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Abstract—Social networks allow rapid spread of ideas and innovations while negative information can also propagate widely. When a
user receives two opposing opinions, they tend to believe the one arrives first. Therefore, once misinformation or rumor is detected,
one containment method is to introduce a positive cascade competing against the rumor. Given a budget k, the rumor blocking problem
asks for k seed users to trigger the spread of a positive cascade such that the number of the users who are not influenced by rumor
can be maximized. The prior works have shown that the rumor blocking problem can be approximated within a factor of (1− 1/e) by a
classic greedy algorithm combined with Monte Carlo simulation. Unfortunately, the Monte Carlo simulation based methods are time
consuming and the existing algorithms either trade performance guarantees for practical efficiency or vice versa. In this paper, we
present a randomized approximation algorithm which is provably superior to the state-of-the art methods with respect to running time.
The superiority of the proposed algorithm is demonstrated by experiments done on both the real-world and synthetic social networks.

Index Terms—Social networks, rumor blocking, approximation algorithm.
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1 INTRODUCTION

THe tremendous advance of the Internet of things (loT)
is making online social networks be the most common

platform for communication. There have been totally 44.5
million users on Twitter and 1.4 million monthly active
users on Facebook. Admittedly online social networks are
greatly beneficial, they also lead the widespread of negative
information. Such negative influence, namely misinforma-
tion and rumor, has been a cause of concern as it renders
the network unreliable and may cause further panic in
population. For example, the misinformation of swine flu
on Twitter threw the people in Texas and Kansas into panic
in 2009 [1], and the endless report of Ebola in 2014 has
caused unnecessary worldwide terror. Therefore, effective
strategies for rumor containment are crucial for social net-
works and it has been a hot topic in the last decades.

In a social network, information and innovations diffuse
from user to user via influence cascades where each cascade
starts to spread with a set of seed users. When two cascades
holding opposing views reach a certain user, the user is
likely to trust the one arriving first. As an example, if
the international institutions like WHO would have posted
clarification for swine flu, the users who have read such
posts will not be misled by the misinformation. Therefore,
a common method for rumor blocking is to generate a
corresponding positive cascade that competes against the
rumor. Due to the expense of deploying seed nodes, there
is a budget k for the positive cascade, and naturally one
selects the k positive seed nodes which are able to limit the

• G. Tong, W. Wu, C. Liu and D.-Z. Du are with the Department of
Computer Science Erik Jonsson School of Engineering and Computer
Science The University of Texas at Dallas, 800 W. Campbell Road; MS
EC31 Richardson, TX 75080 U.S.A.
E-mail: guangmo.tong@utdallas.edu

• L. Guo and D. Li are with the Rennin University.
• B. Liu is with the Ocean University of China.

Manuscript received April 19, 2005; revised August 26, 2015.

spread of rumor in maximum, which is referred as the least
cost rumor blocking problem.

The recent study of influence diffusion in social networks
can be tracked back to D. Kempe [2] where the well-known
influence maximization problem is formulated. In that sem-
inal work, two fundamental probabilistic operational mod-
els, independent cascade (IC) model and linear threshold
(LT) model are developed. Based on such models, many
influence related problems are then proposed and studied.
The problem of rumor blocking is also considered in such
models or in their variants. Most existing approaches utilize
the submodularity of the objective function. A set function
f over a ground V is set to be submodular if

f(V1 ∪ {v})− f(V1) ≥ f(V2 ∪ {v})− f(V2) (1)

for any V1 ⊂ V2 ⊆ V and v ∈ V \ V2. It turns out that
the number of non-rumor-activated users is a monotone in-
creasing submodular function and consequently the classic
hill-climbing algorithm provides a (1− 1/e)-approximation
[3]. For example, X. He et al. [4] formulate the influence
blocking maximization problem and present a (1 − 1/e)-
approximation algorithm for the competitive linear thresh-
old model, Budak et al. [5] propose several competitive
models and show a greedy algorithm with the same approx-
imation ratio under the campaign-oblivious independent
cascade model, and, Fan et al. [6] provide a (1 − 1/e)-
approximation algorithm for the rumor blocking problem
under the opportunistic one-active-one model.

Assuming that the objective function can be efficiently1

calculated for any input, the greedy algorithm is simple and
effective for most of the submodular maximization prob-
lems. Unfortunately, for the influence related optimization
problems, the objective functions are often very complicated
to compute due to the randomness of the probabilistic

1. Usually this is referred to the polynomial-time computability.
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diffusion model. Such a scenario is first observed by W.
Chen [7] where it is shown that computing the exact value
of the expected influence is #P-hard. In order to circumvent
such difficulty, the prior works employ the Monte Carlo
simulation to estimate the objective value for any input.
However, such a method is computationally expensive.
It turns out that the greedy algorithm with Monte Carlo
simulation has the Ω(k ·m · n · poly(δ−1)) time complexity
to achieve a (1 − 1/e − δ) approximation ratio, and it
takes several hours even on very small networks. With the
recently analysis of influence diffusion [8], [9], [10], the
difficulty in solving such problems has shifted from the
nodes selection strategy to the calculation of the objective
function. Fundamentally, it asks for a better sampling method to
estimate the expected influence. To the best of our knowledge,
there is no rumor blocking algorithm that can meet practical
efficiency without sacrificing performance guarantee.

In this paper, we present an efficient randomized algo-
rithm for rumor blocking, which is termed as the reverse-
tuple (R-tuple) based randomized (RBR) algorithm. The
RBR algorithm runs inO(k·m·lnnδ2 ) and returns a (1−1/e−δ)
approximation with a provable probability. The proposed al-
gorithm utilizes the R-tuple based sampling method which
is more effective than the Monte Carlo simulation used in
the prior works. The reverse sampling technique is first
designed by C. Borgs [8] for the influence maximization
problem. In this paper, we develop a new type of sampling
based on the concept of R-tuple, and show how such sam-
pling method can be applied to the rumor blocking problem.
Although both the sampling methods give the unbiased es-
timate, one set of Monte Carlo simulations can only provide
an estimation for a specified seed set, while the samples
produced by the R-tuple based sampling can be applied
to any seed sets. The RBR algorithm can be implemented
with tunable parameters and it is flexible for balancing the
running time and the error probability. We experimentally
evaluate the proposed algorithm on both the real-world
social network and synthetic power-law networks. The ex-
perimental results show that the RBR algorithm not only
produces high quality positive seed set but also takes much
less time than the greedy algorithm with the Monte Carlo
simulation does. In particular, when δ = 0.1 and the error
probability is set as less than 1/n where n is the number of
users, RBR algorithm is at least 1,000 times faster than that of
the sate-of-the-art approach. The contributions of this paper
are summarized as follows:

• We develop the reverse-tuple based sampling
method which can be used to obtain an unbiased
estimate for the objective function of rumor blocking
problem.

