
AccurateML: Information-aggregation-based
Approximate Processing for Fast and Accurate

Machine Learning on MapReduce
Rui Han, Fan Zhang, Zhentao Wang

Institute Of Computing Technology, Chinese Academy of Sciences
Beijing, China

{hanrui, zhangfan, wangzhentao}@ict.ac.cn

Abstract—The growing demands of processing massive datasets
have promoted irresistible trends of running machine learning
applications on MapReduce. When processing large input data,
it is often of greater values to produce fast and accurate enough
approximate results than slow exact results. Existing techniques
produce approximate results by processing parts of the input
data, thus incurring large accuracy losses when using short job
execution times, because all the skipped input data potentially
contributes to result accuracy. We address this limitation by
proposing AccurateML that aggregates information of input data
in each map task to create small aggregated data points. These
aggregated points enable all map tasks producing initial outputs
quickly to save computation times and decrease the outputs’ size
to reduce communication times. Our approach further identifies
the parts of input data most related to result accuracy, thus first
using these parts to improve the produced outputs to minimize
accuracy losses. We evaluated AccurateML using real machine
learning applications and datasets. The results show: (i) it reduces
execution times by 30 times with small accuracy losses compared
to exact results; (ii) when using the same execution times, it
achieves 2.71 times reductions in accuracy losses compared to
existing approximate processing techniques.

Index Terms—MapReduce; machine learning; approximate
processing; result accuracy; information aggregation

I. INTRODUCTION

A wide range of domains today such as signal process-
ing, financial analysis, and multimedia processing require the
running of machine learning (ML) applications on massive
datasets to extract values and get crucial insights. This has
led to an increasing interest in executing ML applications on
MapReduce frameworks like Hadoop [1] and Spark [3]. Run-
ning a MapReduce job on a large-scale input data is usually
a time-consuming process, in which the computation times of
map tasks take a large proportion of the job execution time
while the communication times in the shuffle phase (that is,
transferring intermediate data between map and reduce tasks)
take accounts for a third of this time in many applications (e.g.
68% of applications in Facebook’s Hadoop cluster [15]).

Due to the high resource and time consumptions in pro-
cessing entire input data with millions of data points to
deliver exact results, a widely applied approach is to produce
approximate results in order to trade off result accuracy (cor-
rectness) for job execution time reduction [10], [14], [19], [22].
For example, in k-nearest neighbors (kNN) classification [17]

and collaborative filtering (CF)-based recommendation [26]
applications, the result accuracies are classification accuracies
and errors between the predicted and the actual ratings,
respectively. As small accuracy losses cannot be evidently
perceived and thus are tolerable by application users [22], effi-
ciently and successfully applying such approximate processing
mechanism requires considerably reducing job execution time
without incurring large losses in result accuracy.

Existing techniques reduce execution time of MapReduce
jobs by restricting the size of the input data used to produce
approximate results [9], [16], [23]–[25]. Hence to achieve large
reductions in a job’s execution time, these techniques need to
skip a large proportion of its input data, thus causing large
accuracy losses for two reasons. First of all, the entire input
data potentially contributes to the job’s result accuracy [10].
Secondly, in the learning process of many ML applications
such classification, recommendation, and regression, different
data points have different correlations to result accuracy [12].
For example, in kNN classification and CF-based recommen-
dation applications, the data points having smaller distances to
test points and larger weights (similarities) to test users have
higher influences to classification accuracies and prediction
errors, respectively. The techniques have so far been focusing
on sampling a part of input data to produce approximate
results, while mostly ignoring these data points’ correlations
to result accuracy.

In this paper, we argue that to provide fast job execution
while guaranteeing high result accuracy in ML applications,
we need to performance approximate processing using the
information of the entire input data and to prioritize data
processing according to different data points’ correlations to
result accuracy. To this end, this paper proposes AccurateML,
a framework to enable information-aggregation-based approx-
imate processing on MapReduce jobs. The basic approach
taken by AccurateML is to aggregate information of similar
input data points to create small aggregated data points in
all map tasks of a job with two purposes. First, AccurateML
uses these aggregated data points, which represent an approx-
imation of the entire input data, to produce initial outputs
of the map tasks quickly to save the job computation time
and to decrease the size of the outputs to reduce the job
communication time. Second, AccurateML uses aggregated

ar
X

iv
:1

70
8.

01
34

1v
1

 [
cs

.D
C

]
 4

 A
ug

 2
01

7

data points to identify the parts of input data most related to
the job’s result accuracy, thus first using these parts to improve
the produced outputs in order to minimize result accuracy
losses. Note that the proposed framework is not intended to
replace, but rather complement the existing techniques that
reduce job execution time based on producing exact results
[11], [13], [15], [20], [21], [28]–[31]. AccurateML also differs
from traditional techniques that pre-compute structures (e.g.
samples or wavelets) of input data based on past execution logs
and then use these structures to process jobs running on certain
attributes of input data with accuracy and latency bounds [8],
[10]. In contrast, AccurateML needs no prior knowledge about
the jobs to be processed and it can support jobs running on
arbitrary attributes of input data.

