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Abstract

Motivated by applications in social network community analysis, we introduce a new clustering
paradigm termed motif clustering. Unlike classical clustering, motif clustering aims to minimize the
number of clustering errors associated with both edges and certain higher order graph structures
(motifs) that represent “at omic units” of social organizations. Our contributions are two-fold: We
first introduce motif correlation clustering, in which the goal is to agnostically partition the vertices
of a weighted complete graph so that certain predetermined “important” social subgraphs mostly lie
within the same cluster, while “less relevant” social subgraphs are allowed to lie across clusters. We
then proceed to introduce the notion of motif covers, in which the goal is to cover the vertices of
motifs via the smallest number of (near) cliques in the graph. Motif cover algorithms provide a natural
solution for overlapping clustering and they also play an important role in latent feature inference
of networks. For both motif correlation clustering and its extension introduced via the covering
problem, we provide hardness results, algorithmic solutions and community detection results for two
well-studied social networks.

1 Introduction

The problem of clustering vertices of graphs has received significant attention in physics, biology and
computer science due to the fact that it reveals important properties regarding the community structure
of the underlying networks [1, 2]. Clustering may result in a partition of the vertices, or a decomposition of
the vertex set into intersecting subsets that are often referred to as overlapping communities [3]. In most
machine learning settings, one focuses on spectral clustering methods [4] and assumes that the number
of clusters or an upper bound on the number of clusters is known beforehand, or that the parameters
of the model may be learned efficiently [5, 6]. On the other hand, some clustering methods proposed
in the computer science literature [7] adopt agnostic approaches that often result in computationally
hard problems that may only be solved approximately [8]. The algorithms used to perform clustering
range from greedy and iterative methods to semidefinite and linear programs accompanied by rounding
techniques [9, 10], and may be implemented in parallel [11].

One important, yet highly overlooked aspect of community detection is that in order to capture rel-
evant social phenomena, one has to understand higher order interactions of entities in the community.
These higher order interactions correspond to induced subgraphs of the social networks, and as such,
should be considered as “atomic units” of the graph. Clearly, edges represent one such unit, as they
capture pairwise interactions, but almost equally important entities are triangles, which are known to be
social and biological network motifs (i.e., subgraphs that appear with frequency exceeding the one pre-
dicted through certain random models). Hence, when clustering vertices in a graph it may be important
to place a motif such as a triangle within the same cluster, rather than between clusters. Related prob-
lems have been studied in different contexts and with different motivations under the name of hypergraph
clustering in a fairly limited number of contributions [2, 12, 13, 14, 15, 16]. Almost all of the methods
proposed for this particular setting are heuristics that are constrained by knowledge of the problem pa-
rameters. Furthermore, the methods appear hard to interpret in one unified framework that involves
both nonoverlapping and overlapping clusters, and tend to use spectral techniques which often do not
come with general analytical guarantees. None of the methods treats hyperedges of different sizes as
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having different relevance, as the hyperedges are usually not seen as entities that arise from subgraphs of
a social graph. In addition, none of the hypergraph clustering methods extends to overlapping clustering.

Here, we take a very general and broad new approach to hypergraph clustering by building on the
ideas behind classical correlation clustering [7], which may be succinctly described as follows: One is
given a graph and, for some pairs of vertices, one is also given a quantitative assessment of whether the
objects are similar or dissimilar. The goal is to partition the vertices of the graph so that similar vertices
tend to aggregate within clusters and dissimilar vertices tend to belong to different clusters. Instead
of looking at the problem of clustering individual vertices, we focus our attention on simultaneously
clustering subgroups of vertices forming specific, prescribed subgraphs in the graph. We impose weights
on the cost of subgraph clustering, which allow one to assess the penalty of placing the subgraph across
clusters or within one cluster, thereby taking structural relevance into account. Based on ideas behind an
overlapping correlation clustering technique suggested in [17], we also develop motif correlation clustering
techniques for overlapping community detection. In this setting, the goal is to cover all motifs by the
smallest number of cliques or near cliques in the graph. Our interpretation also gives rise to a new
direction in the field of intersection graph theory [18] and may be used for latent feature inference [19].
For succinctness, we mostly focus our attention on two types of motifs only, edges and triangles. The
results described for edges and triangles may be extended to account for higher order structures.

The paper is organized as follows. In Section 2, we describe correlation clustering and overlapping
correlation clustering. Section 3 introduces our new motif correlation clustering paradigm. There, we
show that the problem of interest is NP-complete and describe a constant approximation algorithm for
clustering based on a linear programming (LP) relaxation followed by rounding. We then proceed to
introduce the overlapping motif correlation clustering problem in Section 4, prove that it is NP-complete
and provide some theoretical results on the largest number of clusters needed for the coverings. We
also introduce a heuristic simulated annealing algorithm for overlapping clustering that performs well
in practice and generalizes the work in [19]. We conclude with Section 5, which contains simulation
results for two networks with ground-truth community structures, illustrating the concepts of motif and
overlapping motif clustering. Large scale network analysis is relegated to a companion paper.

2 Correlation Clustering and Overlapping Correlation Cluster-
ing

There are two dual formulations of the correlation clustering optimization problem: MinDisagree and
MaxAgree. In both cases, one is given a graph whose vertices are to be clustered, with each edge
labeled so as to indicate whether the endpoint vertices are to lie within the same cluster or not. For the
MinDisagree version of the problem, one aims to minimize the number of erroneously placed edges (pairs
of vertices), while for the dual MaxAgree version, one seeks to maximize the total number of correctly
placed edges. Finding an optimal solution to either problem is NP-complete, but the MinDisagree version
of the problem is harder to approximate. As from the perspective of experimental design and quality of
service erroneously clustered vertices are often more costly than correctly clustered ones, a large body
of work has focused on the MinDisagree version of the problem [7]. Unfortunately, the MinDisagree
problem remains hard even when the input graph is complete [?]. For complete graphs, several constant
approximation randomized [9] and deterministic [20] algorithms are known. When the graph is allowed
to be arbitrary, the best known approximation ratio is O(log n) [8].

Some variants of correlation clustering allow for including fractional edge weights into the problem
formulation, with each edge endowed with a “similarity” and “dissimilarity” weight: If the edge is placed
across clusters, the edge is charged its similarity weight, and if the edge is placed within the same cluster,
the edge is charged its dissimilarity weight. The MinDisagree clustering goal is to minimize the overall
vertex partitioning weight (cost). Clearly, if the weights are unrestricted, not all instances of the weighted
clustering problem may be efficiently approximated. Hence, most of the work has focused on so-called
probability weights [7]. The classical probability weights correlation clustering problem formulation for a
weighted graph G = (V (G), E(G)) may be written as:

minimize
x

 ∑
e∈E(G)

(wexe + (1− we)(1− xe))


subject to xuv ≤ xuz + xzv (for all distinct u, v, z ∈ V (G))

xe ∈ {0, 1} (for all e ∈ E(G))
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Here, the variables xe are indexed by edges e and interpreted as follows: xe = 1 means that the endpoints
of e lie in different clusters while xe = 0 means that the endpoints of e lie in the same cluster. The cost of
placing e across clusters is 0 ≤ we ≤ 1, while the cost of placing e within the same cluster equals 1−we.
The triangle inequality xuv ≤ xuz + xzv captures the fact that if two edges with vertices uz and zv are
in the same cluster, then the edge with vertices uv should also belong to the same cluster.

As the problem described in the former setting is hard [7], a standard approach is to relax the
constraint xe ∈ {0, 1} to xe ∈ [0, 1], and then round the fractional values xe [10].