• Based on the new sampling technique, we design the
RBR approximation algorithm which is effective and
efficient for blocking rumors under IC model.

• We evaluate the proposed algorithm via experiments
and show that the RBR algorithm outperforms the
existing methods by a significant magnitude in terms
of the running time.

The rest of the paper is organized as follows. Sec. 2 is
devoted to the related work. The preliminaries are provided
in Sec. 3. The RBR algorithm is shown in Sec. 4. The

experiments are presented in Sec. 5. In Sec. 6 we discuss
the future work and conclude this paper.

2 RELATED WORK

In this section, we survey the prior works regarding rumor
controlling.

C. Budak et al. [5] are among the first who study the
misinformation containment problem. In particular, they
consider the multi-campaign independent cascade model
and investigate the problem of identifying a subset of in-
dividuals that need to be convinced to adopt the “good”
campaign so as to minimize the number of people that adopt
the rumor. X. He et al. [4] and L. Fan et la. [6] further study
this problem under the competitive linear threshold model
and the OPOAO model, respectively. S. Li et al. [11] later
formulate the γ − k rumor restriction problem and show a
(1− 1/e)-approximation. As mentioned earlier, the existing
approaches are time consuming and thus cannot handle
large social networks. Recently, several heuristic methods
have been proposed by different works, such as [12], [13],
but they cannot provide performance guarantee. In this
paper, we aim to design the rumor blocking algorithm
which is provably effective and also efficient.

Rumor source detection is another important problem
for rumor controlling. The prior works primarily focus on
the susceptible-infected-recovered (SIR) model where the
nodes can be infected by rumor and may recover later. Shah
et al. [14] provide a systematic study and design a rumor
source estimator based upon the concept of rumor centrality.
Z. Wang et al. [15] propose a unified inference framework
based on the union rumor centrality.

Rumor detection aims to distinguish rumor from gen-
uine news. Leskovec et al. [16] develop a framework for
tracking the spread of misinformation and observe a set of
persistent temporal patterns in the news cycle. Ratkiewicz
et al. [17] build a machine learning framework to detect
the early stages of viral spreading of political misinforma-
tion. In [18], Qazvinian et al. address the rumor detection
problem by exploring the effectiveness of three categories
of features: content-based, network-based, and microblog-
specific memes. Takahashi et al. [19] study the characteristics
of rumor and design a system to detect rumor on Twitter.

3 SYSTEM MODEL

In what follows we provide the preliminaries to the rest of
this paper. The important notations are listed in Table 1.

3.1 Influence Model
A social network is represented by a directed graph G =
(V,E) where V denotes the user set and user v is a friend
of u iff (u, v) ∈ E. Let n and m be the number of nodes and
edges, respectively. We denote byN−v the set of in-neighbors
of v. For a network G, let E(G) and V (G) be the edge-set
and node-set of G, respectively. In order to spread an idea
or to advertise a new product in a social network, some
seed nodes are chosen to be activated to trigger the spread
of influence. The diffusion process terminates when there is
no user can be further activated. In this paper, we adopt the
following model.
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Symbol Definition
G = (V,E) instance of IC network.
n and m number of nodes and edges.
N−v the set of in-neighbors of v
pe propagation probability of edge e.
g a realization.
Pr[g] the probability that g can be generated.
Sr the seed set of rumor.
Sp the seed set of positive cascade.
f(Sp) objective function of rumor blocking.
OPTi OPTi = f(Si),

where Si = argmax|S|≤i f(S).
k the budget of the seed set of positive

cascade.
T v a random R-tuple of v.
<v the set of all possible random R-tuples

of v.
Tv a concrete R-tuple of v in <v .
Pr[Tv ] the probability that Tv can be generated

by Alg. 1.
T a random R-tuple.

TABLE 1: Notations.

Independent Cascade (IC) Model. Associated with each
edge (u, v) there is a propagation probability p(u,v). When
node u becomes active at time t − 1, it attempts to activate
each inactive neighbor v at time step t with a success
probability of p(u,v). For each pair of nodes u and v, u has
only one chance to activate v.

3.2 Rumor and Competing Cascade

Note that the IC model is originally designed for single cas-
cade diffusion. Suppose there are multiple cascades each of
which is generated by its own seed set. In the network, each
node is initially inactive and never changes its state once
activated by one cascade. Therefore, the cascade arriving
first will dominate the node. In order to limit the spread of
rumor, we introduce a competing cascade denoted as the
positive cascade. At each time step, if a node is successfully
activated by two or more neighbors belonging to different
cascades, it will select the one with the highest priority.
We assume that rumor has the higher priority, because
rumor always polishes itself to be convincing. We denote
by Sr and Sp the seed sets of rumor and the competing
positive cascade, respectively. The diffusion process unfolds
in discrete, as follows.

• Initially all the nodes are inactive.
• At time 0, nodes in Sr and Sp are activated by rumor

and positive cascade, respectively2.
• At time t > 0, each node u which is activated at t− 1

attempts to activate each of its inactive neighbors
v with a success probability of p(u,v). If node v is
successfully activated by the two cascades simulta-
neously at time t, v will be activated by rumor.

• The diffusion process terminates when there is no
node can be further activated.

An example is shown in Fig. 1, where there are five nodes
and the propagation probability of each edge is 1. In this

2. Since our goal is to limit the spread of rumor and rumor has
the higher priority, we can assume that Sp ∩ Sr = ∅ without loss of
generality.
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Fig. 1: An illustrative example.

example, v4 and v3 are selected as the seed node of rumor
and positive cascade, respectively. At time step 1, v3 and
v4 activate v5 simultaneously and v5 is finally activated by
rumor as rumor has the higher priority.

3.3 The problem

Given an IC network G and the seed set Sr of rumor,
let f(Sp) be the expected number of nodes that are not
activated by rumor when Sp is selected as the seed set of
the positive cascade. Given a budget k ∈ Z+, the rumor
blocking problem considered in this paper is given as fol-
lows.

Problem 1. Find a seed set Sp with at most k nodes such
that f(Sp) is maximized.

It is well-known that this problem is NP-hard.

Theorem 1. [5] Problem 1 is NP-hard.

For 1 ≤ i ≤ k, let Si = arg max|S|≤i f(S) and
OPTi = f(Si). Since polynomial exact algorithm does
not exist unless NP=P, we aim to design approximation
algorithms.

3.4 Realization

In this section, we introduce the concept of realization which
provides a fundamental understanding of IC model.

Definition 1. Given an IC network G, a realization g of
G is an IC network where V (g) = V (G) and E(g) is a
subset ofE(G) where each edge inE(g) has the propagation
probability of 1. The edge setE(g) is constructed in random.
For each edge e in G, we generate a random number rande
from 0 to 1 in uniform. Edge e appears in g if and only if
rande ≤ pe. Let G be the set of all possible realizations of G.
One can see that there are 2|E(G)| realizations in G.