AccurateML is proposed for ML applications under the
assumption the small proportion of critical input data can con-
tributes to majority parts of result accuracy. This assumption
is reasonable for many ML applications including classica-
tion, regression, recommendation, and clustering applications.
To demonstrate the effectiveness of our approach, we have
implemented it on Spark [3] and incorporated it with two
ML applications, namely a kNN classification application
and a CF-based recommendation application. We evaluated
AccurateML using real-world datasets in both applications
to study its effectiveness. The evaluation results show: (i) in
each map task, the generation of aggregated data points only
takes less than 5% of the job computation time; (ii) compared
to the exact processing results, AccurateML achieves 40.12
times and 31.65 times reduction in the job execution times
with result accuracy losses of less than 10% and 3.5% in
the evaluation of the kNN classification application and the
CF-based recommendation application, respectively; (iii) com-
pared to the approach based on producing approximate results,
AccurateML reduces the accuracy losses by an average of 2.71
times when using the same job execution times.

The remainder of this paper is organized as follows: Section
II discusses several examples to motivate the importance of
fast and accurate approximate processing. Section III intro-
duces our approach and Section IV evaluates the proposed
approach. Section V discusses the related work, and finally,
Sections VI summarizes the work.

II. MOTIVATING EXAMPLES

To motivate our focus on fast and accurate approximate
processing approach, we study the influence of input data on
both execution time and result accuracy of MapReduce jobs
in the context of ML applications. We analyzed the 25 ML
applications in Apache Mahout [2] whose core algorithms are
classification, clustering, and batch-based CF; and the 35 ML
algorithms in Spark Machine Learning Library (MLlib) [7]
that contains a variety of classification, regression, clustering,
and feature reduction applications.

Influence of input data on job execution time. In a typical
MapReduce job executing in a Hadoop (Spark) cluster, the
input data on which it operates is partitioned into chunks and
then allocated to different workers (slave nodes). During job

execution, its map tasks process input data and output key-
value pairs. These pairs are then transferred to its reduce
tasks in the shuffle phase. Subsequently, the reduce tasks
compute the final result. Hence the job execution time is
determined by its computation time of map and reduce tasks,
and its communication time that is the total data transfer time
during input data loading, data shuffling between map and
reduce tasks, and result writing. In the following discussions,
we focus on the computation time of map tasks that usually
dominates the job computation time and the shuffle cost (i.e.
the amount of data transferred in the shuffle phase) that is
usually the bottleneck of data transfer. As shown in Table I,
we classify the ML applications in Mahout and MLLib into
different categories in terms of the two discussed metrics of
job execution time and result accuracy.

TABLE I
PERCENTAGES OF ML ALGORITHMS BELONGING TO DIFFERENT

CATEGORIES

ML library Mahout MLLib
Category Yes No Yes No

Job exe-
cution
time

Whether map tasks’ computa-
tion times are proportional to
input data size?

96.00 4.00 97.14 2.86

Whether a job’s shuffle cost
is proportional to input data
size?

72.00 28.00 42.86 57.14

Result
accuracy

Whether a job’s result accu-
racy is influenced by the ratio
of the processed input data? 72.00 28.00 74.29 25.71

Map tasks’ computation time. In over 95% of the studied
ML applications, map tasks’ computation times in a MapRe-
duce job are proportional to their input data sizes. In a
small percentage of applications such as Stochastic Gradient
Descent (SGD) based parameter estimation, the computation
time depends on the algorithm’s number of iterations, where
each iteration only processes one data point.

Shuffle cost. In 72.00% and 42.86% of the applications (e.g.
CF-based recommendation, k-means clustering, and stratified
sampling) in Mahout and MLLib, a MapReduce job’s shuffle
cost is proportional to its input data size. For the remaining
applications, the outputs of map tasks are fixed: they are statis-
tics (e.g. likelihood ratios in collocation identification), learned
parameters (e.g. variables in linear regression), or discovered
frequent patterns (e.g. sequential patterns in FP-growth and
association rules). These outputs (that is, the transferred data
in the shuffle phase), therefore, are independent of the size of
input data.

Evaluation of example ML applications. As an example
of a ML application on MapReduce, we tested the kNN
classification on a Spark cluster with eight workers, each
worker has 2 CPU cores and 2 GB memory. The tested input
data (i.e. the Multiple Features Factor dataset [5]) has 2.3
million points, the map tasks of a job thus need to calculate
the distances between a test point and all these points. These
map tasks’ outputs are the test points’ k closest data points
and they are fixed. When classifying 10,000 test points, the job

Fig. 1. The accuracy losses of approximate results when reducing job
execution time in two example ML applications

takes 82 minutes to complete. As a second example, we tested
the CF-based recommendation using the Netflix Challenge
dataset [6] on the same cluster. The map tasks of this job
need to scan about 10 million ratings to make a prediction.
When making predictions for about 10,000 ratings, these tasks’
output size (i.e. the transferred data volume in the shuffle) is
approximately 50 times larger than that (714 MB) of the input
data, and the job execution time is about 113 minutes.