An equivalent formulation of the correlation clustering problem, which naturally extends to an over-
lapping community setting, may be stated as follows [19, 17].

As before, one is given a graph G = (V (G), E(G)), |V | = n, and a similarity weight function w :
V × V → [0, 1], as well as a sufficiently large set of labels (features) L. The labels will give rise to the
vertex partition by grouping all vertices with the same label into one cluster. Correlation clustering
reduces to finding a labeling ` : V → L which minimizes∑

uv∈E(G), `(u)=`(v)

(1− wuv) +
∑

uv∈E(G), `(u)6=`(v)
wuv.

A simple extension of this formulation for the case of overlapping clusters is to assign a set of labels to
each vertex, rather than one label only. This implies multiple cluster membership for some vertices. In
this setting, let A,B denote sets and let H(A,B) be some chosen set similarity function. Furthermore, let
` be a set labeling function. The goal of overlapping clustering now becomes to find a labeling function
` : V → P(L), where P(L) denotes the power set of L, that minimizes∑

uv∈E(G)

|H(`(u), `(v))− wuv|.

The objective function takes different forms depending on the chosen set similarity function H(A,B). If
H(A,B) = 1 for A∩B 6= ∅, and zero otherwise, overlapping correlation clustering reduces to an instance
of the intersection representation problem from graph theory [18]. An intersection representation of a
finite, undirected graph G = (V (G), E(G)) is an assignment of subsets Iu of a finite, sufficiently large
ground set F , to vertices u ∈ V such that (u, v) ∈ E if and only if Iu ∩ Iv 6= ∅. The smallest cardinality
of the ground set F needed to properly represent the graph is known as the intersection number of the
graph. It is known that the the intersection number of a graph equals its edge clique cover number, i.e.,
the smallest number of cliques in the graph needed to cover all edges in the graph [21]. It is clear that
given an intersection representation of the graph, the set of vertices that are assigned to a particular
clique may be seen as sharing one feature. This is why the intersection representation of a graph is often
used for latent feature inference.

An example of an intersection representation of a graph over the smallest ground set F = {1, 2, 3} is
shown in Figure 1.

{1}

{1}

{2}

{2}

b b

b b b b

b

{1, 3} {2, 3}
{1}

Figure 1: An intersection representation of a graph using three features {1, 2, 3}.

3 Motif Correlation Clustering
We depart from the classical correlation clustering problem by considering a new setting in which one
is allowed to assign probability weights to both edges and arbitrary small induced subgraphs in the
graph and then perform the clustering so as to minimize the overall cost of both edge and higher motif
placements. The described method focuses on weighted undirected and complete graphs, but despite
these apparent topological limitations, it allows one to handle motifs in both directed or incomplete
graphs by encoding information about the “relevance” of directed or incomplete subgraphs of the graph
via the assigned similarity/dissimilarity weights. For example, if in a directed graph the only motifs of
interest are feedforward triangles, only those 3-tuples of vertices corresponding to these directed triangle
structures will be assigned large similarity weights in the undirected complete graph and hence encouraged
to lie within clusters. If triangles are deemed to be relevant, 3-tuples corresponding to triangles in the
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original graph are assigned large similarity weight. Consequently, motif correlation clustering may be
used in applications as diverse as layered flow analysis in a information networks, anomaly detection
in communication networks or for determining hierarchical community structure detection in gene and
neuronal regulatory networks [2].

3.1 Problem Formulation

As already remarked in the motivation section, any incomplete graph may be converted into a weighted
complete graph by assigning weights to the k-tuples of vertices of the complete graph so as to capture
the presence of both edges and non-edges and higher structural units in the initial graph. For example, a
nonedge in the initial graph may be assigned a similarity weight ≤ 1/2, thereby not (significantly) biasing
the clustering objective function towards any particular solution. Similarly, edges in the initial graph may
be assigned similarity weight 1, thereby strongly forcing their corresponding vertices to cluster within
the same community. The same logic may be applied to directed graphs as well. This is why throughout
the rest of paper we assume that the graphs of interest G(V,E) are undirected, weighted complete graphs
with vertex set V of cardinality n and edge set E of cardinality

(
n
2

)
. We also use the symbol K to denote

an arbitrary element of Π(V ), the set of all k-tuples of V such that 2 ≤ k ≤ n. Suppose next that to
each K ∈ Π(V ) we assign a pair of non-negative values, (wK , 1−wK), respectively. The weights wK and
1−wK indicate the respective costs of placing the vertices in K across and within the cluster, respectively.
Therefore, to enable motif clustering, the similarity weights wK of the tuples that constitute motifs in
the initial graph should be large. The goal is to solve the following MinDisagree version of the motif
clustering problem, termed Mixed Motif Correlation Clustering (MMCC): Fix multiple motif graphs in
the initial graph of possibly different sizes that belong to the set S = {k1 < k2 < . . . < kp}, and seek a
vertex partition C = (C1, . . . , Cs), s ≥ 1, that solves

(MMCC) min
C

p∑
t=1

λt
∑

K⊆Ci for some i, |K|=kt
(1− wK)

+λt
∑

K 6⊆Ci for all i, |K|=kt
wK . (1)

Here, λt ≥ 0 denotes the relevance factor of motifs of size kt. Note that by choosing λ1 = 1 for edges and
setting all other relevance factors to zero, we arrive at the classical correlation clustering formulation.

To explain the underlying clustering approach, we henceforth assume that p = 2, and that the motifs
are of size two and three (i.e., edges and triangles). For simplicity of exposition, in our theoretical analysis
we fix the relevance factors to λ1 = λ2 = 1 (and set all other relevance factors to zero). In the subsequent
simulations, we allow the 3-tuple relevance factor λ2 to change in order to explain practical community
detection findings.

It may be shown that the edge/triangle MMCC problem is NP-complete by using a reduction from
the Partition into Triangles problem [22] (The proof of this result may be found in Appendix 6.1. We
only outline the triangle clustering proof, as the edge/triangle case is a simple consequence of this result
and the one pertaining to classical edge correlation clustering). Hence, we focus on developing (constant)
approximation algorithms for the underlying problem.

As before, let S = {2, 3} be the set of motif sizes, and let E(V ) and T (V ) stand for the set of all edges
and 3−tuples of V , respectively. Let T stand for a generic 3-tuple and let xT denote the indicator of the
event that the vertices in the tuple are split among clusters. Furthermore, let xe, e ∈ E(G), denote the
indicator of the event that the pair of vertices corresponding to e belongs to different clusters (i.e., xe = 0
if e = (vw) and v and w belong to the same cluster, and xe = 0 otherwise). As for the general MMCC
problem, we let we denote the similarity weight of a 2-tuple, and wT denote the similarity weight of a
3-tuple T . Recall that 2-tuples and 3-tuples that correspond to edges and triangles in the initial graph
will be weighted differently than 2−tuples and 3-tuples corresponding to nonedges and nontriangles.

By relaxing the indicator variable constraints to xT , xe ∈ [0, 1], we arrive at the following LP problem
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formulation for the MMCC problem:

min
{xe,xT }

∑
e∈E(V )

we xe + (1− we)(1− xe)+ (2)

∑
T∈T (V )

wT xT + (1− wT )(1− xT ) s.t.

a) xT ≥ xe (for all e ∈ E(V ) and e ⊂ T ∈ T (V )),

b) xT ≤
1

2

∑
u,v∈T

xuv, xT ≤ 1 (for all T ∈ T (V )),

xe ≥ 0 (for all e ∈ E(V )),

c) xvw ≤ xuv + xuw (for all distinct u, v, w ∈ V ).

