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Abstract

Inspired by cognitive radio networks, we consider a setting where mul-
tiple users share several channels modeled as a multi-user multi-armed
bandit (MAB) problem. The characteristics of each channel are unknown
and are different for each user. Each user can choose between the chan-
nels, but her success depends on the particular channel chosen as well
as on the selections of other users: if two users select the same channel
their messages collide and none of them manages to send any data. Our
setting is fully distributed, so there is no central control. As in many
communication systems, the users cannot set up a direct communication
protocol, so information exchange must be limited to a minimum. We
develop an algorithm for learning a stable configuration for the multi-user
MAB problem. We further offer both convergence guarantees and experi-
ments inspired by real communication networks, including comparison to
state-of-the-art algorithms.

1 Introduction

The inspiration for this paper comes from the world of distributed multi-user
communication networks, such as cognitive radio networks. These networks
consist of a set of communication channels with different characteristics, and
independent users whose goal is to transmit over these channels as efficiently as
possible.

Modern networks, such as cognitive radio networks, must cope with several
challenges. First and foremost, the networks’ distributed nature prohibits any
form of central control. In addition, many users operate on an “ad hoc” basis,
preventing them from forming inter-user communication. In fact, they probably
do not even know how many users share their network.

On top of these issues of multi-user coordination, the channel characteristics
may be initially unknown, and differ between users. Thus, learning must be
integrated into the solution.



1.1 Cognitive radio networks

Cognitive Radio Networks (CRNs), introduced in [1], have attracted consider-
able attention in recent years. The idea that lies at the heart of CRNs is that
advanced sensing mechanisms and increased computation power may enable
radio devices to dramatically improve their performance in terms of resource
utilization, resilience and more. Networks of such users are usually dynamic
and stochastic, giving rise to many interesting problems [2,/3]. We focus on de-
veloping a sensing and transmission scheme that enables users to learn a stable,
orthogonal configuration without communicating directly.

1.2 Multi-armed bandits

A well known framework for learning in CRNs is the classical Multi-Armed
Bandit (MAB) model. MABs offer a simple, intuitive framework for learning
the characteristics of a number of unknown options in an online manner, while
balancing exploration and exploitation. A MAB problem consists of a single
user repeatedly choosing between arms with different characteristics, that are
initially unknown. After every round, the user acquires a reward that depends
on the arm she chose. Her goal in most setups is to maximize the expected sum
of rewards acquired over time.

As suggested in [4], the channels of a CRN are naturally cast as the arms
of a bandit, with different performance measures (bandwidth, ACK signals, bit
rate) serving as the reward.

Many papers propose solutions for the stochastic MAB problem (see, e.g.,
[5H7]) and its adversarial version (see, e.g., [8]), but they all assume a single
user is sampling the arms of the bandit.

However, this assumption does not apply in multi-user networks. In the
multi-user MAB model, users compete over the arms of the same bandit. As
a result, they are bound to experience collisions (i.e., multiple users sampling
the same arm), unless they employ some form of collision avoidance or coordi-
nation mechanism. Collisions in communication networks result in performance
degradation, corresponding to reward loss in the MAB model. In order to avoid
reward loss, the presence of multiple users must be addressed. We survey several
approaches to this issue in Section [I.4]

1.3 Extension of the CRN-MAB setting

The novelty introduced in our paper lies in the combination of bandit learning,
multiple users, different reward distributions for different users and no direct
communication. The combination of these last two demands - different distri-
butions and no direct communication, poses a real challenge.

As explained in detail in Section [2.3]and in Section [2.4] the only thing we can
guarantee in terms of network behavior in this setup is stability. In a dynamic,
distributed network, stability is of great value. Once a network has reached
a stable configuration, users can focus on utilizing its resources, rather than



engaging in coordination or learning efforts; a stable network is more robust
and efficient.

Reaching stability is a nontrivial task, since users must learn their channel
characteristics while coordinating their actions with the other users, based on
very limited observations.

1.4 Previous work

We now present several approaches to the CRN-MAB problem, coming from
different areas and disciplines.

