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Abstract—We consider the problem of capacitated kinetic
clustering in which n mobile terminals and k base stations with
respective operating capacities are given. The task is to assign
the mobile terminals to the base stations such that the total
squared distance from each terminal to its assigned base station is
minimized and the capacity constraints are satisfied. This paper
focuses on the development of distributed and computationally
efficient algorithms that adapt to the motion of both terminals
and base stations. Suggested by the optimal transportation theory,
we exploit the structural property of the optimal solution, which
can be represented by a power diagram on the base stations such
that the total usage of nodes within each power cell equals the
capacity of the corresponding base station. We show by using
the kinetic data structure framework the first analytical upper
bound on the number of changes in the optimal solution, i.e.,
its stability. On the algorithm side, using the power diagram
formulation we show that the solution can be represented in size
proportional to the number of base stations and can be solved
by an iterative, local algorithm. In particular, this algorithm
can naturally exploit the continuity of motion and has orders of
magnitude faster than existing solutions using min-cost matching
and linear programming, and thus is able to handle large scale
data under mobility.

I. INTRODUCTION

In this paper, we study the capacitated kinetic clustering
problem defined as the following: given a set of k base stations
with its operating capacity constraints (that may be different),
and n terminals, find an assignment of terminals to the base
stations such that no base station operates beyond its capacity
limit, and that the sum of squared distances between terminals
and base stations is minimized.

This is a fundamental problem that has been used to ab-
stract many different application settings in wireless networks.
In cellular networks, mobile phones need to connect to static
cellular towers or mobile cellular stations; typically a mobile
connects to the cell tower or station with the strongest signal
strength or the one closest in Euclidean distance. In sensor
networks, sensors choose one base station to upload their
data. Similarly, often the closest base stations are chosen to
minimize energy usage for wireless communication. Here we
focus on the three prominent constraints that appear in many
of such applications, and our goal is to provide an efficient
algorithm for solving this optimization problem in large scale
instances.

Capacity constraints. Wireless base stations often have fixed
capacity constraints which limit the number of users that
could be simultaneously served. The limitation may be due
to wireless communication limits, such as bandwidth and data
rate. Sometimes there may also be constraints imposed by

memory limits (bounds on queue size) or power conservation.
These physical constraints can differ at different base stations.

For example, the fast growth of smartphones and data usage
on cellular networks has shown to be a significant burden
on cellular networks since 2009. When the base station (and
the network) is overloaded, the result is dropped calls, spotty
service, delayed text and voice messages and glacial download
speeds. Even with hardware upgrade and the motion from 3G
to 4G and 5G, people still observed disrupted or seriously
deteriorated service during disasters or emergency situations.
In scenarios when the limits set by hardware or protocols are
nearly met, we need to carefully schedule and allocate users
to these base stations to ensure service quality.

Energy efficiency. Our objective for allocation is to minimize
the energy consumption by the wireless nodes for wireless
communication to the base stations. We follow the free space
path loss model in which the signal strength drops in pro-
portion to the square of the distance between transmitter
and receiver. For outdoor situation this is a reasonable and
convenient approximation to the energy usage of a node
communicating to the base station. By using this model, our
objective is to minimize the sum of squared distances between
the wireless nodes and the base stations they connect to.

Mobility. We are particularly interested in supporting mobility
of both terminals and possibly the base stations. It has been
one of the main challenges for the system configuration to
efficiently adapt to node mobility. For example, when pedes-
trians with mobile devices move around, the mobile loads at
terminals change over time. In certain cases, say on new year’s
eve at Time Square in New York or when at a popular football
game, temporal base stations are added to share the traffic load
created by the sudden traffic load increase from the terminals.
Again, in this case spreading the loads from the moving crowd
to mobile base stations becomes a nontrivial problem.

Existing solutions for capacitated clustering are only for
the static case. When some of these algorithms are applied for
a set of mobile nodes, they will need to be re-computed from
scratch, completely missing the continuity and coherence of
motion. The sudden change can be disruptive to the service
quality. Thus in our setting, we are also interested in not
only the optimality of the problem but also the stability of
the solution. We would like to explore such a tradeoff in the
algorithm design.

This capacitated clustering problem, in fact, is the discrete
case of a classical problem studied in the literature, termed the
optimal transportation problem [1]. In the original problem,
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one asks for a way of moving a pile of dirt to fill up the
holes with the same total volume such that the total cost of
transporting this pile of dirt is minimized. The optimal solution
for this problem defines a mapping from an input domain (i.e.,
the distribution of dirt or generally a probability measure)
to an output domain (i.e., the distribution of holes). The
transportation cost, in Brenier’s formulation [2], is precisely
the quadratic Euclidean distance between a point of the input
domain to its mapped position. Therefore we can solve our
allocation problem by using algorithms for solving the optimal
transportation problem.