Here, the constraints are to be interpreted as follows: The constraint a) ensures that if an edge lies across
clusters, all triangles T including that edge have to lie across clusters. The constraint b) ensures that
if all three edges of a triangle lie within a cluster, then the corresponding triangle has to lie within the
same cluster, and if a triangle is split, at least two edges lie across clusters. The constraint c) implies
that placing two adjacent edges of a constituent triangle within a cluster leads to placing a third adjacent
edge into the same cluster.

The rounding method accompanying this LP is described in Algorithm 1, with the parameters α, β set
to 1/max{S} = 1/3. Except for a different scaling scheme, the proposed rounding procedure essentially
follows the classical region growing method of [10], but imposes nontrivial analytical challenges when
coupled with our new LP formulation.

Algorithm 1 Rounding Procedure with parameters α, β = 1
3

Initialization: V = V (G);
1: repeat
2: Choose an arbitrary “pivot vertex” u in V;
3: Let Nα(u) = {v ∈ V − {u} : xuv ≤ α};
4: if

∑
v∈Nα(u) xuv > βα|Nα(u)|

5: Output the singleton cluster {u};
6: else
7: Output the cluster C = Nα(u) ∪ {u};
8: Let V = V − C
9: until |V| < 3;
Output: Output all sets C;

Theorem 1. For the parameter choices α, β = 1/3, the LP and rounding algorithm provides an 1/(αβ) =
9-approximation for the MMCC problem.

Proof. It may be shown that proving approximation guarantees for clustering of multiple motifs may be
reduced to proving corresponding results for the largest size motif only, which in this case corresponds
to a 3-tuple. The performance guarantees for triangle clustering are established in Appendix 6. �

The number of constraints in the LP solver for the general MMCC problem equals O(nk), where
k is the size of the largest motif considered. For edge and triangle motifs, this results in a number of
constraints roughly equal to O(n3). To speed up computations and make the algorithm scalable for large
networks one may utilize the sparsity of the constraints and efficient approximate LP solvers, such as
those based on parallel stochastic-coordinate-descent [23]. The aforementioned LP solver offers order of
magnitude improvements in execution speed compared to the Cplex LP solver.

Consider next the following alternative formulation of the motif correlation clustering problem. To
simplify our explanation, we consider motifs involving 3-tuples only, which we generically denote by
T = {a, b, c}, a, b, c ∈ V (The problem formulation below may be easily generalized to include any
combination of motifs, analog to what was described for correlation clustering in Equation (1)). Using
the notion of vertex labels described in the introduction, the objective function of the 3-tuple correlation
clustering problem may be rewritten as:∑

T : `(a)=`(b)=`(c)

(1− wT ) +
∑

T : (`(a)=`(b)=`(c))′

wT .

5



Here, with a slight abuse of notation, E ′ stands for the complement of the event E , which in this case
indicates that at least two vertices in the 3-tuple have different labels. This formulation also has a
natural interpretation in the context of hypergraph clustering and it is straightforward to formulate
a similar objective involving edges and triangles, which equals a correlation clustering formulation for
hypergraphs with two types of edges. Similarly to what was described for correlation clustering, one
may extend the triangle clustering paradigm into an overlapping clustering paradigm by introducing a
set similarity function H, which this time operates on three sets, say A,B,C so that∑

T : a6=b6=c
|H(`(a), `(b), `(c))− wT |,

where as before T = {a, b, c}. Note that if we choose a set similarity function of the form H(A,B,C) = 1
if A∩B ∩C 6= ∅, and H(A,B,C) = 0 otherwise, we arrive at the (new) problem of triangle clique cover.
This type of cover may be easily formulated to include any higher order graph structure, and is the focal
point of the analysis presented in the next section.

4 Overlapping Motif Correlation Clustering via Edge-Triangle
Clique Covers of Graphs

Recall that an edge clique cover (ECC) of an undirected graph G is a set of cliques of G that collectively
covers all of its edges, and that the edge clique cover number (intersection number) of the graph θ|(G)
equals the minimum number of cliques in any ECC. We introduce the concept of a motif cover of a
graph G, which is a set of cliques of G that collectively covers all the chosen motif structures in G. In
particular, we focus on the new paradigm of edge-triangle clique cover (ETCC) of a graph, which is a
set of cliques in the graph that collectively covers all edges and triangles in the graph. The smallest
such number of cliques θ|,4(G) will be referred to as the edge-triangle clique cover number. Clearly, the
edge-triangle clique cover formulation represents nothing more than a combinatorial interpretation of the
motif correlation clustering problem outlined in the previous section, with each shared element of the
sets A,B,C describing a clique/cluster/community. An example illustrating the concepts of ECC and
ETCC is shown in Figure 2.

It was shown in [24] that determining θ|(G) is an NP-complete problem. The idea is to reduce the
problem of determining the vertex clique cover number θ◦(G), which is known to be NP-complete, to the
problem of determining θ|(G). This result may be generalized to show that determining θ|,4(G) is an
NP-complete problem by using ideas from [25] and by reducing the problem of determining θ|(G) to the
problem of determining θ|,4(G). Details of the proof may be found in Appendix 6.3.

As the edge-triangle clique cover problem is NP-complete, we focus on developing a simple simulated
annealing algorithm for finding an approximate edge-triangle cover. One of the problem parameters of
the annealing algorithm is the number (or an upper bound on the number) of near-cliques or cliques
needed to cover the edges and triangles in the graph∗. We derive one such upper bound by a nontrivial
generalizations of upper bounds on the intersection number derived in [21, 26] for the case of the edge-
triangle clique cover number.

4.1 A Simulated Annealing Algorithm

As the ETCC is hard to solve exactly, we seek an approximate empirical algorithm that may perform
the covering efficiently on large scale networks. Such an approach was also proposed in the context of
computing approximations for intersection numbers in [17, 19]. There, given a fixed number of features
(clusters, communities) M , the algorithm assigns subsets of features to the vertices of the graph in a way
that maximizes a certain score, which for simplicity may be taken to equal the number of pairs (u, v) ∈ V ×
V that satisfy the previously described set intersection conditions. Once a feature assignment with a large
score is found, each set of vertices assigned one particular feature is treated as a cluster, or equivalently, a
community. As each vertex can be assigned more than one features, the output communities are naturally
overlapping. Furthermore, as the solution is only approximate, the communities do not necessarily
correspond to cliques but to dense subgraphs, which is actually a desirable property for real world
network community detection, where cliques as communities may be rather unrealistic. For example, in
Facebook friendship networks, a group of people sharing one common feature – say, having graduated
from the same school – does not necessarily imply pairwise Facebook friendship.

∗Note that, in general, M does not have to be a bound on the edge-triangle clique cover number, as one may want to
have communities that are not necessarily cliques. Choosing the parameter M to be smaller than the edge-triangle clique
cover number will force smaller clusters to be lumped together.
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An edge clique cover
of size four

An edge-triangle clique cover
of size five

b b

Figure 2: An edge clique cover and an edge-triangle clique cover. Note that the edge clique cover does
not form an edge-triangle clique cover because it does not cover the middle (darker shaded) triangle.