Let Pr[g] be the probability that realization g can be
generated. By Def. 1,

Pr[g] =
∏

e∈E(g)

pe
∏

e∈E(G)\E(g)

(1− pe).

Intuitively, a realization g is a deterministic IC network.
Given the seed sets Sr and Sp, the following two diffusion
processes are equivalent with respect to f(Sp) [2].

• Execute the stochastic diffusion process onGwith Sr
and Sp.

• Randomly generate a realization g of G and execute
the deterministic diffusion process on g with Sr and
Sp.
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Define that

fg(Sp, u) =

{
0 if u is activated by rumor in g under Sp
1 else

Therefore, f(Sp) can be expressed as

f(Sp) =
∑
g∈G

∑
u∈V

Pr[g]fg(Sp, u). (2)

In order to maximize f(Sp), one naturally asks that in which
realization g that fg(Sp, u) is equal to 1. For a realization g,
let disg(u, v) be length of the shortest path from node u to
node v in g, and, for a node set V

′
, define that disg(V

′
, u) =

minv∈V ′ disg(v, u). A key lemma is shown as follows.

Lemma 1. For a realization g and Sp, a node u will be activated
by rumor in g under Sp (i.e. fg(Sp, u) = 0) if and only
disg(Sr, u) ≤ disg(Sp, u) and disg(Sr, u) 6= +∞.

Proof. See Appendix A.1.

As a corollary of Lemma 1, our objective function is
monotone submodular.

Corollary 1. f(Sp) is monotone submodular with respect to Sp.

Proof. According to Eq. (2), it suffices to prove that fg(Sp, u)
is monotone submodular for each g and u. It is clear mono-
tone as disg(Sp, u) does not increase when more nodes are
added into Sp. Now we prove that

fg(V1 ∪ {v}, u)− fg(V1, u) ≥ fg(V2 ∪ {v}, u)− fg(V2, u)

holds for any V1 ⊂ V2 ⊆ V and v ∈ V \ V2. Since, fg(Sp, u)
is either 0 or 1, we only need to prove that

fg(V1 ∪ {v}, u)− fg(V1, u) = 1

when fg(V2 ∪ {v}, u) − fg(V2, u) is equal to 1. When
fg(V2 ∪ {v}, u) − fg(V2, u) = 1, fg(V2 ∪ {v}, u) = 1
and fg(V2, u) = 0, which means, by Lemma 1, disg(V2 ∪
{v}, u) < disg(Sr, u), disg(V2, u) ≥ disg(Sr, u) and
disg(Sr, u) 6= +∞. Therefore, disg(v, u) < disg(Sr, u) and
consequently fg(V1 ∪ {v}, u) = 1. Furthermore, fg(V1, u) =
0 because V1 is a subset of V2 and fg(V2, u) = 0. As a result,
fg(V1 ∪ {v}, u)− fg(V1, u) is also equal to 1.

According to Corollary 1, it seems that we can use the
greedy algorithm to maximize f(Sp) according to Eq. (2).
Unfortunately, there are exponential number of realizations
in G to consider and therefore the greedy algorithm does
not run in polynomial. Alternatively, we utilize the reverse
sampling technique to obtain an estimate of f(Sp) and then
maximize the estimate.

3.5 A Sampling Method
Our sampling method is designed based on the following
objects.

Definition 2. (Random R-tuple of v) Generated by Algo-
rithm 1, a random reverse tuple Tv of node v is a four
tuple (V ∗, Et, Ef , B) where V ∗ is a node-set, Et and Ef
are edge-sets, and B is a boolean variable. As shown in
Alg. 1, we start from v and successively test whether the
current in-neighbor of the nodes in V ∗ can be added to V ∗ in
a breadth first manner until one of the rumor seed is reached or

Algorithm 1 Random R-tuple of v (G,Sr, v)

1: Input: G, Sr and v;
2: V ∗ ← ∅, Et ← ∅ ,Ef ← ∅;
3: V1 ← {v};
4: while true do
5: if V1 = ∅ then
6: B = 0;
7: Return (V ∗, Et, Ef , B);
8: if V1 ∩ Sr 6= ∅ then
9: B = 1;

10: Return (V ∗, Et, Ef , B);
11: V ∗ ← V ∗ ∪ V1;
12: V2 ← V \ V ∗;
13: V1 ← ∅.
14: for each edge (u1, u2) ∈ E where u1 ∈ V ∗ and u2 ∈

V2 do
15: rand← a random number from 0 to 1 generated

in uniform;
16: if rand ≤ p(u2,u1) then
17: V1 ← V1 ∪ {u2};
18: Et ← Et ∪ {(u2, u1)};
19: else
20: Ef ← Ef ∪ {(u2, u1)};

Algorithm 2 Random R-tuple (G,Sr)

1: Input: G and Sr;
2: Randomly select a node v from V in uniform;
3: (V ∗, Et, Ef , B)← Algorithm 1(G,Sr, v);
4: Return T = (V ∗, Et, Ef , B)

no node can be furthered reached. Et and Ef are generated in
line 18 and line 20, respectively. V ∗ is set of nodes that are
reachable to v. B is set as 1 if and only if some rumor seeds
are encountered. We denote by Tv(V ∗), Tv(Et), Tv(Ef ) and
Tv(B) the four attributes of Tv .

Definition 3. (Random R-tuple) Generated by Algorithm
2, a random R-tuple T = (T (V ∗), T (Et), T (Ef ), T (B)) is
a random R-tuple T v of v generated by Alg. 1 where v is
selected from V uniformly in random. For a node set S ⊆ V ,
let x(S, T ) be a random variable over 0 and 1, where

x(S, T ) =

{
1 if S ∩ T (V ∗) 6= ∅ or T (B) = 0

0 else
.

The following lemma is critical for the rest of the analysis
in this section.

Lemma 2. E[x(S, T )] = f(S)/n for any S ⊆ V .

Proof. See Appendix A.2.

Suppose there is a set Rl = {T 1, ..., T l} of l random R-
tuples each of which is obtained by Alg. 2 . For a set S ⊆ V
and Rl, let F (S,Rl) =

∑l
i=1 x(S, T i). Now let us consider

the following problem

Problem 2. Finding a node set S with at most k nodes such
that F (S,Rl) is maximized.
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Algorithm 3 Node-Selection (V,Rl, k)

1: Input: V , Rl = {T 1, ..., T l} and k
2: Set T i(V ∗) as V if T i(B) = 0;
3: S

′ ← ∅;
4: for j = 1 : k do
5: Let v be the node that covers the most number of sets

in T i(V ∗);
6: S

′ ← S
′ ∪ {v};

7: Remove v from each T i(V ∗);
8: Return S

′
;

Because x(S, T i) is always 1 when T i(B) = 0, we can
take T (V ∗) as the ground set V such that S∩T i(V ∗) is equal
to 1 for any non-empty set S. Now Problem 2 becomes the
classic set cover problem and therefore the greedy algorithm
shown in Algorithm 3 produces a (1 − 1/e)-approximation
[3]. For a givenRl, let S

′
be the set produced by Alg. 3. Then

F (S
′
, Rl) ≥ (1− 1/e) · F (S,Rl), (3)

for any S ⊆ V .