There are already algorithms developed in the literature for
the optimal transportation problem especially in the discrete
setting when weighted terminals are assigned to stations of
fixed capacity. In a simple case, when the weights are all 1
and capacities are integer numbers, we can define a complete
bipartite graph on the mobile terminals and duplicate a base
station j to cap(j) copies, where cap(j) is the capacity of j.
The edge between terminal i and base station j is the squared
Euclidean distance. In this case the optimal transportation
problem is precisely the min cost matching problem and can be
solved in O(n3) time, where n is the total number of vertices
of the bipartite graph. In general the problem can be defined
and solved by linear programming, which is the state of art
solution.

The LP solver for capacitated clustering might be alright
for the static, one-shot scenario, especially when one uses a
highly optimized LP solver. But such an algorithm will be
inappropriate for the kinetic setting when the terminals or base
stations move around. There is no obvious way to exploit
the continuity of motion in the LP algorithm and one has
to recompute from scratch. When the number of terminals is
large, the running time could be potentially a huge burden.

The main contribution of this paper is to make use of
the structural insights in the optimal transportation theory,
which leads to a fast algorithm for the capacitated clustering
problem. The algorithm turns out to be orders of magnitude
faster than the algorithm using LP solver. Due to the geometric
nature of our algorithm, it is extremely well suited for the
kinetic setting. To get an idea, we start from the case when
the capacity constraints are lifted. In this case, clearly the
objective is minimized when each mobile terminal is allocated
to its closest base station. That is, the allocation is obtained
by the Voronoi diagram on the base stations. This means that
the solution can be represented in size O(k). Here k is the
number of base stations, and is usually much smaller than n,
the number of mobile terminals under consideration. As it turns
out, when the capacity constraints are imposed, the allocation
is still represented by a Voronoi-type convex decomposition –
the weighted Voronoi diagram or termed power diagram. In
a power diagram, the sites are weighted either positively or
negatively. The power distance from a point p in the plane to
a site q with weight hi is |pq|2 − hi. The power diagram is
the partitioning of the plane such that each point is grouped
to its closest site by the power distance. Therefore the optimal
allocation is again represented by size O(k).

By using this formulation of power diagram, we can study
optimal capacitated clustering in the mobile setting. We de-
velop an iterative, distributed algorithm to solve for the target
power diagram. The only parameter that each base station i

would need to adjust is the weight hi. If the current power cell
has too many terminals that what this base station can handle,
base station i would decrease its weight, which increases
the power distance and thus force some of the terminals
to be assigned elsewhere. In previous work, there were two
approaches to solve this optimization problem: the first one is
a centralized algorithm that uses Newton’s method [3]; it is
very fast. The second one uses gradient descend method [4],
it is naturally distributed but slower. In this paper we elaborate
a new approach implementing the Newton’s method. It is
distributed and very fast.

When nodes move around, we exploit the continuity of
motion in the sense that the allocation solution for the ith
snapshot can use the optimal solution at the (i−1)th snapshot
as the initial value used in the optimization procedure. This
greatly reduces the number of iterations in finding the optimal
solution. In contrast, both LP and min cost matching have no
easy way of utilizing previous solutions, and have to restart
from scratch. Using kinetic data structure we also provide
upper bounds on the number of changes of the optimal solution
when the terminals and base stations move along pseudo-
algebraic trajectories.

II. CAPACITATED KINETIC CLUSTERING PROBLEM

Consider a set X of n wireless nodes/terminals X =
{x1, x2, ..., xn} and a set Y of k base stations Y =
{y1, y2, ..., yk}. Each base station yj has a fixed capacity
cap(yj), limiting the number of terminals it can serve. All
capacities sum up to be the total number of terminals:∑

j cap(yj) = n. We would like to assign the terminals to
the base stations such that all capacity constraints are satisfied
(no base station is overloaded) and that the sum of squared
distance is minimized. In particular, we look for a clustering
of nodes into k clusters, X1, X2, · · · , Xk. Nodes in Xi are
assigned to base station yi. This clustering minimizes the sum
of squared distances from each terminal to its assigned base
station.

min
∑

j

∑
xi∈Xj

||xi − yj||2
s.t., |Xj| = cap(yj), ∀1 ≤ j ≤ k

In this paper, we focus on the setting when both base
stations and the terminals can possibly move around. We would
like to maintain the optimal transport solution at all times. This
is termed the capacitated kinetic clustering problem.

In this paper we assume that n ≫ k. We assume that
the base stations are connected using out band channels such
that they can collaboratively compute the optimal clustering
solution and inform the terminals.