In what follows, we describe a new simulated annealing algorithm for detecting overlapping commu-
nities that takes into consideration both edges and triangles. We recall that an edge-triangle intersection
representation of a graph requires that two vertices be adjacent if and only if they share a common
feature, and similarly, three vertices u, v, and w form a triangle if and only if they all share at least one
common feature. We henceforth refer to these conditions as the Edge-Triangle Intersection Condition,
which essentially guarantees that two or three vertices belong to a common community if and only if
they are pairwise adjacent. Given an estimated number of communities M , the objective function may
be written as follows:

max
A : V→2[M]

αe

∑
(u,v)∈E

χ(Au ∩Av 6= ∅)

+ αne

∑
(u,v)/∈E

(
1− χ(Au ∩Av 6= ∅)

)
+ αt

∑
(u,v,w)∈T

χ(Au ∩Av ∩Aw 6= ∅)

+ αnt

∑
(u,v,w)/∈T

(
1− χ(Au ∩Av ∩Aw 6= ∅)

)
,

(3)

where Au ⊆ {1, 2, . . . ,M} denotes the set of features of the ground set assigned to the vertex u, T
denotes the set of triangles of G, and χ(C) = 1 if the clause C is correct and χ(C) = 0 otherwise. The
parameters α essentially represent the rewards of edges, nonedges, triangles and nontriangles satisfying
the edge-triangle intersection rules described above.

When αe = αne = αt = αnt = 1, the solution to the optimization problem (3) corresponds to
an approximate edge-triangle intersection representation of G with highest score, which is defined as the
number of pairs (u, v) and 3-tuples (u, v, w) that have feature sets satisfying the Edge-Triangle Intersection
Condition. In sparse networks, the number of edges can be much smaller than the number of non-edges
and the number of non-triangles. Therefore, it is desirable to tune the rewards as follows:

αe = 1, αne =
|E|(

n
2

)
− |E| , αt =

|E|
|T | , αnt =

|E|(
n
3

)
− |T | , (4)

where the sums are normalized according to their numbers of terms.
Let s(A) denote the normalized score of the feature assignment A : V → 2[M ] with respect to the

weights given in (4). The following empirical simulated annealing algorithm outputs a feature assignment
that yields very good normalized scores in a number of tested practical settings.

Extensive simulations with the above algorithm seem to suggest that setting µ = M offers best
performance for a wide range of network topologies. The number of rounds N that ensures quality
results is O(n log(n)).

Note that calculating s(A) requires roughly O(n3) operations. Therefore, one should compute s(A)
only once at the start of the algorithm. At every iteration when a candidate feature set A′u is generated,
to compute s(A′), one should use the formula

s(A′) = s(A) + su(A′)− su(A),

where su(A) comprises the terms in (3) that involve u. There are
(
n−1
2

)
+ n− 1 such terms. Therefore,

in each iteration, the computational complexity scales as O(n2). Jointly with the preprocessing step, the
annealing algorithm therefore has total time complexity O(n3 log(n)).
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Simulated Annealing Algorithm
Input: Graph G = (V,E), mixing parameter µ, number of features M ,

number of rounds N ;
1: Let A ≡ A0 : V → 2[M ] be an arbitrary feature assignment;
2: repeat
3: Choose a vertex u ∈ V uniformly at random;
4: Select A′u ⊆ {1, 2, . . . ,M} uniformly at random;
5: Set A′v = Av for all v 6= u;
6: Set A = A′ with probability min{1, exp

(
µ(s(A′)− s(A))

)
};

7: until the loop has run for N rounds;
Output: The best observed assignment A, i.e., the one
which has the highest normalized score;

4.2 Upper Bounds on the Edge-Triangle Clique Cover

An upper bound on the number of features, or equivalently, an upper bound on the edge-triangle clique
cover number, may be used to guide the choice of the input parameter M of the annealing algorithm
(See the Simulation results section for a discussion of this issue). To determine a tight bound on the
edge-triangle clique cover number, we recall a classical result from graph theory [21], which states that
the edge clique cover number θ|,4(G) satisfies the following inequality:

θ|(G) ≤
⌊
n2

4

⌋
,

for any graph G on n vertices. Equality is met when G is the Turán graph T (n, 2) [27], a complete
bipartite graph with one part consisting of bn/2c vertices and the other part consisting of dn/2e vertices.
Next, we establish a nontrivial extensions of this result for θ|,4(G).

Theorem 2. For any graph G on n ≥ 7 vertices, one has

θ|,4(G) ≤



n3

27
, if n ≡ 0 (mod 3),

(n− 1)3

27
+

(n− 1)2

9
, if n ≡ 1 (mod 3),

(n+ 1)3

27
− (n+ 1)2

9
, if n ≡ 2 (mod 3).

(5)

Proof. The proof of Theorem 2 is rather involved, and a sketch of the arguments is presented in the
Appendix 6.4. �

Theorem 3. A graph of order n has the edge-triangle clique cover number θ|,4 attaining the upper bound
given in Theorem 2 if and only if it is the Turán graph T (n, 3), a complete tripartite graph where the
sizes of the parts differ from each other by at most one.

This general purpose bound may be improved for a number of families of graphs, and in particular
for complements of sparse graphs [26, Lemma 3.2], as stated in our next theorem.

Theorem 4. If deg(v) ≥ n− d for every vertex v of G, a graph of order n, where d ≥ 1, then θ|,4(G) ≤
d3e3(d+ 1)3 loge ne.

5 Simulation Results

We tested both the MMCC algorithm with different choices of the motif weights as well as the simulated
annealing approach with a number of clusters upper bounded according to Theorem 2 on two small scale
networks, in order to be able to discuss in detail various community structures that arise due to motifs
(e.g., triangle).

In the former case, we always set the similarity weight of edges and triangles to 1, and only tune
the dissimilarity weight of nonedges and the relevance factor of triangles λ2 = λ. Different dissimilarity
weights give different “clustering resolutions”: Increasing the dissimilarity weight clearly leads to small
clusters conglomerating into larger clusters.
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In the later case, the main challenge is to determine the correct choice for M , as it effectively represents
the number of clusters. Most approaches rely on using a fraction of the edges for training and the
remaining edges for actual community testing. We may also use an input parameter M based on the
theoretical upper bound of Theorem 2, scaled depending on the resolution of the communities we want.

The first network considered was described in [28], comprising four overlapping social communities
that exhibit a number of triangle subgraphs. We first tested the MMCC method on this network, with
edges and triangles treated as motifs, and we ran the approximation algorithm for two different choices of
edge/nonedge and triangle/nontriangle weights. In the first test, we set the dissimilarity weights 1− we
of the nonedges to lie in the interval [1/2− 0.9× ε, 1/2− 0.5× ε], where ε denotes the edge density of the
network, defined as ε = |E|/

(
n
2

)
. We kept the dissimilarity weight close to the value 1/2 to account for

the lack of influence of the nonedges on the community structures, but still strictly below 1/2 in order to
allow for more flexibility in the vertex placement procedure. The similarity weight of edges was set to 1.
Furthermore, we let the relevance factor of triangles, λ, range from 0 to 50, and set the similarity weight
of triangles to 1 and that of nontriangles to 1/2. For all triangle relevance values λ in the range 0− 0.1,
which are very small, we recovered the original four communities of [28], as triangles effectively played no
role in the community structure. The results are depicted in Figure 3. For all triangle relevance values
in the range 0.2 − 9 we obtained the same clustering result, comprising three communities, as depicted
in Figure 3. This clustering differs from the original structure outlined in [28] in so far that two clusters
were joined into one (colored pink, involving vertices labeled starting with 7). This is a consequence of
the fact that a large number of triangles were crossing the two clusters, and with an increased relevance
value of triangles, these motifs were grouped together. As expected, by making λ very large - say, a value
between 10 and 50, we obtain one single cluster, as all triangles cluster together.