3.6 Chernoff Bound
In this paper, we use the Chernoff bound to analyze the
error of estimating. Let Xi be l i.i.d random variables where
E(Xi) = µ. The Chernoff bound [20] states that

Pr
[∑

Xi − l · µ ≥ δ · l · µ
]
≤ exp(− l · µ · δ

2

2 + δ
), (4)

and

Pr
[∑

Xi − l · µ ≤ −δ · l · µ
]
≤ exp(− l · µ · δ

2

2
), (5)

for 0 < δ < 1.

4 THE ALGORITHM

In this section, we first discuss how to estimate the optimal
value OPTk and then present the algorithm together with
its analysis.

4.1 Estimating OPTk
Estimating the optimal value of f(S) is an important part
of our algorithm. Suppose we have a set Rl of random

R-tuples. Intuitively, n·F (S
′
,Rl)

l should be a good choice
because, by Eq. (3), it is close to n·F (Sk,Rl)

l with a guaranteed
factor, and, according to Lemma 2, n·F (Sk,Rl)

l is an unbiased
estimate of OPTk. Because OPTk ∈ [1, n]3, we design

a statistic test which compares n·F (S
′
,Rl)

l with n/2i and
terminates when they are sufficiently close to each other. The
estimation process is shown in Algorithm 4 with tunable
parameters δ > 0 and N > 0. Let OPT ∗k be the estimation
produced by Alg. 4.

First, we need to guarantee that OPT ∗k is smaller than
OPTk. The following result shows that the terminate condi-
tion (i.e., line 9) leads that OPT ∗k is smaller than OPTk with
a high probability.

3. OPTk is always no less than 1 because k ≥ 1 and Sp ∩ Sr 6= ∅.

Algorithm 4 OPTk-Estimation (k, δ,N)

1: Input: (k, δ,N)
2: R← ∅;
3: λ3 =

n·(2+δ)·ln(N ·(nk)·logn)
δ2 ;

4: for i = 1 : log(n− 1) do
5: xi ← n

2i , li ← λ3

xi
;

6: while |R| ≤ li do
7: Generate a random R-tuple and inset it into R;
8: S

′ ← Node-Selection(V,R, k);

9: if n·F (S
′
,R)

li
≥ (1 + δ) · xi then;

10: OPT ∗k = n·F (S
′
,R)

li·(1+δ) ;
11: Return OPT ∗k ;

Algorithm 5 R-tuple Based Randomized Rumor Blocking

1: Input: G, Sr , k, N , δ1, δ2 and δ3;
2: OPT ∗k ← Algorithm 4 (k, δ3, N).
3: l1 = 2n lnN1

δ21 ·OPT∗k
;

4: l2 =
(2+δ2−(1−1/e)δ1)n ln(N2(nk))

(δ2−(1−1/e)δ1)2·OPT∗k
;

5: l∗ = max(l1, l2);
6: Generate l∗ random R-tuples Rl∗ = {T 1, ..., T l

∗};
7: Run Algorithm 3 with input Rl∗ and k to obtain a node

set S
′
;

8: Return S
′
;

Lemma 3. With probability at least 1 − 2/N , Algorithm 4
produces an OPT ∗k that is less OPTk.

Proof. See Appendix A.3

Second, it can be shown that OPT ∗k is not too much less
than OPTk.

Lemma 4. With a probability at least 1 − 1/N , Algorithm 4
produces an OPT ∗k such that OPT ∗k ≥

(1−1/e)·OPTk
2·(1+δ)2 .

Proof. See Appendix A.4

The above results are summarized as follows.

Theorem 2. With a probability at least 1 − 3/N , Algorithm 4
returns an OPT ∗k , such that

OPTk ≥ OPT ∗k ≥
(1− 1/e) ·OPTk

2(1 + δ)2
(6)

4.2 The Algorithm

Now we are ready to show the algorithm of rumor blocking.
Let Rl be a set of random R-tuples. According to Lemma 2,
n · s(S, T ) is an unbiased estimate of f(S) and therefore the
S that can maximize n·F (S,Rl)

l should be able to maximize
f(S) as long as l is sufficiently large. The whole algorithm
is given in Alg. 5. Let N > 0, δ1 > 0, δ2 > (1 − 1/e) · δ1
and δ3 > 0 be some adjustable parameters. We first obtain
an estimate OPT ∗k of OPTk by Alg. 4 with input (k, δ3, N)
and set that

l1 =
2 · n · lnN1

δ21 ·OPT ∗k
, (7)
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l2 =
(2 + δ2 − (1− 1/e) · δ1) · n · ln(N2 ·

(n
k

)
)

(δ2 − (1− 1/e) · δ1)2 ·OPT ∗k
, (8)

and
l∗ = max(l1, l2). (9)

Next, we generate l∗ random R-tuples Rl∗ = {T 1, ..., T l∗}
by Alg. 2. Finally, Alg. 5 returns the set obtained by run-
ning Alg. 3 with input (V,Rl∗ , k). Let S∗ be the node set
produced by Alg. 5. As mentioned early, S∗ should be a
(1 − 1/e)-approximation to Problem 1 if the estimate is
sufficiently accurate. In particular, we require the following
accuracy of F (Sk, Rl∗) and F (S∗, Rl∗).

n

l∗
· F (Sk, Rl∗) ≥ (1− δ1) ·OPTk (10)

and

F (S∗, Rl∗)−
l∗

n
·f(S∗) ≤ (δ2−(1−1/e)·δ1)· l

∗

n
·OPTk (11)

The following lemma shows S∗ is a (1 − 1/e − δ2)-
approximation if Eqs. (10) and (11) hold simultaneously.

Lemma 5. With Eqs. (10) and (11), f(S∗) is no less than (1 −
1/e− δ2) ·OPTk

Proof. Let δ∗ = (δ2 − (1− 1/e) · δ1). By Eq. (11),

f(S∗) ≥ n

l∗
· F (S∗, T )− δ∗ ·OPTk

{By Eq. (3)}
≥ n

l∗
· (1− 1/e) · F (Sk, T )− δ∗ ·OPTk

{By Eq. (10)}
≥ (1− δ1) · (1− 1/e) ·OPTk − δ∗ ·OPTk
= (1− 1/e− δ2) ·OPTk

Setting l∗ as max(l1, l2) is able to guarantee that Eqs. (10)
and (11) hold with a provable probability provided that Eq.
(6) holds, which is shown in the following two lemmas.

Lemma 6. Eq. (10) holds with probability at least 1 − 1/N if
l ≥ l1 and Eq. (6) holds.

Proof. See Appendix A.5.