In the following we first review the connection of the
(static) capacitated clustering problem to optimal transport
theory. Then we discuss our contribution, which has two
parts. Section IV describes our distributed algorithm for kinetic
capacitated clustering problem and we show its efficiency in
the simulation section. Section VI describes the lower bound
and upper bound on the number of changes to the kinetic
problem.



III. OPTIMAL TRANSPORT THEORY

The capacitated clustering problem is a special case of
the general optimal transport problem, originally proposed
by Monge back in 1781 [1], [5] and later revised by Kan-
torovich [6]. This is termed Monge-Kantorovich problem.
Given two domains X and Y with the corresponding density
measure µ and ν, respectively, the transportation cost from
x ∈ X to y ∈ Y is defined as cost(x, y). The optimal transport
plan to this problem is a measure γ on X , Y , such that
∀A ⊂ X and ∀B ⊂ Y , γ(A×Y ) = µ(A), γ(X×B) = ν(B),
where γ(A × B) represents the partial (or total) masses
to transport from A to B. The total transportation cost to
minimize is ∫

X×Y

cost(x, y)µ(x)dγ(x, y).

For this problem Kantorovich proved the uniqueness and
existence of the optimal solution.

For the discrete version of the Monge-Kantoroich problem,
i.e., X = {x1, x2, ..., xn} and Y = {y1, y2, ..., yk}, with the
Dirac measures µ = {µi}, ν = {νj} and total mass of 1
each, an optimal transportation plan is represented by a n× k
allocation matrix γ = [γij ], where

∑
i γij = 1,

∑
j γij = 1.

The element γij in γ represent xi with the percentage of mass
µi(xi) delivered to the location yj , and the discretized total
transportation cost is

∑
ij cost(xi, yj). This problem can be

solved by linear programming method with n× k variables.

In late 1980’s, Brenier proposed a novel geometric ap-
proach for the Monge-Kantorovich problem by using the geo-
metric characteristics of the domain [2]. When the cost func-
tion cost(x, y) is the quadratic Euclidean distance cost(x, y) =
||x − y||2, there exists a convex function f : X → R
such that the optimal transport map is given by the func-
tion’s gradient map x → ∇f(x). Furthermore, the optimal
mass transportation map is unique. By Brenier’s theorem, the
Monge’s problem is converted to solving the following Monge-
Amperé partial differential equation:

µ(x) det

(
∂2f(x)

∂xi∂xj

)
= ν ◦ ∇f(x).

In the discrete setting (as shown above), the convex
function as described in Brenier’s theorem is in fact closely
connected to the power diagram in the Euclidean plane. To see
that, consider the special case of our capacitated clustering
problem when the capacity constraint is lifted away. The
optimal solution to minimize the transport cost is obvious –
send each terminal to its closest base station. This solution
is exactly defined by the Voronoi diagram – partitioning of
the Euclidean plane into convex cells such that the points of
each cell have the same closest base station in Y . When the
base stations have capacity constraints, the solution is in fact
defined by power diagram, i.e., Voronoi diagram when the sites
have weights. Here each base station yj has a weight hj . And
the power distance from each terminal xi to yj is defined by
Pow(xi, yj) = ||xi − yj||2 − hj . The resulting partition of
the plane such that each cell has the same closest base station
when power distance is used is called the power diagram. It
is known that the power diagram is still a convex partitioning
and each cell is shrinking/expanding when the weight of base

station is decreased/increased. The optimal transport solution
in fact is precisely defined by the power diagram of certain
weights, such that the total number of terminals in the cell for
yj is precisely the capacity cap(yj).

Voronoi diagram and power diagram have a nice lifting
map that shows the direct connection to Brenier’s theorem.
Let f : z = ||x||2/2 as the paraboloid in 3D. Now project
each base station yj to the point y′j on the paraboloid, with
z-coordinate ||yj ||2/2. Now we take the tangent plane of the
paraboloid at y′j . Then the upper envelope of this arrangement
of planes, when projected down to 2D, is the Voronoi diagram.
For power diagram with weight hj’s, the tangent plane corre-
sponding to yj is shifted down by amount hj . The projection
of the upper envelope is precisely the power diagram. Recall
that Brenier’s theorem characterized the solution to the optimal
transport problem is given by the gradient map x→ ∇f(x) of
a convex function f : X → R. In fact, this convex function f
is the upper envelope of the lifted hyperplanes for the power
diagram, and the optimal transport solution is specified by the
power diagram.

The existence and uniqueness of the solution was proven
multiple times using different approaches by Alexandrov [7],
Armstrong [8], Brenier [2]. The connection to power diagram
was first made by Aurenhammer et al. [4]. Recently, the
existence and uniqueness were proved by Gu et al. [3] using
variational principle. However, none of the algorithms derived
from the proofs are distributed.