Result accuracy. We note that in a wide range of ML ap-
plications such as classification, recommendation, regression,
and clustering applications, restricting the size of the input
data influence result accuracy. As shown in Table I, 72.00%
and 74.29% of the applications in Mahout and MLLib belong
to this category. For the remaining applications, they either
perform computations over the entire input data (e.g. matrix
decomposition algorithms such as Singular Value Decomposi-
tion (SVD) and QR decomposition), or only need fixed input
data (e.g. a probability distribution in Markov chain Monte
Carlo). These applications are beyond the scope of this work.

Evaluation of example ML applications. We tested the
kNN classification and the CF-based recommendation applica-
tions under the same experimental settings as above. Figure 1
plots the relationship between the reduced job execution times
and the result accuracy losses in the produced approximate
results. In kNN classification and CF-based recommendation,
the accuracy losses are the percentages of decreased clas-
sification accuracies and increased prediction errors divided
by the accuracies and the errors of exact results, respectively.
We can see that when reducing job execution times by 10 to
20 times to achieve fast learning process, existing techniques
incur considerable accuracy losses.

III. ACCURATEML

A. Overview

AccurateML is presented to enable the information-
aggregation-based approximate processing in map tasks of
MapReduce jobs. As shown in Figure 2(a), after loading the
data, a basic map task produces exact outputs by processing
all the original data points in the input data. Its outputs are
transferred to reduce tasks in the shuffle phase. In contrast,
AccurateML re-structures the map task’s computation step into
two steps, as shown in Figure 2(b).

Fig. 2. Comparison of a basic map task and an AccuracyML map task

Generating aggregated data points. This step divides
the input data into multiple parts using locality sensitive
hashing (LSH) [18] and then generates several aggregated
data points and an index file. Each aggregated data point
represents the summarized information of a part of similar
original data points in the input data. The index file records
the mapping relationship between each aggregated data point
and the original data points represented by it. The detailed
generation process is explained in Section III-B.

Information-aggregation-based approximate processing.
Using the aggregated data points, this step produces an ap-
proximate output for each map task of a job using two stages.
The first stage produces an initial approximate output using
the aggregated data points, which are sufficiently small such
that the production process can be completed quickly even
when handling large input data. By processing the aggregated
data points, this stage also estimates the correlations between
different parts of the input data and the job’s result accuracy.
Based on this estimation, the second stage improves the
produced output by first processing the most accuracy-related
parts of original data points to minimize the result accuracy
loss. Section III-C explains this step.

B. Generating aggregated data points

The basic idea of generating aggregated data points is
to group similar data points in input data and store their
statistical information in aggregated data points to preserve
data similarity. In AccurateML, LSH [18] is used in grouping
similar data points for three reasons: (1) LSH can map similar
data points to the same buckets (that is, the same aggregated
data points) with high probability. This is because data points
close in the feature space have small distances (e.g. Euclidean
distance when s = 2 in Definition 1). LSH guarantees that
the chance of mapping two points ~d and ~d′ to the same bucket
grows as their distance ‖ ~d−~d′ ‖s decreases (Definition 2); (2)
LSH can control the number of the generated aggregated data
points, namely these points’ approximation level to the input
data, by adjusting the bucket number in mapping. Hence, a
larger bucket number means a larger number of aggregated
data points and a smaller number of original data points
represented by each of them; (3) LSH works efficiently for
large-scale and high dimensional data. Based on LSH, the
generation process has two steps.

Definition 1 (Distance measure). Given two n-dimensional
data points ~d = (x1, x2, ..., xn) and ~d′ = (x′1, x

′
2, ..., x

′
n), the

distance between ~d and ~d′ is calculated as an ls norm: ‖ ~d−
~d′ ‖s= s

√
Σn

i=1(xi − x′i)
s.

Definition 2 (LSH). Given two data points ~d and ~d′, and
their distance ‖ ~d− ~d′ ‖s, a hash function h(.), which maps a
n-dimensional data point ~d into a bucket id h(~d), is locality
sensitive if it satisfies both conditions that follow:

1. if ‖ ~d− ~d′ ‖s is small (the similarity of ~d and ~d′ is high),
then with high probability h(~d) = h(~d′);

2. if ‖ ~d− ~d′ ‖s is large (the similarity of ~d and ~d′ is low),
then with high probability h(~d) 6= h(~d′);

Step 1. Grouping similar data points using LSH. This step
operates on the input data and maps similar data points into
the same buckets using LSH. A bucket enclosing multiple
original data points corresponds to an aggregated data point.
For ls norm, AccurateML uses a popular LSH hash function
as follows [18]:

h(~d) = b~a ·
~d + b

w
c (1)

where ~a is a n-dimensional vector in which each component
is drawn from a p-stable distribution, ~a · ~d denotes the dot
product of ~a and ~d, b is uniformly drawn from [0, w) and w
is large constant.

In the mapping, this step selects a bucket number to decide
the compression ratio (the number of original data points
divided by the number of aggregated data points) such that
a sufficient number of aggregated data points are generated
to enable the fine-grained differentiation of the input data
represented by them. The number of aggregated data points
should also be much smaller (e.g. 10 or 100 times smaller
when the compression ratio is 10 or 100) than the number of
original input data points to guarantee the short job execution
time. This step outputs an index file using the mapping results.

Step 2. Information aggregation of original data points.
According to the index file, this step obtains each aggregated
data point’s corresponding original data points and aggregates
their information. In aggregation, the averages of original data
points’s feature values are calculated according to Equation 2.