Lemma 7. Eq. (11) holds with probability at least 1 − 1/N if
l ≥ l2 and Eq. (6) holds.

Proof. See Appendix A.6.

The above analysis is summarized as follows.

Theorem 3. With probability at least 1 − 5/N , f(S∗) ≥ (1 −
1/e− δ2) ·OPTk.

Proof. According to Theorem 2, Lemmas 6 and 7, by the
union bound, Eqs. (10) and (11) holds with probability at
least 1 − 5/N , and this theorem follows immediately from
Lemma 5.

Dataset Node# Edge# Average out-Degree
Power2500 2.5K 26K 20.8

Wiki 7K 30K 12.0
Epinions 75K 508K 13.4
Youtube 1.1M 6.0M 5.4

TABLE 2: Datasets

4.3 Running Time
Now let us consider the running time of Alg. 5. Let TIME
be the expected running time of Alg. 2. The following lemma
shows TIME can be bounded by the objective value of the
optimal solution.

Lemma 8. TIME ≤ m
n ·OPT1.

Proof. See Appendix A.7.

Theorem 4. Alg. 5 runs in O(km lnn
δ22

).

Proof. Alg. 3 can be implemented to run in time linear to
the total size of its input [21]. Alg. 4 invokes Alg. 3 with
input size from O(ln lnn) to λ/xi where i is the index of the
last iteration and the input size is doubled in each iteration.
By Lemma 3, the total number R-tuples generated by Alg.
4 is O( n lnn

OPTk
) and, by Lemma 8, line 2 of Alg. 5 runs in

O(m lnn). The running time of lines 6 and 7 is dominated
by that of line 2. Therefore, the running time of Alg. 5 is
O(km lnn

δ22
) by taking N , δ1, δ3 as constants and assuming

m ≥ n.

4.4 Parameters
As shown in Theorem. 3, N and δ2 controls the success
probability and the approximation ratio, respectively. When
δ2 is fixed, we select the δ1 such that l∗ can be minimized to
reduce the running time. As shown in Alg. 4, δ3 decides the
value of OPT ∗k . When δ3 is getting larger, Alg. 4 takes less
time while Alg. 5 takes more time because, by Theorem 2,
OPT ∗k becomes smaller and consequently l∗ becomes larger.
In experiments, we simply set that δ2 = δ3 = 0.1 and
N = n.

5 EXPERIMENT

In this section, we evaluate the performance of RBR algo-
rithm with respect to the state-of-the-art method and other
heuristics. Besides, we also discuss the running time of the
considered algorithms.

In our experiments, we employ four datasets,
Power2500, Wiki, Epinion and Youtube, scaling from small
to large. Power2500 is a synthetic power-law network gen-
erated by DIGG [22]. It has been shown that the power-law
distribution is one of the most important characteristics of
social networks [23]. Wiki is a who-votes-on-whom network
extracted from the vote history data of Wikipedia4. Epinions
is a who-trust-whom online social network extracted from
the consumer review site Epinions.com. Youtube is a social
network of a video-sharing website. Wiki, Epinions and
Youtube are provided by the SNAP [24]. The basic statistics
of the above datasets are shown in Table 2. The probability

4. https://www.wikipedia.org/
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(a) Power2500 under CP model
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(b) Wiki under CP model
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(c) Epinions under CP model
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(d) Youtube under CP model
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(e) Power2500 under WC model

0 5 10 15 20
370

375

380

385

390

395

400

405

410

Budget

N
um

be
r 

of
 r

um
or

−a
ct

iv
at

ed
 n

od
es

 

 

RBR algorithm
Greedy
Proximity
Random
Unblocking

(f) Wiki under WC model
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(g) Epinions under WC model
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(h) Youtube under WC model

Fig. 2: Experimental results

on the edges is either uniformly set as 0.1 or p(u,v) is
set as 1/|N−v |. These two settings are denoted as constant
probability (CP) model and weighted cascade (WC) model.
The above datasets together with the probability settings are
widely used in the prior works.

We consider four rumor blocking algorithms shown as
follows:

• RBR algorithm. This is the algorithm proposed in
this paper. We set δ2 = δ3 = 0.1 and N = n by
default.

• Greedy. This is the state-of-the-art rumor blocking
algorithm using the Monte Carlo simulation. 2,000
simulations are used for each estimation. Greedy is
only tested on small graphs, Power2500 and Wiki.

• Proximity. This is a popular heuristic algorithm
which selects the out-neighbors of the rumor seed
nodes as the positive seed nodes. In particular, we
give an index to each node and select the neighbors
with the highest index.

• Random. This is a baseline method where the posi-
tive seed nodes are randomly selected.

• Unblocking. This is the base case when there is no
positive cascade.

In our experiments, the rumor seed nodes are selected
from the nodes with the highest degree. The number of
rumor seed nodes is set as 20 and the budget of positive seed
set is selected from 1 to 20. The function value f(S) of the
seed set S produced by each algorithm is finally evaluated
by n ·F (S,Rl)/l with l = 1, 000, 000 where the R-tuples are
separately generated.

We conduct two series of experiments. In the first experi-
ment, we evaluate the performance of RBR algorithm. In the
second experiment, we investigate how many R-tuples that
RBR algorithm needs to produce a high quality seed set.

5.1 Results
The analysis of the experimental results of the two series
of experiments are shown in the following two subsections,
respectively.

5.1.1 Experiment I
In the first set of experiments, we compare the RBR algo-
rithm with other existing methods. The experimental results
are shown in Fig. 2 and Table 3.

The results on graph Power2500 are shown in Figs. 2a
and 2e. One can see that RBR algorithm and Greedy have
the same performance with respect to f(). Nevertheless,
RBR algorithm is more efficient than Greedy with respect
to running time, as shown in Table 3. For example, under
the CP model on Power2500 with k = 20, RBR takes 0.31
second while Greedy takes about 1.3 hour.

The results on the Wiki dataset are shown in Figs. 2b
and 2f. Under the CP model, RBR algorithm is able to
reach at least 97.98% blocking effect of the Greedy algorithm
with respect to f(). Under the WC model, Greedy performs
better than RBR does until k is larger than 16. Recall that
2,000 simulations are used by Greedy for each estimation.
Such a phenomenon suggests that, when k is larger than
16, more simulations are required to maintain the accuracy
of the estimates so that Greedy is able to achieve the (1-
1/e)-approximation. However, as shown in Table 3, Greedy
has already been very time consuming on Wiki with 2,000
simulations, and therefore using more simulations is not
a good choice even though it may increase the quality of
the produced seed set. Despite that Wiki is larger than
Power2500, comparing Figs. 2e and 2f, one can see that
when there is no positive cascade, 20 rumor seed nodes
result 410 and 650 rumor-activated nodes on Wiki and
Power2500, respectively, which indicates that the dense of
the network has more impact on the influence diffusion than
the network scale does.