IV. DISTRIBUTED ALGORITHM

In the following we provide the first distributed algorithm
for the capacitated kinetic clustering problem, or, a discretized
version of Monge-Kantorovich problem. Let’s first discuss
the centralized setting and the algorithm by using variational
principle, first reported in [9]. In the next subsection we
describe the distributed algorithm and the proof for correctness.

A. Centralized Algorithm using Variational Principle

Suppose that the capacity of base station i is Āi. To find
the clustering scheme for base stations Y with terminals X
on domain D, by Monge-Briener theory, we try to find the
height vector h = (h1, h2, ..., hk) where the supporting planes
for each base station yj are

πj(h) :< x, yj > +hj.

We take the upper envelope of all such planes in R3, which is
a convex function denoted as

uh(x) = max
i

< x, yj > +hj.

This convex function induces a polygonal partitioning of D:
D = ∪jWj(h).

The polygonal partition Wj(h) introduces convex cells. All
the terminals in the same cell projected by πj(h) are assigned
to the corresponding base station yj . We define the area of this
cell as the number of terminals inside and form the gradient
function:

∇E(h) = (Area(Wj(h) ∩D)).



Now we compute the Hessian matrix H(h) = hij(h). For
that we compute the cell’s neighboring edge length eij = Wi∩
Wj ∩D 6= ∅, and the corresponding dual triangulation vertices
distance eij . Define wij as wij = |eij |/|eij | for i 6= j, Wi ∩
Wj ∩D 6= ∅. Now we have by variational principle

hij(h) =





−wij i 6= j, Wi ∩Wj ∩D 6= ∅∑
ℓwikℓ i = j

0 otherwise

Last, we iteratively apply Newton’s method to update the
height vector h:

h← h+ εH(h)−1∇E(h),

where ǫ is the step length of Newton’s method. The update
process stops and outputs the final result until the mean square
error of (w,w) converges to δw.

Notice that one can use a centralized optimization method
to compute the Newton’s step and update the height vector h
iteratively. The correctness of this algorithm is proved in [3]. In
the next section we show a distributed algorithm in which each
base station adjusts its own height value, which essentially also
implements the Newton’s method.

B. Distributed Newton’s Method

Instead of a centralized view to compute the height vector
h of all base stations, in the distributed algorithm, each base
station repeatedly adjusts its individual height (the weight for
power diagram) to find the power cell to fit the clustering
requirement.

The optimal h we are looking for is the unique global
optimum of the following convex energy:

E(h) =

∫ h k∑

j=1

(Āj −Aj(h))dhj ,

where Aj(h) is the area of the cell Wj(h), Āj is the desired
area/capacity of the cell.

Rewrite the Newton’s method. We have ∇E(h) = H~x,
where ~x = δh for step size δ. On the left hand side:

∇E(h) = (Ā1 −A1, Ā2 −A2, · · · , Āk −Ak)
T .

Consider only element at position i, we have

Āi −Ai =
∑

j

wij(xj − xi).

Reorganize, we have

xi =

∑
j wijxj − (Āi −Ai)∑

j wij
.

Thus we would like to obtain the value xi locally. To do
that we use a local linear iterative method. Essentially,

x
(n+1)
i =

∑
j wijx

(n)
j − (Āi −Ai)∑

j wij
.

This iterative method eventually converges to xi.

Once each base station i has its own update vector xi, they
can update their height value, and one single step of Newton’s
method is then accomplished. In this way the Newton’s method
can be completely solved by local, iterative, distributed meth-
ods.

We remark that as the Hessian matrix hij(h) is positive
definite, the energy is convex in the space

{h|
k∑

j=1

hj = 0, Aj(h) ≥ 0, ∀j}.

Therefore one can also use the gradient descend method

h← h+ ǫ∇E(h) = h+ ǫ(Ā1 −A1(h), · · · , Āk −Ak(h))
T

to compute the global optimum. This gradient descend method
turns out to be the same as the iterative method proposed in [4]
although the two methods employ different energy functions.
Further, using the distributed Newton’s method is much faster
than the gradient descend method. As can be shown in the
evaluation section, the speedup (in terms of the number of
iterations) can be one or two orders of magnitude.

C. Iterative Algorithm for Mobile Terminals

To acquire the clustering scheme for mobile terminals, we
sample the movement of terminals into a series of snapshots,
and process them iteratively. Suppose terminals move contin-
uously, the distribution of terminals between two contiguous
snapshots should be similar. Thus, the power diagrams between
these two snapshots are roughly the same. We can apply the
final power vector h from previous snapshot for a better initial
state while computing the power diagram of one new snapshot
to iteratively reuse previous result.

We can also assign a capacity tolerance value for base
station as a tradeoff with the computational time. That is, by
adjusting the exactness of clustering, after acquiring the initial
scheme, the iterative process only takes action while the base
station is over the capacity of a given tolerance percentage.