Our problem may be viewed as an assignment problem, i.e., maximum weight
matching in a weighted bipartite graph. Users correspond to agents, channels
to tasks, and rewards are simply the complementary of the costs of graph edges.
Several papers have been published on the distributed assignment problem, but
to the best of our knowledge none of them offers a solution for our problem.
The well-known Hungarian method [9] requires full knowledge of the graph
(i.e., channel characteristics) and assumes the existence of central control. The
Bertsekas auction algorithm [10] frees us from the need for central control, at
the cost of direct communication between nodes. The classical Gale-Shapley
algorithm [11] solves the problem of finding a stable marriage configuration, but
does not take the need to learn into account. Some papers have actually applied
it to CRNs, but not in the learning context |12}/13]. Another work on distributed
stable marriage, that makes use of a variant of the Gale-Shapley algorithm,
is |14]. While it is quite foreign to our problem, the potential function defined
in the paper is helpful in our analysis. Another noteworthy work in this context
is [15]. The authors address the challenge of limiting communication between
nodes to a minimum, and propose two communication models. Nevertheless,
they allow more communication than we would like, and their formulation does
not consider learning. Two additional results that deal with distributed stable
marriage offer lower bounds and state that some form of information exchange
is inevitable when solving such problems [16}/17].

The papers closest to ours in spirit are those dealing with multi-user MABs.
There has been work on the case of reward distributions that do not vary be-
tween users, such as [18] and [19]. The latter introduces an algorithm that is
able to cope with a variable number of users. Another paper, that addresses
different reward distributions for different users, is [20]. Here, the authors em-
ploy the Bertsekas auction algorithm. This approach enables users to reach a
reward-maximizing solution, at the price of direct, frequent communication be-
tween themselves. We further elaborate on the difference between our approach
and the approach of [20] in Section [6]

To this end, we would like to point out that communication between users is
undesirable not only because of its price in terms of network resources and time.
Once users depend on communication, they are more vulnerable to intentional
attacks that may disrupt it, as well as noise bursts that are common in CRNs.



2 Model and formulation

We now describe the model, the assumptions accompanying it and our goal.

2.1 System and users

We model a communication network with K channels, servicing IV independent
users. Our work is based on the assumption that K > N, which is reasonable
since without it, implementing a time division based mechanism is necessary.
Once such a mechanism is applied, the assumption that K > N is valid again.
Time is slotted and users’ clocks are synchronized, also a mild assumption for
modern communication systems.

The communication network consists of K channels, where only one user
can transmit over a certain channel during a single time slot. Each transmission
yields a reward, which we assume to be stochastic.

The users are a group of N independent, selfish agents. Their observations
are local, consisting only of the history of their actions and rewards. In addition,
they do not know the number of users they share a network with. There is no
central control managing their use of the network, and they do not have direct
communication with each other.

A key characteristic of our model is that the expected reward a channel
yields depends not only on the identity of the channel, but also on the identity
of the user. Formally, the rewards of the channels are Bernoulli random variables
with expected values {p 1}, where n € {1,...,N} and k € {1,...,K}. This
property reflects the fact that in real-life users may experience location-based
disturbances, manifested in different reward distributions for the same channel.

We model the users’ sharing resources through the representation of the com-
munication network by a single bandit. This means that two users attempting
to access the same channel at the same time, will experience a collision. In our
model, the result of a collision is complete loss of communication for that time
slot for the colliding users, i.e., zero reward. A user n that accesses a channel
k alone during a certain time slot will receive a reward drawn i.i.d. from a
Bernoulli distribution with expected value p,, . Throughout the paper, we use
the term configuration to refer to a mapping of users to channels.

2.2 Limited coordination

In an effort to keep our model faithful to real world CRNs, we limit the co-
ordination between users to a minimum. Thus, users can only transmit in a
channel of their choice, or sense the spectrum range and receive binary feedback
regarding all channels {1,..., K} at time t. A “0” represents no transmission
in channel, while “1” stands for the opposite.



2.3 Reward maximizing solution

We adopt a system-wide view for characterizing the optimal solution. The opti-
mal configuration must be orthogonal (i.e., no more than one user per channel),
in order to avoid collisions and the resulting reward loss. One common approach
seeks to maximize the sum of rewards over all users, over time. The assignment
of users to channels is chosen accordingly:

N

R* = max

el Z:l Hn,7e(n)>
n=

where C is the set of all possible permutations of subsets of size N chosen without
replacement from the set {1,..., K}.