Definition 3 (Aggregated data points). Suppose a n-
dimensional aggregated data point ~ad = (y1, y2, ..., yn) corre-
sponds to a set of m n-dimensional original data points {~d(1),
~d(2),..., ~d(m)}, where ~d(i) = (x

(i)
1 , x

(i)
2 , ..., x

(i)
n) (i = 1, ...,m),

then for j = 1 to n:

yj =
Σm

i=1x
(i)
j

m
(2)

Figure 3 shows an example of generating aggregated data
points. There are 12 original data points in the input data and
each point has two features (Figure 3 (a)). Step 1 groups
similar data points into the same buckets to preserve data
similarity (Figure 3 (b)). An index file is generated according
to the grouping results in the two buckets. Using this file, step
2 generates two aggregated data points ~ad

(1)
and ~ad

(2)
, each

one aggregates information of six original data points.

C. Information-aggregation-based Approximate Processing

In a map task of a MapReduce job, the steps of information-
aggregation-based approximate processing are detailed in Al-
gorithm 1. An initial output ao of this task is first produced

Fig. 3. An example of LSH-based generation of aggregated data points

using the aggregated data points (line 1). During this process,
Algorithm 1 also estimates the correlations (Definition 4)
between different parts of the input data and the job’s result
accuracy to guide the accuracy-aware processing of original
data points. This estimation is based on two observations.

Definition 4 (Correlation to result accuracy). An ag-
gregated (original) data point’s correlation to result accuracy,
denoted noted by c, is the improvement in result accuracy
brought by processing this data point.

First, processing an aggregated data point ~ad
(i)

gives an
estimation of the correlation ci between this point and the
result accuracy. For example, in the kNN classification and
the CF-based recommendation applications, the correlations
are the negative distance between an aggregated data point
and a test point and the weight between an aggregated user
and an active user, respectively.

Second, ~ad
(i)

represents a set Di of original data points with
similar feature values. Hence a higher value of ci indicates a
larger accuracy improvement brought by processing the data
points in Di. For example, in kNN classification, the class
label of a test point is decided its k nearest neighbors in the
training set. A smaller distance between ~ad

(i)
and the test point

(that is, a larger ci) indicates the original data points in Di are
closer to the test point. That is, processing these data points
has a higher chance of finding the test point’s actual k nearest
neighbors and thus having a larger probability of classifying
it correctly. Similarily, in CF-based recommendation, result
accuracy is measured by the error between the predicted and
actual ratings, a higher weight (i.e. a larger ci) means the
original users in set Di have higher similarities to the active
user u on average. Processing these users thus has a larger
influence on improving u’s predicted rating.

Based on the estimated correlations, the algorithm first ranks
the aggregated data points (line 2), and then uses the ranking
order of each aggregated data point to determine the ranking

order of its corresponding set of original data points (line 3).
Subsequently, the algorithm sequentially uses the ranked sets
to improve output ao (line 4 to 10). The improvement process
iteratively executes under the condition that the number i of
the processed sets is smaller than or equal to the refinement
threshold εmax, which defines the maximal ratio of sets of
original data points to be processed in the improvement. The
setting of this threshold saves computations by making the
algorithm only to process a proportion of original data points
that are most related to the result accuracy.

Algorithm 1 Information-aggregation-based approximate pro-
cessing in a map task

Require: { ~ad
(1)

, ~ad
(2)

,..., ~ad
(k)
}: the k aggregated data

points;
ci: ~ad

(i)
’s correlation to the job’s result accuracy (1 ≤ i ≤

k);
Di: the set of original data points represented by ~ad

(i)
;

ao: the approximate output of the map task;
εmax: the refinement threshold.

1. Process { ~ad
(1)

, ~ad
(2)

,..., ~ad
(k)
} to obtain the initial output

ao and the k correlations c1 to ck;
2. Rank { ~ad

(1)
, ~ad

(2)
,..., ~ad

(k)
} in descending order accord-

ing to their correlations to result accuracy;
3. Obtain the ranked sets {D′1,D′2,...,D′k} according to the

ranking orders of aggregated data points;
4. i=0; //i is the index of aggregated data points;
5. while (i ≤ k × εmax) do
6. for each original data point ~d ∈ D′i do
7. Process ~d to improve ao;
8. end for
9. i=i + 1;

10. end while
11. Return ao.

D. Implementations

AccurateML is implemented in Java and its module of
generating aggregated data points is implemented based on an
open source package of LSH [4]. Incorporating its module of
Accuracy-aware approximate processing into a ML application
does not require any modification in the data processing
algorithm, but controlling the input data fed to the algorithm.
We incorporated AccurateML into two ML applications: a
kNN classification application and a CF-based recommenda-
tion application. Both applications are implemented on Spark
[3], a popular MapReduce-like framework built upon Hadoop.
We introduce the two applications as follows.

The kNN classification application. Although conceptually
simple, the kNN method is a classic approach [17] that
provides a core function of many algorithms in fields such as
statistical classification and pattern recognition. This method
also has many features that are common to a wide class of ML
algorithms. In the context of classification problems, the basic
kNN algorithm classifies a test point ~q by linearly scanning

all data points in a training set with known class labels and
setting the k ones whose distances are closest to ~q as its k
nearest neighbors. The algorithm then assigns ~q to the same
class as that of the majority of its nearest neighbors.