V. EVALUATION

In this section we evaluate our optimal transport clustering
scheme (Optran) result along with the LP, the perfect matching
and gradient descend solution. We consider both static and
dynamic case of terminals under different shapes of domains,
and compare the computation time and the final distance
squared sum as energy consumption between each method.
Our observations are summarized as follows:

1) For the capacitated kinetic clustering problem, Optran
is up to 10000 faster than LP and perfect matching
solution. That is, only 0.08 seconds to allocate 8000
terminals to 8 base stations.

2) While in LP and perfect matching, the computation
time grows polynomially with the terminal size, Op-
tran grows only linearly, and provides energy con-
sumption as good as other two solutions.

3) In mobility case, by reusing previously acquired
power vector, up to one half of computation time for
a series of snapshot can be reduced.

4) By applying proper capacity tolerance for each base
station, the total computation time for mobile case
can be reduced up to 30%.
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(a) A standard disk domain, base stations are assigned with
different capacity, terminal with different data usage are label
with colors from light to dark. The terminals are distributed as
perturb grid.

(b) A simple polygon domain with holes, rescaled to the disk domain.
The terminals are randomly distributed in to the domain. The requested
capacities of each base station are assigned to be equal in this case.
The result from LP is shown as the difference of terminal colors.

Fig. 1. Examples for capacitated kinetic clustering with Optran. The cell
surrounding by the green lines represent the covering area for the contained
base station marked with blue triangle. The base station is labeled with the
actual terminals assigned to it.

A. Simulation Setting

Our clustering scheme Optran is performed on C++, sup-
ported by the CGAL [10] library. The comparison results of
LP are acquired by the industry standard LP solver CPLEX
12.3 [11], Gurobi 5.5 [12], and the MATLAB built-in LP
solver, both operating in MATLAB R2013a [13]. Since the
results of all of the solver are similar in our experience, we
represent the LP result only by the CPLEX solution. For
perfect matching solutions, the results are acquired by the
built-in Hungarian algorithm of MATLAB. All program ran
on Retina Macbook Pro 2012 with 2.6 GHz Intel Core i7 and
16GB RAM, operating on OSX 10.8.4.

We follow the free space path loss model in a free space.
In this model, the signal strength is proportional to the square
of the distance between transmitter and receiver. Since signal
strength is also proportional to the energy cost, in here,
we use the distance squared sum to represent the energy
cost. To simulate the open space domain, terminals – even

Iteration Mean Squared Errors Energy Cost Time (sec)
1 0.129422 255.277 0.005652
2 0.0217536 224.503 0.004595
3 0.00505614 216.775 0.004610
4 0.0010133 212.869 0.004592
5 0.000345268 212.153 0.004587
6 0.000224121 211.735 0.004522
7 0.0000199027 211.619 0.004552

Sum : 0.033110
TABLE I. DETAILED ITERATIVE PROCESS, δw = 1e− 4.

with different data usages, are spread randomly or based on
perturb grid in domain. More, we arbitrarily distribute the base
stations with different capacity requirement in given domain.
An example of domain is illustrated fig. 1. Since our method
is suitable for any simple domain even with holes, the only
requirement to run Optran is to shrink the input domain into
an unit disk.

For observation and comparison conveniences, in the fol-
lowing experiment we only consider disk domain with equal
base station capacity requirement, and the δw is set to be 1e−4.

1) Linear Programming solution: For linear programming
(LP) solution setting, we follow the discretization process of
Monge-Kantorovich approach mentioned before.

Given weighted terminals X = {x1, x2, ...xn} and ca-
pacitated base stations Y = {y1, y2, ...yk}, we assume the
transportation plan to be a n× k matrix ρij ≥ 0. ρij acquires
the following LP equations:

Minimized:
∑

j

(
∑

i

dist(xi, yj)ρijxi)

Subject to:
∑

i

ρijcap(xi) = cap(yj)

∑

i

ρij = 1

Bounds: ∀i, j 0 ≤ ρij ≤ 1

2) Perfect Matching solution: We apply the famous Hun-
garian algorithm [14] for minimized weight bipartite perfect
matching solution. To construct the proper bipartite graph for
the matching M : X → Y such that |X | = |Y |, for a base
station yj with the capacity cap(yj), we duplicate the base
station in the graph cap(yj) times. The weight of the graph is
assigned to be the distance dist(xi, yj), which is the distance
from the terminal xi to base station yj . Notice that since the
data from one terminal are not splittable, we apply the perfect
matching for the case that each terminal only have 1 data.