However, reaching such a solution requires frequent information exchange.
Assume channel k is optimal for two different users m and n, but p, i, >
tn,k- To maximize the system-wide reward, user n must step down and choose
a different channel. The lack of central control requires explicit information
exchange regarding the values of ji,, ; and piy, 1, for m and n to decide which of
them should step down. Since the reward estimates are updated as time goes
by, such preferences must be communicated repeatedly.

Due to limited information exchange, a reward-maximizing solution cannot
be guaranteed in our setup. We therefore focus on convergence to a stable,
orthogonal configuration.

2.4 Stable marriage solution

Our goal is to develop policies that will lead users to a stable configuration. We
employ the notion of stable marriage to formally define stability:

Definition 1. A Stable Marriage Configuration (SMC) is an assignment of
users to channels such that no two users would be willing to swap channels, had
they known the true values of the expected rewards. Formally, for a pair of users
n,m:

S, & (Hnan < Pn,anm) user n would like to swap

>

S2 = (tm,am < Mm,ay) user m is willing like to swap,
where a,, and a, are the users’ current actions. In an SMC,

Sl/\SQ =0 Vn,m.

2.5 Goal

Given a system with K channels and N users, allowing only limited commu-
nication as described in Section [2.2] our goal is to reach a configuration that
is orthogonal: no two users use the same channel, and an SMC, according to
Definition [II
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3 Coordination protocol

Our coordination protocol balances the limitations of Section 2.2 with the users’
need for information exchange by introducing a signalling mechanism between
pairs of users. At predefined time slots, a user wishing to occupy a channel may
transmit in that channel to express her wish. In order to ensure that this signal
is received by the user currently occupying the channel, we employ a frame-
based protocol. We assume users can transmit and sense at the same time, a
reasonable requirement in modern communication systems.

The following explanation is best understood by observing Figure Our
protocol divides time into super frames of length Tsp = 2 + 2 (K —1). Each
super frame begins with a pair of time slots, S; and Sy, during which a single
signalling user, the initiator, is coordinated for the entire super frame. The
procedure is described in Algorithm [f] and in Figure[2] Next come K — 1 mini-
frames of two time slots each, denoted by S35 and Sy. Each of these mini-frames
corresponds to one channel on the initiator’s list of preferred channels. Thus, a
single super frame enables one user to go over her entire preference list and signal
other users, suggesting they swap channels with her, as explained in Figure

The time slots marked S allow users not participating in the coordinating
process during a certain mini-frame to sample their current channel and proceed
with the learning-while-transmitting process. Thus, all but two users (initiator
and responder) gather a sample during each mini-frame, resulting in at least
K — 2 samples for each of the users, except for the initiator, over each super
frame.

While this may seem like much coordination, the protocol is very simple
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to implement, and is indeed lightweight when compared to other protocols, as
further explained in Section [f] and in Section [6]

4 The CSM-MAB algorithm

We now turn to a full description of our algorithm, the Coordinated Stable
Marriage Multi-Armed Bandit (CSM-MAB) algorithm. We propose a user-
level algorithm for a fully distributed system, whose goal is described in Section
[2:5] When all users in the network apply CSM-MAB, the assignment of users
to channels is guaranteed to be orthogonal, and converges to an SMC.

Our algorithm begins with a start up phase, during which users transmit and
sense to detect collisions, in order to reach an initial orthogonal configuration
(line 1). This phase follows the lines of the CFL algorithm introduced in |21}, and
converges quickly. Once an initial orthogonal configuration has been reached,
users start executing the CSM-MAB algorithm, described in Figure [4]

At the beginning of each super frame, users execute the rank_channels
procedure to individually create a list of channels they prefer over their current
action (line 4). Channels are assigned values according to their UCB indices,
calculated using the well known formula from [5]:

. [2Int
Imk (t) = Hn,k + ) (1)
Sn,k

where /iy, is the empirical mean of the reward acquired by user n on channel k
up till time ¢ and s, j is the number of times she sampled arm % up till time ¢.