The results on the Epinions dataset are shown in Figs.
2c and 2g. One can see that on the large network RBR algo-
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Dataset Power2500 Wiki Epinions Youtube
Model CP WC CP WC CP WC CP WC

time # R time # R time # R time # R time # R time # R time # R time # R
RBR 0.31s 220K 0.36s 211K 0.33s 236K 0.20s 208K 1.7s 248K 0.68s 274K 42s 348K 9.4s 336K

Greedy 99min n/a 48min n/a 832min n/a 318min n/a n/a n/a n/a n/a n/a n/a n/a n/a

TABLE 3: Running time and the number of R-tuples when k = 20.
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(b) Power2500 under WC model.
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(c) Wiki under CP model.
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(d) Wiki under WC model.
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(e) Epinions under CP model.
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(f) Epinions under WC model.
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(g) Youtube under CP model.
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(h) Youtube under WC model.

Fig. 3: Results of experiment II

rithm is superior to other heuristics by a significant margin.
Under the CP model when k = 20, the RBR algorithm
can protect about 2,000 users while Proximity protects 500
nodes. On Youtube, as shown in Figs. 2d and 2h, RBR is still
effective but other heuristics can hardly protect any node.

5.1.2 Experiment II
As shown in Sec. 4, the main part of the analysis focuses on
determining an threshold of the number of R-tuples used
in Alg. 5. In this section, we experimentally test how the

quality of the seed sets varies with the increase of used R-
tuples. In particular, we are interested in that whether or not
the number of R-tuples used by RBR algorithm is proper. To
this end, instead of calculating l∗ as shown from line 2 to
line 5 in Alg. 5, we explicitly set l∗ and then run the rest of
the Alg. 5 from line 6 to 8. For each dataset, we increase l∗

until the quality of the produced seed set tends to converge.
The results are given by Fig. 3.

According to Fig. 3 and Table 3, RBR generates sufficient
number of R-tuples in practice for most of the consid-
ered datasets. For example, on graph Power2500 under CP
model, RBR totally generates 220K R-tuples as shown in
the second column of Table 3, and, as shown in Fig. 3a,
the quality of the seed set does not markedly increases
when more than 200K R-tuples have been used. For this
case, 220K R-tuples are sufficient as spending more R-
tuples cannot help improve the quality. One has the same
conclusion on the other three datasets. The only exception
occurs on Youtube graph under WC model. For this case,
RBR utilizes totally 336K R-tuples, while as shown in Fig.
3h the standard deviation of f() is about 400 when X axis
is equal to 336K, and, it completely converges after 1,000K
R-tuples are used. Such a case may suggest that, on large
graphs, δ2 and δ3 should be set as smaller than 0.1 to raise
the number of R-tuples used by Alg. 5 such that the quality
of the produced seed set can be more stable. In fact, learning
the best perimeter setting is an interesting problem and we
leave this part as future work.

6 CONCLUSION AND FUTURE WORK

In this paper, we have studied the rumor blocking problem
for online social networks. We first design the R-tuple based
sampling method and then present a randomized rumor
blocking algorithm. The proposed RBR algorithm theoret-
ically dominates the existing rumor blocking algorithms,
and as shown in the experiments it is very efficient without
sacrificing the blocking effect.

One promising future work is to investigate the rumor
blocking problem under other models, namely LT model. It
is worthy to note that the rumor blocking problem under
LT model is significantly different from that under the IC
model. Another direction of future work, as mentioned
in Sec. 5, is to study the parameter setting of the RBR
algorithm. Finally, exact algorithm designed based on R-
tuple sampling method is possibly obtainable for special
graph structures like trees and regular graphs.

APPENDIX A
PROOFS

A.1 Proof of Lemma 1
We first prove a useful property.
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Claim 1. Suppose that disg(Sr, u) 6= ∞. Let au =
arg minv∈Sr disg(v, u) and

(v1 = au, v2, ..., vl−1, vl = u)

be a shortest path from au to u in g. If disg(Sr, u) ≤ disg(Sp, u),
then all the nodes in (v1 = ar, v2, ..., vl = u) will be activated
by rumor in g under Sp and in particular vi will be activated at
time step i− 1.

Proof. We prove this claim by induction from v1 to vl along
the path. First, v1 = ar is obviously activated by rumor at
time step 0 as it is a seed node of rumor. Now we prove
that if vi is activated by rumor at time step i − 1 then node
vi+1 will be activated by rumor at time step i. There are two
cases to consider.

Case 1. If vi+1 is activated by vi then clearly vi+1 is
activated by rumor at time step i.

Case 2. Otherwise, vi+1 is activated by a neighbor v∗

other than vi, which implies that v∗ is activated no later
than i − 1. However, because disg(au, u) = disg(Sr, u) ≤
disg(Sp, u) and (v1 = ar, v2, ..., vl = u) is the shortest
path from au to u, for any seed node s ∈ Sp ∪ Sr ,
disg(au, vi) ≤ disg(s, vi), which means v∗ is activated no
early than disg(au, vi) = i − 1. Therefore, v∗ is activated
at time step i − 1 and v∗ and vi will attempt to activate
vi+1 simultaneously at time step i + 1. Since rumor has the
higher priority, vi+1 will be activated by rumor regardless
of whether or not v∗ belongs to rumor.

Lemma 1 follows from the following two claims.

Claim 2. If disg(Sr, u) ≤ disg(Sp, u) and disg(Sr, u) 6= ∞,
then u will be activated by rumor.

Proof. This claim follows directly from Claim 1.

Claim 3. If disg(Sr, u) > disg(Sp, u) or disg(Sr, u) 6= ∞,
then u will not be activated by rumor.

Proof. If disg(Sr, u) = ∞, u is clearly not activated by
rumor. Otherwise, let bu = arg minv∈Sp disg(v, u). Similar
to the proof of claim 1, we can prove that the nodes on
the shortest path from bu to u will activated by the positive
cascade by induction. The only difference is that positive
cascade always reaches those nodes earlier that rumor does
by at least one time step.

A.2 Proof of Lemma 2
To prove Lemma 2, we introduce the following definitions.

Definition 4. We use Tv = (Tv(V ), Tv(Et), Tv(Ef )) to
denote a concrete R-tuple of v. Let <v = {T 1

v , T
2
v , ...} be

the set of all possible Tv and Pr[Tv] be the probability that
Tv can be generated by Alg. 1. Given a node set S ⊆ V , let
x(S, Tv) be a variable over 0 and 1, where

x(S, Tv) =

{
1 if S ∩ Tv(V ∗) 6= ∅ or Tv(B) = 0

0 else

Different from x(S, T ) defined in Def. 4, x(S, Tv) is not a
random variable.