Applying the overlapping clustering method based on simulated annealing on the same network results
in the same structure as reported in [28], including four communities, except for one slight change: Node
17 now belongs to two different communities instead of just one, as illustrated in Figure 4. The explanation
behind this result is that since node 17 creates a triangle with both nodes 18 and 19, and the triangle
motif encourages these three nodes to lie within the same cluster, which also appears to more realistically
explain the community structure. Note that in the simulations, we set M = 4 to fairly compare our
findings with those of [28]. The edge-triangle intersection number for the graph equals 16†, and using M
closer to this value would recover finer resolution community structures. The second example we present

Figure 3: Four and three nonoverlapping communities of the network [28], obtained using the MMMC
method.

is the well studied Zachary Karate Club network [29]. In the MMCC setting, we used the following
parameter values: For the first set of tests, the dissimilarity weight of nonedges was set to 1/2− 0.25× ε.
The triangle similarity weight was set to 1, and the relevance factor λ kept in the range 1 − 4. In this
case, we found three, rather than the two original clusters, as node 10 was placed in a cluster by itself
(see Figure 5). The reason behind this result is that the dissimilarity cost deviates significantly from
the neutral value 1/2 and there are a few connecting edges between 10 and other nodes in the network.
Node 10 also does not close any triangles. For the second test, we set the dissimilarity weight of nonedges
to be 1/2 − 0.2 × ε. In this case, we recovered the two ground truth clusters, with one mistake again
relating to node 10 which is now placed in a different cluster (see Figure 5, where the node is marked
by a dashed circle). The reason behind this classification is that the dissimilarity weight of nonedges is
neutral, and that there are no triangle involving node 10, so that 10 is placed into the smaller of the two
clusters. The annealing algorithm with M = 2 also recovers the two communities in the network (see

†The bound of Theorem 2 equals 450, which is roughly an order of magnitude larger.
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Figure 4: An example of a network with four overlapping communities from [28]. Red nodes belong to
overlapping communities.

Figure 6)‡, except that now node 3 belongs to both communities, as this node is not only well connected
to both sides, but also closes a triangle with both node 9 and node 33 in the left cluster. The edge-only
version of the annealing algorithm [19] always misclassifies node 10 by putting it into the right cluster,
and it cannot find any overlapping clusters. For a large range of values of the annealing parameter M ,
our method also puts node 3 and node 34 into two clusters simultaneously.

6 Appendix

6.1 Proof of MMCC Hardness

It is easy to see that the problem is in NP. To prove the claim, we focus our attention on the unweighted
case wK ∈ {0, 1} and use a reduction from the NP-complete Partition into Triangles problem.

Since wK ∈ {0, 1}, for simplicity of terminology we refer to a triplet K with wK = 1 (respectively,
wK = 0) as “positive” (respectively, “negative”). We also use the term “positive error” to indicate that a
positive triplet is placed across clusters and “negative error” to indicate that a negative triplet is placed
within one cluster. Given a not necessarily complete graph G = G(V,E), containing n vertices where n
is a multiple of 3, one problem of interest is to determine whether it can be partitioned into triangles.
This problem, known as Partition into Triangles (PiT), has been proved to be NP-complete. To address
the issue of MMCC hardness, we will exhibit a reduction of the PiT problem to the MMCC. As the first
step in our proof, we construct a weighted graph Gw that has the same vertex set as G. We set to 1 the
weights of triplets Gw that correspond to triangles in G, and set the weights of all other triplets in Gw

to 0. If there were a polynomial-time algorithm for the MMCC problem with the additionally imposed
constraint that the size of each cluster is at most 3, then we would be able to efficiently partition G into
triangles, a contradiction. As the MMCC algorithm does not necessarily generate clusters with bounded
size, in what follows we describe how to construct another weighted graph, Hw, such that the MMCC
algorithm applied on Hw results in a bounded cluster-size run of MMCC on Gw.

The basic idea behind our approach is to impose the constraint on the size of clusters in Gw by adding
a large number of vertices into Hw for each triplet in Gw, and then making the triplets inside the added
vertices positive and other triplets negative. In this setting, a cluster in the new graph Hw with more
than 3 vertices in Gw causes too many negative errors and hence cannot be part of the optimal clustering.

We now describe now how to construct a graph H from G. In addition to the vertices of G, for every
triplet {j1, j2, j3} in G, H contains additional n5 vertices within a clique which we denote by Cj1j2j3 .
Hence, H contains n+n5

(
n
3

)
vertices, and its edges include all edges inherited from G along with the edges

in the cliques and a set of edges fully connecting {j1, j2, j3} and Cj1j2j3 (The vertices in the clique Cj1j2j3
are not connected to any vertices inherited from G other than {j1, j2, j3}). It is also straightforward to

show that H has
(
n
3

) [(
n5

2

)
+ 3n5

]
+ |E(G)| edges. We use the term added sets of a vertex v ∈ H inherited

from G to refer to the vertices of the added cliques that contain v as subscript; a similar terminology
is used to refer to cliques containing pairs of vertices inherited from G. Clearly, each vertex has

(
n−1
2

)
corresponding added sets, while each pair of vertices has

(
n−2
1

)
added sets. The weights of triplets of

Hw are determined as follows: Triplets comprising vertices from Gw only have the same weights as those
assigned in Gw; the weights of the remaining triplets, comprising vertices from Cj1j2j3 ∪ {j1, j2, j3}, have
weight one, while all other triplets have weight zero.

Consider now a clustering C∗ of Hw of the following form:

1. There are
(
n
3

)
nonoverlapping clusters.

‡The edge-clique number of the graph equals 34, while Theorem 2 provides a rather loose upper bound of 1455.
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2. Each cluster contains exactly one clique Cj1j2j3 and potentially a subset of the corresponding three
vertices {j1, j2, j3}.

3. Each vertex in V (G) lies in exactly one cluster that contains one of its corresponding added sets.

In the above clustering, there are no errors arising due to triplets that lie across different added sets,
since each cluster contains exactly one added set and the weights of triplets that lie across two clusters
are equal to zero. The only errors arise from triplets with vertices contained in V (G) or those involving
both the vertices of V (G) and the added sets. In the former case, the number of errors is at most

(
n
3

)
. In

the later case, each vertex in V (G) is clustered together with just one added set and thus the number of

positive errors induced by this vertex and its other corresponding added sets is exactly
(
n5

2

)
(
(
n−1
2

)
− 1).

For any pair of vertices in V (G), the number of positive triplets that contain this pair and a vertex in
the corresponding added sets of the pair is not larger than n5(n− 2). Hence, the total number of errors

for the described clusters is not larger than n
(
n5

2

)
(
(
n−1
2

)
− 1) +

(
n
2

)
n5(n− 2) +

(
n
3

)
∼ Ω(n13).

The clustering C∗ essentially partitions the vertices of G into many small subsets, each of which
containing at most three vertices. In our subsequent derivation, we show that the number of errors in a
clustering that contains one cluster with at least four vertices from V (G) must be larger than the number
of errors induced by C∗.

First, observe that a clustering with fewer errors than C∗ has to have the size of each of its cluster
lie in the interval [n5 − n4, n5 + n4]. Suppose that on the contrary there exists a cluster containing more

that n5 +n4 vertices. Then, there are at least
(
n5

2

)
n4 ∼ Ω(n14) errors caused by negative triangles across

two different added sets within this cluster. Furthermore, each cluster must contain at least n5 − n4
vertices of a clique, otherwise there are at least

(
n5

2

)
n4 ∼ Ω(n14) positive errors generated by “splitting”

the corresponding added set. Since the size of each cluster is smaller than n5 + n4, for each vertex in
V (G), the number of positive errors of the triplets formed by this vertex and two other vertices in the

corresponding added sets of this vertex is lower bounded by
(
n5

2

)(
n−1
2

)
−
(
n5

2

)
−
(
n4

2

)
.