Next, the users coordinate an initiator according to the scheme in Figure
Every user who would like to improve upon her current channel presents herself
as the initiator with a probability of ¢ = 7 (lines 5-11). An agreed initiator
for the SF emerges if and only exactly one user raises her flag (the value of e
is chosen in order to maximize the probability of this occurring). Once a single
initiator is agreed upon, all users take note of her current channel, based on




1: ap (0) < apply_CFL(K)
2: for all frames t do

3: if mod (¢t,75r) == 1 then {Beginning of SF}

4 list + rank_channels(a, (t — 1), fin, $n)

5 if list # 0 then {User seeks to change channel}

6: flagy, + rand(Bernoulli, )

7: if (flag, == 1) A (flag; == 0Vi # n) then

8 initiator = n {User n is initiator for this SF}

9: pref =1 {Initialize swapping preference to 1}

10: end if

11: end if

12:  else

13: if (initiator == n) A (pref > 0) then {n is the initiator, list not ex-
hausted yet}

14: response < propose_swap(list (pref))

15: if response == 1 then {Responder agreed or channel is available}

16: a (t) < swap(ay, (t),list (pref))

17: pref <0

18: else

19: pref < pref + 1 {Move to next best channel}

20: end if

21: end if

22:  end if

23: 7, (t) +execute_action(a, (t))

24:  update_stats(ry (t), fin,a, (t)s Sn.an(t))

25: end for

note: fi,  is the empirical mean of the reward for user n on arm £; s, is the

number of times she has sampled it.

Figure 4: The CSM-MAB algorithm



their sensing. They will need this knowledge to decide whether to accept her
swapping suggestion.

The initiator proceeds to signal other users, based on her ranking of channels
(lines 13-21). Signalling is implemented in propose_swap by transmitting in
the initiator’s channel of interest. Each responder (i.e., signalled user) checks
whether swapping channels with the initiator will improve her situation, based
on her own ranking. Once a responder agrees, a swap takes place. No more
signalling attempts are made till the end of the SF, and users simply continue
sampling their chosen channels. If the responder refuses, the initiator will ap-
proach the next-best channel on her list. She will continue the process until
she (a) finds a partner that agrees to swap; or (b) exhausts her list of potential
swaps. This part of the algorithm is depicted in Figure

5 Analysis

We will now show that the CSM-MAB meets the goals defined in Section [2.5
Our main theoretical result is stated in Theorem [1

Theorem 1. Consider a system with K channels and N wusers, with channel
rewards characterized by the matriz . Applying CSM-MAB (Algom'thm by
all users will result in convergence to an orthogonal SMC: For all § > 0 there
exists T (0) such that for all time slots t > T, the probability of the system’s
being in an SMC is at least 1 — 9.

The proof of Theorem [1] consists of two aspects: orthogonality and stability.
The first part is easy to verify.

Proposition 1. The actions of users applying CSM-MAB are orthogonal (i.e.,
there is at most one user sampling each channel) for all t > to with probability
of at least 1 — §g.

Proof. Based on Theorem 1 of [21], the initial configuration reached after run-
ning the CFL algorithm is orthogonal with probability 1. The authors provide
an upper bound on the distribution of stopping times, 7:

Plr > k] = ae™ ¥,

where o and ~« are some positive constants. The expected stopping time is

therefore upper bounded by o‘eﬂw. Thus, setting to £ 22— the probability

l—e— l—e—7?
of not having reached an orthogonal configuration by time ¢, is at most Jp =

ae” Y

e “1-e=7. Once the system reaches an orthogonal configuration, a user does
not switch to an occupied channel without having coordinated the switch, as
defined in Algorithm O

5.1 Stability and potential

Showing that our system converges to a stable solution is more involved. We
begin by defining a potential function for the problem. For any user n €



{1,..., N}, the potential at time ¢ is defined as follows:

K
(bn (t) = Z 1 {,U/n,k > Mn,an(tfl)} ) (2)
k=1

where a,, (t — 1) is the action taken by user n in the previous time step. In
words, the potential is the number of channels user n would prefer over her
current choice, had she known their true reward distributions. The system-wide
potential is the sum of potentials over all users:

N
HOEDIE N0 (3)
n=1
An illustration of the potential appears in Tables 1 and 2.