The CF-based recommendation application. The user-
based CF algorithm [26] is a popular data-driven recommenda-
tion technique that predicts an active user’s rating (preference
score) for a target item (product) based on existing ratings
from similar users. The input data is a user-item rating matrix
that stores the user historical ratings (preference scores) for
different items. For an active user u, the algorithm predicts u’s
rating on a target item i using two steps. The first step calcu-
lates the weight (e.g. Pearson’s correlation coefficient) w(u, v)
between user u and any neighborhood user v who has rated the
same item i in the matrix. After calculating the weights, the
second step generates the prediction of user u’s rating on item
i by taking a weighted average of all ratings of item i from user

u’s neighborhood users: p(u, i) = r̄u +

∑
v∈I

w(u,v)×(rv,i−r̄v)∑
v∈I
|w(u,v)|

,

where I is the set of all users that have rated item i, rv,i
denotes user v’s rating of item i, and r̄u is the average rating
of all items rated by user u, and |w(u, v)| denotes the absolute
value of the weight w(u, v).

IV. EVALUATION

In this section, we first introduce the experimental set-
up (Section IV-A). AccurateML’s salient feature in quickly
producing approximate results of small accuracy losses is then
demonstrated by comparison with exact results (Section IV-B)
and approximate results produced using existing techniques
(Section IV-C).

A. Experimental Settings

Hardware Configurations. The experiments were con-
ducted on a nine-node Spark cluster, in which a 1Gb ethernet
network card connects one master node and eight workers.
Each node is equipped two Intel Xeon E5645 processor cores,
32 GB of DRAM, and one 1 TB 7200RPM SATA disk drive.

Software Environments. We use the same software config-
uration for all the workloads and run them in distributed mode.
Each worker has two executors. All the cluster nodes run
Linux Ubuntu 14.04.1. The KVM, JDK versions are 1.7.91,
1.7.0, respectively. The Hadoop and Spark versions are 2.6.0
and 1.5.2, respectively.

Tested workload and dataset. We test two workloads based
on the implementation of AccurateML on two ML applications
in Section III-D. For the kNN classification workload, the
input data is the Multiple Features Factor dataset [5], which
includes 2.3 million data points belonging to 10 classes and
each point has 217 features. From this dataset, we randomly
selected about 0.5% of data points as the test points, and
the remaining points form the training set. For the CF-
based recommendation workload, the input data is the Netflix
Challenge dataset [6], which is a rating matrix with 48,019
users (lines), 17,700 items (columns), and about 10 million
ratings. From this dataset, we randomly selected 1,00 users as

the active users. For each active user, 20% of the items are
randomly selected to form the test set, while the remaining
80% of items and the items from all the other users form the
training set.

Evaluation metrics. Both performance and accuracy met-
rics are used to evaluate the ML applications. The performance
metric is each job’s execution time. The accuracy metric is the
percentage of accuracy losses, which denotes the percentage of
decreased accuracies in approximate results when comparing
to accuracies of exact results that are produced using the entire
input data.

In classification, the accuracy is measured by the prediction
accuracy, which denotes the proportion of test points that
are correctly classified. In recommendation, the accuracy is
measured by the root-mean-square error (RMSE) [26], which
denotes the errors between the predicted and actual values
of ratings. Formally, RMSE is a weighted average error that
measures the prediction accuracy for all the target items

in a test set T : RMSE =

√∑
i∈T

(p(u,i)−ru,i)2

nT
, where nT

represents the number of items in set T , p(u, i) is the item
i’s predicted rating and ru,i is its actual rating.

B. Evaluation of Trade-off Between Job Execution Time and
Result Accuracy

The evaluations in this section first show MapReduce jobs’
execution times in terms of computation time of map tasks
and shuffle cost, and then discuss the trade-off between job
execution time and result accuracy.

Evaluation settings. In AccurateML, both job execution
time and result accuracy are determined by two parameters: (1)
the compression ratio that decides the number of aggregated
data points used to produce initial outputs of map tasks; and
(2) the refinement threshold that decides the number of original
data points used to refine the outputs. In the evaluations that
follow, three compression ratios (10, 20, and 100) were tested,
which means each aggregated data point corresponds to an
average of 10, 20, and 100 original data points, respectively; 10
refinement thresholds (0.01 to 0.1) were tested, which means
the most accuracy-related 1% to 10% of original data points
are processed. For each test, the input data of both workloads
is divided into 100 partitions for parallel execution. That is,
there are 100 map tasks in each job and the average of their
evaluation results is report. In addition, the value of k is set
to 5 in the kNN classification workload.

Evaluation of map tasks’ computation time. In this
evaluation, we divide an AccurateML map task into four
parts: grouping similar data points using LSH, information
aggregation of original data points, producing initial outputs of
map tasks, and refining the outputs by processing original data
points. For each part, we report its percentage computation
time, which denotes the execution time of this part divided
by the execution time of a basic map task that processes the
entire input data.