Assume now that there exists a cluster that contains four vertices, say {j1, j2, j3, j4}, in V (G). Then,
there exists at least one vertex in {j1, j2, j3, j4}, say j1, and at least n5−n4 other vertices that do not lie

in a added set of j1. Hence, the number of negative errors within this cluster is at least
(
n5−n4

2

)
. The total

number of errors induced by such a clustering is therefore at least n
(
n5

2

)
(
(
n−1
2

)
− 1) − n

(
n4

2

)
+
(
n5−n4

2

)
,

which is larger than the number of errors in the clustering C∗, for n sufficiently large. Therefore, the
optimal triangle-clustering has to be of the form of C∗, imposing a constraint on the size of clusters in
Gw.

6.2 Proof of MMCC Approximation Guarantees

Throughout the section, we use V to denote the set of unclustered vertices in one iteration.
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Figure 5: Nonoverlapping communities for the Zachary Karate Club network [29], obtained using the
MMCC method.
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Figure 6: Two overlapping communities detected in Zachary’s Karate network [29].
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The proof to follows also often uses some immediate consequences of the LP constraints; it adopts
the convention that xjj = 0 for all j ∈ V :

1. xjg ≥ xij − xig for any i, j, g ∈ V ;

2. xT ≥ maxj,g∈T [xij − xig] for any i ∈ V ;

3. xT ≤ 1
2

∑
j,g∈T xjg ≤ 1

2

∑
j,g∈T (xij + xig) ≤

∑
j∈T xij for any i ∈ V .

When clustering splits (gathers) the endpoints of an edge or the vertices of a 3-tuple into different
clusters (in one single cluster), we call the result a break (keep). In each iteration of Algorithm 1, exactly
one cluster will be output and thus break or keep the edges and 3-tuples that have intersection with this
cluster. To prove the rounding procedure can approximate the optimal solution within a constant factor
9, it suffices to prove that for each iteration in Algorithm 1, the edges and 3-tuples that are broken or
kept will not increase the corresponding costs in the LP by more than 9 times. We will do the analysis
for the 3-tuples only, since the analysis for edges is similar.

Based on the output clusters being singletons or containing more vertices, we consider two different
cases:

Case 1: The output is a singleton cluster {i}.
The clustering cost when outputting a singleton {i} is

∑
T⊂T (V):i∈T wT while the LP cost is

∑
T⊂T (V):i∈T (1−

wT )(1− xT ) + wTxT .
If T ∩ {V − ({i} ∪Nα(i))} 6= ∅, we have xT > α, so charging each such 3-tuple 1/α times its LP-cost

compensates for the cluster-cost. Therefore, it suffices to consider the 3-tuples T ∈ T (Nα(i) ∪ {i}) with
i ∈ T . Let T = {i, j, g}. Then, for any j, g ∈ Nα(i) we have

1

2
(xij + xig) ≤ xijg ≤ xij + xig ≤ 2α,

where the inequalities are based on the LP constraints. Hence, the LP cost of T = {i, j, g} is bounded by

(1− wT )(1− xT ) + wTxT

≥(1− wT )(1− xij − xig) +
1

2
wT (xij + xig)

≥wT
[

3

2
(xij + xig)− 1

]
+ (1− xij − xig).

Since each xij for j ∈ T satisfies xij ≤ α ≤ 1/3, the quantity in square brackets is negative, so that
wijg ≤ 1 implies

(1− wT )(1− xT ) + wTxT ≥
1

2
(xij + xig).

Summing over all T = {i, j, g} such that j, g ∈ Nα(i), j 6= g, we see that∑
j,g∈Nα(i),j 6=g

[(1− wT )(1− xT ) + wTxT ]

≥
∑

j,g∈Nα(i),j 6=g

1

2
(xij + xig) ≥ αβ

(|Nα(i)|
2

)
,

where the last inequality follows from the condition
∑
j∈Nα(i) xij > βα |Nα(i)| that causes the algorithm

to output {i} as a singleton cluster.
Therefore, charging 1/(αβ) times the LP-cost to each 3-tuple that is kept or broken in Case 1 is

enough to compensate for the total clustering cost of these tuples.
Case 2: The output is a cluster {i} ∪Nα(i).
The cost of the 3-tuples kept inside the cluster. The case i ∈ T is the same as before: If T = {i, j, g},

then we have xT ≤ xij + xig ≤ 2α, so charging 1/(1 − 2α) for this tuple is enough to compensate the
cluster-cost.

If i /∈ T , order the vertices in Nα(i) in such a way that for any j, g ∈ Nα(i), j ≺ g iff xij < xig and
assign an arbitrary order (j ≺ g) when the equality (xij = xig) holds.

For each vertex g ∈ Nα(i), let Rg = {j ∈ Nα(i) : j ≺ g}, and let Eg be the set of 3-tuples T such
that T ⊂ Nα(i) and g is the largest vertex of T according to ≺. (Thus, if T ∈ El, then g ∈ Eg and
Eg ⊂ Rg ∪ {g}.)
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Note that because of the order, we have
∑
j∈Rg xij ≤ αβ|Rg|. Fix some g ∈ Nα(i); we consider the

total cost of the 3-tuples in Eg. The corresponding cluster-cost is
∑
T∈Eg 1 − wT while the LP cost is∑

T∈Eg (1− xT )(1− wT ) + xTwT .
If xig ≤ βα, then for each T ∈ Eg, we have

xT ≤
∑
j∈T

xij ≤ 3xig ≤ 3βα,

so that charging 1/(1 − 3βα) times the LP-cost to each 3-tuple in Eg is enough to pay for the cluster
cost of all such tuples.

Now suppose that xig > βα. In this case, for each T ∈ Eg, we have xT ≤
∑
j∈T xij , hence 1− xT ≥

1−∑j∈T xij . Furthermore,

xT ≥ max
j∈T−g

[xig − xij ] ≥ xig −
1

2

∑
j∈T−g

xij .

Letting σ =
∑
j∈T−g xij so that 1− xT ≥ 1− xig − σ, we have the following lower bound on the LP-cost

of T :

(1− wT )(1− xT ) + wTxT

≥(1− wT )(1− xig − σ) + wT (xig −
1

2
σ)

≥(1− wT )(1− 2xig −
1

2
σ) + xig −

1

2
σ.

Summing over all T ∈ Eg and using the inequality
∑
T∈Eg

1
2

∑
j∈T−g xij ≤ |Eg|βα yields the following

lower bound on the total LP-cost of the edges in Eg:∑
T∈Eg

[(1− wT )(1− xT ) + wTxT ]

≥
∑
T∈Eg

[(1− wT )(1− 2xig −
1

2
σ) + xig − βα]

≥
∑
T∈Eg

[(1− wT )(1− xig −
1

2
σ − βα)]

≥
∑
T∈Eg

[(1− wT )(1− 2α− βα)] .

Thus, charging each 3-tuple in Eg a factor of 1/(1− 2α− βα) times its LP-cost pays for the cluster-cost
of all 3-tuples in Eg.

The cost to break 3-tuples across the cluster and the remaining part of V. As before, we call such tuples
broken tuples. Each broken tuple T incurs a cluster-cost of wT and an LP-cost of xTwT +(1−xT )(1−wT ).
First suppose that T is a broken 3-tuple with i ∈ T , and g ∈ T −Nα(i) ∪ i. Since T is broken, we have
xT ≥ xig > α, so charging 1/α times the LP cost pays for such T . We still must pay for the broken tuples
T with i /∈ T . For any set T1 ⊂ V −Nα(i), |T1| < 3, let ET1 be the set of broken tuples T such that i /∈ T
and T −Nα(i) = T1. We show that the total cluster-cost of the tuples in ET1 is at most a constant times
their total LP-cost. First, suppose that there is some vertex g ∈ T1 such that xig ≥ (1 + β)α. In this
case, for every T ∈ ET1

, we can take some arbitrary j ∈ T ∩Nα(i) and obtain

xT ≥ xig − xij ≥ βα,

since j ∈ Nα(i) implies xij ≤ α. Thus, in this case, charging 1/αβ times the LP-cost of each tuple in
ET1

pays for the cluster-cost of all tuples in ET1
.