Table 1: Table of users’ channel rankings (first row represents best channel, last
row represents worst). Cells highlighted in yellow and underline represent user’s
current choice.

oo | po| =[S
NSV [\.’)S
o ro| =i | S

W N =

Table 2: User potentials corresponding to the configuration in Table [I]

o1 | ¢2 | P3
3 1 0

In terms of potential, a configuration is an SMC if no two users can swap
channels and decrease their potential by doing so. We note that a stable con-
figuration does not necessarily correspond to zero system-wide potential, since
not all users might be able to achieve zero potential simultaneously, depending
on network parameters. Also, a system may have several stable configurations,
each characterized by a different potential. Nevertheless, observing a system’s
potential does provide an indication regarding stability: once a system reaches
a stable configuration, its potential will no longer change.

We prove convergence to an SMC by using the potential function, considering
three aspects:

1. The maximal potential of a system with K channels and N users is finite
and equal to N (K —1).

2. The potential ® (¢) is monotonously non-increasing with high probability.
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3. Until an SMC is reached, changes in potential are bound to happen within
finite time.

We formalize and prove these statements in the sequel.

Since users’ decisions are guided by UCB indices, while stability is examined
with respect to true reward distributions, users do not always update their choice
of channels in a way that matches the ground truth. Thus, the system potential
may occasionally increase, due to users’ exploration or inaccurate statistics.
In our proof we show that despite this, users ultimately converge to a stable
configuration.

5.2 Proof of Theorem [1

We begin by ensuring the monotonicity of the potential.

16K
Az
occurs, it is a decrease, with probability of at least 1 — 2t™*.

Lemma 1. For all times t for which t > Int, if a change in potential

Apnin is a distribution dependent constant. In the appendix we derive an

upper bound on the minimal time for which the condition above holds:

M—1—/(M—1)*—4M
tming 2 ) (4)

where M £ i‘sz . This bound will enable us to use i, in the proof.

Next, we introduce a lemma that concerns the ability of a single user to
reach the position of the initiator.

Lemma 2. If ¢, (t) > 0 for some user n, then her probability of becoming the
next initiator is at least e (1 — €)™ "

Using Lemma [2] we show another result:

Lemma 3. If the system is not in an SMC at some time t, then a change in
the potential will occur within no more than t' (81) time slots with probability of
at least 1 — 7.

The exact dependency of ¢’ on §; appears in the appendix, as do the proofs
of all lemmas.

The probability of the system’s reaching an SMC within 7 £ N (K — 1)
time slots after time t,,;, is at least

A N(K-1)
Payic 2 [(1=81) (1= 2tin) ']

We model the convergence to an SMC using a Markov chain. Let S; denote the
state of the system at time t¢:

0 if in SMC,
Sy =
1 else.

11



The following holds for the chain’s transition probability:

P[St_m-:].‘St :O]EPSM07

min

and also

T—tmin
= 0] S(l—PSMC)L . J7
vT > tmin + 7.

P[ST :0|St

min

T—tmin

Defining § = (1 — PSMC){ g J completes the proof, and inverting yields

Ind

T = twin + T
In (1 — PSMC)

Our next result quantifies the time devoted to signalling.

Proposition 2. In every super-frame (K —1)(N —2) learning samples are
gathered by all users combined. During this period 4K signalling and sensing
actions are performed by all users combined, so the signalling to learning ratio
18

4K

L E—hw-o

Clearly, the effort the users put into coordination is most effective when
the number of users is close to the number of channels. This is a result of the
frames’ length being dictated by the number of channels rather than the number
of users, in order for the user-level algorithm to be independent of the number
of users.

6 Experiments

To demonstrate the merits of our algorithm, we implement a simulation of a
distributed multi-user communication network. The users in our network are
synchronized, and time is slotted.

In this network, users cannot communicate with each other directly. How-
ever, they can sense the entire frequency range (i.e., listen to all channels). They
may also transmit over a channel of their choice, updating this choice each time
slot.

A user n transmitting over a channel k receives a binary reward, drawn i.i.d.
from a Bernoulli distribution with parameter p, ;. This can be viewed as a
form of the classic binary symmetric channel. As far as the different values of
the reward parameters go, we ran experiments in two different modes:

1. random: the g, ;’s are drawn uniformly and independently from the in-
terval [0, 1].

12
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Figure 5: Changes in users’ choice of channels, single realization

2. real-world: users are divided into clusters, and each cluster has a preferred
group of channels. This represents a scenario in which users sharing a
cluster are geographically close, and experience an interference in part
of the frequency range. In real-world wireless communication systems,
an agent that does not belong to the network but is transmitting in its
vicinity will often cause a similar phenomenon.