B. Simulation Result

1) Power Vector Iteration: The computational cost for
Optran is dominated by the iterative process of acquiring the
required power vector for power diagrams. With the proposed
energy function along with the gradient decent method, we are
able to retrieve the optimal result within constant iterations.
Table I list the detailed iterative process of computing the
clustering scheme for fig. 9(a), the δw is set to be 1e − 4,
7 runs are required. While the mean squared errors δw is
given, the iterations stop only when δw requirement is met.
From iteration to iteration, the energy cost is monotonically
decrease to an optimal value.
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Fig. 2. A comparison of computation time between Optran, LP, and perfect
matching on different sizes of terminals. Number of base stations is fixed at 8,
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Optran.
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matching on different sizes of terminals. Number of base stations is fixed
at 8, with equal capacity constraints.

2) Computational Cost: To discuss the difference of com-
putation time and energy cost, we compare Optran, LP, and
perfect matching solution with different number of terminals
and base stations. Fig. 2 and fig. 3 show the comparison
between terminals sizes differ from 100 to 8000, the number
of base stations is fixed at 8 with equal capacity constraints,
and the δw is set to be 1e−4.

For energy cost perspective in fig. 3, all of the solutions
performs well. In time perspective in fig. 2, Optran outperforms
LP with all terminal sizes in magnitude order; in the case of
8000 terminals, the performance of Optran are up to 10000
times better than LP. The perfect matching yields the worst
solution in computation time, and because of its cumbersome
computational complexity, it only works on the cases that
terminals sizes are smaller than 1000.

Notice that the computation time of LP and perfect match-
ing grow exponentially while Optran grows linearly. This
is mainly because that while computing the result of final
clustering scheme, our method only requires O(k) variables
(k: base station) comparing to O(nk) variables (n terminals
with k base station) in LP. In fig. 4, the case of increasing base
station number with 1000 terminals also supports this point.

In fig. 5, we demonstrate the ability of Optran on large scale
of network. With 30000 terminals along with up to 2000 base
stations in the domain, it clearly shows that the computation
time of Optran grows linearly with the increase of the number
of base stations.
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Fig. 4. A comparison of computation time of Optran and LP on 1000
terminals with different sizes of base stations with equal capacity constraints.
The base stations are located randomly in domain.
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3) Newton’s Method vs Gradient Descend: In Optran we
used Newton’s method, we compare with the gradient descend
method in terms of computational cost. We refer the reader to
fig. 6. With the same step size of 0.01 and over 4000 terminals,
Optran uses a lot fewer iterations, sometimes two orders of
magnitude better than gradient descend.

4) Mobility: To evaluate the performance of Optran under
mobile setting, we first proposed a train moving scenario as
fig. 9. In fig. 9, there are total 2150 users in the domain, each
single user is represented by a “+” symbol. Suppose there is a
train packed with users moving from left to right corresponding
to time frame t; in order to get the kinetic clustering scheme
for base stations, we compute the clustering for each snapshot.
Since the power vector is similar between each snapshot (i.e.
the Voronoi diagram is also similar), while we compute the
next clustering scheme, we can re-apply the power vector
(PV reapply in fig. 8) of the last snapshot as an initial guess
for power vector. As stated in fig. 8, when we contiguously
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Fig. 6. Newton’s Method vs Gradient Descend. With 4000 terminals and
stepsize 0.01.
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Fig. 8. A comparison of computation time between Optran and LP on a
sequence of snapshot. Since in Optran the initial power vector can be inherent
from the previous snapshot, the computation time is reduced after the first
snapshot.

compute 15 snapshots, the time required drops 49%.

Last, we consider the trade off of computational time and
the exactness of clustering. We consider the mobile setting
that each user is on a linear motion: the terminal’s mobility
patten is p + (q − p)t at time t while p and q are randomly
assigned. To further optimize computation, we assign the
capacity tolerance to each base station, that is, we only re-
cluster if one base station is out of capacity over the tolerance
percentage. Fig. 7 illustrates the result with 100 contiguous
snapshots. With proper tolerance as a tradeoff of computation
time, the speed can be up to 30% better than pure PV reapply.

5) Energy Consumption Model: The proposed method is
mainly for outdoor scenarios when energy consumption on
wireless communication is proportional to the squared dis-
tance to the base station. For indoor situations, the energy
consumption is proportional to d to the power of α, where
α stays somewhere between 2 to 5, and d is the distance to
the receivers. Although the optimal transport theory did not
cover this new optimization objectives, the algorithm works
equally well in practice. In fact, the energy cost computed by
our method is almost identical to results obtained by LP. The
same level of speedup is observed.

VI. KINETIC CLUSTERING

In the discussion above we show a distributed algorithm for
solving the kinetic clustering problem with good performance
in practice. The second question we would like to understand is

a fundamental one – how complex is it to compute the optimal
solution for moving nodes for all time?