Figure 4 shows the percentage computation time of the
four parts under different values of compression ratios and

refinement thresholds. We can see that in all cases, the
execution times of the first two parts (i.e. grouping similar
data points using LSH and information aggregation of original
data points) are two orders of magnitude smaller than the
computation time of the basic map task. This is because these
parts have much lower time complexities compared to the ML
algorithm. Hence in an AccurateML job, a large proportion
(more than 95%) of the computation time is determined by the
remaining two parts. Specifically, the percentage computation
time of the producing initial outputs of map tasks part ranges
from 0.65% to 6.97%. This percentage is inversely propor-
tional to the compression ratio. That is, a larger compression
ratio means shorter times used to produce initial outputs. In
the refining the outputs by processing original data points
part, the percentage computation time ranges from 0.29% to
14.85%, which corresponds to the refinement threshold used in
approximate processing. When considering all the four parts,
the execution times of AccurateML map tasks are between
1.35% and 20.90% of the execution times of the basic map
tasks.

Evaluation of shuffle cost. In this evaluation, we report
percentage shuffle cost, which denotes the transferred data
amount in the shuffle phase of an AccurateML job divided
by that amount of a basic MapReduce job. In the kNN
classification workload, the outputs of map tasks (i.e. test
points’ k nearest neighbors) are fixed and thus the job shuffle
cost is independent of the input data size. By contrast, in
the CF-based recommendation workload, the outputs of map
tasks are active users’ neighborhood users and the number
of these users depends on the input size. Hence AccurateML
can reduce the job shuffle costs of this workload. Figure 5
lists each job’s percentage shuffle cost. We can see that this
percentage ranges from 9.48% to 56.61% and it is primarily
determined by the compression ratio.

Evaluation of job execution time and result accuracy.
Figure 6 shows the job execution time reduction by times when
comparing the AccurateML results to the exact results. We can
observe that the jobs produced by AccurateML achieve sig-
nificant reductions in execution times in all cases. Depending
on the values of compression ratios and refinement thresholds,
the execution times are reduced by an average of 12.40 times
in the kNN classification workload and by an average of 10.85
times in the CF-based recommendation workload.

To achieve such reduction in execution times, Figure 7
shows the AccurateML results’ percentages of accuracy loss.
We can see that even using short job execution times (that
is, setting large compression ratios and small refinement
thresholds), the produced results still have small accuracy
losses: they are smaller than 10% and 4% for the kNN
classification workload and the CF-based recommendation
workload, respectively. When using a small compression ratio
such as 10, these percentages are smaller than 4.37% and
1.67% while the job execution time can still be reduced by
5 to 15 times. This is because the aggregated data points
used to produce approximate results represent a fine-grained
approximation of the entire input data. When processing a

Fig. 4. Percentage computation time breakdown for map tasks in AccurateML

Fig. 5. Percentage shuffle cost of MapReduce jobs in AccurateML for the
CF-based recommendation workload

small proportion of the most accuracy-related original data
points, the accuracy losses can be further reduced.

Results. Compared to the exact processing approach, Ac-
curateML achieves reductions in job execution time either by
40.12 and 31.65 times with accuracy losses of 9.84% and
3.48%, or by 14.30 times and 15.16 times with accuracy
losses of 4.37% and 1.67% in the evaluations of the kNN
classification workload and the CF-based recommendation
workload, respectively.

C. Comparison to the Approximate Processing Approach

Following the evaluation settings of Section IV-B, we com-
pare AccurateML with the existing approximate processing
approach that reduces job execution times by processing
subsets of randomly sampled input data [9], [16], [23]–[25].
To make our comparisons fair, the same job execution times

Fig. 6. Comparison of job execution times between the AccurateML results
and the exact results

are permitted in generating all the approximate results with
the two compared approaches.

Evaluation results. In comparative experiments, 30 ap-
proximate results were produced in both approaches. Figure
8 demonstrates the accuracy loss reduction by times when
comparing the AccurateML results to the approximate results
produced by the compared approach. We can see that Accu-
rateML is obviously superior than the compared approach by

Fig. 7. Percentages of accuracy losses in the AccurateML results

Fig. 8. Comparison of result accuracy losses between AccurateML and the
existing approximate processing approach

resulting in much smaller accuracy losses. This is because to
achieve large execution time reductions, a large proportion of
information in the input data is either compressed in the ag-
gregated data points (AccurateML) or discarded randomly (the
compared approach). The retained statistical information in the
aggregated data points has a higher level of approximation to
the entire input data, thus resulting in less accuracy losses.

Discussion of the influence of algorithmic parameters.
We note that in many ML applications, the setting of param-
eters in their learning algorithms influences result accuracy.
Examples include the number of variables used in regression
model construction; the number of centroid in clustering; and
the number k of nearest neighbors in kNN classification. We
therefore take the kNN classification workload as an example
and repeat the above comparative experiment (compression

Fig. 9. Comparison of result accuracy losses between AccurateML and the
existing approximate processing approach using different values of k in the
kNN classification workload

ratio is 10) by testing different values (10, 20, and 50) of
k. The evaluation result in Figure 9 shows that AccurateML
consistently achieves much smaller (1.91 times smaller on
average) accuracy losses than the compared approach.