We present results obtained in an experiment with K = 12 channels and
N = 10 users. The users are divided into two clusters. Users 1-5 belong to
one cluster, and experience an interference in the frequency range of channels
7-12. Users 6-10, on the other hand, experience similar performance over the
entire frequency range. Experiments last 7' = 120000 time slots, and results are
averaged over 50 repetitions.

We begin by examining the cumulative number of policy changes per user
over time, plotted in Figure 5] and in Figure [6] Since our goal is stability, we
would like the number of policy changes to be small, and indeed the rate of
changes decreases significantly over time. Another observation, demonstrated
by the two figures, is that different users have different patterns, depending on
the realization but more importantly on the difficulty of their problem: users
that have small differences between channels will need more samples in order to
tell them apart, and will therefore experience more policy changes.

Our next result examines the convergence to different SMCs over several
repetitions of one setup. In this case, the set of SMCs consists of 305 config-
urations. Naturally, the size of this set depends on the number of users, N,
the number of channels, K, and also on the specific realization of the p, x’s.
Figure [7] shows that the periods of time users spend in unstable configurations
decrease as the experiment advances, and users move between different SMCs,

13
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Figure 6: Changes in users’ choice of channels, empirical average

depending on the realization.

To complement our proof, we provide a visualization of the system potential
over time, averaged over several repetitions, in Figure[8] As shown in the proof,
the potential decays on average. The shaded area around the plot represents the
variance over iterations, which also decays over time. As explained in Section
the potential does not necessarily decay to zero, but rather to a constant
value that represents the potential of the SMC.

Our last result examines the reward acquired by users employing the CSM-
MAB algorithm. While our theoretical guarantees focus on stability, the al-
gorithm incorporates reward maximization implicitly by using UCB indices to
rank channels. However, as explained in Section [2.3] reaching a reward-optimal
configuration cannot be guaranteed with the limited form of communication
we allow. In Figure [0] we compare the cumulative system-wide reward of two
algorithms: our CSM-MAB and the dUCB4 algorithm, introduced in . As
explained in Section dUCB4 incorporates an auction algorithm in order to
achieve an orthogonal reward maximizing configuration.

The price of reward maximization is, clearly, communication, which our
scheme attempts to bring to a minimum. In order to implement the auction
algorithm required by dUCB4, users must have distinct id’s and knowledge of
the number of users. This rather technical requirement hinders the ability of
the algorithm to deal with a variable number of users. Our algorithm naturally
extends to a scenario in which users arrive and leave at random times, that is
quite likely in the context of CRNs. In addition, auction algorithms inherently
rely on the good will of users, and are therefore more vulnerable to malicious
agents (e.g., agents that report false high bids for attractive channels).

The results in Figure 0] demonstrate the tradeoff between communication

14
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and reward maximization: the time dUCB4 invests in auctioning is quite domi-
nant. The two variants of the algorithm differ in the accuracy of the auctioning
algorithm. The “dUCB4” variant (dotted red) uses 32 bits to encode variables,
while the “dUCB4Long” variant (dashed magenta) uses 64 bits. Because of
auctioning, it takes the algorithm a long time to turn its focus to reward maxi-
mization. In the high-accuracy case, the users exhaust all their time auctioning.
In the low-accuracy case, they only begin acquiring rewards towards the end of
the experiment. In real-world networks, with constantly changing conditions,
such a long start-up phase is difficult to overlook. For the sake of example,
let us examine an average 802.11n WLAN network, with a nominal frame size
of 2000 bits and typical bit rate of 25 megabits per second. The 4 - 10° time
slots it takes dUCB4 to start acquiring rewards are translated into a period of
% = 32sec. This start-up phase doubles to over one minute when 64
bit accuracy is used for the auction algorithm. Of course, lighter schemes than
the 802.11 can be used, but these numbers clearly demonstrate the potentially
crippling overhead brought on by communication.

We note that when N is strictly less than K, our algorithm often reaches the
reward optimal configuration, or a configuration very similar in reward values.
Therefore, the variance of the cumulative reward is very small. Our intuitive ex-
planation is that when N < K users have a certain degree of freedom, increasing
their chances of landing in the optimal configuration.