To formulate this problem rigorously, we take the approach
of kinetic data structure [15], and assume that all nodes move
continuously. However, by coherence of motion, the optimal
solution only changes at discrete points of time. The idea of
kinetic data structure is to track the discrete events and only
update the solution when necessary. It does so by maintaining
a set of certificates whose validity ensure the optimality of the
solution. When any certificate fails, the structure is updated,
and some certificates may be re-computed/re-evaluated. This
ensures that the rate of updating the solution is adaptive
to specific configuration and the object mobility patterns.
Clearly the optimal solution can change arbitrary many times
if the terminals/base stations follow arbitrary motion. So it is
standard in kinetic data structure to assume that the motion
trajectories of all terminals/base stations are pseudo-algebraic
(e.g., specified by low-degree polynomials) such that any
certificate of interest flips between true and false O(1) times.
Under such assumption we ask how many times the optimal
solution would change. Below we provide upper and lower
bounds for this value.

We first realize that for the static version, the optimal
capacitated clustering has a unique solution but the solution
can be realized by multiple power diagrams – due to the
discrete formulation. In particular, consider a cell Cj in the
power diagram for a base station yj . The set of points assigned
to yj is the Yj which stay inside Cj . Now, one can (slightly)
increase or decrease the weight hj while keeping the set Yj

to be the same. The weight hj has a maximum value when a
terminal in Yj stays on the boundary of Cj and a minimum
value when a terminal not in Yj stays on the boundary of Cj .
Thus for any power diagram defining the optimal solution, we
will change it so that any cell has at least one terminal on its
cell boundary.

First, recall that if we uniformly increment/decrement the
weights h1, h2, · · · , hk by the same amount, this is equivalent
to shifting the entire arrangement up and down. The structure
of the upper envelope does not change. The projection of the
upper envelope does not change. Thus we take one cell and
fix its weight to be zero, without loss of generality, h1 = 0
all the time. Now we take any cell Cj , we will increase hj

(shrinking the cell Cj) until one terminal of Yj (say xi) stays
on the boundary. Let us suppose that xi stays on the boundary
of Cj and Cℓ. Now we say that Cj and Cℓ are in the same
locked component. In particular, the height hj is taken such
that Pow(xi, yj) = Pow(xi, yℓ). Thus the difference hj − hℓ

is fixed by ||xi − yj ||2 − ||xi − yℓ||2. We denote this equation
as a locking condition. We say xi is a locker.

Now we continue the same procedure. Take one locked
component, Increase the weight of all cells in this component,
which does not change the shared boundaries of the cells in
this component, until a terminal stays on the outer boundary of
this component. This will possibly grow a locked component
to include one more cell, or merge two locked components into
one. Eventually all cells belong to the same locked component
and the cell boundaries with terminals on them correspond to
a spanning tree T of the dual of the power diagram. Since
we set h1 = 0 all the time. At the end of this procedure
every cell is given a fixed weight. We say that the power



270.0

269.0

270.0

270.0

268.0267.0

269.0 267.0

(a) t = 0

269.0

268.0

269.0

266.0

267.0271.0

270.0 270.0

(b) t = 2

268.0

268.0

266.0

271.0

269.0272.0

269.0 267.0

(c) t = 4

267.0

271.0

270.0

271.0

268.0270.0

267.0 266.0

(d) t = 6
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Fig. 10. Shrink cell Cj by increasing hj until a terminal xi stays on the
boundary.

diagram is at a locked configuration. Notice that first the
combinatorial structure of this final power diagram may be
different from that of the initial one; and depending on which
cell to choose the above procedure may generate different final
power diagrams. But all of these will define the same optimal
clustering solution.

The above discussion says that the number of weights for
a base station that actually make a difference in the clustering
solution is finite – if we reduce the power diagram by the
above procedure. This is useful for the argument later.

Now we argue an upper bound on the number of changes
to the kinetic clustering solution by using the power diagram
formulation. Suppose all terminals and base stations start
to move around and their positions at time t are described
by xi(t), yj(t) respectively. And we have the initial power
diagram such that base station yj has weight hj which is
fixed. By the discussion above, we take the power diagram
at a locked configuration defined by the spanning tree T
on the base stations. For a neighbor yj of y1 on the tree
T , we take its weight hj as a function of t, defined by
hj(t) = ||xi(t) − y1(t)||2 − ||xi(t) − y1(t)||2, where xi is
the terminal on the boundary of power cells for yj and y1.
Similarly we propagate along the breadth-first search tree of
T starting from y1 so that each weight is a function of t. The
weights depend on the k lockers and the tree T .