Results. When comparing to the existing approximate pro-
cessing approach using the same job execution time, Accu-
rateML achieves 1.89 times and 3.55 times reductions in result
accuracy losses in the evaluations of the kNN classification
workload and the CF-based recommendation workload, re-
spectively

V. RELATED WORK

Reducing execution times of MapReduce jobs has attracted
much attention in recent years. Many approaches have been
proposed based on producing exact results and they typically
fall into three categories. The first category of approaches
dynamically manages the execution orders of multiple MapRe-
duce jobs based on their cost models [21], past execution
logs [28], or utilities of violating deadlines [20]. The second
category of approaches proposes new MapReduce schedulers
to address two key problems in job execution [27], [29]: data
locality (placing tasks on nodes that having their input data)
[30] and the dependence between map and reduce tasks [13],
[31]. The third category of approaches focuses on improving
the performance of data transfer (e.g. the shuffle phase)
in MapReduce jobs [11], [15]. Our approximate processing
approach forms a complement to the above techniques. In
this section, we discuss related work based on producing
approximate results.

Producing approximate results in ML applications executing
on environments with limited time and resources has been
extensively studied. We now review two major categories of
existing work developed for MapReduce jobs.

Sampling based approximate processing. Online aggre-
gation transforms the traditional batch-oriented processing of
MapReduce jobs into an interactive process. That is, it first
produces an initial approximate result and then continuously
refines it until its estimated accuracy bound (e.g. the accuracy
is within a value range with 95% confidence) reaches a speci-
fied one [9], [16], [23], [25]. During the computation process,
this technique controls the execution time of a MapReduce job
by restricting the size of its input data. Hence to achieve fast
job execution, this technique skips a large proportion of input
data in approximate result production, thus incurring large

accuracy losses because all the skipped data potentially con-
tributes to result accuracy. In contrast, AccurateML performs
computations over small aggregated data points to produce
quick initial results. It also improves the results using the parts
of input data most related to result accuracy, thus resulting in
high result accuracy while also providing short execution time.

Pre-computed structure based approximate processing.
Based on workload characteristic of past logs, some techniques
pre-compute specialized structures (e.g. samples, histograms,
or wavelets) of input datasets. Each structure can be used
to process a MapReduce job running on certain attributes of
input data [8], [10]. Although these techniques provide both
accuracy and execution time bounds for MapReduce jobs, they
are impractical to process ML applications that need to process
arbitrary attributes of input data. Hence these techniques are
orthogonal to AccurateML, which requires no prior knowledge
and uses aggregated data points to represent an approximation
of the entire input data with all attributes.

VI. CONCLUSION

In this paper, we presented AccurateML, an information-
aggregation-based approximate processing framework for both
fast execution and high result accuracy of ML applications on
MapReduce. AccurateML is based on two key ideas: (1) it
aggregates information of input data to create small aggre-
gated data points, thus enabling MapReduce jobs producing
initial results quickly despite handling large input data; (2) it
estimates the correlations between different parts of the input
data and the jobs’ result accuracies using the aggregated data
points, thus minimizing accuracy losses by first using the most
accuracy-related input data to improve the results. Evaluation
results using real workloads and datasets demonstrate the ef-
fectiveness of AccurateML at bringing considerable reductions
in job execution times while only causing small accuracy
losses.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for careful review of
our paper. This work is supported by the National Natural
Science Foundation of China (Grant No. 61502451) and the
National Key Research and Development Plan of China (Grant
No. 2016YFB1000601). Rui Han is the corresponding author.

REFERENCES

[1] Apache hadoop. http://hadoop.apache.org/.
[2] Apache mahout. http://mahout.apache.org/.
[3] Apache spark. http://spark.apache.org/.
[4] Locality sensitive hashing in apache spark. https://github.com/

mrsqueeze/spark-hash.
[5] Multiple features factor data set. http://expdb.cs.kuleuven.be/expdb/

detail/type/dataset/name/mfeat-factors.
[6] Netflix prize dataset. http://archive.ics.uci.edu/ml/datasets/Netflix+Prize.
[7] Spark machine learning library (mllib). https://spark.apache.org/docs/1.

0.1/mllib-guide.html.
[8] Rachit Agarwal, Anurag Khandelwal, and Ion Stoica. Succinct: Enabling

queries on compressed data. In NSDI’15, pages 337–350, 2015.
[9] Sameer Agarwal, Henry Milner, Ariel Kleiner, Ameet Talwalkar,

Michael Jordan, Samuel Madden, Barzan Mozafari, and Ion Stoica.
Knowing when you’re wrong: building fast and reliable approximate
query processing systems. In SIGMOD’14, pages 481–492. ACM, 2014.

[10] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner,
Samuel Madden, and Ion Stoica. Blinkdb: queries with bounded errors
and bounded response times on very large data. In EuroSys’13, pages
29–42. ACM, 2013.

[11] Faraz Ahmad, Srimat T Chakradhar, Anand Raghunathan, and TN Vi-
jaykumar. Shufflewatcher: Shuffle-aware scheduling in multi-tenant
mapreduce clusters. In USENIX ATC’14, pages 1–13, 2014.