Despite reaching a configuration that is very close to optimal in the presented
simulations, our algorithm acquires reward at a slower rate than dUCB4, due
to the constant ratio of coordination and exploitation. Decreasing the amount
of time devoted to coordination may considerably increase the reward, at the
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cost of impairing the algorithm’s ability to handle a variable number of users.
We plan to address this issue in detail in the future.

7 Discussion

We present an extension of the multi-user MAB problem, for the case of differ-
ent reward distributions between the users, with limited information exchange.
Using a specialized signalling method, our algorithm enables multiple users to
learn network characteristics and converge to an orthogonal configuration that
is also a stable marriage. We provide a theoretical analysis of our algorithm’s
performance, based on the notion of system potential. Finally, we present the
results of an experimental setup and examine different aspects of our approach’s
performance, including a comparison to the dUCB4 algorithm of [20]. As ex-
plained in Section[6]in further detail, the main difference between the algorithms
is the way they strike a balance between minimizing communication and maxi-
mizing the reward. We argue that our algorithm is better suited for real world
problems.

In the future we intend to extend our work to a dynamic scenario, both
in terms of channel characteristics and number of users. The latter should be
straightforward due to the minimal inter-dependency of users, while the former
will require some adjustment of the learning algorithm. Another interesting
variant, applicable to networks with a fixed number of users, alters the ratio
between coordination and exploitation as time goes by, to enable better use of
network resources.
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Appendices

A Proof of Lemma [1

We would like to show that for all values of ¢ for which ¢ > a/Int, the probability

that the potential decreases every time it changes is at least 1 — 4¢t~%, where

32K
a= 35

Given that a change in potential occurs at time ¢, it is guaranteed to result
in a potential decrease if it benefits both users. This will happen if both users’
indices, that guide their decisions, are accurate w.r.t the true distribution.

Since we condition on a change in potential,

P [(I)Dec] =1-P [(I)Inc]

Let us upper bound P [®r,] . For a user n switching from arm j to arm ¢ at
time ¢, i < finj,

P[®1] =P [In,i (t) > I () N pni < ;“nyj] )

where I, ; (t) is user n’s UCB index of arm ¢ at time ¢, defined in (I)). Following
the proof of Theorem 1 of [5],

P[®p] =P [ﬂn,z (t) + Ctisn; = fn,j (t) + Ctyspny (N Hny < /‘mj]
<2t

provided that

8lnt
Sni > (5)
n,t — P} )
Ai,j (n)

where s, ; is the number of times user n sampled arm 7 up till time ¢ and
Aii(n) & pni — piny. If does not hold, then the UCB index “misleads”
user n, causing her to mistakenly favor arm ¢, despite its lower expected reward.
Switching from arm j to arm ¢ will result in an increase in potential. However,
once she acquires another sample of arm i, its index will decrease. In the
meantime, the index of arm j will increase due to the passing time, and the
indices will ultimately reflect the correct preference, resulting in a potential
decrease.
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The extreme value for , i.e., the largest number of required samples,
corresponds to the minimal value of A; ; (n). Let us define:

A, %2  min i —
" ije{l LK) lini = ttn.g]
i

A .
Apin = min A,
ne{l,...,N}

Thus, when all arms have been sampled at least

Smin £ % (6)
times, the probability of an increase in potential is very small.

In order to allow for the coordination protocol, users do not gather informa-
tive samples in every time slot. Instead, they gather at least K — 2 samples in
each super frame, whose length is Tsp = 2+ 2 (K — 1) = 2K.

Therefore, taking into account the fact that the sampling condition in @
must apply for all arms, the condition on % is

Tsr 16K? 16 K

min = Int Int. 7
K-2° (K —2)az_ "7 Az " @

min

t>K

For all times ¢ for which holds, if a change in potential occurs, it is a decrease,
with probability of at least 1 — 2¢t~%.

When we apply this lemma we will use a quantity ¢,in, an upper bound on
the minimal ¢ for which holds. Introducing a well-known lower bound on
the logarithmic function:

We use this lower bound together with :

y 16K It 16K tpin — 1
min = 5 1n min =< xo5 7 . 1 °
Aﬁlin A?nin tmin + 1
Denoting M = iGQK , we continue:
tmin — 1
tonin > M Jmin -
tmin +1

20+ (1= M) tyin + M > 0.