Next, suppose that xig ≤ (1 + β)α for all g ∈ T1. Consider any T ∈ ET1
. Let T2 = T ∩ Nα(i), let

σ1 =
∑
j∈T1

xij and let σ2 =
∑
j∈T2

xij . We have the following bounds:

1− xT ≥ 1−
∑
j∈T

xij = 1− (σ1 + σ2),

xT ≥ max
g∈T1, j∈T2

[xig − xil] ≥
1

|T1|
σ1 −

1

|T2|
σ2.
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Combining these bounds yields the following lower bound on the LP-cost of T :

(1− wT )(1− xT ) + wTxT (6)

≥(1− wT )(1− σ1 − σ2) + wT

(
σ1
|T1|
− σ2
|T2|

)
(7)

=wT

[ |T1|+ 1

|T1|
σ1 +

|T2| − 1

|T2|
σ2 − 1

]
+ 1− σ1 − σ2.

Using the bijection between ET1
and

(
Nα(i)
|T2|

)
and |T2| = 3 − |T1|, we see that

∑
T∈ET1

σ2 ≤ (3 −
|T1|)βα

( |Nα(i)|
(3−|T1|)

)
. Furthermore, since α, β ≤ 1/3, we have

1− σ − |T1|βα ≥ 1− |T | (1 + β)α− |T1|βα

≥ 1− 2(1 + β)α− βα ≥ 0.

Therefore, summing the above inequality over all T ∈ ET1 gives the following lower bound on the total
LP-cost of all tuples in ET1 : ∑

T∈ET1

[(1− wT )(1− xT ) + wTxT ]

≥
∑

T∈ET1

wT

[ |T1|+ 1

|T1|
σ1 +

|T2| − 1

|T2|
σ2 − 1

]
+
∑

T∈ET1

(1− σ1 − βα |T2|)

≥
∑

T∈ET1

wT

[
1

|T1|
σ1 +

|T2| − 1

|T2|
σ2 − βα |T2|

]
≥
∑

T∈ET1

wT (α− 2αβ).

As a result, charging a factor of 1/[α(1−2β)] times the LP-cost of each tuple in ET pays for the cluster-cost
of all tuples in ET .

In summary, if α, β ≤ 1/3, then charging each tuple a factor of c times its LP cost, where

c = max{ 1

βα
,

1

1− 2α
,

1

1− 2α− βα,
1

α(1− 2β)
} =

1

βα
,

is enough to compensate the cluster-cost of all tuples. By setting α = β = 1/3, which minimizes c, we
obtain 9 as the approximation factor.

6.3 Proof of Hardness for Finding the Edge-Triangle Cover Number

It is obvious that ETCC is in NP. We prove the NP-completeness of this problem by establishing a
reduction from the ECC problem, which is know to be NP-complete [24, 25]. Let G be an arbitrary
graph of order n and let M ≥ 1. Let G′ be the graph obtained from G by introducing

• s = 1 + θ|,4(G) new vertices {u1, . . . , us}, and

• sn new edges that connect the new vertices to all existing vertices of G.

By Theorem 2, the graph G′ has order and size polynomial in n. Let M ′ = sM+θ|,4(G). We demonstrate
that θ|(G) ≤M if and only if θ|,4(G′) ≤M ′.

Indeed, suppose that θ|(G) ≤M , i.e. there is a set A of at most M cliques in G that collectively cover
all edges in G. Then we can cover all edges and triangles in G′ by a set of cliques B obtained from A by
adding each vertex in {u1, u2, . . . , us} to each clique in A, together with a minimum set of cliques C of G
that can cover all edges and triangles in G, which has size θ|,4(G). In total, this cover has at most

s|A|+ |C| ≤ sM + θ|,4(G) = M ′

cliques. Thus, if θ|(G) ≤ M then θ|,4(G′) ≤ M ′. Conversely, suppose that we have an edge-triangle
clique cover D of G′ of size at most M ′. Let Di be the subset of cliques in D that contain the vertex ui,
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for 1 ≤ i ≤ s. As ui and uj are not adjacent, for i 6= j, Di and Dj do not have any common cliques.
Hence,

s∑
i=1

|Di| ≤ |D| ≤M ′.

Therefore, if imin is an index such that |Dimin
| = min1≤i≤s |Di|, then

|Dimin
| ≤

⌊∑s
i=1 |Di|
s

⌋
≤
⌊
M ′

s

⌋
=

⌊
sM + θ|,4(G)

s

⌋
= M,

where the last equality holds because s = 1 + θ|,4(G). Then, by removing uimin from all cliques in Dimin ,
we obtain an edge clique cover of G of size at most M . The proof follows.

6.4 Proof of Upper Bound on The Edge-Triangle Cover Number

Lemma 1. Let G be a graph on n ≥ 3 vertices, and (u, v, w) be a triangle in G. Then

θ
{u,v,w}
|,4 (G) ≤ bn

2

3
c − n+ 1, (8)

where θ
{u,v,w}
|,4 (G) denotes the minimum number of cliques of G that can cover all edges and triangles

that contain at least one vertex among u, v, and w.

Sketch. We prove this lemma by induction on n. The inequality (8) obviously holds for n ≤ 5. We now
assume that n ≥ 6 and that (8) holds for all graphs of order n− 3. We need to prove that this inequality
also holds for a graph G of order n. Let Gn−3 be the subgraph of G = (V,E) induced by the set of
vertices V \ {u, v, w}. We consider the following two cases.

Case 1. The graph Gn−3 has no triangles. In order to bound θ
{u,v,w}
|,4 (G), we analyze the edges and

triangles of G that contain at least one vertex from {u, v, w}. There are three types of such edges and
triangles. Type 1 consists of the edges and triangles that only involve u, v, and w. Obviously, we can
cover all of these edges and triangles by using just one clique (u, v, w). Type 2 consists of the edges
and triangles that contain precisely one vertex in Gn−3. For each vertex x of Gn−3, since u, v, and w
form a triangle, we can use at most one clique to cover all edges and triangles of Type 2 associated to x.
Therefore, we can cover all edges and triangles of Type 2 by at most n− 3 cliques. Type 3 consists of the
triangles that contain precisely one vertex from {u, v, w}, and two vertices in Gn−3. Similarly, we can
use at most one clique to cover all triangles of Type 3 containing each edge (x, y) of Gn−3. Since Gn−3
is triangle-free by assumption, according to Turán’s theorem [27], Gn−3 has at most (n − 3)2/4 edges.
Therefore, we can cover all triangles of Type 3 by at most (n− 3)2/4 cliques.

By summing up the number of cliques to cover the edges and triangles of all three types we obtain

1 + (n− 3) +
(n− 3)2

4
≤ n2

3
− n+ 1⇐⇒ 0 ≤ (n− 3)2, (9)

which is always true. Thus, in this case, (8) holds.
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Figure 7: (Case 2) Edges and triangles of Type 4, each of which contains at least one vertex from {u, v, w},
but no vertex from {x, y, z}, and of Type 5, each of which contains at least one vertex from {u, v, w}, at
least one vertex from {x, y, z}, and no vertex from Gn−6 (we ignore the triangle (v, x, z) for clarity).