Definition 5. A pair of ordered edge-sets (E1, E2) is valid,
if E1 ⊆ E, E2 ⊆ E and E1 ∩ E2 = ∅. Note that there is a

bijection between the realizations and all the valid pairs (E1,
E2) such that E1∪E2 = E. We say g is compatible to (E1, E2)
if E1 ⊆ E(g) and E2∩E(g) = ∅. Let C(E1, E2) be the set of
the realizations compatible to (E1, E2). For a valid pair (E1,
E2) and a realization g compatible to (E1, E2), define that

Pr[(E1, E2)] =
∏
e∈E1

pe
∏
e∈E2

(1− pe),

and

Pr[g|(E1, E2)] =
∏

e∈E(g)\E1

pe
∏

e/∈E(g)∪E2

(1− pe).

One can easily check that∑
g∈C(E1,E2)

Pr[g|(E1, E2)] = 1, (12)

and
Pr[g] = Pr[(E1, E2)] · Pr[g|(E1, E2)]. (13)

Intuitively, if a realization g is compatible to a valid pair
(E1, E2), (E1, E2) can be taken as an intermediate state
while generating g. For a R-tuple T iv ∈ <v of v, it follows
that

Pr[T iv] =
∏

e∈T iv(Et)

pe
∏

e∈T iv(Ef )

(1− pe)

= Pr[(T iv(Et), T
i
v(Ef ))] (14)

Note that ((T iv(Et), T
i
v(Ef )) is always valid for each

T iv ∈ <v . Now lets consider the realizations compatible to
(T iv(Et), T

i
v(Ef )) for different R-tuples T iv of v.

Lemma 9. For each node v, the sets C(T iv(Et), T
i
v(Ef )) for

T iv ∈ <v form a partition of G.

Proof. First, it is obvious that for each g ∈ G there exists a
T iv such that g is compatible to (T iv(Et), T

i
v(Ef )). Thus, it

suffices to show that

C(T iv(Et), T
i
v(Ef )) ∩ C(T jv (Et), T

j
v (Ef )) = ∅

for i 6= j. Since T iv and T jv are different, there must be an
edge e such that e ∈ T iv(Et), e /∈ T iv(Ef ), e /∈ T jv (Et) and
e ∈ T jv (Ef ). By Def. 5, a realization g cannot be compatible
to both T iv and T jv . Lemma 9 thus proved.

The following lemma establishes the relationship be-
tween realization and R-tuple.

Lemma 10. For a R-tuple Tv of v, a realization g compatible to
(Tv(Et), Tv(Ef )) and a node set S of positive cascade, v is not
activated by rumor in g if and only if x(S, Tv) = 1.

Proof. This lemma is intuitive and it follows directly from
Lemma 1. According to Lemma 1 and Def. 4, it suffices to
show that S ∩ Tv(V ∗) = ∅ and Tv(B) = 1 if and only if
disg(Sr, v) ≤ disg(S, v) and disg(Sr, v) 6=∞.

First, it is clear that Tv(B) = 1 if and only if disg(Sr, v) 6=
∞. This is because g is compatible to (Tv(Et), Tv(Ef )) and,
by Alg. 1, v can reach some rumor seed node in g if and only
if Tv(B) = 1.

Now suppose that Tv(B) = 1 and let a be one of
the nodes in V1 ∩ Sr tested in line 18 of Alg. 1. Because
Alg. 1 goes with a breadth-first search, a = disg(Sr, v)
and Tv(V

∗) exactly consists of the node(s) u such that
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disg(u, v) < disg(Sr, v). Therefore, S ∩ Tv(V ∗) = ∅ if and
only if disg(Sr, v) ≤ disg(S, v).

Now we are ready to prove Lemma 2.

Proof. By Defs. 3 and 4,

E[x(S, T )] =

∑
v

∑
Tv∈<v Pr[Tv] · x(S, Tv)

n
.

According to Eq. (2), to prove Lemma 2, it suffices to prove
that ∑

Tv∈<v

Pr[Tv] · x(S, Tv) =
∑
g∈G

Pr[g] · fg(S, v).

Since (Tv(Et), Tv(Ef )) is a valid pair, by Eq. (12),∑
Tv∈<v

Pr[Tv] · x(S, Tv)

=
∑

Tv∈<v

Pr[Tv] ·∑
g∈C(Tv(Et),Tv(Ef ))

Pr[g|(Tv(Et), Tv(Ef ))] · x(S, Tv)

Substituting Pr[Tv] with Eq. (14) yields that

∑
Tv∈<v

Pr[Tv] · x(S, Tv)

=
∑

Tv∈<v

∑
g∈C(Tv(Et),Tv(Ef ))

Pr[(Tv(Et), Tv(Ef ))] · Pr[g|(Tv(Et), Tv(Ef ))] · x(S, Tv)

According to Eq. (13),

Pr[(Tv(Et), Tv(Ef ))] · Pr[g|(Tv(Et), Tv(Ef ))] = Pr[g],

and therefore,

∑
Tv∈<v

Pr[Tv] · x(S, Tv)

=
∑

Tv∈<v

∑
g∈C(Tv(Et),Tv(Ef ))

Pr[g] · x(S, Tv)

{By Lemma 10}
=

∑
Tv∈<v

∑
g∈C(Tv(Et),Tv(Ef ))

Pr[g] · fg(S, v)

By Lemma 9, C(Tv(Et), Tv(Ef )) for Tv ∈ <v forms a
partition of G, and as a result,

∑
Tv∈<v

∑
g∈C(Tv(Et),Tv(Ef ))

Pr[g] · fg(S, v)

=
∑
g∈G

Pr[g] · fg(S, v).

Thus, proved.

A.3 Proof of Lemma 3
To prove Lemma 3, we first prove the following two claims.
Suppose that Alg. 4 terminates at the i∗-th iteration.

Claim 4. OPTk < xi∗ holds with probability at least 1 − 1/N
where xi∗ is given in line 5 of Alg. 4.

Proof. It suffices to show that for the i-th iteration from line
6 to 11 in Algorithm 4, the terminate condition holds with
at most 1

N logn probability if OPTk < xi. For a node-set S
with |S| = k,

Pr[n · F (S,R)/li ≥ (1 + δ) · xi]

= Pr[F (S,R)− li · f(S)

n
≥ li · f(S)

n
· ( (1 + δ) · xi

f(S)
− 1)]

{By Eq. (4)}

≤ exp(−
−li · f(S)n · ( (1+δ)·xi

f(S) − 1)2

2 + ( (1+δ)·xi
f(S) − 1)

)

≤ exp(−
−li f(S)n · ( (1+δ)·xi

f(S) − 1)
2

(
(1+δ)·xi
f(S) −1)

+ 1
)

{Since f(S) ≤ OPT < xi}

≤ exp(−
−li f(S)n · δ·xif(S)

2
δ + 1

)

= exp(−−li · δ
2 · xi

n · (2 + δ)
) =

1

N ·
(n
k

)
log n

.