L. M—1—/(M-1)2—4M . . L. .
Our conclusion is that ty;, < ( 5 ) . Since this expression is finite,
we may now use it in our proof.
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B Proof of Lemma [2

The probability of a specific user becoming the initiator when there are ¢ inter-
ested users is

P, (e,£) £ P[specific initiator| ¢ interested]
=e(1-o“ Y vre{1,... N}

The probability is minimized when all N users would like to become the initiator,
S N-1
yielding the bound € (1 —¢)" .

C Proof of Lemma [3

If the system has not reached an SMC, then according to Definition [I the
conditions S7, S2 hold for at least one pair of users n, m.

According to the definition of the CSM-MAB algorithm, if S; holds, then
user n will add the channel user m is sampling to her list of preferred chan-
nels with a probability of at least 1 — §. Following arguments similar to those
presented in the proof of Lemma [1l § < 2¢t=%. If Sy holds, user m will accept
user n’s swap proposal, assuming her statistics are accurate. This, once again,
happens with a probability of at least 1 —J. Once users n and m swap channels,
the potential will change.

In the worst case (i.e., largest t’), user m’s channel will be the last channel on
user n’s list, and all users higher on the list will decline user n’s swap proposals.
If user n approaches a different user (whose channel is ranked higher than m'’s),
and that user agrees to swap, the potential will also change.

What is left to prove is that the time it shall take user n to receive the
privilege of being initiator is finite. Once n is appointed the initiator, it will take
no more than K — 1 mini-frames, i.e., 2 (K — 1) time slots, until she approaches
user m and a swap takes place.

There are two different cases - if n, m are the the only unstable pair, then
they will be the only ones interested in becoming the initiators. Furthermore,
if only one of them is dissatisfied, then there will only be one user interested
in initiating. In the notation of Lemma [2| this corresponds to £ = 2 or £ = 1,
respectively. The probability of exactly one of them becoming the initiator is
P =min{e,2¢(1 —€)}.

If there are additional unstable pairs, there will be more nominees for initi-
ating. However, not all super frames necessarily result in a decrease in potential
- if the initiator only targets channels occupied by “satisfied” users, all her at-
tempts will be rejected. Therefore, we need to address the worst case scenario,
in which all N users attempt to initiate, but only one of them is in a position
that will actually result in a swap. Based on Lemma |2} the probability of that
user emerging as the single initiator is at least e (1 — e)Nﬁl, for a single super
frame. This probability is smaller than P; o for all €, N, and is therefore the
lower bound for the probability of a single initiator with actual capacity for a
decrease in potential.
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The number of SFs in a time interval of length ¢ is C = bfs/FJ The

probability that a single initiator with actual capacity for a decrease in po-
tential does not emerge in a certain SF is less than 1 — e (1 — e)Nﬁl, and the
probability that a single initiator does not emerge in the interval is less than
P2 (1 —e(1- e)N_l)C. As t' — o0, so does C, and Pg decays to zero.
Binding the two aspects of this lemma together, we have that the probability
of a single initiator with actual capacity for coordinating a switch emerging in an
interval of length ¢’ is at least 1 — Po. The probability of a swap between users
whose actions do not correspond to a stable configuration is at least (1 — 2t_4)2.
The combined result: if the system is not in an SMC at time ¢, then a change
in the potential will occur within no more than ¢’ time slots with probability of

_t'
at least (1 — Pc) (1 — 2t_4)2, where Po = (1 —e(l- e)N_1> [TSFJ.
Let us re-write the result for the sake of clarity: if the system is not in an
SMC at time t, then a change in the potential will occur within no more than

t' (1) time slots with probability of at least 1 — §;. Developing the previous
expression for the probability of a change in potential:

(1= Po) (1=2t74° = (1= Po) (1 — 4t~ + 4:7%)
>(1—Po)(1—4t7")
=1-Pc— 4t " +4Pct™*

>1—Po—4t -4

From now on, we denote §; = P +4t;?n. Using this, we can derive an expression
for ¢/ (61):
Po =6, — 4t}
(1 —e(1- e)N‘l) L5 _ 5y — At
t' N-1 —4
In (1 —€e(l—e) ) =1In (6, — 4t )
SF

In (51 — 4t_4 )

min

In (1 —e(l- e)Nﬁl) .

t' = Tsrp
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