Case 2. Let (x, y, z) be a triangle of Gn−3 that forms the largest number of edges with (u, v, w). In
other words, we choose the triangle (x, y, z) so that the number of edges (p, q), where p ∈ {u, v, w} and
q ∈ {x, y, z}, is maximized among all triangles of Gn−3. Let Gn−6 be the subgraph of G induced by the

vertices V \ {u, v, w, x, y, z}. In order to bound θ
{u,v,w}
|,4 (G), we analyze the edges and triangles of G that
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contain at least one vertex from {u, v, w}. There are three types of such edges and triangles (see Fig. 7
and Fig. 8). Type 4 consists of the edges and triangles that contain at least one vertex from {u, v, w},
but no vertex from {x, y, z}. By the inductive hypothesis, we can cover all edges and triangles of Type 4
by at most

(n− 3)2

3
− (n− 3) + 1 (10)

cliques. Type 5 consists of the edges and triangles that contain at least one vertex from {u, v, w}, at
least one vertex from {x, y, z}, and no vertex from Gn−6. We can show that the edges and triangles of
Type 5 can be covered by at most six cliques, without much difficulty. Type 6 consists of the triangles

u

v

w

Type 6

Gn−6
Gn−3

x

y

z
a

Figure 8: (Case 2) Triangles of Type 6, each of which contains one vertex from {u, v, w}, one from
{x, y, z}, and one from Gn−6.

that contain one vertex from {u, v, w}, one from {x, y, z}, and one from Gn−6. It can be shown that one
can cover all triangles of Type 6 with at most 2(n− 6) cliques. The key idea is to prove that we can use
at most two cliques to cover all triangles of this type that contain each fixed vertex a of Gn−6. We omit
the details. Finally, the numbers of cliques used to cover all edges and triangles of Type 4, Type 5, and
Type 6 sum up precisely to n2/3− n+ 1. �

A proof similar to the one presented for Lemma 1 may be used to prove Lemma 2.

Lemma 2. Let G be a graph on n vertices, where n 6≡ 0 (mod 3), and (u, v, w) is a triangle in G. Then

θ
{u,v,w}
|,4 (G) ≤ n2 + 2

3
− n, (11)

where θ
{u,v,w}
|,4 (G) denotes the minimum number of cliques of G that can cover all edges and triangles

that contain at least one vertex among u, v, and w.

Lemma 3. The inequality (5) stated in Theorem 2 holds for n = 7, 8, 9.

Sketch. For n = 7, 8, 9, we can apply the strategy used in the proof of Lemma 1, by taking out a triangle
(u, v, w) of G, if any, and then considering two cases, depending on whether Gn−3 = G \ {u, v, w}
contains a triangle (x, y, z) or not. In both cases, we can show that (5) holds. Note that if G does
not contain any triangles, then by Turán’s theorem [27], all edges of G can be covered by at most
bn2/4c ≤ bn/3cb(n + 1)/3cb(n + 2)/3c cliques, which are the edges themselves, for n ≥ 7. We omit the
remaining details. �

Proof of Theorem 2. We also prove this theorem by induction on n. The base case follows from Lemma 3.
Induction step.

Suppose that n ≥ 10 and that the statement (5) of the theorem holds for all graphs on n− 3 vertices.
We aim to prove that (5) also holds for any graph G = (V,E) on n vertices. If G has no triangles then
by Turán’s theorem [27], all edges of G can be covered by at most bn2/4c ≤ bn/3cb(n+ 1)/3cb(n+ 2)/3c
cliques (edges), for n ≥ 10, and hence Theorem 2 holds trivially. We now assume that there exists some
triangle (u, v, w) in G. Let Gn−3 be the subgraph of G induced by the vertex set V \ {u, v, w}. If n ≡ 0
(mod 3), then by our inductive hypothesis, all edges and triangles in Gn−3 can be covered by using at

most (n−3)3
27 cliques. Moreover, by Lemma 1, all edges and triangles in G that contain at least one vertex

from {u, v, w} can be covered by at most n2

3 − n + 1 cliques. Thus, all edges and triangles in G can be
covered by using at most

θ|,4(Gn−3) + θ
{u,v,w}
|,4 (G) ≤ (n− 3)3

27
+
(n2

3
− n+ 1

)
=
n3

27

cliques. Hence, Equation (5) holds for G as well. The cases n ≡ 1, 2 (mod 3) can be handled similarly. �
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6.5 Proof of the Upper Bound on the Edge-Triangle Clique Cover Number
for Complements of Sparse Graphs

Let M = d3e3(d + 1)3 loge ne. Each set C ′k, k = 1, 2, . . . ,M , is created independently by including each
vertex v with a probability of 1/(d + 1). Then for each m, let Cm be obtained from C ′m by removing
those vertices that have some non-neighbors in C ′m. Obviously Cm is a clique of G. We aim to show that
the expected number of edges and triangles that are not contained in any clique Cm, k = 1, 2, . . . ,M , is
smaller than one, which implies that there exists an ETCC of size M .

For each m, each triangle (u, v, w) of G is covered by Cm if all three vertices are included in C ′m and
none of their non-neighbors are chosen. Therefore, the probability that (u, v, w) is covered by Cm is at
least

1

(d+ 1)3

(
1− 1

d+ 1

)3d
≥ 1

e3(d+ 1)3
,

where the inequality follows from the inequality (1 − 1
x )x−1 ≥ 1

e , where x = d + 1 ≥ 2. Therefore, the
probability that (u, v, w) is not covered in any Cm’s is at most(

1− 1

e3(d+ 1)3

)M
≤ exp(− M

e3(d+ 1)3
)

< exp(−3 loge n) =
1

n3
,

where the first inequality is from the inequality (1 − 1
x )y ≤ exp(− yx ), for all x > 1 and y > 0, and the

second one is because M ≥ 3e3(d + 1)3 loge n. Hence, the expected number of triangles that are not
covered by any of the Cm’s is at most (

n

3

)
1

n3
<

1

6
. (12)

Since M > 2e2(d + 1)2, the same computation shows that the expected number of edges that are not
covered by any of the Cm’s is at most (

n

2

)
1

n2
<

1

2
. (13)

From (12) and (13), by the additivity of expectation, we deduce that the expected number of edges and
triangles that are not cover by the cliques Cm’s, k = 1, 2, . . . ,M , is smaller than one.
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[21] P. Erdös, A. W. Goodman, and L. Pósa, “The representation of a graph by set intersections,” Canad.
J. Math., vol. 18, no. 1, pp. 106–112, 1966.

[22] N. Creignou, “The class of problems that are linearly equivalent to satisfiability or a uniform method
for proving np-completeness,” Theoretical Computer Science, vol. 145, no. 1, pp. 111–145, 1995.

[23] S. Sridhar, S. Wright, C. Re, J. Liu, V. Bittorf, and C. Zhang, “An approximate, efficient lp solver
for lp rounding,” in Advances in Neural Information Processing Systems, 2013, pp. 2895–2903.

[24] J. Orlin, “Contentment in graph theory: Covering graphs with cliques,” Indagationes Mathematicae
(Proceedings), vol. 80, no. 5, pp. 406–424, 1977.

[25] L. T. Kou, L. J. Stockmeyer, and C. K. Wong, “Covering edges by cliques with regard to keyword
conflicts and intersection graphs,” Commun. ACM, vol. 21, no. 2, pp. 135–139, 1978.

[26] N. Alon, “Covering graphs by the minimum number of equivalence relations,” Combinatorica, vol. 6,
no. 3, pp. 201–206, 1986.

[27] P. Turán, “On an extremal problem in graph theory,” Mat. Fiz. Lapok (in Hungarian), vol. 48, pp.
436–452, 1941.
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