By the union bound, n · F (S, T )/li ≥ (1 + δ3) · xi holds
for the S produced in line 8 Algorithm 4 with a probability
less than 1

N logn . Therefore, the probability that Algorithm
4 terminates is at most 1

N logn when i ≤ log i/OPTk. By
the union bound again, the probability that Algorithm 4
terminates before i∗ = log n/OPTk is less than i∗

N logn ≤
1
N .

Thus, proved.

Claim 5. If OPTk ≥ xi∗ , then OPT ∗k ≤ OPTk holds with a
probability at least 1− 1/N .

Proof. For any node-set S with |S| = k,

Pr[
n · F (S,R)

li∗ · (1 + δ)
≥ OPTk]

= Pr[n · F (S,R) ≥ li∗ · (1 + δ) ·OPTk].

Since OPTk ≥ f(S),

Pr[n · F (S,R) ≥ li∗ · (1 + δ) ·OPTk]

≤ Pr[n · F (S,R) ≥ li∗ · f(S) + li∗ · δ ·OPTk]

= Pr[F (S,R)− li∗ · f(S)

n
≥ li∗ · f(S)

n
· OPTk · δ

f(S)
].

Applying the Chernoff bound Eq. (4), we have

Pr[F (S,R)− li∗ · f(S)

n
≥ li∗ · f(S)

n
· OPTk · δ

f(S)
]

≤ exp(−
li∗ · f(S)n · (OPTk·δf(S) )2

2 + OPTk·δ
f(S)

)

= exp(− li∗ · (OPTk · δ)2

n · (2 · f(S) +OPTk · δ)
).
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Again, since OPTk ≥ f(S),

= exp(− li∗ · (OPTk · δ)2

n · (2 · f(S) +OPTk · δ)
)

≤ exp(− li∗ · (OPTk · δ)2

n · (2 ·OPTk +OPTk · δ)
)

= exp(− li
∗ ·OPTk · δ2

n · (2 + δ)
).

Substituting li∗ with the value given in line 5 of Alg. 4, one
has

exp(− li
∗ ·OPTk · δ2

n · (2 + δ)
)

= exp(−OPTk
xi∗

· ln(log n ·
(
n

k

)
·N)).

Because xi∗ ≤ OPTk, the above probability is no larger than
1/(log n ·

(n
k

)
·N). By the union bound, the probability that

OPT ∗k (i.e. n·F (S
′
,R)

li∗ ·(1+δ)
) is larger than or equal to OPTk is no

larger than 1/N .

Lemma 3 follows from the above two claims immedi-
ately.

A.4 Proof of Lemma 4
The following claim helps prove Lemma 4.

Claim 6. Let S
′

and R be the sets used in the i-th iteration of
Alg. 4. If OPTk ≥ (1+δ)2

1−1/e xi, then n ·F (S
′
, T )/li ≤ (1 + δ) · x

holds with at most 1/N probability.

Proof. For any seed set S,

Pr[n · F (S,R)/li ≤ (1 + δ) · xi]
≤ Pr[n(1− 1/e)F (Sk, R)/li ≤ (1 + δ)x]

≤ Pr[n · F (Sk, R)/li ≤
OPTk
1 + δ

]

= Pr[F (Sk, R)− li · f(Sk)

n
≤ li · f(Sk)

n
· −δ

1 + δ
]

{By Eq. (5)}

≤ exp(−
li · f(Sk) · ( −δ1+δ )2

2
)

≤ exp(−
li · (1+δ)

2

1−1/e · xi · (
−δ
1+δ )2

2
)

≤ 1/(N ·
(
n

k

)
).

By the union bound, the above holds for the S
′

produced in
line 8 Algorithm 4 with a probability less than 1/N .

Now we are ready to prove Lemma 4. Suppose n/2i+1 ≤
OPTk·(1−1/e)

(1+δ)2 ≤ n/2i for some i. If Algorithm 4 terminates
before the (i + 1)-th iteration, then, by line 9 in Algorithm
4, OPT ∗k ≥ n/2i ≥ OPTk·(1−1/e)

(1+δ)2 . Now suppose Algorithm
4 enters the (i+ 1)-th iteration. By Claim 6, it will terminate
with probability at least 1 − 1/N , which means OPT ∗k ≥
n/2i+1 ≥ OPTk·(1−1/e)

2·(1+δ)2 .

A.5 Proof of Lemma 6
Proof. Recall that E[x(Sk, T )] = OPTk/n.

Pr[
n

l
· F (Sk, Rl) ≤ (1− δ1) ·OPTk]

= Pr[F (Sk, Rl) ≤
l

n
(1− δ1) ·OPTk]

= Pr[F (Sk, Rl)−
l

n
·OPTk ≤ −

l

n
· δ1 ·OPTk]

{By Eq. (5)}

≤ exp(−
l · OPTkn · δ21

2
)

Because l ≥ l1 and Eq. (6) holds, the above probability is no
larger than 1/N . As a result, nl ·F (Sk, Rl) ≥ (1−δ1) ·OPTk
holds with probability at least 1− 1/N .

A.6 Proof of Lemma 7
Proof. Let δ∗ = δ2−(1−1/e)·δ1. For any fixed S ⊆ V where
|S| = k, it follows that

Pr[F (S,Rl)−
l

n
· f(S) ≥ (δ2 − (1− 1/e) · δ1) · l

n
·OPTk]

= Pr[F (S,Rl)−
l

n
· f(S) ≥ δ∗ ·

lf(S)

n
· OPTk
f(S)

]

{By Eq. (4)}

≤ exp(−
l · f(S)n · (δ∗ · OPTkf(S) )2

2 + (δ∗ · OPTkf(S) )
)

= exp(− l · (δ∗ ·OPTk)2

n · (2 · f(S) + δ∗ ·OPTk)
)

{Since f(S) ≤ OPTk}

≤ exp(− l · δ
2
∗ ·OPTk

n · (2 + δ∗)
)

{By Eqs. (8) and (6)}

≤ 1/(N2 ·
(
n

k

)
)

Since there are at most
(n
k

)
subsets of V with k elements,

by the union bound, Eq. (11) with probability at least 1 −
1/N .

A.7 Proof of Lemma 8
Proof. For a R-tuple Tv of node v, let TIME(Tv) be the time
consumed in generating Tv . Thus,

TIME =

∑
v

∑
Tv∈<v Pr[Tv] · TIME(Tv)

n

Note that TIME(Tv) is equal to the number of edges tested
during the generation of Tv . Thus,∑

v

∑
Tv∈<v Pr[Tv] · TIME(Tv)

n

=

∑
v

∑
Tv∈<v Pr[Tv] ·

∑
(u∗,v∗)∈E x({u∗}, Tv)

n

=

∑
(u∗,v∗)∈E

∑
v

∑
Tv∈<v Pr[Tv] · x({u∗}, Tv)

n

=

∑
(u∗,v∗)∈E f({u∗})

n

≤ m ·OPT1
n
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