The above configuration will define a valid, optimal clus-
tering solution until a critical event happens – a non-locker
terminal xm hits a boundary of its power cell Cj with a locker
terminal xi. See Fig. 10. When this happens, by the definition
of the locker we know that

hj(t1) = hℓ(t1) + ||xi(t1)− yj(t1)||2 − ||xi(t1)− yℓ(t1)||2

and by the definition of the critical event we have that

hj(t1) = hs(t1) + ||xm(t1)− yj(t1)||2 − ||xm(t1)− ys(t1)||2

This gives us the equation:

hℓ(t1) + ||xi(t1)− yj(t1)||2 − ||xi(t1)− yℓ(t1)||2
= hs(t1) + ||xm(t1)− yj(t1)||2 − ||xm(t1)− ys(t1)||2

Now, we can charge the number of critical events that lead
to a change of the optimal clustering to such events. We only
need to count how many such equations can be true if the base
stations and terminals follow pseudo-algebraic motion. In each
equation three base stations and two terminals (one of them
is a locker) are involved. Further, we also have the weight of
the two base stations whose functions are defined by possibly
k − 1 locker terminals and the tree T that they define. This
give us a total number of changes by n ·

(
n

k−1

)
·g(k−1), where

g(k) is a function of k. If we assume that k is a constant, the
above bound is O(nk).

VII. RELATED WORK

We survey related work in two directions, prior work on
algorithms for optimal transport problem and prior work on the
application of capacitated clustering in computer networking.

The optimal transport problem has been extensively studied
in the mathematics community. Almost all the study there
focus on the existence, uniqueness, structural properties of the
solution and its connection to other theories. This has been
surveyed earlier. On the algorithmic side, most work is on
the discrete formulation, as in our case. Beside the min cost
matching or LP formulation, the most notable algorithm is
the one in Aurenhammer et al. [4]. The authors suggested
two algorithms, the first one is a combinatorial algorithm
utilizing the power diagram formulation with running time
O(k2n logn+ kn log2 k) for n terminals and k base stations.
The second algorithm is a gradient-descent method to find
the optimal solution, different from the one used here. They
worked on the static setting only. In [16], the authors start
with an arbitrary partition that fulfills the capacity constraint
without representing a valid Voronoi diagram, then iteratively
swap the assignment of points to sites guided by an energy
minimization. This is easy to implement but the convergence
was not proved. Last, a number of other heuristic algorithms
were developed [17] with no theoretical guarantee.

On the other hand, in applications of optimal transport
theory and capacitated clustering, all of them use Linear
Programming solvers. We discuss these applications below.

Because of its resource allocation aspect, optimal trans-
portation theory is mostly applied for load balancing and
resource management in computer networking. In [18], it
is utilized to sooth the congestion of the network. When
a network is under congestion, probabilities as costs are



assigned to each used route, and Monge-Kantorovich approach
is obtained for finding a best allocation for packages. In [19],
optimal transportation problem is applied to solve the resource
allocation problem for queueing process while considering
the extra congestion cost for each user in queue. In [20],
the authors applied optimal transportation problem to solve
the base station assignment problem under congestions. In
their work, the LP based Monge-Kantarovich approach is
applied for assigning users to base station while minimizing
the transmission cost.

In wireless networks, the problem of optimizing the re-
source allocation between base stations and terminal users
has been extensively studied. In [21], the authors proposed a
multiuser sub-carrier allocation problem over OFDM system.
This problem describes the minimization problem of the down
link transmission power from the sub-carrier to users while
fulfilling the user’s data transmission requirement. The prob-
lem is modeled as a bipartite matching problem, the Hungarian
algorithm [14] is suggested for the optimal allocation result.
More follow up sub-carrier allocation research based on linear
programming (LP) solution can be found in [22]–[24].

In [25], Yates et al. proposed an iterative algorithm based
on LP to solve Minimum Transmitted Power (MTP) problem
on cellular network. The MTP problem concentrates on finding
an allocation between user and base station such that minimiz-
ing the total transmitted uplink power, and also maintain the
required carrier to interference ratio (CIR) of each user. In
order to simplify, this MTP problem can be remodeled as the
uplink assignment problem with minimal cost. However, the
capacity of the base station is not considered in this paper, a
base station located in a dense user area might be assigned
for users whose number exceeds its capacity. As a result, the
overall performance is reduced. Moreover, since the solution
is based on LP, the space requirement of the assignment vector
is based on the size of users, which can be huge and lead to
high computation cost in large scale cases.

VIII. CONCLUSION

This paper initiated the study of kinetic capacitated clus-
tering problem and provides an algorithm that substantially
improve the state of the art. Our algorithm is based on the
optimal transportation problem that recently realized to be
valuable for resource allocation like problem. We showed that
for our method, the number of variables used is only O(k)
compared with O(nk) in LP solutions, where k is the number
of base stations and n is the number of mobile nodes. In future
work we would like to 1) find a tighter bound on the number
of changes of capacitated clustering problem in the kinetic
data structure framework; 2) apply the algorithms in practical
applications.
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