison, we simulated 50 channel realizations at each
location of Eve. It can be seen in Fig. 7 that averaging over 1
data transmission (indicated as “Robust(1)”) does not affect the
secrecy sum-rate very much, compared to averaging over 50
data transmissions (indicated as “Robust(50)”). Therefore, the
robust jamming control can also be implemented in channels
with low coherence times.

VII. CONCLUSION

In this paper, we studied distributed design of friendly
jamming control in a 2-link wireless network. We showed that
greedy friendly jamming is not an optimal approach to secure
network. Accordingly, we designed a price-based FJ control
that guarantees a local optimum point for the maximum se-
crecy sum-rate. Through simulations, we observed a noticeable
improvement in the secrecy sum-rate when pricing is used
for jamming control. We then introduced uncertainty in the
eavesdropping channel and designed a robust method that can
be used when this channel is known only in probabilistic terms.
Extension of this framework to more than two interfering links
or to the case of MIMO-enabled links is left for future research.
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APPENDIX A
PROOF OF THEOREM 1

Let the Lagrangian of (19) w.r.t (σ1, σ2) be denoted as
L(σ) = L(σ1, σ2). Also, let the Lagrangian of (21) w.r.t σq

be denoted as Lq(σq), q = 1, 2. For (σ∗
1 , σ

∗
2) defined in (23)

to be a locally optimal solution of (19), the K.K.T conditions
of both (19) and (21) must be equivalent. That is

∂L(σ∗)

∂σ
=


∂L(σ∗

1 , σ
∗
2)

∂σ1

∂L(σ∗
1 , σ

∗
2)

∂σ2

 =


∂L1(σ

∗
1 , σ

∗
2)

∂σ1

∂L2(σ
∗
1 , σ

∗
2)

∂σ2

 = 0. (33)

Simplifying (33), we have λq = −∂Csec
r

∂σq
which is the same as

(22). Assuming that iteratively application of (23) converges,
the NE of the pricing method is a locally optimal solution to
(19) 5.

APPENDIX B
PROOF OF PROPOSITION 1

Given that λq = −∂Csec
r

∂σq
for λq > 0, then ∂Csec

r

∂σq
< 0.

Hence, the positive price is effective as long as the increase in
one player’s FJ power reduces the secrecy rate for the other.
Thus, the positive price λq can make a player reduce its FJ
power if this reduction is beneficial for the other player. Now,
considering λq ≤ 0, the increase in one player’s FJ power

5Local optimality of the NE requires proving that using (23) converges to
the NE . In Proposition 2, convergence to NE is proved.

results in either no change (i.e., λq = 0) or increase (i.e.,
λq < 0) in the other player’s secrecy rate. Therefore, whenever
λq ≤ 0 the right decision would be using the maximum FJ
power (i.e., setting λq = 0).

APPENDIX C
PROOF OF PROPOSITION 2

Without loss of generality, assume that w.l.o.g. χq defined
in (23) satisfies ∆σq < χq <

Pq−γq

Nq−1 . Furthermore, assume
that the iterative use of (23) is done sequentially, meaning that
only one player is updating its FJ power at each iteration.
Let the initial FJ power for the qth player be σ∗(1)

q , where
the superscript (1) represents the iteration index. In the second
iteration σr gets updated using (23) and σ∗(2)

q = σ∗(1)

q . In the
third iteration, σ∗(3)

r = σ∗(2)

r , and σq gets updated. According
to (23), σ∗

q is a decreasing function of σr. Hence, if σ∗(1)

q <

σ∗(3)

q the rth player will select a smaller FJ power in the fourth
iteration comparing to the second iteration (i.e., σ∗(2)

r > σ∗(4)

r ).
Consequently, in the fifth iteration, the qth player selects a
higher FJ power comparing to the third iteration. This trend
continues until either the qth player reaches P jam

q or the rth
player reaches to χr. Depending on which player reaches to
either of the extreme points faster than the other, the first four
forms in the right hand side of (24) are expected to be achieved.
For the case of (χ1, χ2) and (P jam

1 , P jam
2 ), we first derive

the price above which we always have σ∗
q = χq . Let this

price be λq,1. Reducing the inequality σ∗
q ≤ χq , we end up

with an inequality in the form of λq ≥ λq,1. Next, we find
a price below which we have σ∗

q = P jam
q . Let this price be

λq,2. Reducing the inequality σ∗
q ≥ P jam

q , we end up with an
inequality in the form of λq,2 ≥ λq

6. Since σq is a decreasing
function of λq , if P jam

q > χq then λq,1 > λq,2. Thus, the
tuples (χ1, χ2) and (P jam

1 , P jam
2 ) happen when λq > λq,1, ∀q

and λq < λq,2, ∀q, respectively 7.

6Note that when 0 < λq ≤ λq,2, greedy FJ is optimal in terms of secrecy
sum-rate, but it might not always be beneficial for both of the links unless
we have λq ≤ 0. The bound λq ≤ 0, ∀q found in proposition 1 can also
guarantee the optimality of greedy FJ in terms of individual secrecy rates.

7Note that the effect of λq is negligible on the convergence behavior of
(23) because λq is a sublinear function of FJ powers. We did not see any case
where the effect of λq could be seen.
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