[12] Srimat T Chakradhar and Anand Raghunathan. Best-effort computing:
re-thinking parallel software and hardware. In DAC’10, pages 865–870.
ACM, 2010.

[13] Fangfei Chen, Murali Kodialam, and TV Lakshman. Joint scheduling of
processing and shuffle phases in mapreduce systems. In INFOCOM’12,
pages 1143–1151. IEEE, 2012.

[14] Vinay K Chippa, Srimat T Chakradhar, Kaushik Roy, and Anand
Raghunathan. Analysis and characterization of inherent application
resilience for approximate computing. In DAC’13, page 113. ACM,
2013.

[15] Mosharaf Chowdhury, Matei Zaharia, Justin Ma, Michael I Jordan, and
Ion Stoica. Managing data transfers in computer clusters with orchestra.
In ACM SIGCOMM Computer Communication Review, volume 41,
pages 98–109. ACM, 2011.

[16] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M Hellerstein,
Khaled Elmeleegy, and Russell Sears. Mapreduce online. In NSDI’10,
volume 10, page 20, 2010.

[17] Thomas Cover and Peter Hart. Nearest neighbor pattern classification.
IEEE transactions on information theory, 13(1):21–27, 1967.

[18] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni.
Locality-sensitive hashing scheme based on p-stable distributions. In
SCG’04, pages 253–262. ACM, 2004.

[19] Rui Han, Fan Zhang, and Zhentao Wang. Clap: Component-level
approximate processing for low tail latency and high result accuracy
in cloud online services. IEEE Transactions on Parallel and Distributed
Systems, 2017.

[20] Zhe Huang, Bharath Balasubramanian, Michael Wang, Tian Lan, Mung
Chiang, and Danny HK Tsang. Need for speed: Cora scheduler for
optimizing completion-times in the cloud. In INFOCOM’15, pages 891–
899. IEEE, 2015.

[21] Kamal Kc and Kemafor Anyanwu. Scheduling hadoop jobs to meet
deadlines. In CloudCom’10, pages 388–392. IEEE, 2010.

[22] L. Kugler. Is ’good enough’ computing good enough? Communications
of the ACM, 58(5):12–14, 2015.

[23] Nikolay Laptev, Kai Zeng, and Carlo Zaniolo. Early accurate results for
advanced analytics on mapreduce. VLDB’12, 5(10):1028–1039, 2012.

[24] Boduo Li, Edward Mazur, Yanlei Diao, Andrew McGregor, and Prashant
Shenoy. A platform for scalable one-pass analytics using mapreduce.
In SIGMOD’11, pages 985–996. ACM, 2011.

[25] Niketan Pansare, Vinayak R Borkar, Chris Jermaine, and Tyson Condie.
Online aggregation for large mapreduce jobs. VLDB’11, 4(11):1135–
1145, 2011.

[26] Xiaoyuan Su and Taghi M Khoshgoftaar. A survey of collaborative
filtering techniques. Advances in artificial intelligence, 2009:4, 2009.

[27] Nidhi Tiwari, Santonu Sarkar, Umesh Bellur, and Maria Indrawan.
Classification framework of mapreduce scheduling algorithms. ACM
Computing Surveys (CSUR), 47(3):49, 2015.

[28] Abhishek Verma, Ludmila Cherkasova, and Roy H Campbell. Two sides
of a coin: Optimizing the schedule of mapreduce jobs to minimize their
makespan and improve cluster performance. In MASCOTS’12, pages
11–18. IEEE, 2012.

[29] Matei Zaharia, Dhruba Borthakur, J Sen Sarma, Khaled Elmeleegy, Scott
Shenker, and Ion Stoica. Job scheduling for multi-user mapreduce
clusters. EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2009-55, 2009.

[30] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmele-
egy, Scott Shenker, and Ion Stoica. Delay scheduling: a simple technique
for achieving locality and fairness in cluster scheduling. In EuroSys’10,
pages 265–278. ACM, 2010.

[31] Yuqing Zhu, Yiwei Jiang, Weili Wu, Ling Ding, Ankur Teredesai,
Deying Li, and Wonjun Lee. Minimizing makespan and total completion
time in mapreduce-like systems. In INFOCOM’14, pages 2166–2174.
IEEE, 2014.

http://hadoop.apache.org/
http://mahout.apache.org/
http://spark.apache.org/
https://github.com/mrsqueeze/spark-hash
https://github.com/mrsqueeze/spark-hash
http://expdb.cs.kuleuven.be/expdb/detail/type/dataset/name/mfeat-factors
http://expdb.cs.kuleuven.be/expdb/detail/type/dataset/name/mfeat-factors
http://archive.ics.uci.edu/ml/datasets/Netflix+Prize
https://spark.apache.org/docs/1.0.1/mllib-guide.html
https://spark.apache.org/docs/1.0.1/mllib-guide.html

	I Introduction
	II Motivating Examples
	III AccurateML
	III-A Overview
	III-B Generating aggregated data points
	III-C Information-aggregation-based Approximate Processing
	III-D Implementations

	IV Evaluation
	IV-A Experimental Settings
	IV-B Evaluation of Trade-off Between Job Execution Time and Result Accuracy
	IV-C Comparison to the Approximate Processing Approach

	V Related Work
	VI Conclusion
	References

